

<list-item><list-item><list-item><list-item>

Packet routing on a linear array of p processors
<u>Problem 1</u>: At most one packet originated from each processor. (with arbitrary destinations)

Problem 1 can be solved in $\leq p - 1$ steps.

Every processor starts to send packet using the shortest route. There is no contention for any link. The maximum distance is p - 1 links.

9

CS535 Parallel Algorithms

CS535 Parallel Algorithms

510	•	-			1-	· 1	
15	12	8	32	8	12	15	32
7	13	6	17	17	13	7	6
2	16	25	19	2	16	19	25
18	5	11	3	18	11	5	3
i = 2				i = 3			
2	11	5	3	2	3	5	11
8	12	7	6	12	8	7	6
17	13	15	25	13	15	17	25
18	16	19	32	32	19	18	16

