
CS535 Parallel Algorithms Young

1

CS535 Parallel Algorithms 1

Parallel Mesh Algorithms

Reference : Horowitz, Sahni and
Rajasekaran, Computer Algorithms

CS535 Parallel Algorithms 2

Computation Model

• A mesh is an a × b grid in which there is a
processor at each grid point

• The edges are bi-directional communication
links, i.e. two separated uni-directional links

• Each processor can be labeled with
a tuple (i, j)

• Each processor has some local memory, and
can perform basic operations

CS535 Parallel Algorithms Young

2

CS535 Parallel Algorithms 3

• There is a global clock which synchronize all
processors

• We only consider square meshes here, i.e. a = b,
and linear array
A 4 × 4 mesh (16 processors) A Linear array of p processors

1 2 3 p-1 p

o------o-------o--- ….---o-------o

CS535 Parallel Algorithms 4

Packet Routing

• Primitive Interprocessor Communication
Operation – packet routing

• A packet contains
data + source processor + destination processor

• A link can handle only one packet at one unit time
• A processor may receive multiple packets (from

different links) and send multiple packets (to
different links) at the same time

CS535 Parallel Algorithms Young

3

CS535 Parallel Algorithms 5

• A processor may queue some packets in its local
storage

• Each processor uses the same packet routing
algorithm

• Partial Permutation Routing (PPR) is a special
case of general routing problem. In PPR, each
processor is the origin (and destination) of at most
one packet.

• The performance of an algorithm is measured by
run time, i.e. time to complete all operations, and
maximum queue length, i.e. the maximum number
of packets in a processor queue.

CS535 Parallel Algorithms 6

• The time taken by any packet to reach its
destination is dictated by the distance of the
chosen path between the packet’s origin and
destination and the amount of time (referred to as
delay) the packet spends waiting in queues.

• A Packet Routing Algorithm is specified by the
path to be taken by each packet and a priority
scheme.

• Run Time is the time taken by the last packet to reach its
destination

CS535 Parallel Algorithms Young

4

CS535 Parallel Algorithms 7

Example: Consider the packets a, b , c and d in (i).
Final destinations are in (ii).
Each packet takes the shortest path to its destination.

(a) Use FIFO Priority Scheme (If two packets reached a node at
the same time, there is a tie. This can be broken arbitrary.)

bc a
d

a

d
c
b

(i) (ii)

Try it out.
What is your Run Time?

Run Time – the time
taken by the last packet
to reach its destination

CS535 Parallel Algorithms 8

Example: Consider the packets a, b , c and d in (i).
Final destinations are in (ii).
Each packet takes the shortest path to its destination.

(b) Use Farthest-destination-first Scheme (If two packets have the
same destination, there is a tie. This can be broken arbitrary.)

bc a
d

a

d
c
b

(i) (ii)

Try it out.
What is your Run Time?

Run Time – the time
taken by the last packet
to reach its destination

• Farthest-
destination-first
strategy : At each
time unit, each
processor chooses at
most two packets
from its queue, one to
farthest left (if any)
and one to farthest
right (if any).

CS535 Parallel Algorithms Young

5

CS535 Parallel Algorithms 9

• Packet routing on a linear array of p processors
Problem 1 : At most one packet originated from
each processor. (with arbitrary destinations)

Problem 1 can be solved in <= p – 1 steps.

Every processor starts to send packet using the
shortest route. There is no contention for any
link. The maximum distance is p – 1 links.

CS535 Parallel Algorithms 10

Packet routing on a linear array of p processors
Problem 2 : Each processor is the destination for
exactly one packet. (can have multiple packets
starting from a single origin)
Note : A processor may have multiple packets to
be routed to multiple processors.

• Farthest-destination-first strategy : At each
time unit, each processor chooses at most two
packets from its queue, one to farthest left (if
any) and one to farthest right (if any).

CS535 Parallel Algorithms Young

6

CS535 Parallel Algorithms 11

• By using the farthest-destination-first strategy, the time
needed for a packet stating at processor i to reach its
destination is no more than Max (p-i,i-1)
Informal Proof :
Just consider only packets that are moving from left to
right. (same for those moving from right to left)
(1) A packet to processor p cannot be delayed according to
the strategy, so, it will reach destination at p-i units.
(2) A packet to processor p-1 can only be delayed by
packet to p, so it will reach destination at p-1-i units + 1
delayed unit <= p-i units
(3) and so on.

Problem 2 can be solved in <= p – 1 steps using the
farthest-destination-first strategy

CS535 Parallel Algorithms 12

• Packet routing (PPR) on a Mesh
(Assume p × p processors)

Algorithm PPR:
Let q be an arbitrary packet with (i,j) as
its origin and (u,v) as its destination.

Phase 1 : Travel along column j to row u
Phase 2 : Travel along row u to its

destination (u,v)

CS535 Parallel Algorithms Young

7

CS535 Parallel Algorithms 13

Running time analysis for Algorithm PPR :

The lower bound is 2(p-1) steps, i.e. from
(1,1) to (p,p) (opposite corners)

Phase 1 can be done in (p-1) steps (by
problem 1 above)

Phase 2 can be done in (p-1) steps (by
problem 2 above)

Total : 2(p-1) steps optimal algorithm

CS535 Parallel Algorithms 14

Problem : in the worst case, the queue size is p/2.

i.e. In each time unit, 2 packets arrive
and only one can be sent out

There are at most p packets in one column
may need to queue up to p/2 packets

CS535 Parallel Algorithms Young

8

CS535 Parallel Algorithms 15

Fundamental Algorithms

• Broadcasting problem : To broadcast a
message to all processors
Assume a processor can duplicate message.

Phase 1 : Send the message along the row.
Phase 2 : For each processor in the row,

send message along its column.
Total time <= 2(p-1) = O(p)

CS535 Parallel Algorithms 16

• Prefix computation problem for p × p mesh; Total
time O(p)
Assume there is a number in each processor, i.e. p2

numbers {x1,1, x1,2, …, x1,p, x2,1, x2,2, …, x2,p, …,
xp,1, xp,2, …, xp,p}

Phase 1 : Each row i, compute prefix
xi,1, xi,1⊕ xi,2, …, xi,1⊕ xi,2⊕…⊕ xi,p

Phase 2 : Compute prefix for number in column p.
Assume final numbers in column p are
α1, α2, …, αp

CS535 Parallel Algorithms Young

9

CS535 Parallel Algorithms 17

Phase 3 : For each processor (i,p) in column
p, broadcast the number αi-1 to all other
elements in same row i. The number αi-1
will be added to each number in row i.
Example : (assume each small square is a

processor in 4 x 4 mesh)

3210

2001

1201

2110

6310

3111

4311

4210

17310

11111

8311

4210

17141211

11999

8755

4210

CS535 Parallel Algorithms 18

Merging

• Odd-Even Merge on a Linear Array

Assume two sorted lists with 2m numbers :
a1 a2 a3 a4 … am-1 am b1 b2 b3 b4 … bm-1 bm

Assume there are 2m processors and each processor has a
number.
1st m processors hold 1st list of m sorted numbers,
2nd m processors hold 2nd list of m sorted numbers.

CS535 Parallel Algorithms Young

10

CS535 Parallel Algorithms 19

Step 1: Group odd part and even part of ai
(also, same for bi)
i.e.

Run time : O(m/2)

Step 2 : Group odd parts (and even parts) of
both lists
i.e.

Run time : O(m/2)

a1 a3 …am-1 a2 a4 … am b1 b3 …bm-1 b2 b4 …bm

a1 a3 …am-1 b1 b3 …bm-1 a2 a4 … am b2 b4 …bm

Odd Parts Even Parts

CS535 Parallel Algorithms 20

Step 3 : Odd parts (and even parts) are
merged recursively to get two
sorted lists

i.e.

Run time : T(m/2)

Step 4 : Shuffled odd and even numbers

i.e. o1 e1 o2 e2 o3 … em-2 om-1 em-1 om em

Run time : O(m)

o1 o2 …om-1 om e1 e2 …em-1 em

CS535 Parallel Algorithms Young

11

CS535 Parallel Algorithms 21

Step 5 : Compare adjacent elements and
swap numbers if out of order

i.e. o1 … em

Run time : O(1)

Total Run time T(m) = T(m/2)+2m+1= O(m)

Note : T(m) means running time to merge 2 sorted
lists, each with m elements

e1 o2 e2 o3

…

em-2 om-1 em-1 om…

CS535 Parallel Algorithms 22

• Odd-Even Merge on a Mesh (O(p), use
snakelike ordering)

List1 List 2
5 6 2 3

11 8 9 7

15 18 19 28

25 20 37 32

SWAP

6 2 3

8 11 7 9

15 18 19 28

20 25 32 37

5

O1 E1 O2 E2

CS535 Parallel Algorithms Young

12

CS535 Parallel Algorithms 23

O1 O2 E1 E2

5 2 6 3

8 7 11 9

15 19 18 28

20 32 25 37

O E

2 5 3 6

8 7 11 9

15 19 18 25

32 20 37 28

Sorting the
Odd group
and Even group

SWAP

CS535 Parallel Algorithms 24

2

SWAP
all four pairs

2

3 5 6

8 11 7 9

15 18 19 25

32 37 20 28

5 3 6

8 7 11 9

15 19 18 25

32 20 37 28

CS535 Parallel Algorithms Young

13

CS535 Parallel Algorithms 25

O E

2

SWAP
all four pairs

3 5 6

8 11 7 9

15 18 19 25

32 37 20 28

2

3 5 6

11 8 9 7

15 18 19 25

37 32 28 20

CS535 Parallel Algorithms 26

Shuffle O and E

37

11
15

2

32 28

18 19

8 9

3 5

25
20

6
7

2 3 5 6

11 9 8 7

15 18 19 20

37 32 28 25

For each pair,
Check and swap
if necessary

CS535 Parallel Algorithms Young

14

CS535 Parallel Algorithms 27

Sorting
• Odd-even transposition sort on linear array

Assume each processor i has a number xi

Algorithm Odd-even-transposition-sort
For i = 1 to p do

If i is odd : compare keys at processors
2j-1and 2j for all j

If i is even : compare keys at processors
2j and 2j+1 for all j

CS535 Parallel Algorithms 28

This can be done in O(p), (Skip the proof)
Example :

i = 1 :
i = 2 : 4 7
i = 3 :
i = 4 : 1 7
i = 5 :
i = 6 : 1 2 3 4 5 6 7 8

5 4 8 1 2 6 3 7
5 1 8 2 6 3

4 1 5 2 8 3 6 7
4 2 5 3 8 6

1 2 4 3 5 6 8 7

CS535 Parallel Algorithms Young

15

CS535 Parallel Algorithms 29

• Shearsort on a Mesh(use snakelike order)
Assume each processor i has a number xi

Algorithm ShearSort
For i = 1 to log(p2) + 1 do
• If i is even : sort each columns in increasing

order from top to bottom
• If i is odd : sort each rows; alternate rows are

sorted in reverse order.

Use previous algorithm to sort p elements in O(p)
This can be done in O(p log p), skip the proof!

CS535 Parallel Algorithms 30

Example :

311518

1925162

176137

3281215

351118

2519162

671317

3215128

i = 1

32191618

25151317

67128

35112

16181932

25171513

67812

11532
i = 3i = 2

CS535 Parallel Algorithms Young

16

CS535 Parallel Algorithms 31

25181932

16171513

117812

6532

18192532

17161513

781112

6532

i = 4 i = 5

