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Computational Cognitive Neuroscience (CCN) is a new field that lies at the intersection of 
computational neuroscience, machine learning, and neural network theory (i.e., connectionism). The 
ideal CCN model should not make any assumptions that are known to contradict the current 
neuroscience literature and at the same time provide good accounts of behavior and at least some 
neuroscience data (e.g., single-neuron activity, fMRI data). Furthermore, once set, the architecture of 
the CCN network and the models of each individual unit should remain fixed throughout all 
applications. Because of the greater weight they place on biological accuracy, CCN models differ 
substantially from traditional neural network models in how each individual unit is modeled, how 
learning is modeled, and how behavior is generated from the network. A variety of CCN solutions to 
these three problems are described. A real example of this approach is described, and some advantages 
and limitations of the CCN approach are discussed. 
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1. Introduction 
 

The emerging new field of Computational Cognitive 
Neuroscience (CCN). lies at the intersection of 
computational neuroscience and the similar fields of 
machine learning, neural network theory, connectionism, 
and artificial intelligence. Like computational 
neuroscience, CCN strives for neurobiological accuracy 
and like connectionism, a major goal is to account for 
behavior. In other words, using Marr’s (1982) 
nomenclature, CCN strives to develop models that can 
simultaneously satisfy the algorithmic and 
implementation levels. One main advantage of CCN is 
that it offers many more constraints on the resulting 
models than more traditional approaches. As a result, 
two researchers independently modeling the same 
behavior are more likely to converge on highly similar  
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models with this new approach, and for this reason the 
resulting models should have a permanence that is 
unusual with older approaches. A growing number of 
researchers build and test CCN models (e.g., Anderson, 
Fincham, Qin, & Stocco, 2008; Ashby, Ell, Valentin, & 
Casale, 2005; Frank, 2005; Hartley, Taylor, & Taylor, 
2006; Leveille, Versace, & Grossberg, 2010), and an 
annual CCN conference is now included as a satellite to 
the Annual Meeting of the Psychonomic Society. 

 
2. A brief history 

 
The field of computational neuroscience became 

popular with Hodgkin and Huxley’s (1952) Nobel Prize 
winning efforts to model the generation of action 
potentials in the giant squid axon.  Most  models  in  this 
field include, at most, only a single neuron. For example, 
a common computational neuroscience approach, called 
compartment modeling, models a neuron’s axons and 
dendrites as cylinders and the soma as a sphere. Next, 
partial differential equations that describe the 
propagation of action potentials are written for each of 
these compartments. A standard application will try to 
account for patch-clamp data collected from a variety of 
locations on the cell. Some compartment models are 
extremely accurate and complex. For example, some 
single-cell models have hundreds or even thousands of 
compartments (e.g., Bhalla & Bower, 1993; Segev & 
Burke, 1998). Historically, computational neuroscience 
models have almost never tried to account for behavior. 
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In most cases, such a goal is precluded by the 
complexity of the single-cell models that are used. 

Neural network theory began with similar origins in 
the work of McCulloch and Pitts (1943). However, 
because the goal quickly became to model behavior, 
neural network theory diverged from computational 
neuroscience with the work of Newell, Shaw, and Simon 
(1958) and Rosenblatt (1958). At that time, there simply 
was not enough known about the neural basis of 
behavior to support a research program that tried to 
model behavior in a biologically accurate way. Thus the 
fields of artificial intelligence and the more modern 
related field of machine learning place almost all 
emphasis on behavior and almost none on neuroscience.  

Modern neural network theory (e.g., Haykin, 2008) 
and connectionism (Rumelhart & McClelland, 1986) 
take an intermediate approach in the sense that 
biologically plausible properties are often seen as 
advantages, although they rarely are requirements. 
Neural network models have some features in common 
with the brain. Included in this list are distributed 
representation, continuous flow, and the modeling of 
memory as changes in synaptic strengths. Even so, 
almost all neural network models include many features 
that are now known to be incompatible with brain 
function. For example, there is generally no attempt to 
identify units in neural network models with specific 
brain regions, and even when there is, there is little 
attempt to model inputs and outputs to these regions in a 
biologically accurate way. Similarly, units in neural 
network models typically do not behave like real 
neurons, and the learning algorithms that are used often 
have little biological plausibility (e.g., backpropagation).  

These observations are not criticisms. The vast 
majority of computational neuroscientists are not 
psychologists and many have no fundamental interest in 
behavior. Similarly, artificial intelligence and machine 
learning researchers are generally interested in 
optimizing the performance of their models, not in 
modeling human behavior. Neural network theory (i.e., 
connectionism) often does have the goal of modeling 
behavior and generally does view the neural-like 
properties of neural network models as an advantage of 
this approach. Even so, many applications of neural 
network models are to behaviors that are so complex or 
so poorly understood that it would be premature to 
attempt to build more biologically detailed models (these 
fields focus on Marr’s ‘algorithmic’ level). The focus of 
these earlier approaches is well motivated because “the 
explication of each level involves issues that are rather 
independent of the other two” (Marr, 1982, p. 25). 
However, Marr also acknowledged that “these three 
levels are coupled” (p. 25). So, the new field of CCN is 
not meant to supplant these older approaches, but rather 

to fill a new niche by trying to focus on the “coupling” 
of the levels by using recent discoveries in psychology 
and neuroscience. 

The field of CCN began shortly after the cognitive 
neuroscience revolution of the 1990’s. The first break 
with existing approaches came with attempts to associate 
nodes in fairly traditional connectionist or neural 
network models with specific brain regions. This trend 
toward increased biological detail continued with more 
biologically plausible learning algorithms, and more 
realistic models of the individual units (e.g., Ashby, 
Alfonso-Reese, Turken, & Waldron, 1998; Cohen, 
Braver, & O'Reilly, 1996; Cohen & Servan-Schreiber, 
1992; McClelland, McNaughton, & O’Reilly, 1995). 
During this time there were also attempts to formulate 
general modeling principles of this new approach 
(O’Reilly, 1998; O’Reilly & Munakata, 2000). The 
present article represents a natural extension and 
summary of this earlier work. 

This article is organized as follows. Section 3 gives 
some motivation for adopting a CCN approach. Section 
4 describes the CCN principles that guide model 
development and model testing. Section 5 describes 
some common approaches used in CCN to model 
individual units or neurons. Section 6 briefly reviews the 
biochemistry that underlies some common forms of 
long-term synaptic plasticity, and describes simple 
computational models of these learning-related changes 
in synaptic strength. Section 7 reviews some solutions to 
the problem of generating behavior from single-unit 
activity. Section 8 describes an example of the CCN 
approach, and Section 9 closes with some general 
comments and conclusions. 

 
3. Why use CCN models? 

 
Before getting into the details of how to develop 

CCN models, it is natural to ask what advantages CCN 
has over other approaches. First, CCN modeling 
increases the number of constraints on behavioral 
models. Newell (1992) argued that “cognitive theory is 
radically underdetermined by data” (p. 426). Although 
Newell was arguing for the use of ‘unified’ theories of 
cognition (e.g., cognitive architectures), another possible 
solution to this problem is to add neuroscience 
constraints to the modeling process (i.e., going deep 
instead of going wide). Rather than just selecting among 
models based on goodness-of-fit to behavioral data, 
CCN adds the extra constraint that the winning model 
should also function in a manner that is consistent with 
existing neuroscience data. Adding neuroscience 
constraints should reduce the class of candidate models, 
and equally important it should reduce the heterogeneity 
of this class. For example, if neuroscience data implicate 
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the hippocampus in some behavior, then models of this 
behavior must all share some hippocampal-like 
properties. This reduction in model heterogeneity should 
cause different labs to converge on similar models and 
thereby facilitate rapid scientific progress. 

Second, attending to the neuroscience data can 
expose relationships between seemingly unrelated 
behaviors. For example, cognitive neuroscience models 
of (information-integration) category learning and 
(implicit) sequence learning had independently identified 
similar cortical-striatal circuits (e.g., Ashby et al., 1998; 
Grafton, Hazeltine, & Ivry, 1995). This raised the 
possibility that these two seemingly disparate behaviors 
shared some previously unknown deep functional 
similarity. Several studies have explored this possibility. 
First, Willingham, Wells, Farrell, and Stemwedel (2000) 
had showed that implicit motor sequence production is 
disrupted when the response key locations are switched, 
but not when the hands used to depress the keys are 
switched. Ashby, Ell, and Waldron (2003) showed that 
this same pattern of results holds for information-
integration categorization. Without linking 
categorization and sequence learning through their 
hypothesized underlying neural circuits, this dependence 
of information-integration categorization on response 
location learning would have been much more difficult 
to discover. More recently, an inactivation study showed 
that the basal ganglia are not required for the production 
of overlearned motor sequences (Desmurget & Turner, 
2010), thereby suggesting that the same may be true of 
information-integration categorization (as was predicted 
by the CCN model of Ashby et al., 2007). This 
prediction was recently confirmed with an fMRI 
experiment (Waldschmidt & Ashby, 2011).  

Third, in many cases, studying the underlying 
neuroscience leads to surprising and dramatic behavioral 
predictions that would be difficult or impossible to 
derive from a purely cognitive approach. For example, 
information-integration category learning was 
hypothesized to depend on dopamine-mediated 
reinforcement learning at cortical-striatal synapses 
(Ashby et al., 1998). Because the reward follows the 
behavior, the dopamine must operate on a memory trace 
that identifies recently active synapses. The most likely 
candidate for this trace is partially phosphorylated 
CaMKII, which loses its sensitivity to dopamine after 
just a few seconds (e.g., Lisman Schulman, & Cline, 
2002; see section 6.1 for details). Thus, attention to the 
underlying neuroscience generates a novel and 
surprising prediction: delaying feedback by just a few 
seconds should impair information-integration category 
learning, but not other forms of category learning (e.g., 
rule-based) thought to rely on executive attention and 
working memory. Several studies have confirmed these 

predictions (Maddox, Ashby, & Bohil, 2003; Maddox & 
Ing, 2005).  

Fourth, CCN models are especially amenable to a 
converging operations approach to model testing 
because they make predictions about both behavioral and 
neuroscience data. Thus, rather than simply testing them 
against behavioral data, it should also be possible to test 
CCN models against a variety of neuroscience data, 
including single-unit recording data, lesion data, 
psychopharmacological data, fMRI data, and possibly 
even EEG data. The ability to test CCN models against 
such a broad spectrum of data should facilitate the 
process of testing, rejecting, and refining new models.  

 
4. CCN Ideals 

 
One thing that sets CCN apart from previous 

modeling traditions is that its principles of model 
building and testing are unique. In traditional cognitive-
based mathematical modeling of behavior, the 
overriding criterion for establishing the validity of a 
model is goodness-of-fit to the behavioral data (usually 
penalized for model complexity; see, e.g., Helie, 2006; 
Pitt, Kim, Navarro, & Myung, 2006). In general, there is 
a secondary goal of encapsulating existing cognitive 
theory, but most cognitive theories are extremely 
difficult to falsify, and as a result, if a cognitive model 
fits data well then it is almost never rejected because of 
the cognitive assumptions it makes. There are many 
examples where models making very different cognitive 
assumptions provide approximately equal levels of 
goodness-of-fit, so in many cognitive domains there are 
many competing mathematical models that make very 
different cognitive assumptions. For example, the results 
from many memory experiments can be well fit by a 
variety of models that make radically different cognitive 
assumptions (e.g., Raaijmakers & Shiffrin, 2004), and 
unfortunately, appeals to cognitive theory have not done 
much to winnow down this crowded field. Many other 
examples exist in the cognitive literature, including the 
well known difficulty in discriminating between serial 
and parallel models of visual or memory search (e.g., 
Townsend & Ashby, 1983), the ability of exemplar, 
prototype, and decision bound models of categorization 
to mimic each other (Ashby & Maddox, 1993), and the 
difficulty in discriminating between single- and dual-
process models of recognition memory (e.g., Diana, 
Reder, Arndt, & Park, 2006; Jang, Wixted, & Huber, 
2009). 

These problems are greatly reduced in CCN because 
goodness-of-fit to behavioral data is only one of a 
number of criteria that are used to assess model validity. 
This section describes four ideal principles used during 
model building and testing in CCN. It should be stressed 
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that these are ideals. Arguably, no existing models meet 
all these criteria. Nevertheless, these principles are 
useful for helping researchers build and evaluate CCN 
models. 

 
4.1. The Neuroscience Ideal. A CCN model should 

not make any assumptions that are known to contradict 
the current neuroscience literature. 
 

In general, the Neuroscience Ideal means that when 
building or evaluating a CCN model, the validity of four 
types of assumptions should be considered. First, the 
model should only postulate connections among brain 
regions that have been verified in neuroanatomical 
tracing studies. Second, the model should correctly 
specify whether each projection is excitatory or 
inhibitory. Third, the qualitative behavior of units in 
each brain region should agree with studies of single 
neurons in these regions. Finally, any learning 
assumptions that are made should agree with existing 
data on neural plasticity [e.g., long-term potentiation 
(LTP) and long-term depression (LTD)]. If a model 
makes an assumption that is known to be incompatible 
with the neuroscience literature then the model should be 
rejected, regardless of how well it accounts for 
behavioral data.  

Note that the Neuroscience Ideal does not say that a 
CCN model must be compatible with all existing 
neuroscience data. In other words, not all errors are 
equal and the Neuroscience Ideal weighs errors of 
commission much more heavily than errors of omission 
(Meeter, Jehee, & Murre, 2007). Every model is an 
abstraction and thus omits some of the complexity found 
in the natural world. One key to building a successful 
CCN model is to identify the critical features of the 
existing neuroscience literature that are most 
functionally relevant to the behavior being modeled. For 
example, neuroanatomical tracing studies will identify 
more interconnections among brain regions than 
typically should be included in a CCN model because 
for the behavior under study some of these 
interconnections are likely to be more functionally 
important than others.  

A related problem is that when building most CCN 
models it will be necessary to make some choices for 
which the neuroscience literature is little help – either 
because there are no neuroscience data or because the 
existing data are equivocal. Thus, the Neuroscience Ideal 
should not be interpreted as suggesting that all known 
neuroscience must be incorporated into a CCN model or 
that every feature of a CCN model must be grounded in 
neuroscience, but rather only that the neuroscience that 
is incorporated should not contradict the existing 
neuroscience literature. Finally, it is important to keep in 

mind that the Neuroscience Ideal is just that: an ideal. 
No model is ever correct and, even if one were 
eventually able to design a model fully compatible with 
the Neuroscience Ideal, this would make the model so 
complex that it likely would be impossible to test.1 For 
these reasons, the Neuroscience Ideal should be balanced 
with the following heuristic. 

 
4.2. The Simplicity Heuristic. No extra neuro-

scientific detail should be added to the model unless 
there are data to test this component of the model or the 
model cannot function without this detail. 
 

This is just a version of Occam’s razor. It is 
especially important with CCN models however, 
because unlike cognitive models, there will almost 
always be many extra neuroscientific details that one 
could add to a CCN model. For example, one could use 
multi-compartment models of each neuron or even 
model specific ion channels. Adding untested 
complexity, even if it is neuroscientifically valid, 
increases the number of free parameters in the model and 
the computing time required for fitting. In addition, 
when untested details are added, it becomes difficult to 
determine whether the success of the model is due to 
these details or to the more macroscopic properties that 
inspired the model in the first place. 

The phrase “to test this component of the model” in 
the Simplicity Heuristic should be interpreted loosely. 
For example, if previous research shows that a behavior 
is dependent on the cerebellum then the cerebellum 
could be included in the model, even if no cerebellar 
data will be fit by the model (e.g., single unit recordings 
or lesion data). 

 
4.3. The Set-in-Stone Ideal. Once set, the 

architecture of the network and the models of each 
individual unit should remain fixed throughout all 
applications. 

 
Connections between brain regions do not change 

from task to task, nor does the qualitative nature via 
which a neuron responds to input. Thus, the model’s 
analogues of these features should also not change when 
the empirical application changes. This ideal greatly 
reduces the mathematical flexibility of CCN models. 
Ideally, the overall architecture is constrained by known 
neuroanatomy and the model of each individual unit is 
constrained by existing single-unit recording data from 
the analogous brain region. Thus, although a CCN model 

                                                 
1 The reader is referred to Meeter et al. (2007) for further 
discussion of other common untested assumptions in CCN 
models. 
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will initially have many unknown constants, most of 
these will be set by single-unit recording data and then, 
by the Set-in-Stone Ideal, they will remain invariant 
across all applications of the model. If some of the 
details turn out to be incorrect after they have been ‘set-
in-stone’, then the incorrect details should be changed 
and a new model should be constructed. However, note 
that such revisions do not add flexibility to the existing 
model; rather they lead to the creation of a new model. 
Thus, after a constant is set in stone, it should not be 
considered a free parameter in any future application of 
the model.  

The Set-in-Stone Ideal applies to the brain areas that 
constitute the focus of explanation of the model, and 
should not be expected to apply to brain regions that are 
either upstream or downstream from this hypothesized 
network. For example, many models of learning, 
memory, or cognition will require visual input. In tasks 
where variation in behavior depends primarily on 
processing within the hypothesized network rather than 
on details of the visual processing, it is common to 
grossly oversimplify the model of this visual input. For 
example, a simple square wave might be used, rather 
than a spiking model. Applying such a model to a 
different task, which depends on different visual inputs, 
might require changing the abstract model of visual 
input. Similarly, a model of working memory might 
include a greatly oversimplified model of motor 
responding that could change when the model is applied 
to a new task with different motor requirements. So in 
summary, the Set-in-Stone Ideal is meant to apply to the 
brain regions that are the focus of the model and not to 
the inputs or outputs of that model. 

  
4.4.  The Goodness-of-Fit Ideal. A CCN model 

should provide good accounts of behavioral data and at 
least some neuroscience data.  
 

A model must make predictions at both the 
behavioral and neuroscience levels to classify as a CCN 
model. If it only makes behavioral predictions then it 
should be classified as a cognitive model, whereas if it 
only makes neuroscience predictions then it should be 
classified as a computational neuroscience model. Thus, 
in general, CCN models are more ambitious than 
traditional cognitive models because CCN models are 
expected to account simultaneously for a wider range of 
data than cognitive models. Note that the only term that 
makes this statement an ideal rather than a requirement 
is the word “good”. Every CCN model should make both 
behavioral and neuroscience predictions, but the ideal 
CCN model provides good accounts of both data types. 

There are many different types of neuroscience data, 
so there is wide latitude in how this ideal can be 

approached. For example, a CCN model might be tested 
against single-unit recording data, BOLD responses 
from fMRI experiments, or even behavioral data 
collected from animal or human participants with some 
specific brain lesion, or under the influence of some 
particular psychoactive drug.  

Because a CCN model can be tested against data 
from multiple sources, it can gain or lose support more 
easily than a cognitive model. For instance, following 
the Neuroscience Ideal (Section 4.1), the collection of 
new neuroscience data could invalidate a model by 
turning an error of omission into an error of commission. 
For example, a model might posit a direct projection 
from the pre-supplementary motor area (preSMA) to 
SMA. After all, given their names, this seems a sensible 
assumption. Recent neuroanatomy studies however, 
suggest that preSMA does not project to SMA (Dum & 
Strick, 2005), and therefore this discovery invalidates 
any CCN model that posits such a projection, regardless 
of how well it fits behavioral data. Another possibility 
however, is that new neuroscience data could verify a 
previously unsupported assumption, thereby lending new 
support to the CCN model. Of course, similar outcomes 
could follow the collection of behavioral data; a model 
prediction could be verified or invalidated after new 
behavioral data are collected. What is crucial here is that 
both types of data can be used to argue for or against the 
CCN model. This is different from cognitive or 
computational neuroscience models that restrict their 
application to only one data type. 

 
4.5. Relation to previous lists of CCN 

characteristics 
 

The list of ideals proposed in Sections 4.1-4.4 is not 
the first attempt to specify the essential characteristics of 
CCN models explicitly. For instance, O’Reilly (1998) 
proposed six principles for computational models of the 
cortex: (1) biological realism, (2) distributed 
representations, (3) inhibitory competition, (4) 
bidirectional activation propagation, (5) error-driven 
learning of specific tasks and, (6) Hebbian learning of 
task-free statistical properties of the environment. Most 
of these principles are related to the Neuroscience Ideal 
above in that they specify biological constraints that 
should be included in any CCN model of the cortex. 
Hence, they can be seen as an unpacking of the 
Neuroscience Ideal. 

A decade later, Meeter et al. (2007) proposed a list 
of more general criteria. Specifically, they suggested that 
a good CCN model (1) has few assumptions, (2) is 
inflexible and, (3) exhibits ontological clarity. The first 
of these is similar to our Simplicity Heuristic, while the 
second is similar to the Set-in-Stone Ideal. Both sets of 
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criteria emphasize that a model should be simple and 
inflexible (two ideas that are mathematically related). 
The last criterion, ontological clarity, is similar to our 
Goodness-of-Fit Ideal, in that the scope of the model 
must be clearly established in order to determine what 
kind of data needs to be fit and what kind of experiments 
should be run. In other words, the rules need to be set 
early on to specify what counts as evidence for or 
against the CCN model.  

 
4.6.  Discussion 

 
The Neuroscience Ideal makes the relationship 

between computational neuroscience and CCN explicit 
by ensuring that no biological detail in the CCN model is 
inconsistent with existing neuroscientific data (as in 
computational neuroscience). However, following the 
Simplicity Heuristic, CCN models typically make 
simplifying assumptions about the biological details 
included in the model. This is because the lowest level 
of data usually accounted for by CCN models is single-
cell recordings. Hence, although an increasing amount of 
data is now available about the molecular neurobiology 
of neurons, these data are usually not accounted for by 
CCN models. This makes CCN models biologically 
simpler (and thus more scalable) than most 
computational neuroscience models. 

The Set-in-Stone Ideal is used to control the growth 
of complexity in the model. Theoretically, the Set-in-
Stone Ideal is an implementational constraint: the same 
brain is used in every task. Computationally, the Set-in-
Stone Ideal is used to fix the value of most constants in 
the model, thus drastically reducing the CCN model 
complexity. Once set-in-stone, the Goodness-of-Fit Ideal 
states that many different types of data should be used to 
test the adequacy of CCN models, at least some of which 
are behavioral and some neuroscientific. In addition, the 
Goodness-of-Fit Ideal makes the relationship between 
connectionism and CCN models explicit: The biological 
details in the CCN model should not make the model 
unscalable and prevent it from explaining behavioral 
data (i.e., it should scale up like a regular connectionist 
model). However, before doing any data fit, one needs to 
clearly define the scope of the model. 

These principles are used to guide model 
development and evaluation. Because of the 
Neuroscience Ideal there are three areas where the 
mathematical details of CCN models differ substantially 
from traditional connectionist models. The first 
fundamental difference is in how each individual unit is 
modeled and the second is in how learning is modeled. 
The third difference concerns the generation of behavior 
from neurally realistic individual units. Sections 5 - 7 
discuss some example CCN solutions to these problems. 

5. Modeling Individual Units 
 
There are many choices for modeling individual 

units. The classic solution is still the Hodgkin-Huxley 
model (1952). This is a set of four coupled differential 
equations. One describes fast changes in intracellular 
voltage and three describe slow changes in various ion 
concentrations (i.e., for Na+, K+, and Cl-). The model 
correctly accounts for action potentials (both the 
upstroke and downstroke), the refractory period, and 
subthreshold depolarizations that fail to produce a spike. 
From a computational perspective, perhaps the greatest 
drawback is that four differential equations must be 
solved for every unit in the model. Also, for most CCN 
applications the Hodgkin-Huxley model violates the 
Simplicity Heuristic because rarely do such applications 
attempt to account for data that depend on intracellular 
concentrations of sodium, potassium, or chloride.  

For these reasons, there have been a number of 
attempts to produce models with fewer equations that 
display as many of the desirable properties of the 
Hodgkin-Huxley model as possible. Some of these 
attempts are described in the following subsections. 

 
5.1 The leaky integrate-and-fire model 
 
The simplest cell model, and also the oldest 

(Lapicque, 1907), is the leaky integrate-and-fire model 
(e.g., Koch, 1999). Suppose neuron B receives an 
excitatory projection from neuron A. Let VA(t) and VB(t) 
denote the intracellular voltages at time t in neurons A 
and B, respectively. Then the leaky integrate-and-fire 
model assumes that the rate of change of VB(t) is given 
by 

 

  ),()(  
)(

BA
B tVtVf
dt

tdV
               (1) 

 
where α, β, and γ are constants and the function  f [VA(t)] 
models temporal delays in the propagation of an action 
potential from the pre- to the postsynaptic neuron. This 
function is described in detail in Section 5.4. The 
parameter α is a measure of synaptic strength because 
the larger this value the greater the effect of an action 
potential in the presynaptic cell. In many applications, 
learning is modeled by assuming that α changes as a 
function of experience. The parameter β determines the 
spontaneous firing rate of cell B, and γ determines the 
rate at which charged ions leak out of the cell.  

Equation 1 does not produce spikes. Rather it 
predicts continuous and smooth changes in activation. 
To generate spikes from this model a threshold Vpeak is 
set on VB(t). When VB(t) exceeds Vpeak it is reset to Vreset 
and a spike is drawn by hand. An example of activation 
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produced by this model is shown in Figure 1. The top 
panel shows the membrane potential predicted by the 
model when Vpeak = -10 and Vreset = -50. The bottom 
panel adds hand-drawn spikes. 

The fact that the leaky integrate-and-fire model does 
not naturally predict spiking is widely considered a 
weakness of the model (e.g., Izhikevich, 2007). Also, it 
does a relatively poor job of describing msec by msec 
changes in the membrane potential of real neurons and it 
is not flexible enough to model qualitative differences in 
the dynamics of different types of neurons. For these 
reasons, other single-equation models have been 
developed.  

 
5.2 The quadratic integrate-and-fire model 
 
Perhaps the most popular single-equation alternative 

replaces the linear decay term in the leaky integrate-and-
fire model with a quadratic polynomial. The resulting 
model is known as the quadratic integrate-and-fire model 
(Ermentrout, 1996; Latham, Richmond, Nelson, & 
Nirenberg, 2000). For the scenario modeled in Eq. 1, the 
quadratic integrate-and-fire model assumes that the rate 
of change of VB(t) is given by 

 

    ,V)(V)()( 
)(

tBrBA
B  tVtVtVf
dt

tdV
  (2) 

 
where α, β, and γ are constant, Vr is the resting 
membrane potential, Vt is the instantaneous threshold 
potential and, as before, the function  f [VA(t)] models 
temporal delays in the propagation of an action potential 
from one neuron to another. Unlike the leaky integrate-

and-fire model, Eq. 2 produces the upstroke of action 
potentials by itself, although it does not produce the 
downstroke. To create spikes, when VB(t) reaches Vpeak it 
is reset to Vreset. Figure 2 shows an example of the 
spiking behavior produced by Eq. 2. 

When comparing the leaky and quadratic integrate-
and-fire models, the appropriate comparison is between 
Figure 2 and the top panel of Figure 1 since these show 
the membrane potential predictions of the two models. 
The quadratic integrate-and-fire model requires an extra 
voltage resetting step to generate the downstroke of the 
action potential. Even so, the upstroke is produced via 
the model’s natural dynamics and therefore the model 
naturally produces spikes – unlike the leaky integrate-
and-fire model. Thus, the quadratic integrate-and-fire 
model is generally viewed as a superior alternative to the 
leaky integrate-and-fire model (Izhikevich, 2007). 

 
5.3 The Izhikevich model 
 
Even more realistic behavior is possible if a second 

differential equation is added that models slow changes 
in ion concentration. One of the first of these two-
equation models was the FitzHugh-Nagumo model 
(FitzHugh, 1961; Nagumo, Arimoto, & Yoshizawa, 
1962). In this model, the rate of change in voltage (i.e., 
the derivative) is modeled as a cubic polynomial and 
slow changes in ion concentrations are modeled with a 
linear differential equation. Izhikevich (2003) proposed a 
similar model that replaces the cubic polynomial with 
the quadratic integrate-and-fire model. The Izhikevich 
(2003) model requires less computing time to evaluate 
than the FitzHugh-Nagumo model, has simpler 
dynamics, and can account for some qualitative firing 
phenomena that are outside the scope of the FitzHugh-

Figure 1. The leaky integrate-and-fire model 
(with  = 1/60,  = 7/60, Vpeak = -10, and Vreset = -
50). The top panel shows the membrane potential 
predicted by Eq. 1. In the bottom panel vertical 
lines have been drawn by hand to simulate 
spiking. 

Figure 2. Spike train produced by the quadratic 
integrate-and-fire model of Eq. 2 (with β = 11.83, γ = 
.117, Vr = -60, Vt = -40, Vpeak = 35, and Vreset = -50). 
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Nagumo model (e.g., tonic and rebound bursting; 
Izhikevich, 2004). The Izhikevich (2003) model assumes 

 

    

  ),(V)(
)(

  V)(V)()( 
)(

BrB
B

BtBrBA
B

tUtV
dt

tdU

(t)UtVtVtVf
dt

tdV




      (3)   

where the quadratic integrate-and-fire model is as before 
and  and  are constants. In these equations VA(t) and 
VB(t) again denote intracellular voltages at time t and 
UB(t) is an abstract regulatory term that is meant to 
describe slow recovery in unit B after an action potential 
is initiated. UB(t) could represent activation in the K+ 
current or inactivation in the Na+ current, or some 
combination of both. As before, when VB(t) reaches Vpeak 
it is reset to Vreset. At the same time however, U(t) is also 
reset to U(t) + U0. 

The Eq. 3 model is highly flexible and produces 
some extremely realistic spiking behavior. Figure 3 
shows examples of 20 qualitatively different kinds of 
dynamical behavior that can be produced from this 

model (from Izhikevich, 2003) when different numerical 
values are chosen for its parameters. Especially when 
noise is added, many of these are almost 
indistinguishable from single unit recordings collected 
from real neurons (for many examples, see Chapter 8, 
Izhikevich, 2007). One reasonable strategy, which 
follows from the Simplicity Heuristic, is to use the Eq. 3 
model for any units in the network for which single-unit 
recording data are available. If no such data are available 
then the simpler quadratic integrate-and-fire model could 
be used instead. Numerical solutions of Eqs. 1 – 3 are 
readily obtained using Euler’s method. For example, 
Izhikevich (2007) provides Matlab code that solves Eqs. 
3 using this approach. 

 
5.4 Axons and synaptic delays 

 
Regardless of which model is used, the free 

parameters that determine the dynamics of each unit 
should be set so that the behavior of the unit is as 
consistent as possible with what is known about the 
behavior of the real neurons the unit is meant to model. 
Then by the Set-in-Stone Ideal these parameter values 
should remain invariant across all applications of the 
model.  

Equations 1 – 3 describe changes in membrane 
potential at one particular spatial location within a 
neuron. They do not describe the propagation of action 
potentials throughout the cell. Modeling the propagation 
of action potentials is considerably more complex. The 
standard approach (e.g., Koch, 1999) is to write partial 
differential equations that describe how the action 
potential would propagate down a perfect cylinder in the 
case of an axon or dendrite and throughout a sphere in 
the case of the soma. The standard partial differential 
equation that results is called the cable equation (e.g., 
Koch, 1999). As mentioned earlier, in this approach a 
neuron is modeled as a collection of cylinders and 
spheres, each of which is called a compartment. Separate 
partial differential equations are written for each 
compartment and all these equations are used to predict 
how an action potential propagates from a dendrite down 
to the end of an axon.  

Compartment models of this type are highly 
complex, at least compared to the ordinary differential 
equations in the Izhikevich (2003) model of Eq. 3, for 
example. They also make predictions that are far more 
detailed than could be tested with standard single-unit 
recording data. Instead they typically require extensive 
patch-clamp data to test. For most CCN applications, 
compartment models would be used only to predict the 
time it takes an action potential to travel from a dendrite 
to the end of an axon. If this is the goal then simpler 
alternatives should be used. 

Figure 3. Examples of some of the different dynamics 
that can be modeled with Eq. 3. An electronic version 
of this figure and reproduction permissions are freely 
available at www.izhikevich.com. 



Computational Cognitive Neuroscience                                                                                                                                   9 
 

In addition to the time it takes a spike to propagate 
down the length of a neuron there are also significant 
temporal delays at each synapse. When an action 
potential reaches the end of an axon, it opens synaptic 
vesicles, neurotransmitter is released, it diffuses across 
the synapse, binds to receptors on the postsynaptic 
membrane, and either opens ion channels in the case of 
ionotropic receptors or else activates a G-protein in the 
case of metabotropic receptors. In either case, there is a 
further delay (longer in the latter case) until the 
postsynaptic cell is depolarized. In addition to the extra 
temporal delays they induce, these synaptic processes 
also temporally smear the effects of the action potential. 
The action potential is a spike but its postsynaptic effects 
are not.   

The problem is to model the temporal delays of 
spike propagation and the temporal smearing that occurs 
at the synapse in a simple way that can be combined 
with any of the single- or double-equation models of 
spiking considered above. A standard solution is to use 
the so-called alpha function (e.g., Rall, 1967). This is the 
function  f [VA(t)] in Eqs. 1 – 3. The idea is that every 
time the presynaptic cell spikes, the following input is 
delivered to the postsynaptic cell (with spiking time t = 
0): 

( ) exp .
t t

f t


 
   

 
                       (4) 

 
This function has a maximum value of 1.0 and it decays 
to .01 at t = 7.64λ. Thus, λ can be chosen to model any 
desired temporal delay. If a second spike occurs before 
f(t) decays to zero then a second alpha function is added 
to the residual f(t) (again, with time of the second spike t 
= 0). 
  
6. Learning 

 
There are many forms of neural plasticity that 

operate over a wide range of different time scales. A 
complete review of this literature is well beyond the 
scope of this article (for reviews, see e.g., Malenka & 
Siegelbaum, 2001; Stanton, Bramham, & Scharfman, 
2005). The plasticity-related phenomena that are widely 
thought to form the neural basis of learning and memory 
are long-term potentiation (LTP) and long-term 
depression (LTD) (e.g., Grimwood, Martin, & Morris, 
2001). LTP and LTD refer to a long-lasting increase and 
decrease, respectively, in the efficacy of a synapse, 
which results from simultaneously stimulating the pre- 
and postsynaptic neurons. LTP and LTD have been 
closely studied in many different brain regions and in 
many different cell types. For computational modeling, 
it is especially important to understand LTP and LTD at 
glutamatergic synapses, since glutamate is the most 

common excitatory neurotransmitter in the brain and 
virtually all long-range cortical projections are 
glutamatergic. Sections 6.1 and 6.2 review some 
biological details of how LTP and LTD are thought to be 
mediated in the brain, while Sections 6.3 and 6.4 present 
computational models of these processes. Readers 
already familiar with (or not interested in) the biological 
details of LTP and LTD can skip to Section 6.3 without 
losing the thread of discussion. 

 
6.1 LTP 

  
The most widely studied form of LTP at 

glutamatergic synapses requires activation of 
postsynaptic NMDA receptors. Glutamate binds to a 
number of different types of receptors, but for our 
purposes these can be divided into two classes – NMDA 
and non-NMDA (e.g., Nestler, Hyman, & Malenka, 
2001). A common member of the non-NMDA class is 
the AMPA receptor (see Figure 4). The AMPA receptor 
is mainly a Na+ channel—that is, when glutamate binds 
to the AMPA receptor, it opens a channel that allows 
Na+ to enter the cell, thereby causing depolarization (top 
of Figure 4). The NMDA receptor is a channel for Na+ 
and Ca2+. However, at resting membrane potentials, an 

Figure 4. AMPA and NMDA glutamate receptors (Na+ 
= sodium, Ca2+ = calcium, Mg+ = magnesium). 
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extracellular Mg2+ plug prevents Na+ and Ca2+ from 
entering the cell through the NMDA receptor, even after 
glutamate binding (bottom of Figure 4). The plug is 
removed only if the cell is partially depolarized, which 
might occur, for example, after Na+ ions enter through 
the AMPA receptor. Once a critical level of 
depolarization is reached, and assuming glutamate is 
bound to the NMDA receptor, then the Mg2+ plug 
dissociates and Na+ and Ca2+ ions rush into the cell 
through the open NMDA channel (middle of Figure 4). 
From a modeling perspective the practical effect of the 
Mg2+ plug is that the NMDA receptor has a higher 
threshold for activation than the AMPA receptor. 

There is now good evidence that one important 
synaptic trigger for NMDA-mediated LTP is 
calcium/calmodulin-dependent protein kinase II 
(CaMKII). When activated, CaMKII can remain in the 
active state for an hour or longer and during this time it 
initiates a variety of processes that eventually increase 
the efficacy of the synapse (e.g., by increasing the 
number of AMPA receptors on the same spine; Lisman 
Schulman, & Cline, 2002).  

It takes several seconds before CaMKII becomes 
fully activated (i.e., phosphorylated) and during this time 
it is vulnerable to deactivation by certain proteins, such 
as protein phosphatase 1 (PP-1). The neuromodulator 
dopamine however, can counteract the inhibiting effects 
of PP-1. When dopamine is released presynaptically, it 
binds to postsynaptic D1 receptors and this event 
triggers a postsynaptic chemical reaction that eventually 
neutralizes PP-1. As a result, the increased binding of 
dopamine to D1 receptors potentiates NMDA-mediated 
LTP. However, these facilitating effects of dopamine are 
time sensitive because the dopamine must arrive during 
the critical few seconds when CaMKII is vulnerable to 
PP-1.  

A large literature shows that dopamine neurons in 
the ventral tegmental area (VTA) and substantia nigra 
pars compacta (SNpc) increase their firing above baseline 
following unexpected rewards (e.g., Hollerman & 
Schultz, 1998; Mirenowicz & Schultz, 1994; Schultz, 
1998). Thus, this form of dopamine-enhanced LTP 
should be in effect following an unexpected reward in 
any brain region that is a target of VTA or SNpc 
dopamine neurons and that expresses dopamine D1 
receptors. This includes all of frontal cortex but not for 
example, visual or auditory cortex. In these regions 
however, there is evidence that acetylcholine may play a 
modulatory role similar to DA in LTP and LTD (e.g., 
Gu, 2003; McCoy, Huang, & Philpot, 2009). 

 
 
 

6.2 LTD 
 
LTD has not received as much attention as LTP in 

the literature, and fewer details are known. LTD is 
produced by a variety of mechanisms, one of which also 
requires NMDA receptor activation (e.g., Bear & 
Linden, 2001; Kemp & Bashir, 2001).2 When the 
NMDA receptor is weakly activated, intracellular Ca2+ 
levels rise only modestly, and this modest increase 
potentiates the dephosphorylating effects of PP-1 
(O’Dell & Kandel, 1994). In addition to 
dephosphorylating CaMKII, PP-1 also dephosphorylates 
AMPA receptors (Lee, Barbarosie, Kameyama, Bear, & 
Huganir, 2000). In their dephosphorylated state, AMPA 
receptors are less effective at depolarizing the cell 
(Derkach, Barria, & Soderling, 1999), and therefore 
dephosphorylating AMPA receptors weakens the 
synapse. Thus, when the presynaptic cell fires only 
weakly, the synapse is weakened. 

  
6.3 Reinforcement Learning 

 
As described above, dopamine modulates synaptic 

plasticity in any brain region receiving a prominent 
dopamine projection. From a computational perspective 
however, the effects of this modulation on learning are 
likely to differ drastically across brain regions. In the 
striatum3, dopamine in the synapse is quickly cleared by 
dopamine active transporter (DAT). Thus, if some 
behavior is unexpectedly rewarded, striatal dopamine 
levels should quickly rise and cortical-striatal synapses 
that were recently active are likely to be strengthened. 
Striatal dopamine levels will then quickly fall back to 
baseline, so synapses that are active prior to a future 
non-rewarded behavior will likely not be strengthened. 
These conditions closely match the conditions identified 
in the machine learning literature as reinforcement 
learning (Dayan & Abbott, 2001; Sutton & Barto, 1998). 
Reinforcement learning is critical for skill acquisition 
because it increases the probability that successful 
actions are repeated and decreases the probability of 
unsuccessful actions (Thorndike, 1911). Not 
surprisingly, many researchers have proposed that 
dopamine serves as the training signal in striatal-based 

                                                 
2 Note that more than one form of LTD has been discussed in 
the literature (e.g., homosynaptic, heterosynaptic). However, 
homosynaptic LTD is more prominent and the presence of 
heterosynaptic LTD without support from homosynaptic LTD 
is still under debate (e.g., Abraham, Logan, Wolff, Benuskova, 
2007). Hence, this presentation focuses on homosynaptic 
LTD. 
3 The striatum is a major input structure within the basal 
ganglia. 
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reinforcement learning (e.g., Houk, Adams, & Barto, 
1995). 

In contrast to the striatum, cortex has almost no 
DAT. Instead, cortical dopamine is slowly degraded by 
the enzyme catechol-o-methyl transferase (COMT). 
COMT works on a much slower time scale than DAT. 
For example, the delivery of a single food pellet to a 
hungry rat elevates dopamine levels in prefrontal cortex 
for approximately 30 minutes (Feenstra & Botterblom, 
1996). Thus, whereas striatal dopamine is quickly 
cleared from the synapse (e.g., Cragg, Rice, & 
Greenfield, 1997), in frontal cortex and in the 
hippocampus this process takes much longer (for 
reviews, see e.g., Seamans & Robbins, 2010; Seamans & 
Yang, 2004; Tzschentke, 2001). As a consequence, if the 
first response in a training session receives an 
unexpected reward, cortical dopamine levels will quickly 
rise and they are likely to remain elevated throughout the 
entire session. If the second response in the session is an 
error, then the residual dopamine from the first 
(rewarded) response will strengthen inappropriate 
synapses – namely, those responsible for producing the 
incorrect response. This would undo the beneficial 
learning that occurred following a correct response. For 
this reason, it has been proposed that this poor temporal 
resolution effectively rules out dopamine as a trial-by-
trial reinforcement training signal in cortex (Ashby, 
Ennis, & Spiering, 2007). Instead, although dopamine 
might facilitate cortical LTP, there is much evidence that 
synaptic plasticity at cortical-cortical synapses follows 
classical Hebbian learning rules (as described in Section 
6.4.1.1; for a review, see Feldman, 2009). 

 
6.4 Models of LTP and LTD 
 
The structural changes that accompany LTP and 

LTD can be modeled in a variety of ways. One critical 
decision is whether to build a discrete-time or a 
continuous-time model. This choice largely depends on 
the nature of the data that the model will be tested 
against. If the data have a discrete trial-by-trial structure 
(i.e., the time is reset at the beginning of each trial), as is 
common in many cognitive-behavioral experiments, then 
by the Simplicity Heuristic a discrete-time model should 
be used because no data would exist to test the extra 
assumptions required of a continuous-time model. On 
the other hand, when modeling a continuous-time task 
(i.e., when the time is reset only once, typically at the 
beginning of the experiment), a continuous-time learning 
model is required. A cognitive example might be a 
sequence learning task in which feedback is provided 
following each response and there is no pause between 

responses.4 The next subsection presents examples of 
learning models that have proven useful in previous 
modeling efforts. Note that alternative learning rules can 
be designed as long as they respect the neurobiological 
constraints listed above. 

 
6.4.1 Discrete-Time Models of Learning 

 
6.4.1.1 Learning at Synapses that Lack 

Fast Dopamine Reuptake 
 

Discrete-time learning models are considerably 
simpler than continuous-time models. For example, 
Ashby et al. (2007) used the following model of LTP 
and LTD at synapses that lack fast dopamine reuptake 
(e.g., cortical-cortical synapses). Let wA,B(n) denote the 
strength of the synapse on trial n between presynaptic 
unit A and postsynaptic unit B. The following difference 
equation is used to adjust the strength of this synapse 
between trials n and n+1: 

 

     (5) 
 
where VA(t) and VB(t) are the intracellular voltages in the 
pre- and postsynaptic units at time t, respectively. Note 

that  ( )Af V t dt  is the integrated alpha function output 

of the presynaptic unit, where the integral is taken over 
the time course of the trial. The function [g(t)]+ equals 
g(t) when g(t) > 0, and 0 when g(t) < 0. Thus, 

 ( )BV t dt


 measures the total instantaneous positive 

voltage in the postsynaptic unit, since the delays and 
temporal smearing of the alpha function are omitted. The 
terms w, w, θNMDA, θAMPA, and wmax are all constants. 
Of these, θNMDA denotes the threshold for strong 
activation of the NMDA receptor, and θAMPA denotes the 
activation threshold of the AMPA receptor (with θNMDA > 
θAMPA). The second (positive) term describes the 
conditions under which LTP occurs (postsynaptic 
activation great enough to strongly activate the NMDA 
receptor) and the third (negative) term describes 
conditions that produce LTD (postsynaptic activation 
above the AMPA threshold but below the threshold for 
strong NMDA activation). Note that this model assumes 
that the change in synaptic strength is proportional to the 
product of the pre- and postsynaptic activations (and the 
final rate limiting term that prevents the strength of the 

                                                 
4  For a more thorough discussion of time, and its 
consequences on CCN modeling, see Meeter et al. (2007). 
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synapse from exceeding wmax). The constants w and w 
are learning rates. In brain regions that are targets of 
dopamine but that lack fast dopamine reuptake, such as 
frontal cortex, these parameters might be assumed to 
fluctuate with dopamine levels. 

This model is closely related to the machine learning 
construct of Hebbian learning. In modern forms of 
Hebbian learning, the LTD term in Eq. 5 is known as the 
anti-Hebbian term (Földiák, 1990). The Eq. 5 model is 
also closely related to the BCM model proposed by 
Bienenstock, Cooper, and Munro (1982). The primary 
difference is that the BCM model also allows the 
threshold for LTP (i.e., θNMDA) to vary as a function of 
prior activation history. For example, there is evidence 
that this threshold can decrease following prolonged 
periods of low activity and increase following prolonged 
periods of high activity (Kirkwood, Rioult, & Bear, 
1996). Such flexibility could be added to the current 
model by allowing θNMDA to vary across conditions. 

 
6.4.1.2 Learning at Synapses with Fast 

Dopamine Reuptake 
 

In the striatum, dopamine reuptake is fast, so at 
cortical-striatal synapses LTP and LTD follow a form of 
reinforcement learning. Ashby and Crossley (2011) 
proposed the following discrete-time model of synaptic 
plasticity at cortical-striatal synapses.  

 

 (6)                                                  
 
where wA,B(n) denotes the strength of the synapse on trial 
n between cortical unit A and striatal unit B. Dbase is the 
baseline dopamine level, D(n) is the amount of 
dopamine released following feedback on trial n, and αw, 
βw, γw, θNMDA, θAMPA, and wmax are all constants. The first 
line describes the conditions under which LTP occurs 
(striatal activation above the threshold for strong NMDA 
receptor activation and dopamine above baseline) and 
lines two and three describe conditions that produce 
LTD. The first possibility (line 2) is that postsynaptic 
activation is strong but dopamine is below baseline, as 
for example, one would expect on trials when an error 
occurred.  The last line (line 3) implements LTD on 
trials when postsynaptic activation is weak – that is, 
above the AMPA threshold but below the NMDA 
threshold. Note that this term is independent of 
dopamine levels. Thus, weak postsynaptic activation 
causes LTD regardless of whether the response was 
correct or incorrect. Finally, note that synaptic strength 

does not change if postsynaptic activation is below the 
AMPA threshold.  

The conditions assumed in Eq. 6 for LTP to occur 
(i.e., first line) are well accepted and essentially model 
the processes described in Section 6.1. The second form 
of LTD described in Eq. 6 (line 3) also has empirical 
support (Ronesi & Lovinger, 2005). Line 2 however, is 
more speculative. There is solid evidence for LTD at 
cortical-striatal synapses (Shen, Flajolet, Greengard, & 
Surmeier, 2008), possibly mediated by dopamine D2 
receptors, but these effects are complex. For example, 
other neurotransmitter systems are likely involved (e.g., 
acetylcholine and nitrous oxide; Calabresi, Picconi, 
Tozzi, & Di Filippo, 2007; Kreitzer & Malenka, 2008; 
Wang et al., 2006). Currently, the Eq. 6 model does not 
violate the Neuroscience Ideal, but as more is learned 
about the conditions that produce LTP and LTD at 
cortical-striatal synapses, this is likely to change. When 
a clearer picture emerges, Eq. 6 should be revised 
accordingly.  

 
6.4.1.3 Modeling dopamine release 

 
The Eq. 6 model of reinforcement learning requires 

that we specify the amount of dopamine released on 
every trial in response to the feedback signal [the D(n) 
term]. The more the dopamine level increases above 
baseline (Dbase), the greater the increase in synaptic 
strength, and the more it falls below baseline, the greater 
the decrease.  

Although there are a number of powerful models of 
dopamine release, Eq. 6 requires only that we specify the 
amount of dopamine released to the feedback signal on 
each trial. The key empirical results are (e.g., Schultz, 
Dayan, & Montague, 1997; Tobler, Dickinson, & 
Schultz, 2003): 1) midbrain dopamine cells fire 
tonically, 2) dopamine release increases above baseline 
following unexpected reward, and the more unexpected 
the reward the greater the release, and 3) dopamine 
release decreases below baseline following unexpected 
absence of reward, and the more unexpected the 
absence, the greater the decrease. One common 
interpretation of these results is that over a wide range, 
dopamine firing is proportional to the reward prediction 
error (RPE): 

 
RPE = Obtained Reward - Predicted Reward.          (7) 

 
A simple model of dopamine release can be built by 
specifying how to compute Obtained Reward, Predicted 
Reward, and exactly how the amount of dopamine 
release is related to the RPE. The Ashby and Crossley 
(2011) solution to these three problems is as follows. If 
reward valence is not varied, then a simple model can be 
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used to compute obtained reward. Specifically, define 
the obtained reward Rn on trial n as +1 if correct or 
reward feedback is received, 0 in the absence of 
feedback, and -1 if error feedback is received.  

Predicted reward can be computed from a simplified 
version of the well-known Rescola-Wagner (1972) 
model. Let Pn denote the Predicted Reward on trial n. 
Then according to this account 

 
Pn+1 = Pn + (Rn - Pn).        (8) 

 
where  is a constant (in Ashby & Crossley, 2011,  = 
0.075). It is well known that when computed in this 
fashion, Pn converges exponentially to the expected 
reward value and then fluctuates around this value until 
reward contingencies change. 

Ashby and Crossley (2011) assumed that the amount 
of dopamine release is related to the RPE in the manner 
reported by Bayer and Glimcher (2005). Specifically, 
they assumed that 

 

D(n) 
1

.8 RPE  .2

0

  if  RPE   1

      if  - .25   RPE   1

   if  RPE <  - .25







    (9) 

 
Note that the baseline dopamine level is .2 (i.e., when 
the RPE = 0) and that dopamine levels increase linearly 
with the RPE. However, note also the asymmetry 
between dopamine increases and decreases. As is 
evident in the Bayer and Glimcher (2005) data, a 
negative RPE quickly causes dopamine levels to fall to 
zero, whereas there is a considerable range for dopamine 
levels to increase in response to positive RPEs. 
 

6.4.2 Continuous-Time Models of Learning 
 

If a continuous-time model is needed, then more 
detail must be added to these models. For example, the 
evidence is good that the magnitude and even the 
direction of plasticity at a synapse depends not only on 
the magnitude of the pre- and postsynaptic activations, 
but also on the timing. This phenomenon is known as 
spike-timing dependent plasticity. Considerable data 
show that if the presynaptic neuron fires just before the 
postsynaptic neuron then LTP occurs, whereas if the 
postsynaptic cell fires first then LTD occurs (e.g. Bi & 
Poo, 2001; Sjöström, Rancz, Roth, & Häusser, 2008). 
Furthermore, the magnitude of both effects seems to fall 
off exponentially as the delay between the spikes in the 
pre- and postsynaptic neurons increases. Let Tpre and 
Tpost denote the time at which the pre- and postsynaptic 
cells fire. Then a popular model of spike-timing 
dependent plasticity (e.g., Zhang, Tao, Holt, Harris, & 

Poo, 1998) assumes that the scaling factor on the 
magnitude of LTP/LTD equals 
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where TM+ and TM- are constant. The idea is that the 
magnitude of LTP is computed based on the strength of 
the pre- and postsynaptic activations, for example by 
using Eq. 5 or 6, and then this value is multiplied by Δ.  

For continuous-time models of reinforcement 
learning, a more detailed model of dopamine release is 
required.  The model described in Section 6.4.1.3 only 
specifies how much dopamine is released on each trial. It 
does not specify when this dopamine is released. A 
number of much more detailed models have been 
proposed that mimic the dynamics of dopamine release 
(Best, Nijhout, & Reed, 2009; Brown, Bullock, & 
Grossberg, 1999; Houk et al., 1995; Tan & Bullock, 
2008). One of these could be incorporated to model the 
dynamics of dopamine release more accurately (if such 
data are to be accounted for by the CCN model, as per 
the Simplicity Heuristic). 

 
6.4.3 Local versus global learning rules 

 
Learning rules in neural network models can be 

classified as local or global. Local rules, like 
backpropagation, modify every synapse using a different 
error signal. In contrast, global learning rules use the 
same error signal at every synapse. The learning models 
described in this section are all global rules. For 
example, each dopamine neuron (in the SNpc) projects to 
many medium spiny neurons5 in the striatum. Thus, 
following feedback, roughly equal amounts of dopamine 
will be released at all of these synapses, regardless of 
whether they were recently active or inactive. The 
evidence is good that most of the brain uses global 
learning rules. The one notable exception seems to be at 
synapses between parallel fibers and Purkinje cells in the 
cerebellum, which are thought to be modified in a form 
of supervised learning where the unique training signal 
is supplied by cerebellar climbing fibers (Houk, 2010; 
Jörntell & Hansel, 2006). 

One dangerous property of global learning is that it 
can lead to an attractor state in which response accuracy 
is constrained to remain at chance. Consider a simple 
two-stimulus, two-response task in which the network 
must learn to emit one response if stimulus A is 
presented and another response if stimulus B is 

                                                 
5  Medium spiny neurons are GABAergic and represent ~ 
96% of the neurons in the striatum. 
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presented. Suppose this learning is mediated via a 
process in which, after training, stimulus A activates one 
striatal medium spiny neuron more strongly than the 
others. On each trial, the cell with the highest activation 
makes the response (when there is a tie, the response is 
chosen randomly). In CCN models this requires that the 
strength of the cortical-striatal synapse at the correct 
medium spiny neuron increase more during training than 
the strength at any competing synapses. Initially we 
expect the unit or units in sensory cortex that encode the 
perceptual representation of stimulus A to project to 
multiple medium spiny neurons with approximately 
equal synaptic strength. If two synaptic strengths are 
equal, then the pre- and postsynaptic activations will be 
identical at these two synapses (since the presynaptic 
activation is from the same cortical unit), and therefore 
any global learning algorithm will specify an equal 
amount of strengthening or weakening of these synapses 
on every trial, regardless of whether the response was 
correct or incorrect. Thus, if there is no noise then once 
the weights become equal they must remain equal for all 
time, thereby preventing the network from learning the 
desired associations. Adding noise to the postsynaptic 
activation breaks the model free from this attractor state. 
When noise is added, the postsynaptic activations at the 
two synapses will not be the same, even if the 
presynaptic activations and synaptic strengths are 
identical. As long as the postsynaptic activations are 
different, the change in synaptic strength will be 
different at the two synapses.  

A second but equally important consideration when 
using global learning rules is lateral inhibition. Because 
all synapses are modified using the same error signal, 
global learning rules work best when only a few units 
are activated. This way, only those synapses that are 
most directly responsible for the behavior are 
significantly modified. One biologically plausible 
method of reducing the number of active units is via 
lateral inhibition (Bogacz, Usher, Zhang, & McClelland, 
2007). In the brain, lateral inhibition among competing 
excitatory neurons is most commonly mediated via 
projections of these excitatory neurons onto inhibitory 
(e.g., GABAergic) interneurons.  

Lateral inhibition is often more efficacious in the 
presence of noise (which increases activation 
differences), and when activation in a unit has an 
immediate effect on other competing units. Recall that 
the alpha function from Eq. 4 delays downstream 
activation effects. Therefore, to reduce this delay in 
inhibitory interneurons, a smaller value of  should be 
used in the interneuron alpha function than when 
modeling projection neurons that connect separate brain 
regions. This is biologically justified because (1) 
projection neurons tend to have much longer axons than 

interneurons (e.g., stellate cells) and, (2) GABA 
receptors, which are frequent targets of interneurons, 
generally have faster effects than glutamate receptors, 
which are common targets of projection neurons. Some 
of the delay modeled by the alpha function is the time it 
takes action potentials to propagate down the axon and 
synaptic delays. 

 
7.   Generating behavior 
  

The models described so far predict how neural 
activation changes in specific brain regions under 
different experimental conditions. Of course, neural 
activations are not behaviors, so to account for 
behavioral data with these models, some assumptions 
must be added that describe how neural activation is 
related to behavior. In most cases, this process involves 
three steps. The first is to identify which brain region in 
the hypothesized network controls the behavioral 
response – that is, one must decide where to place the 
decision units. The second step is to decide, in each unit, 
what function of neural activity should drive the 
decision. For example, should the decision be based on 
the number of spikes, or the spiking rate, or perhaps on 
the integrated membrane potential? Finally, in tasks with 
multiple response alternatives, the third step is to decide 
how to resolve the competition among the various 
competing units in the critical brain region. 

 
7.1  Step 1. What brain region controls behavior?  

 
The decision about where to place the decision units 

depends on one’s knowledge of the task and the relevant 
neuroscience literature, and on one’s modeling goals. In 
tasks that require finger or arm movements, typical 
choices would be the supplementary motor area, dorsal 
or ventral premotor cortex, or primary motor cortex. In 
contrast, if the task requires an eye movement response 
then the critical area may be in the lateral intraparietal 
area, the supplementary eye fields, the frontal eye fields, 
or the superior colliculus. On the other hand, in many 
cases the goal may be to model cognition rather than the 
specific motor response that implements the outcome of 
the relevant cognitive processes. Ignoring motor 
processing simplifies the modeling because all areas 
downstream of the critical cognitive region can be 
omitted. Note that this strategy will underestimate 
response time since some key synapses will be omitted, 
but it might not affect accuracy predictions at all, 
especially in tasks where errors are due to cognitive 
failures, rather than to simple motor errors. For example, 
models of working memory typically assume that the 
key decision units are in prefrontal cortex (e.g., Ashby et 
al., 2005; Frank, Loughry, & O’Reilly, 2001), since an 
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extensive literature implicates the prefrontal cortex as 
the most critical site for working memory. As a result, 
models of working memory often grossly oversimplify 
or omit altogether projections from prefrontal cortex to 
premotor and motor cortices. 

 
7.2  Step 2. What function of neural activity 

drives the decision? 
 

After the anatomical location of the decision units 
has been selected, the next step is to decide what 
function of activity in these units will initiate the 
behavior. In general there are three popular choices, the 
feasibility of which may depend on which model of 
individual neural activity is used. The intracellular 
choice is integrated neural activation. This is a common 
choice if the integrate-and-fire model is used for each 
unit in the network. Recall that in the integrate-and-fire 
model (see Section 5.1), a threshold is set on the solution 
of Eq. 1 and a spike is generated when this threshold is 
exceeded. To select a response, this same algorithm 
could be used, although typically a different threshold 
would be set for initiating a spike as opposed to a motor 
response. This method is problematic with the 
Izhikevich (2003) model because in that model 
activation [i.e., VB (t) in Eq. 3] is meant to model 
intracellular voltage, and thus is negative when the unit 
is at rest. Another problem with this method is 
conceptual. At best, we expect the motor response to be 
driven by the output of the units in the decision region. 
Intracellular activation is not output. Thus, using the 
integrated intracellular activation to initiate a behavior 
removes the decision from the actual neural events that 
trigger that behavior by at least one unnecessary step.  

A second choice is to use spiking behavior in the 
decision units to initiate model behaviors. For example, 
a threshold could be set on the number of spikes emitted 
by the decision unit, with a behavioral response 
occurring when this threshold is first exceeded. Spikes 
are closer to the output of the unit than intracellular 
activation, which is an advantage. However, spike 
number is a discrete variable, which introduces a 
discontinuity that can complicate the parameter 
estimation process. Also, as discussed in Section 5.4, the 
postsynaptic effect of neural activity in the decision unit 
is not a series of spikes. The neurochemical and physical 
nature of the synapse causes a temporal smearing of the 
spike trains.  

A third choice that avoids these weaknesses is to use 
the integrated output alpha function: 

 

 
0

( )
t

Bf V t dt .              (11) 

 

where f [ ] is defined in Eq. 4. For example, a threshold 
could be set on this integral and a behavior initiated 
when this threshold is first exceeded. This decision 
variable is continuous and as close to the behavior as 
possible without adding another downstream unit to the 
model. Note that the integral in Eq. 11 is taken over a 
single neuron, but in the real brain there is redundancy 
and it is likely that more than one neuron computes this 
integral simultaneously. In this case, the integral should 
be over multiple neurons. However, in practice, one 
neuron is often simulated for each response and Eq. 11 is 
used. 
  

7.3  Step 3. How is a response selected when there 
are multiple alternatives? 

 
There has been considerable work on this problem in 

the field of neuroscience over the past decade or so. 
Especially illuminating have been studies in which 
single-unit recordings were made from putative decision 
neurons during a task in which an animal had to select 
among competing motor responses on each trial (for 
reviews, see e.g., Bogacz, Wagenmakers, Forstmann, & 
Nieuwenhuis, 2009; Rangel & Hare, 2010; Wang, 2008). 
For example, in an early and influential study, Shadlen 
and Newsome (2001) reported that neurons in the lateral 
intraparietal area reliably predicted the eye-movement 
response of monkeys in a task that required the animals 
to determine the direction of motion of random dot 
patterns. Furthermore, these neurons displayed the push-
pull profile that one might expect from a classic 
diffusion process – that is, neurons that predicted a 
movement of the eyes to the right increased their firing 
rate when the correct response to the stimulus was a 
rightward movement and decreased their firing rate 
when the stimulus signaled a leftward movement. The 
formal correspondence between these properties and the 
diffusion process was quickly noted (e.g., Smith & 
Ratcliff, 2004). 

Of course, generalizing the diffusion model to more 
than two alternatives is not straightforward, but it is well 
known that an accumulator or race model with lateral 
inhibition among the channels mimics a diffusion 
process (Bogacz et al., 2007; Usher & McClelland, 
2001). Thus, in tasks with more than two response 
alternatives, a sound yet reasonably simple solution is to 
set a criterion on each decision unit and allow the first 
unit that crosses this threshold to control the response, 
but also to build in lateral inhibition among all decision 
units (McMillen & Holmes, 2006; Usher, Olami, & 
McClelland, 2002). 
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8.  A Complete Example 

 
There are many recent examples of the CCN 

approach (e.g., Ashby et al., 2005; Chadderdon & 
Sporns, 2006; Frank, 2006; Frank & Claus, 2006; 
Hartley, Burgess, Lever, Cacucci, & O’Keefe, 2000; 
Monchi, Taylor, & Dagher, 2000; O'Reilly & Frank, 
2006; Reynolds & O'Reilly, 2009). For illustrative 
purposes consider the model proposed by Ashby and 
Crossley (2011) to account for context effects in striatal-
mediated learning. A simplified version of the 
architecture of the model is shown in Figure 5. Briefly,  
the idea is that a key component of striatal-mediated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 

learning is provided by cholinergic interneurons in the 
striatum known as TANs (i.e., Tonically Active 
Neurons). The TANs are assumed to exert a tonic 
inhibitory influence over cortical inputs to the striatum 
that prevents the execution of any striatal-dependent 
actions. The model assumes that the TANs learn to 
pause in rewarding environments, and this pause releases 
the striatal output neurons from this inhibitory effect, 
thereby facilitating the learning and expression of 
striatal-dependent behaviors. When rewards are no 
longer available, the TANs cease to pause, which 
protects striatal learning from decay. The model 
accounts for a variety of single-cell recording data, and 
some classic behavioral phenomena, including fast 
reacquisition following extinction.  

All projections shown in Figure 5 are known to 
exist. All projections labeled as excitatory are known to 
be glutamatergic, and so are unambiguously excitatory. 
Except for the projections from the TAN to the medium 
spiny neurons, all projections labeled as inhibitory are 
known to be GABAergic, and so are unambiguously 
inhibitory. There are three aspects of Figure 5 that could 
be considered speculative. First, many projections and 
brain areas are omitted from the model. Second, the 
TAN projections to the medium spiny neurons are 
known to be cholinergic and acetylcholine can have 
either excitatory or inhibitory effects depending on the 
postsynaptic receptor it activates. The inhibitory label on 
this projection in Figure 5 is based on data showing that 
TAN activation reduces the effects of cortical activation 
on medium spiny neuron firing (e.g., Pakhotin & Bracci, 
2007). Even so, there is evidence that TAN activation 
also has postsynaptic excitatory effects (Gabel & 
Nisenbaum, 1999) that are omitted from the model.  

Third, and most important, the functions ascribed to 
the network shown in Figure 5 are speculative. This last 
point is especially important because it is a characteristic 
of all CCN models. Neuroanatomical studies do not 
ascribe function to the networks they identify. To 
understand the function of a network, one must relate its 
activity to the behavior that it controls. This is the goal 
of CCN modeling, so it will almost always be the case 
that CCN models assign a speculative function to a 
(hopefully) known neural network.  

After settling on the architecture shown in Figure 5, 
the next challenge was to build a model of TAN firing. 
The TANs are challenging to model, because they have 
unusual dynamics. For example, when excitatory input is 
delivered to the TANs, they fire an initial burst and then 
pause (Kimura, Rajkowski, & Evarts, 1984; Reynolds, 
Hyland, & Wickens, 2004). This is clearly seen in the 
top panel of Figure 6, which shows an in vivo 
intracellular recording from a single TAN of an 
anesthetized rat (from Reynolds et al., 2004). In this 

Figure 5. The neural architecture of the Ashby and 
Crossley (2010) model in a task with one response 
alternative. The thick black arrows represent the 
information flow. Also shown are activations from 
trials early and late in training, i.e., before and after 
the TAN has learned that the environment is 
rewarding. Initially the stimulus does not cause the 
TAN to pause, and therefore the MSN does not fire 
to stimulus presentation. As a result, the firing rate 
of the premotor unit (pre-SMA/SMA) does not 
change after stimulus onset. After training, the 
TAN pauses to the stimulus, which releases the 
MSN from its tonic inhibition. This allows the 
MSN to fire to the stimulus, which causes the firing 
rate in pre-SMA/SMA to increase above baseline 
(SMA = supplementary motor area, VA = ventral 
anterior nucleus of the thalamus, VL = ventral 
lateral nucleus of the thalamus, CM-Pf = 
centremedian and parafascicular nuclei of the 
thalamus, GPi = internal segment of the globus 
pallidus, MSN = medium spiny neuron, TAN = 
tonically active neuron). 
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experiment, a suprathreshold positive current of 100 ms 
duration was injected into the cell (denoted by the small 
gray bar in the figure). Figure 6 shows that the TAN 
responded with an initial burst followed by a prolonged 
after-hyperpolarization that caused a pause in firing that 
persisted for approximately 900 ms. 

Ashby and Crossley (2011) developed a model of 
TAN firing that displays these same qualitative 
properties by modifying the Izhikevich (2003) model of 
intrinsically bursting cortical neurons (Eq. 3). The 
bottom panel of Figure 6 shows the response of this 
model under the same experimental conditions that were 
used to collect the recordings in the top panel. Note that 
the model also fires a burst to the injected current and 
then pauses for roughly 900 ms. Thus, the model 
displays the same temporal dynamics as real TANs. The 
medium spiny neurons in the network were also modeled 
via the Izhikevich (2003) two-equation model (Eq. 3). 
This is because the model was tested against single-unit 
recording data from real medium spiny neurons. The 

model was only tested against single-unit recordings 
from TANs and medium spiny neurons, so all other units 
in the network were modeled with the single-equation 
quadratic integrate-and-fire model (Eq. 2). The only 
synapses in the model displaying synaptic plasticity 
were at cortical – medium spiny neuron synapses and at 
the CM-Pf – TAN synapse. Evidence suggests that at 
both types of synapses, LTP and LTD follows 
dopamine-mediated reinforcement learning rules 
(Aosaki, Graybiel, & Kimura, 1994a; Arbuthnott, 
Ingham, & Wickens, 2000; Calabresi, Pisani, Mercuri, & 
Bernardi, 1996; Reynolds & Wickens, 2002; Suzuki, 
Miura, Nishimura, & Aosaki, 2001). Thus, learning at 
these synapses was modeled via Eqs. 6 – 9.  

Figure 5 also illustrates an application of the entire 
model to a simple conditioning task in which the 
participant must execute some specific response (e.g., 
button press) when a certain sensory cue is presented 
(e.g., a tone) in order to receive a reward. Figure 5 shows 
activation in each brain region in the model during two 
trials of the experiment – one early in training and one 
late in training – before and after the model has learned 
to respond reliably to the sensory cue. Note that the CM-
Pf and sensory cortex activations are both modeled as 
simple square waves that are assumed to coincide with 
the stimulus presentation. Initially the TAN has not yet 
learned that the cue is associated with reward, so it fails 
to pause when the stimulus is presented. As a result of 
the tonic inhibition from the TAN, the medium spiny 
neuron does not fire to the stimulus, although stimulus 
presentation does move it from the down state to the up 
state.6 In the absence of any inhibitory input from the 
striatum, the globus pallidus7 does not slow its high 
spontaneous firing rate, and therefore the thalamus is 
prevented from firing to other excitatory inputs. The 
network is assumed to make a behavioral response when 
the firing rate in any premotor unit first exceeds a 
threshold (as described in Section 7). In this example, 
the premotor unit fires at a slow tonic rate, but note that 
this rate does not increase during stimulus presentation. 
As a result, the model does not respond on this trial. 
Later in training, however, the TAN pauses when the 
stimulus is presented. This pause allows the medium 
spiny neuron to fire a vigorous burst, which inhibits the 
globus pallidus. The pause in pallidal firing allows the 
thalamus to respond to its other excitatory inputs, and 
the resulting burst from the thalamus drives the firing 
rate in the premotor unit above the response threshold. 
The model now responds to the sensory cue. 
                                                 
6 The up and down states refer to intracellular voltage that are 
below the spiking threshold. In the up state, the spiking 
threshold is reduced, and a smaller input is required to produce 
a spike. 
7 The globus pallidus is a major basal ganglia output structure. 

Figure 6. Patch-clamp recording from the TAN 
of a rat (top panel; from Reynolds et al., 2004) 
and simulated responses of the Ashby and 
Crossley (2010) TAN model (bottom panel) 
during a patch clamp experiment when positive 
current is injected into the cell for 100 ms 
(denoted by the solid gray rectangle). 
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The spiking data shown in Figure 5 could also be 
used to test the model against fMRI BOLD responses. 
Logothetis and colleagues reported evidence that the 
BOLD response is more closely related to local field 
potentials than to the spiking output of individual 
neurons (Logothetis, 2003; Logothetis, Pauls, Augath, 
Trinath, Oeltermann, 2001). Local field potentials 
integrate the field potentials produced by small 
populations of cells over a sub-millimeter range, and 
they vary continuously over time. So to test the model 
against fMRI data, the first step is to convert from the 
spiking data shown in Figure 5 to local field potentials. 
This can be done by low-pass filtering the Figure 5 spike 
trains. Next, the methods of Ashby and Waldschmidt 
(2008) can be used to test the model against BOLD 
responses collected in an experiment (see also Anderson 
et al., 2008). First, the local field potentials predicted by 
the model are transformed to predicted BOLD responses 
by numerically convolving the local field potentials with 
a hemodynamic response function (or by using a 
nonlinear method, such as Volterra kernels; e.g., see 
Ashby, 2011). The second step is to identify exactly 
which voxels should be used to provide the data that the 
model will be tested against. The third and final step is 
to compare the observed and predicted BOLD responses 
in each of these voxels.  

The model can also now be tested against single-unit 
recording data from any brain region included in the 
model or against behavioral data. For example, Ashby 
and Crossley (2011) showed that the model provides 
good accounts of single-unit recording data collected 
from TANs of monkeys before and after conditioning 
(Aosaki et al., 1994b), from medium spiny neurons of a 
rat during the conditioning, extinction, and reacquisition 
of an instrumental response (Barnes, Kubota, Hu, Jin, & 
Graybiel, 2005), and from medium spiny neurons of a 
monkey during category learning. In addition, they 
showed that, at the behavioral level, the model correctly 
predicts that reacquisition following extinction occurs 
much faster than original acquisition, which is among 
the best known phenomena in the conditioning literature.  

The model highlighted here has considerable 
biological detail but it lacks some types of complexity 
that are common in many other models. For example, 
even when applied to more complex tasks, each brain 
region in the Figure 5 model includes only a few units 
and the model is essentially feedforward – that is, it 
includes no recurrent projections that could cause 
reverberation or synchronous firing. It is important to 
note however, that these limitations hold for this 
example, but not for the CCN approach in general. CCN 
models like the one shown in Figure 5 could be 
constructed with many units in each region and with 
recurrent projections. For example, using the Eq. 3 

model for each individual unit, Izhikevich (2005) 
constructed a model that included as many units as there 
are neurons in the human brain (i.e., 1011) and 
approximately 1015 synapses. Simulations of this model 
were excessively time consuming (i.e., 50 days on a 
beowulf cluster of 27 processors were required to 
simulate 1 second of activity), so such large-scale 
simulations are currently of limited value in psychology. 
Nevertheless, this huge model illustrates that there really 
are no upper limits on the complexity of CCN models. 

 
9. Conclusions 

 
Compared to purely cognitive models, CCN models 

have several important advantages. First, whereas 
cognitive models are limited to making predictions about 
purely behavioral dependent measures (i.e., accuracy and 
response time), CCN models should also be able to make 
predictions about other types of data. Included in this list 
are data collected using fMRI, EEG, TMS, and single-
unit recordings. In addition, neuroscience models can 
often make predictions about how drugs, genes, and 
focal lesions affect behavior.  

Second, grounding a model in neuroscience adds a 
huge number of constraints that can be used to rapidly 
confirm or falsify the model, and therefore quickly 
improve our understanding of the scientific domain 
under study (as described in Section 4). With only 
behavioral results to supply constraints, cognitive 
models are difficult to differentiate. For example, many 
studies have shown that people are exquisitely sensitive 
to across-trial correlations between features during 
category learning. This result is so well accepted that it 
must be predicted by any complete theory of human 
categorization. The problem is that many alternative 
computational models can account for this result (e.g., 
exemplar models, Medin, Altom, Edelson, & Freko, 
1982; decision bound models, Maddox & Ashby, 1993). 
The same is true for many other purely behavioural 
results. For this reason, when the major theories in a 
field attend only to behavioral phenomena, it seems 
likely that there will be many alternative models that 
seem almost equally viable. In such an unsettled world, 
it can be difficult to see progress.  

In contrast, by building models that are based in 
neuroscience, cumulative progress may become easier. 
For example, many studies have shown that the striatum 
is critical to category learning. This result is now so well 
established that any theory of category learning that 
attends to neuroscience must assign some key role to the 
striatum. Since the neuroanatomy of the striatum is well 
understood, along with its major inputs and outputs, this 
means that any neuroscience-sensitive theory of category 
learning must converge on a similar architecture. More 
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details will be added, and a somewhat different 
computational role might be assigned to certain 
components, but it is unlikely that this basic architecture 
will disappear from any future theory. Continuity of this 
type can facilitate progress.  

CCN is not meant to replace the cognitive modeling 
that has dominated mathematical psychology since its 
inception. There are still many behavioral phenomena 
where a CCN approach is premature. In most cases, a 
more detailed understanding of the behavior is required 
to build a CCN model as compared to a more traditional 
cognitive model. CCN modeling requires a good 
understanding of the cognitive processes that mediate 
the behavior, but also an understanding of how these 
processes are mediated in the brain. Thus, rather than 
serve as competitors, CCN and cognitive modeling are 
complementary. Cognitive modeling results will often be 
critical to the process of building up the knowledge base 
needed to develop a CCN model. Likewise, cognitive 
modelers can use CCN to more rigorously test and refine 
their models. 
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