
Getting Started
Version: master

generated on August 13, 2019

Getting Started (master)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same, similar or a compatible license. For any reuse or distribution, you must make clear to
others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(https://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

Installing & Setting up the Symfony Framework ..4
Create your First Page in Symfony ...9
Routing ..14
Controller...33
Creating and Using Templates...42
Configuring Symfony ..53

PDF brought to you by
generated on August 13, 2019

Contents at a Glance | iii

https://symfony.com

Listing 1-1

Chapter 1

Installing & Setting up the Symfony
Framework

Do you prefer video tutorials? Check out the Stellar Development with Symfony1 screencast series.

Technical Requirements
Before creating your first Symfony application you must:

• Make sure to have PHP 7.1 or higher installed (and these PHP extensions which are installed and
enabled by default by PHP);

• Install Composer2, which is used to install PHP packages;
• Install Symfony3, which creates in your computer a binary called symfony that provides all the tools

you need to develop your application locally.

Creating Symfony Applications
Open your console terminal and run any of these commands to create a new Symfony application:

1
2
3
4
5

run this if you are building a traditional web application
$ symfony new --full my_project_name

run this if you are building a microservice, console application or API
$ symfony new my_project_name

The only difference between these two commands is the number of packages installed by default. The --
full option installs all the packages that you usually need to build web applications, so the installation
size will be bigger.

1. http://symfonycasts.com/screencast/symfony

2. https://getcomposer.org/download/

3. https://symfony.com/download

PDF brought to you by
generated on August 13, 2019

Chapter 1: Installing & Setting up the Symfony Framework | 4

https://symfony.com

Listing 1-2

Listing 1-3

Listing 1-4

Listing 1-5

If you can't or don't want to install Symfony4 for any reason, run these commands to create the new
Symfony application using Composer:

1
2
3
4
5

run this if you are building a traditional web application
$ composer create-project symfony/website-skeleton my_project_name

run this if you are building a microservice, console application or API
$ composer create-project symfony/skeleton my_project_name

No matter which command you run to create the Symfony application. All of them will create a
new my_project_name/ directory, download some dependencies into it and even generate the basic
directories and files you'll need to get started. In other words, your new application is ready!

Running Symfony Applications
On production, you should use a web server like Nginx or Apache (see configuring a web server to run
Symfony). But for development, it's more convenient to use the local web server provided by Symfony.

This local server provides support for HTTP/2, TLS/SSL, automatic generation of security certificates and
many other features. It works with any PHP application, not only Symfony projects, so it's a very useful
development tool.

Open your console terminal, move into your new project directory and start the local web server as
follows:

1
2

$ cd my-project/
$ symfony server:start

Open your browser and navigate to http://localhost:8000/. If everything is working, you'll see
a welcome page. Later, when you are finished working, stop the server by pressing Ctrl+C from your
terminal.

If you're having any problems running Symfony, your system may be missing some technical
requirements. Use the Symfony Requirements Checker tool to make sure your system is set up.

Setting up an Existing Symfony Project
In addition to creating new Symfony projects, you will also work on projects already created by other
developers. In that case, you only need to get the project code and install the dependencies with
Composer. Assuming your team uses Git, setup your project with the following commands:

1
2
3
4
5
6
7

clone the project to download its contents
$ cd projects/
$ git clone ...

make Composer install the project's dependencies into vendor/
$ cd my-project/
$ composer install

You'll probably also need to customize your .env file and do a few other project-specific tasks (e.g.
creating a database). When working on a existing Symfony application for the first time, it may be useful
to run this command which displays information about the project:

4. https://symfony.com/download

PDF brought to you by
generated on August 13, 2019

Chapter 1: Installing & Setting up the Symfony Framework | 5

https://symfony.com

Listing 1-6

Listing 1-7

1 $ php bin/console about

Installing Packages
A common practice when developing Symfony applications is to install packages (Symfony calls them
bundles) that provide ready-to-use features. Packages usually require some setup before using them
(editing some file to enable the bundle, creating some file to add some initial config, etc.)

Most of the time this setup can be automated and that's why Symfony includes Symfony Flex5, a tool
to simplify the installation/removal of packages in Symfony applications. Technically speaking, Symfony
Flex is a Composer plugin that is installed by default when creating a new Symfony application and which
automates the most common tasks of Symfony applications.

You can also add Symfony Flex to an existing project.

Symfony Flex modifies the behavior of the require, update, and remove Composer commands to
provide advanced features. Consider the following example:

1
2

$ cd my-project/
$ composer require logger

If you execute that command in a Symfony application which doesn't use Flex, you'll see a Composer
error explaining that logger is not a valid package name. However, if the application has Symfony Flex
installed, that command installs and enables all the packages needed to use the official Symfony logger.

This is possible because lots of Symfony packages/bundles define "recipes", which are a set of
automated instructions to install and enable packages into Symfony applications. Flex keeps tracks of the
recipes it installed in a symfony.lock file, which must be committed to your code repository.

Symfony Flex recipes are contributed by the community and they are stored in two public repositories:

• Main recipe repository6, is a curated list of recipes for high quality and maintained packages.
Symfony Flex only looks in this repository by default.

• Contrib recipe repository7, contains all the recipes created by the community. All of them are
guaranteed to work, but their associated packages could be unmaintained. Symfony Flex will ask
your permission before installing any of these recipes.

Read the Symfony Recipes documentation8 to learn everything about how to create recipes for your own
packages.

Checking Security Vulnerabilities

The symfony binary created when you install Symfony9 provides a command to check whether your
project's dependencies contain any known security vulnerability:

1 $ symfony security:check

5. https://github.com/symfony/flex

6. https://github.com/symfony/recipes

7. https://github.com/symfony/recipes-contrib

8. https://github.com/symfony/recipes/blob/master/README.rst

9. https://symfony.com/download

PDF brought to you by
generated on August 13, 2019

Chapter 1: Installing & Setting up the Symfony Framework | 6

https://symfony.com

Listing 1-8

Listing 1-9

A good security practice is to execute this command regularly to be able to update or replace
compromised dependencies as soon as possible. The security check is done locally by cloning the public
PHP security advisories database10, so your composer.lock file is not sent on the network.

The security:check command terminates with a non-zero exit code if any of your dependencies
is affected by a known security vulnerability. This way you can add it to your project build process
and your continuous integration workflows to make them fail when there are vulnerabilities.

Symfony LTS Versions
According to the Symfony release process, "long-term support" (or LTS for short) versions are published
every two years. Check out the Symfony roadmap11 to know which is the latest LTS version.

By default, the command that creates new Symfony applications uses the latest stable version. If you want
to use an LTS version, add the --version option:

1
2
3
4
5
6

find the latest LTS version at https://symfony.com/roadmap
$ symfony new --version=3.4 my_project_name_name

you can also base your project on development versions
$ symfony new --version=4.4.x-dev my_project_name
$ symfony new --version=dev-master my_project_name

The Symfony Demo application

The Symfony Demo Application12 is a fully-functional application that shows the recommended way to
develop Symfony applications. It's a great learning tool for Symfony newcomers and its code contains
tons of comments and helpful notes.

Run this command to create a new project based on the Symfony Demo application:

1 $ symfony new --demo my_project_name

Start Coding!
With setup behind you, it's time to Create your first page in Symfony.

Learn More
• Using Symfony with Homestead/Vagrant
• Configuring a Web Server
• Upgrading a Third-Party Bundle for a Major Symfony Version
• Setting up or Fixing File Permissions
• Upgrading Existing Applications to Symfony Flex
• Symfony Local Web Server
• How to Install or Upgrade to the Latest, Unreleased Symfony Version
• Upgrading a Major Version (e.g. 3.4.0 to 4.1.0)

10. https://github.com/FriendsOfPHP/security-advisories

11. https://symfony.com/roadmap

12. https://github.com/symfony/demo

PDF brought to you by
generated on August 13, 2019

Chapter 1: Installing & Setting up the Symfony Framework | 7

https://symfony.com

• Upgrading a Minor Version (e.g. 4.0.0 to 4.1.0)
• Upgrading a Patch Version (e.g. 4.1.0 to 4.1.1)

PDF brought to you by
generated on August 13, 2019

Chapter 1: Installing & Setting up the Symfony Framework | 8

https://symfony.com

Listing 2-1

Chapter 2

Create your First Page in Symfony

Creating a new page - whether it's an HTML page or a JSON endpoint - is a two-step process:
1. Create a route: A route is the URL (e.g. /about) to your page and points to a controller;
2. Create a controller: A controller is the PHP function you write that builds the page. You take

the incoming request information and use it to create a Symfony Response object, which can hold
HTML content, a JSON string or even a binary file like an image or PDF.

Do you prefer video tutorials? Check out the Stellar Development with Symfony1 screencast series.

Symfony embraces the HTTP Request-Response lifecycle. To find out more, see Symfony and HTTP
Fundamentals.

Creating a Page: Route and Controller

Before continuing, make sure you've read the Setup article and can access your new Symfony app in
the browser.

Suppose you want to create a page - /lucky/number - that generates a lucky (well, random) number
and prints it. To do that, create a "Controller" class and a "controller" method inside of it:

1
2
3
4
5
6
7
8
9
10
11
12

<?php
// src/Controller/LuckyController.php
namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;

class LuckyController
{

public function number()
{

$number = random_int(0, 100);

1. https://symfonycasts.com/screencast/symfony/setup

PDF brought to you by
generated on August 13, 2019

Chapter 2: Create your First Page in Symfony | 9

https://symfony.com

Listing 2-2

Listing 2-3

Listing 2-4

13
14
15
16
17

return new Response(
'<html><body>Lucky number: '.$number.'</body></html>'

);
}

}

Now you need to associate this controller function with a public URL (e.g. /lucky/number) so that the
number() method is executed when a user browses to it. This association is defined by creating a route
in the config/routes.yaml file:

1
2
3
4
5
6

config/routes.yaml

the "app_lucky_number" route name is not important yet
app_lucky_number:

path: /lucky/number
controller: App\Controller\LuckyController::number

That's it! If you are using Symfony web server, try it out by going to:

http://localhost:8000/lucky/number

If you see a lucky number being printed back to you, congratulations! But before you run off to play the
lottery, check out how this works. Remember the two steps to creating a page?

1. Create a route: In config/routes.yamlconfig/routes.yaml, the route defines the URL to your
page (path) and what controller to call. You'll learn more about routing in its own section,
including how to make variable URLs;

2. Create a controller: This is a function where you build the page and ultimately return a Response

object. You'll learn more about controllers in their own section, including how to return JSON
responses.

Annotation Routes
Instead of defining your route in YAML, Symfony also allows you to use annotation routes. To do this,
install the annotations package:

1 $ composer require annotations

You can now add your route directly above the controller:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/Controller/LuckyController.php

// ...
+ use Symfony\Component\Routing\Annotation\Route;

class LuckyController
{
+ /**
+ * @Route("/lucky/number")
+ */

public function number()
{

// this looks exactly the same
}

}

PDF brought to you by
generated on August 13, 2019

Chapter 2: Create your First Page in Symfony | 10

http://localhost:8000/lucky/number
https://symfony.com

Listing 2-5

Listing 2-6

That's it! The page - http://localhost:8000/lucky/number will work exactly like before!
Annotations are the recommended way to configure routes.

Auto-Installing Recipes with Symfony Flex

You may not have noticed, but when you ran composer require annotations, two special things
happened, both thanks to a powerful Composer plugin called Flex.

First, annotations isn't a real package name: it's an alias (i.e. shortcut) that Flex resolves to sensio/
framework-extra-bundle.

Second, after this package was downloaded, Flex executed a recipe, which is a set of automated
instructions that tell Symfony how to integrate an external package. Flex recipes2 exist for many packages
and have the ability to do a lot, like adding configuration files, creating directories, updating
.gitignore and adding new config to your .env file. Flex automates the installation of packages so
you can get back to coding.

The bin/console Command

Your project already has a powerful debugging tool inside: the bin/console command. Try running it:

1 $ php bin/console

You should see a list of commands that can give you debugging information, help generate code, generate
database migrations and a lot more. As you install more packages, you'll see more commands.

To get a list of all of the routes in your system, use the debug:router command:

1 $ php bin/console debug:router

You should see your app_lucky_number route at the very top:

Name Method Scheme Host Path

app_lucky_number ANY ANY ANY /lucky/number

You will also see debugging routes below app_lucky_number -- more on the debugging routes in the
next section.

You'll learn about many more commands as you continue!

The Web Debug Toolbar: Debugging Dream
One of Symfony's killer features is the Web Debug Toolbar: a bar that displays a huge amount of
debugging information along the bottom of your page while developing. This is all included out of the
box using a package called symfony/profiler-pack.

You will see a black bar along the bottom of the page. You'll learn more about all the information it holds
along the way, but feel free to experiment: hover over and click the different icons to get information
about routing, performance, logging and more.

2. https://flex.symfony.com

PDF brought to you by
generated on August 13, 2019

Chapter 2: Create your First Page in Symfony | 11

https://symfony.com

Listing 2-7

Listing 2-8

Listing 2-9

Rendering a Template
If you're returning HTML from your controller, you'll probably want to render a template. Fortunately,
Symfony comes with Twig3: a templating language that's easy, powerful and actually quite fun.

Make sure that LuckyController extends Symfony's base AbstractController4 class:

1
2
3
4
5
6
7
8
9
10

// src/Controller/LuckyController.php

// ...
+ use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

- class LuckyController
+ class LuckyController extends AbstractController
{

// ...
}

Now, use the handy render() function to render a template. Pass it a number variable so you can use
it in Twig:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// src/Controller/LuckyController.php

// ...
class LuckyController extends AbstractController
{

/**
* @Route("/lucky/number")
*/
public function number()
{

$number = random_int(0, 100);

return $this->render('lucky/number.html.twig', [
'number' => $number,

]);
}

}

Template files live in the templates/ directory, which was created for you automatically when you
installed Twig. Create a new templates/lucky directory with a new number.html.twig file inside:

1
2

{# templates/lucky/number.html.twig #}
<h1>Your lucky number is {{ number }}</h1>

The {{ number }} syntax is used to print variables in Twig. Refresh your browser to get your new
lucky number!

http://localhost:8000/lucky/number

Now you may wonder where the Web Debug Toolbar has gone: that's because there is no </body> tag
in the current template. You can add the body element yourself, or extend base.html.twig, which
contains all default HTML elements.

In the Creating and Using Templates article, you'll learn all about Twig: how to loop, render other
templates and leverage its powerful layout inheritance system.

3. https://twig.symfony.com

4. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/AbstractController.php

PDF brought to you by
generated on August 13, 2019

Chapter 2: Create your First Page in Symfony | 12

http://localhost:8000/lucky/number
https://symfony.com

Checking out the Project Structure
Great news! You've already worked inside the most important directories in your project:
config/config/

Contains... configuration!. You will configure routes, services and packages.

src/src/

All your PHP code lives here.

templates/templates/

All your Twig templates live here.

Most of the time, you'll be working in src/, templates/ or config/. As you keep reading, you'll
learn what can be done inside each of these.

So what about the other directories in the project?
bin/bin/

The famous bin/console file lives here (and other, less important executable files).

var/var/

This is where automatically-created files are stored, like cache files (var/cache/) and logs (var/log/).

vendor/vendor/

Third-party (i.e. "vendor") libraries live here! These are downloaded via the Composer5 package
manager.

public/public/

This is the document root for your project: you put any publicly accessible files here.

And when you install new packages, new directories will be created automatically when needed.

What's Next?
Congrats! You're already starting to master Symfony and learn a whole new way of building beautiful,
functional, fast and maintainable applications.

Ok, time to finish mastering the fundamentals by reading these articles:

• Routing
• Controller
• Creating and Using Templates
• Configuring Symfony

Then, learn about other important topics like the service container, the form system, using Doctrine (if
you need to query a database) and more!

Have fun!

Go Deeper with HTTP & Framework Fundamentals
• Symfony versus Flat PHP
• Symfony and HTTP Fundamentals

5. https://getcomposer.org

PDF brought to you by
generated on August 13, 2019

Chapter 2: Create your First Page in Symfony | 13

https://symfony.com

Listing 3-1

Listing 3-2

Chapter 3

Routing

When your application receives a request, it executes a controller action to generate the response.
The routing configuration defines which action to run for each incoming URL. It also provides other
useful features, like generating SEO-friendly URLs (e.g. /read/intro-to-symfony instead of
index.php?article_id=57).

Creating Routes
Routes can be configured in YAML, XML, PHP or using annotations. All formats provide the same
features and performance, so choose your favorite. Symfony recommends annotations because it's
convenient to put the route and controller in the same place instead of dealing with multiple files.

If you choose annotations, run this command once in your application to add support for them:

1 $ composer require annotations

Suppose you want to define a route for the /blog URL in your application:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// src/Controller/BlogController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class BlogController extends AbstractController
{

/**
* @Route("/blog", name="blog_list")
*/
public function list()
{

// ...
}

}

This configuration defines a route called blog_list that matches when the user requests the /blog
URL. When the match occurs, the application runs the list() method of the BlogController class.

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 14

https://symfony.com

Listing 3-3

Listing 3-4

The query string of a URL is not considered when matching routes. In this example, URLs like
/blog?foo=bar and /blog?foo=bar&bar=foo will also match the blog_list route.

The route name (blog_list) is not important for now, but it will be essential later when generating
URLs. You only have to keep in mind that each route name must be unique in the application.

Matching HTTP Methods

By default, routes match any HTTP verb (GET, POST, PUT, etc.) Use the methods option to restrict the
verbs each route should respond to:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/Controller/BlogApiController.php
namespace App\Controller;

// ...

class BlogApiController extends AbstractController
{

/**
* @Route("/api/posts/{id}", methods={"GET","HEAD"})
*/
public function show(int $id)
{

// ... return a JSON response with the post
}

/**
* @Route("/api/posts/{id}", methods={"PUT"})
*/
public function edit(int $id)
{

// ... edit a post
}

}

HTML forms only support GET and POST methods. If you're calling a route with a different method
from an HTML form, add a hidden field called _method with the method to use (e.g. <input
type="hidden" name="_method" value="PUT" />). If you create your forms with Symfony
Forms this is done automatically for you.

Matching Expressions

Use the condition option if you need some route to match based on some arbitrary matching logic:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// src/Controller/DefaultController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class DefaultController extends AbstractController
{

/**
* @Route(
* "/contact",
* name="contact",
* condition="context.getMethod() in ['GET', 'HEAD'] and request.headers.get('User-Agent') matches

'/firefox/i'"
*)
*

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 15

https://symfony.com

Listing 3-5

Listing 3-6

17
18
19
20
21
22
23

* expressions can also include config parameters:
* condition: "request.headers.get('User-Agent') matches '%app.allowed_browsers%'"
*/
public function contact()
{

// ...
}

}

The value of the condition option is any valid ExpressionLanguage expression and can use and of these
variables created by Symfony:
contextcontext

An instance of RequestContext1, which holds the most fundamental information about the route being
matched.

requestrequest

The Symfony Request object that represents the current request.

Behind the scenes, expressions are compiled down to raw PHP. Because of this, using the condition
key causes no extra overhead beyond the time it takes for the underlying PHP to execute.

Conditions are not taken into account when generating URLs (which is explained later in this
article).

Debugging Routes

As your application grows, you'll eventually have a lot of routes. Symfony includes some commands to
help you debug routing issues. First, the debug:router command lists all your application routes in
the same order in which Symfony evaluates them:

1
2
3
4
5
6
7
8
9
10
11
12

$ php bin/console debug:router

---------------- ------- ------- ----- --
Name Method Scheme Host Path
---------------- ------- ------- ----- --
homepage ANY ANY ANY /
contact GET ANY ANY /contact
contact_process POST ANY ANY /contact
article_show ANY ANY ANY /articles/{_locale}/{year}/{title}.{_format}
blog ANY ANY ANY /blog/{page}
blog_show ANY ANY ANY /blog/{slug}
---------------- ------- ------- ----- --

Pass the name (or part of the name) of some route to this argument to print the route details:

1
2
3
4
5
6
7
8
9
10
11

$ php bin/console debug:router app_lucky_number

+-------------+---+
| Property | Value |
+-------------+---+
| Route Name | app_lucky_number |
| Path | /lucky/number/{max} |
| ... | ... |
| Options | compiler_class: Symfony\Component\Routing\RouteCompiler |
| | utf8: true |
+-------------+---+

1. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Routing/RequestContext.php

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 16

https://symfony.com

Listing 3-7

Listing 3-8

Listing 3-9

The other command is called router:match and it shows which route will match the given URL. It's
useful to find out why some URL is not executing the controller action that you expect:

1
2
3

$ php bin/console router:match /lucky/number/8

[OK] Route "app_lucky_number" matches

Route Parameters

The previous examples defined routes where the URL never changes (e.g. /blog). However, it's common
to define routes where some parts are variable. For example, the URL to display some blog post will
probably include the title or slug (e.g. /blog/my-first-post or /blog/all-about-symfony).

In Symfony routes, variable parts are wrapped in { ... } and they must have a unique name. For
example, the route to display the blog post contents is defined as /blog/{slug}:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

// src/Controller/BlogController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class BlogController extends AbstractController
{

// ...

/**
* @Route("/blog/{slug}", name="blog_show")
*/
public function show(string $slug)
{

// $slug will equal the dynamic part of the URL
// e.g. at /blog/yay-routing, then $slug='yay-routing'

// ...
}

}

The name of the variable part ({slug} in this example) is used to create a PHP variable where that
route content is stored and passed to the controller. If a user visits the /blog/my-first-post URL,
Symfony executes the show() method in the BlogController class and passes a $slug = 'my-
first-post' argument to the show() method.

Routes can define any number of parameters, but each of them can only be used once on each route (e.g.
/blog/posts-about-{category}/page/{pageNumber}).

Parameters Validation

Imagine that your application has a blog_show route (URL: /blog/{slug}) and a blog_list route
(URL: /blog/{page}). Given that route parameters accept any value, there's no way to differentiate
both routes.

If the user requests /blog/my-first-post, both routes will match and Symfony will use the route
which was defined first. To fix this, add some validation to the {page} parameter using the
requirements option:

1
2
3

// src/Controller/BlogController.php
namespace App\Controller;

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 17

https://symfony.com

Listing 3-10

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class BlogController extends AbstractController
{

/**
* @Route("/blog/{page}", name="blog_list", requirements={"page"="\d+"})
*/
public function list(int $page)
{

// ...
}

/**
* @Route("/blog/{slug}", name="blog_show")
*/
public function show($slug)
{

// ...
}

}

The requirements option defines the PHP regular expressions2 that route parameters must match for
the entire route to match. In this example, \d+ is a regular expression that matches a digit of any length.
Now:

URL Route Parameters

/blog/2 blog_list $page = 2

/blog/my-first-post blog_show $slug = my-first-post

Route requirements (and route paths too) can include container parameters, which is useful to define
complex regular expressions once and reuse them in multiple routes.

Parameters also support PCRE Unicode properties3, which are escape sequences that match generic
character types. For example, \p{Lu} matches any uppercase character in any language,
\p{Greek} matches any Greek character, etc.

When using regular expressions in route parameters, you can set the utf8 route option to true to
make any . character match any UTF-8 characters instead of just a single byte.

If you prefer, requirements can be inlined in each parameter using the syntax
{parameter_name<requirements>}. This feature makes configuration more concise, but it can
decrease route readability when requirements are complex:

1
2
3
4
5
6
7
8
9

// src/Controller/BlogController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class BlogController extends AbstractController
{

/**

2. https://www.php.net/manual/en/book.pcre.php

3. http://php.net/manual/en/regexp.reference.unicode.php

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 18

https://symfony.com

Listing 3-11

Listing 3-12

10
11
12
13
14
15
16

* @Route("/blog/{page<\d+>}", name="blog_list")
*/
public function list(int $page)
{

// ...
}

}

Optional Parameters

In the previous example, the URL of blog_list is /blog/{page}. If users visit /blog/1, it will
match. But if they visit /blog, it will not match. As soon as you add a parameter to a route, it must have
a value.

You can make blog_list once again match when the user visits /blog by adding a default value
for the {page} parameter. When using annotations, default values are defined in the arguments of the
controller action. In the other configuration formats they are defined with the defaults option:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// src/Controller/BlogController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class BlogController extends AbstractController
{

/**
* @Route("/blog/{page}", name="blog_list", requirements={"page"="\d+"})
*/
public function list(int $page = 1)
{

// ...
}

}

Now, when the user visits /blog, the blog_list route will match and $page will default to a value of
1.

You can have more than one optional parameter (e.g. /blog/{slug}/{page}), but everything
after an optional parameter must be optional. For example, /{page}/blog is a valid path, but
page will always be required (i.e. /blog will not match this route).

Routes with optional parameters at the end will not match on requests with a trailing slash (i.e.
/blog/ will not match, /blog will match).

If you want to always include some default value in the generated URL (for example to force the
generation of /blog/1 instead of /blog in the previous example) add the ! character before the
parameter name: /blog/{!page}

As it happens with requirements, default values can also be inlined in each parameter using the syntax
{parameter_name?default_value}. This feature is compatible with inlined requirements, so you
can inline both in a single parameter:

1
2
3
4

// src/Controller/BlogController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 19

https://symfony.com

Listing 3-13

Listing 3-14

5
6
7
8
9
10
11
12
13
14
15
16

use Symfony\Component\Routing\Annotation\Route;

class BlogController extends AbstractController
{

/**
* @Route("/blog/{page<\d+>?1}", name="blog_list")
*/
public function list(int $page)
{

// ...
}

}

To give a null default value to any parameter, add nothing after the ? character (e.g.
/blog/{page?}).

Parameter Conversion

A common routing need is to convert the value stored in some parameter (e.g. an integer acting as
the user ID) into another value (e.g. the object that represents the user). This feature is called "param
converter" and is only available when using annotations to define routes.

In case you didn't run this command before, run it now to add support for annotations and "param
converters":

1 $ composer require annotations

Now, keep the previous route configuration, but change the arguments of the controller action. Instead
of string $slug, add BlogPost $post:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

// src/Controller/BlogController.php
namespace App\Controller;

use App\Entity\BlogPost;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class BlogController extends AbstractController
{

// ...

/**
* @Route("/blog/{slug}", name="blog_show")
*/
public function show(BlogPost $post)
{

// $post is the object whose slug matches the routing parameter

// ...
}

}

If your controller arguments include type-hints for objects (BlogPost in this case), the "param
converter" makes a database request to find the object using the request parameters (slug in this case).
If no object is found, Symfony generates a 404 response automatically.

Read the full param converter documentation4 to learn about the converters provided by Symfony and
how to configure them.

4. https://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 20

https://symfony.com

Listing 3-15

Listing 3-16

Special Parameters

In addition to your own parameters, routes can include any of the following special parameters created
by Symfony:
_controller_controller

This parameter is used to determine which controller and action is executed when the route is
matched.

_format_format

The matched value is used to set the "request format" of the Request object. This is used for such
things as setting the Content-Type of the response (e.g. a json format translates into a Content-Type of
application/json).

_fragment_fragment

Used to set the fragment identifier, which is the optional last part of a URL that starts with a #

character and is used to identify a portion of a document.

_locale_locale

Used to set the locale on the request.

You can include these attributes (except _fragment) both in individual routes and in route imports.
Symfony defines some special attributes with the same name (except for the leading underscore) so you
can define them easier:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// src/Controller/ArticleController.php

// ...
class ArticleController extends AbstractController
{

/**
* @Route(
* "/articles/{_locale}/search.{_format}",
* locale="en",
* format="html",
* requirements={
* "_locale": "en|fr",
* "_format": "html|xml",
* }
*)
*/
public function search()
{
}

}

New in version 4.3: The special attributes were introduced in Symfony 4.3.

Extra Parameters

In the defaults option of a route you can optionally define parameters not included in the route
configuration. This is useful to pass extra arguments to the controllers of the routes:

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Routing\Annotation\Route;

class BlogController
{

/**
* @Route("/blog/{page}", name="blog_index", defaults={"page": 1, "title": "Hello world!"})
*/
public function index(int $page, string $title)
{

// ...

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 21

https://symfony.com

Listing 3-17

Listing 3-18

11
12

}
}

Slash Characters in Route Parameters

Route parameters can contain any values except the / slash character, because that's the character used
to separate the different parts of the URLs. For example, if the token value in the /share/{token}
route contains a / character, this route won't match.

A possible solution is to change the parameter requirements to be more permissive:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Routing\Annotation\Route;

class DefaultController
{

/**
* @Route("/share/{token}", name="share", requirements={"token"=".+"})
*/
public function share($token)
{

// ...
}

}

If the route defines several parameter and you apply this permissive regular expression to all of them,
the results won't be the expected. For example, if the route definition is /share/{path}/{token}
and both path and token accept /, then path will contain its contents and the token, and token
will be empty.

If the route includes the special {_format} parameter, you shouldn't use the .+ requirement for the
parameters that allow slashes. For example, if the pattern is /share/{token}.{_format} and
{token} allows any character, the /share/foo/bar.json URL will consider foo/bar.json
as the token and the format will be empty. This can be solved by replacing the .+ requirement by
[^.]+ to allow any character except dots.

Route Groups and Prefixes
It's common for a group of routes to share some options (e.g. all routes related to the blog start with
/blog) That's why Symfony includes a feature to share route configuration.

When defining routes as annotations, put the common configuration in the @Route annotation of
the controller class. In other routing formats, define the common configuration using options when
importing the routes.

1
2
3
4
5
6
7
8
9
10
11

use Symfony\Component\Routing\Annotation\Route;

/**
* @Route("/blog", requirements={"locale": "en|es|fr"}, name="blog_")
*/
class BlogController
{

/**
* @Route("/{_locale}", name="index")
*/
public function index()

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 22

https://symfony.com

Listing 3-19

Listing 3-20

12
13
14
15
16
17
18
19
20
21
22
23

{
// ...

}

/**
* @Route("/{_locale}/posts/{slug}", name="post")
*/
public function show(Post $post)
{

// ...
}

}

In this example, the route of the index() action will be called blog_index and its URL will be
/blog/. The route of the show() action will be called blog_post and its URL will be
/blog/{_locale}/posts/{slug}. Both routes will also validate that the _locale parameter
matches the regular expression defined in the class annotation.

Symfony can import routes from different sources and you can even create your own route loader.

Getting the Route Name and Parameters

The Request object created by Symfony stores all the route configuration (such as the name and
parameters) in the "request attributes". You can get this information in a controller via the Request
object:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/Controller/BlogController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\Routing\Annotation\Route;

class BlogController extends AbstractController
{

/**
* @Route("/blog", name="blog_list")
*/
public function list(Request $request)
{

// ...

$routeName = $request->attributes->get('_route');
$routeParameters = $request->attributes->get('_route_params');

// use this to get all the available attributes (not only routing ones):
$allAttributes = $request->attributes->all();

}
}

You can get this information in services too injecting the request_stack service to get the Request
object in a service. In Twig templates, use the global app object to get the request and its attributes:

1
2
3
4
5

{% set route_name = app.request.attributes('_route') %}
{% set route_parameters = app.request.attributes('_route_params') %}

{# use this to get all the available attributes (not only routing ones) #}
{% set all_attributes = app.request.attributes.all %}

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 23

https://symfony.com

Listing 3-21

Listing 3-22

Special Routes
Symfony defines some special controllers to render templates and redirect to other routes from the route
configuration so you don't have to create a controller action.

Rendering Templates

Use the TemplateController to render the template whose path is defined in the template option:

1
2
3
4
5
6
7
8
9
10

config/routes.yaml
about_us:

path: /site/about-us
controller: Symfony\Bundle\FrameworkBundle\Controller\TemplateController::templateAction
defaults:

template: 'static_pages/about_us.html.twig'

optionally you can define some arguments passed to the template
site_name: 'ACME'
theme: 'dark'

Redirecting to URLs and Routes

Use the RedirectController to redirect to other routes (redirectAction) and URLs
(urlRedirectAction):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

config/routes.yaml
doc_shortcut:

path: /doc
controller: Symfony\Bundle\FrameworkBundle\Controller\RedirectController::redirectAction
defaults:

route: 'doc_page'
optionally you can define some arguments passed to the route
page: 'index'
version: 'current'
redirections are temporary by default (code 302) but you can make them permanent (code 301)
permanent: true
add this to keep the original query string parameters when redirecting
keepQueryParams: true
add this to keep the HTTP method when redirecting. The redirect status changes
* for temporary redirects, it uses the 307 status code instead of 302
* for permanent redirects, it uses the 308 status code instead of 301
keepRequestMethod: true

legacy_doc:
path: /legacy/doc
controller: Symfony\Bundle\FrameworkBundle\Controller\RedirectController::urlRedirectAction
defaults:

this value can be an absolute path or an absolute URL
path: 'https://legacy.example.com/doc'
permanent: true

Symfony also provides some utilities to redirect inside controllers

Redirecting URLs with Trailing Slashes

Historically, URLs have followed the UNIX convention of adding trailing slashes for directories (e.g.
https://example.com/foo/) and removing them to refer to files (https://example.com/foo).
Although serving different contents for both URLs is OK, nowadays it's common to treat both URLs as
the same URL and redirect between them.

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 24

https://symfony.com

Listing 3-23

Listing 3-24

Symfony follows this logic to redirect between URLs with and without trailing slashes (but only for GET
and HEAD requests):

Route
URL

If the requested URL is /foo/foo If the requested URL is /foo//foo/

/foo It matches (200 status response) It makes a 301 redirect to /foo

/foo/ It makes a 301 redirect to /foo/ It matches (200 status response)

If your application defines different routes for each path (/foo and /foo/) this automatic
redirection doesn't take place and the right route is always matched.

Sub-Domain Routing

Routes can configure a host option to require that the HTTP host of the incoming requests matches
some specific value. In the following example, both routes match the same path (/) but one of them only
responds to a specific host name:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// src/Controller/MainController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class MainController extends AbstractController
{

/**
* @Route("/", name="mobile_homepage", host="m.example.com")
*/
public function mobileHomepage()
{

// ...
}

/**
* @Route("/", name="homepage")
*/
public function homepage()
{

// ...
}

}

The value of the host option can include parameters (which is useful in multi-tenant applications) and
these parameters can be validated too with requirements:

1
2
3
4
5
6
7
8
9
10
11
12
13

// src/Controller/MainController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class MainController extends AbstractController
{

/**
* @Route(
* "/",
* name="mobile_homepage",
* host="{subdomain}.example.com",

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 25

https://symfony.com

Listing 3-25

Listing 3-26

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

* defaults={"subdomain"="m"},
* requirements={"subdomain"="m|mobile"}
*)
*/
public function mobileHomepage()
{

// ...
}

/**
* @Route("/", name="homepage")
*/
public function homepage()
{

// ...
}

}

In the above example, the domain parameter defines a default value because otherwise you need to
include a domain value each time you generate a URL using these routes.

You can also set the host option when importing routes to make all of them require that host name.

When using sub-domain routing, you must set the Host HTTP headers in functional tests or routes
won't match:

1
2
3
4
5
6
7
8
9

$crawler = $client->request(
'GET',
'/',
[],
[],
['HTTP_HOST' => 'm.example.com']
// or get the value from some container parameter:
// ['HTTP_HOST' => 'm.' . $client->getContainer()->getParameter('domain')]

);

Localized Routes (i18n)
If your application is translated into multiple languages, each route can define a different URL per each
translation locale. This avoids the need for duplicating routes, which also reduces the potential bugs:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// src/Controller/CompanyController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class CompanyController extends AbstractController
{

/**
* @Route({
* "en": "/about-us",
* "nl": "/over-ons"
* }, name="about_us")
*/
public function about()
{

// ...

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 26

https://symfony.com

Listing 3-27

Listing 3-28

18
19

}
}

When a localized route is matched, Symfony uses the same locale automatically during the entire request.

When the application uses full "language + territory" locales (e.g. fr_FR, fr_BE), if the URLs are
the same in all related locales, routes can use only the language part (e.g. fr) to avoid repeating the
same URLs.

A common requirement for internationalized applications is to prefix all routes with a locale. This can be
done by defining a different prefix for each locale (and setting an empty prefix for your default locale if
you prefer it):

1
2
3
4
5
6
7

config/routes/annotations.yaml
controllers:

resource: '../src/Controller/'
type: annotation
prefix:

en: '' # don't prefix URLs for English, the default locale
nl: '/nl'

Generating URLs
Routing systems are bidirectional: 1) they associate URLs with controllers (as explained in the previous
sections); 2) they generate URLs for a given route. Generating URLs from routes allows you to not
write the values manually in your HTML templates. Also, if the URL of some route
changes, you only have to update the route configuration and all links will be updated.

To generate a URL, you need to specify the name of the route (e.g. blog_show) and the values of the
parameters defined by the route (e.g. slug = my-blog-post).

For that reason each route has an internal name that must be unique in the application. If you don't
set the route name explicitly with the name option, Symfony generates an automatic name based on the
controller and action.

Generating URLs in Controllers

If your controller extends from the AbstractController, use the generateUrl() helper:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

// src/Controller/BlogController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;
use Symfony\Component\Routing\Generator\UrlGeneratorInterface;

class BlogController extends AbstractController
{

/**
* @Route("/blog", name="blog_list")
*/
public function list()
{

// ...

// generate a URL with no route arguments
$signUpPage = $this->generateUrl('sign_up');

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 27

https://symfony.com

Listing 3-29

Listing 3-30

20
21
22
23
24
25
26
27
28
29
30
31
32
33

// generate a URL with route arguments
$userProfilePage = $this->generateUrl('user_profile', [

'username' => $user->getUsername(),
]);

// generated URLs are "absolute paths" by default. Pass a third optional
// argument to generate different URLs (e.g. an "absolute URL")
$signUpPage = $this->generateUrl('sign_up', [], UrlGeneratorInterface::ABSOLUTE_URL);

// when a route is localized, Symfony uses by default the current request locale
// pass a different '_locale' value if you want to set the locale explicitly
$signUpPageInDutch = $this->generateUrl('sign_up', ['_locale' => 'nl']);

}
}

If you pass to the generateUrl() method some parameters that are not part of the route
definition, they are included in the generated URL as a query string::

$this->generateUrl('blog', ['page' => 2, 'category' => 'Symfony']);
// the 'blog' route only defines the 'page' parameter; the generated URL is:
// /blog/2?category=Symfony

If your controller does not extend from AbstractController, you'll need to fetch services in your
controller and follow the instructions of the next section.

Generating URLs in Services

Inject the router Symfony service into your own services and use its generate() method. When using
service autowiring you only need to add an argument in the service constructor and type-hint it with the
UrlGeneratorInterface5 class:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// src/Service/SomeService.php
use Symfony\Component\Routing\Generator\UrlGeneratorInterface;

class SomeService
{

private $router;

public function __construct(UrlGeneratorInterface $router)
{

$this->router = $router;
}

public function someMethod()
{

// ...

// generate a URL with no route arguments
$signUpPage = $this->router->generate('sign_up');

// generate a URL with route arguments
$userProfilePage = $this->router->generate('user_profile', [

'username' => $user->getUsername(),
]);

// generated URLs are "absolute paths" by default. Pass a third optional
// argument to generate different URLs (e.g. an "absolute URL")
$signUpPage = $this->router->generate('sign_up', [], UrlGeneratorInterface::ABSOLUTE_URL);

// when a route is localized, Symfony uses by default the current request locale
// pass a different '_locale' value if you want to set the locale explicitly

5. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Routing/Generator/UrlGeneratorInterface.php

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 28

https://symfony.com

Listing 3-31

Listing 3-32

Listing 3-33

31
32
33

$signUpPageInDutch = $this->router->generate('sign_up', ['_locale' => 'nl']);
}

}

Generating URLs in Templates

The Twig template language used in Symfony templates provides some functions to generate both relative
and absolute URLs:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

{# generates relative URLs #}
Sign up

View your profile

Ver mi perfil

{# generates absolute URLs #}
Sign up

View your profile

Ver mi perfil

Generating URLs in JavaScript

If your JavaScript code is included in a Twig template, you can use the path() and url() Twig
functions to generate the URLs and store them in JavaScript variables. The escape() function is needed
to escape any non-JavaScript-safe values:

1
2
3

<script>
const route = "{{ path('blog_show', {slug: 'my-blog-post'})|escape('js') }}";

</script>

If you need to generate URLs dynamically or if you are using pure JavaScript code, this solution doesn't
work. In those cases, consider using the FOSJsRoutingBundle6.

Generating URLs in Commands

Generating URLs in commands works the same as generating URLs in services. The only difference is
that commands are not executed in the HTTP context, so they don't have access to HTTP requests. In
practice, this means that if you generate absolute URLs, you'll get http://localhost/ as the host
name instead of your real host name.

The solution is to configure "request context" used by commands when they generate URLs. This context
can be configured globally for all commands:

1
2
3
4
5

config/services.yaml
parameters:

router.request_context.host: 'example.org'
router.request_context.base_url: 'my/path'
asset.request_context.base_path: '%router.request_context.base_url%'

This information can be configured per command too:

6. https://github.com/FriendsOfSymfony/FOSJsRoutingBundle

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 29

https://symfony.com

Listing 3-34

Listing 3-35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// src/Command/SomeCommand.php
use Symfony\Component\Routing\Generator\UrlGeneratorInterface;
use Symfony\Component\Routing\RouterInterface;
// ...

class SomeCommand extends Command
{

private $router;

public function __construct(RouterInterface $router)
{

parent::__construct();

$this->router = $router;
}

protected function execute(InputInterface $input, OutputInterface $output)
{

// these values override any global configuration
$context = $this->router->getContext();
$context->setHost('example.com');
$context->setBaseUrl('my/path');

// generate a URL with no route arguments
$signUpPage = $this->router->generate('sign_up');

// generate a URL with route arguments
$userProfilePage = $this->router->generate('user_profile', [

'username' => $user->getUsername(),
]);

// generated URLs are "absolute paths" by default. Pass a third optional
// argument to generate different URLs (e.g. an "absolute URL")
$signUpPage = $this->router->generate('sign_up', [], UrlGeneratorInterface::ABSOLUTE_URL);

// when a route is localized, Symfony uses by default the current request locale
// pass a different '_locale' value if you want to set the locale explicitly
$signUpPageInDutch = $this->router->generate('sign_up', ['_locale' => 'nl']);

// ...
}

}

Checking if a Route Exists

In highly dynamic applications, it may be necessary to check whether a route exists before using it
to generate a URL. In those cases, don't use the getRouteCollection()7 method because that
regenerates the routing cache and slows down the application.

Instead, try to generate the URL and catch the RouteNotFoundException8 thrown when the route
doesn't exist:

1
2
3
4
5
6
7
8
9

use Symfony\Component\Routing\Exception\RouteNotFoundException;

// ...

try {
$url = $this->router->generate($routeName, $routeParameters);

} catch (RouteNotFoundException $e) {
// the route is not defined...

}

7. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Routing/Router.php

8. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Routing/Exception/RouteNotFoundException.php

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 30

https://symfony.com

Listing 3-36

Listing 3-37

Listing 3-38

Listing 3-39

Forcing HTTPS on Generated URLs

By default, generated URLs use the same HTTP scheme as the current request. In console commands,
where there is no HTTP request, URLs use http by default. You can change this per command (via the
router's getContext() method) or globally with these configuration parameters:

1
2
3
4

config/services.yaml
parameters:

router.request_context.scheme: 'https'
asset.request_context.secure: true

Outside of console commands, use the schemes option to define the scheme of each route explicitly:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// src/Controller/MainController.php
namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\Routing\Annotation\Route;

class SecurityController extends AbstractController
{

/**
* @Route("/login", name="login", schemes={"https"})
*/
public function login()
{

// ...
}

}

The URL generated for the login route will always use HTTPS. This means that when using the path()
Twig function to generate URLs, you may get an absolute URL instead of a relative URL if the HTTP
scheme of the original request is different from the scheme used by the route:

1
2
3
4
5
6

{# if the current scheme is HTTPS, generates a relative URL: /login #}
{{ path('login') }}

{# if the current scheme is HTTP, generates an absolute URL to change
the scheme: https://example.com/login #}

{{ path('login') }}

The scheme requirement is also enforced for incoming requests. If you try to access the /login URL
with HTTP, you will automatically be redirected to the same URL, but with the HTTPS scheme.

If you want to force a group of routes to use HTTPS, you can define the default scheme when importing
them. The following example forces HTTPS on all routes defined as annotations:

1
2
3
4
5
6

config/routes/annotations.yaml
controllers:

resource: '../src/Controller/'
type: annotation
defaults:

schemes: [https]

The Security component provides another way to enforce HTTP or HTTPS via the
requires_channel setting.

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 31

https://symfony.com

Listing 3-40

Listing 3-41

Troubleshooting
Here are some common errors you might see while working with routing:

Controller "App\Controller\BlogController::show()" requires that you provide a value for the
"$slug" argument.

This happens when your controller method has an argument (e.g. $slug):

public function show($slug)
{

// ...
}

But your route path does not have a {slug} parameter (e.g. it is /blog/show). Add a {slug} to your
route path: /blog/show/{slug} or give the argument a default value (i.e. $slug = null).

Some mandatory parameters are missing ("slug") to generate a URL for route "blog_show".

This means that you're trying to generate a URL to the blog_show route but you are not passing a slug
value (which is required, because it has a {slug} parameter in the route path). To fix this, pass a slug
value when generating the route:

$this->generateUrl('blog_show', ['slug' => 'slug-value']);

// or, in Twig
// {{ path('blog_show', {slug: 'slug-value'}) }}

Learn more about Routing
• How to Create a custom Route Loader
• Looking up Routes from a Database: Symfony CMF DynamicRouter

PDF brought to you by
generated on August 13, 2019

Chapter 3: Routing | 32

https://symfony.com

Listing 4-1

Chapter 4

Controller

A controller is a PHP function you create that reads information from the Request object and creates
and returns a Response object. The response could be an HTML page, JSON, XML, a file download,
a redirect, a 404 error or anything else. The controller executes whatever arbitrary logic your application
needs to render the content of a page.

If you haven't already created your first working page, check out Create your First Page in Symfony
and then come back!

A Simple Controller

While a controller can be any PHP callable (function, method on an object, or a Closure), a controller
is usually a method inside a controller class:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// src/Controller/LuckyController.php
namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class LuckyController
{

/**
* @Route("/lucky/number/{max}", name="app_lucky_number")
*/
public function number($max)
{

$number = random_int(0, $max);

return new Response(
'<html><body>Lucky number: '.$number.'</body></html>'

);
}

}

The controller is the number() method, which lives inside the controller class LuckyController.

PDF brought to you by
generated on August 13, 2019

Chapter 4: Controller | 33

https://symfony.com

Listing 4-2

Listing 4-3

This controller is pretty straightforward:

• line 2: Symfony takes advantage of PHP's namespace functionality to namespace the entire
controller class.

• line 4: Symfony again takes advantage of PHP's namespace functionality: the use keyword imports
the Response class, which the controller must return.

• line 7: The class can technically be called anything, but it's suffixed with Controller by convention.
• line 12: The action method is allowed to have a $max argument thanks to the {max} wildcard in the

route.
• line 16: The controller creates and returns a Response object.

Mapping a URL to a Controller

In order to view the result of this controller, you need to map a URL to it via a route. This was done above
with the @Route("/lucky/number/{max}") route annotation.

To see your page, go to this URL in your browser:

http://localhost:8000/lucky/number/100

For more information on routing, see Routing.

The Base Controller Class & Services
To aid development, Symfony comes with an optional base controller class called
AbstractController1. It can be extended to gain access to helper methods.

Add the use statement atop your controller class and then modify LuckyController to extend it:

1
2
3
4
5
6
7
8
9
10

// src/Controller/LuckyController.php
namespace App\Controller;

+ use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

- class LuckyController
+ class LuckyController extends AbstractController
{

// ...
}

That's it! You now have access to methods like $this->render() and many others that you'll learn about
next.

Generating URLs

The generateUrl()2 method is just a helper method that generates the URL for a given route:

$url = $this->generateUrl('app_lucky_number', ['max' => 10]);

Redirecting

If you want to redirect the user to another page, use the redirectToRoute() and redirect()
methods:

1. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/AbstractController.php

2. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/AbstractController.php

PDF brought to you by
generated on August 13, 2019

Chapter 4: Controller | 34

http://localhost:8000/lucky/number/100
https://symfony.com

Listing 4-4

Listing 4-5

Listing 4-6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

use Symfony\Component\HttpFoundation\RedirectResponse;

// ...
public function index()
{

// redirects to the "homepage" route
return $this->redirectToRoute('homepage');

// redirectToRoute is a shortcut for:
// return new RedirectResponse($this->generateUrl('homepage'));

// does a permanent - 301 redirect
return $this->redirectToRoute('homepage', [], 301);

// redirect to a route with parameters
return $this->redirectToRoute('app_lucky_number', ['max' => 10]);

// redirects to a route and maintains the original query string parameters
return $this->redirectToRoute('blog_show', $request->query->all());

// redirects externally
return $this->redirect('http://symfony.com/doc');

}

The redirect() method does not check its destination in any way. If you redirect to a URL
provided by end-users, your application may be open to the unvalidated redirects security
vulnerability3.

Rendering Templates

If you're serving HTML, you'll want to render a template. The render() method renders a template
and puts that content into a Response object for you:

// renders templates/lucky/number.html.twig
return $this->render('lucky/number.html.twig', ['number' => $number]);

Templating and Twig are explained more in the Creating and Using Templates article.

Fetching Services

Symfony comes packed with a lot of useful objects, called services. These are used for rendering templates,
sending emails, querying the database and any other "work" you can think of.

If you need a service in a controller, type-hint an argument with its class (or interface) name. Symfony
will automatically pass you the service you need:

1
2
3
4
5
6
7
8
9
10
11

use Psr\Log\LoggerInterface;
// ...

/**
* @Route("/lucky/number/{max}")
*/
public function number($max, LoggerInterface $logger)
{

$logger->info('We are logging!');
// ...

}

Awesome!

What other services can you type-hint? To see them, use the debug:autowiring console command:

3. https://www.owasp.org/index.php/Open_redirect

PDF brought to you by
generated on August 13, 2019

Chapter 4: Controller | 35

https://symfony.com

Listing 4-7

Listing 4-8

Listing 4-9

Listing 4-10

Listing 4-11

1 $ php bin/console debug:autowiring

If you need control over the exact value of an argument, you can bind the argument by its name:

1
2
3
4
5
6
7
8
9
10
11
12

config/services.yaml
services:

...

explicitly configure the service
App\Controller\LuckyController:

public: true
bind:

for any $logger argument, pass this specific service
$logger: '@monolog.logger.doctrine'
for any $projectDir argument, pass this parameter value
$projectDir: '%kernel.project_dir%'

Like with all services, you can also use regular constructor injection in your controllers.

For more information about services, see the Service Container article.

Generating Controllers

To save time, you can install Symfony Maker4 and tell Symfony to generate a new controller class:

1
2
3
4

$ php bin/console make:controller BrandNewController

created: src/Controller/BrandNewController.php
created: templates/brandnew/index.html.twig

If you want to generate an entire CRUD from a Doctrine entity, use:

1
2
3
4
5
6
7
8
9
10

$ php bin/console make:crud Product

created: src/Controller/ProductController.php
created: src/Form/ProductType.php
created: templates/product/_delete_form.html.twig
created: templates/product/_form.html.twig
created: templates/product/edit.html.twig
created: templates/product/index.html.twig
created: templates/product/new.html.twig
created: templates/product/show.html.twig

New in version 1.2: The make:crud command was introduced in MakerBundle 1.2.

Managing Errors and 404 Pages
When things are not found, you should return a 404 response. To do this, throw a special type of
exception:

1
2
3
4
5
6
7
8

use Symfony\Component\HttpKernel\Exception\NotFoundHttpException;

// ...
public function index()
{

// retrieve the object from database
$product = ...;
if (!$product) {

4. https://symfony.com/doc/current/bundles/SymfonyMakerBundle/index.html

PDF brought to you by
generated on August 13, 2019

Chapter 4: Controller | 36

https://symfony.com

Listing 4-12

Listing 4-13

Listing 4-14

9
10
11
12
13
14
15
16

throw $this->createNotFoundException('The product does not exist');

// the above is just a shortcut for:
// throw new NotFoundHttpException('The product does not exist');

}

return $this->render(...);
}

The createNotFoundException()5 method is just a shortcut to create a special
NotFoundHttpException6 object, which ultimately triggers a 404 HTTP response inside Symfony.

If you throw an exception that extends or is an instance of HttpException7, Symfony will use the
appropriate HTTP status code. Otherwise, the response will have a 500 HTTP status code:

// this exception ultimately generates a 500 status error
throw new \Exception('Something went wrong!');

In every case, an error page is shown to the end user and a full debug error page is shown to the developer
(i.e. when you're in "Debug" mode - see Configuration Environments).

To customize the error page that's shown to the user, see the How to Customize Error Pages article.

The Request object as a Controller Argument
What if you need to read query parameters, grab a request header or get access to an uploaded file? That
information is stored in Symfony's Request object. To access it in your controller, add it as an argument
and type-hint it with the Request class:

1
2
3
4
5
6
7
8

use Symfony\Component\HttpFoundation\Request;

public function index(Request $request, $firstName, $lastName)
{

$page = $request->query->get('page', 1);

// ...
}

Keep reading for more information about using the Request object.

Managing the Session
Symfony provides a session service that you can use to store information about the user between requests.
Session is enabled by default, but will only be started if you read or write from it.

Session storage and other configuration can be controlled under the framework.session configuration in
config/packages/framework.yaml.

To get the session, add an argument and type-hint it with SessionInterface8:

1
2
3
4

use Symfony\Component\HttpFoundation\Session\SessionInterface;

public function index(SessionInterface $session)
{

5. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/AbstractController.php

6. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/HttpKernel/Exception/NotFoundHttpException.php

7. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/HttpKernel/Exception/HttpException.php

8. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/HttpFoundation/Session/SessionInterface.php

PDF brought to you by
generated on August 13, 2019

Chapter 4: Controller | 37

https://symfony.com

Listing 4-15

Listing 4-16

5
6
7
8
9
10
11
12
13

// stores an attribute for reuse during a later user request
$session->set('foo', 'bar');

// gets the attribute set by another controller in another request
$foobar = $session->get('foobar');

// uses a default value if the attribute doesn't exist
$filters = $session->get('filters', []);

}

Stored attributes remain in the session for the remainder of that user's session.

For more info, see Sessions.

Flash Messages

You can also store special messages, called "flash" messages, on the user's session. By design, flash
messages are meant to be used exactly once: they vanish from the session automatically as soon as you
retrieve them. This feature makes "flash" messages particularly great for storing user notifications.

For example, imagine you're processing a form submission:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

use Symfony\Component\HttpFoundation\Request;

public function update(Request $request)
{

// ...

if ($form->isSubmitted() && $form->isValid()) {
// do some sort of processing

$this->addFlash(
'notice',
'Your changes were saved!'

);
// $this->addFlash() is equivalent to $request->getSession()->getFlashBag()->add()

return $this->redirectToRoute(...);
}

return $this->render(...);
}

After processing the request, the controller sets a flash message in the session and then redirects. The
message key (notice in this example) can be anything: you'll use this key to retrieve the message.

In the template of the next page (or even better, in your base layout template), read any flash messages
from the session using app.flashes():

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

{# templates/base.html.twig #}

{# read and display just one flash message type #}
{% for message in app.flashes('notice') %}

<div class="flash-notice">
{{ message }}

</div>
{% endfor %}

{# read and display several types of flash messages #}
{% for label, messages in app.flashes(['success', 'warning']) %}

{% for message in messages %}
<div class="flash-{{ label }}">

{{ message }}
</div>

{% endfor %}
{% endfor %}

PDF brought to you by
generated on August 13, 2019

Chapter 4: Controller | 38

https://symfony.com

Listing 4-17

18
19
20
21
22
23
24
25
26

{# read and display all flash messages #}
{% for label, messages in app.flashes %}

{% for message in messages %}
<div class="flash-{{ label }}">

{{ message }}
</div>

{% endfor %}
{% endfor %}

It's common to use notice, warning and error as the keys of the different types of flash messages,
but you can use any key that fits your needs.

You can use the peek()9 method instead to retrieve the message while keeping it in the bag.

The Request and Response Object

As mentioned earlier, Symfony will pass the Request object to any controller argument that is type-
hinted with the Request class:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

use Symfony\Component\HttpFoundation\Request;

public function index(Request $request)
{

$request->isXmlHttpRequest(); // is it an Ajax request?

$request->getPreferredLanguage(['en', 'fr']);

// retrieves GET and POST variables respectively
$request->query->get('page');
$request->request->get('page');

// retrieves SERVER variables
$request->server->get('HTTP_HOST');

// retrieves an instance of UploadedFile identified by foo
$request->files->get('foo');

// retrieves a COOKIE value
$request->cookies->get('PHPSESSID');

// retrieves an HTTP request header, with normalized, lowercase keys
$request->headers->get('host');
$request->headers->get('content-type');

}

The Request class has several public properties and methods that return any information you need
about the request.

Like the Request, the Response object has a public headers property. This object is of the type
ResponseHeaderBag10 and provides methods for getting and setting response headers. The header
names are normalized. As a result, the name Content-Type is equivalent to the name content-type
or content_type.

In Symfony, a controller is required to return a Response object:

9. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.php

10. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/HttpFoundation/ResponseHeaderBag.php

PDF brought to you by
generated on August 13, 2019

Chapter 4: Controller | 39

https://symfony.com

Listing 4-18

Listing 4-19

Listing 4-20

Listing 4-21

Listing 4-22

1
2
3
4
5
6
7
8

use Symfony\Component\HttpFoundation\Response;

// creates a simple Response with a 200 status code (the default)
$response = new Response('Hello '.$name, Response::HTTP_OK);

// creates a CSS-response with a 200 status code
$response = new Response('<style> ... </style>');
$response->headers->set('Content-Type', 'text/css');

To facilitate this, different response objects are included to address different response types. Some of
these are mentioned below. To learn more about the Request and Response (and different Response
classes), see the HttpFoundation component documentation.

Accessing Configuration Values

To get the value of any configuration parameter from a controller, use the getParameter() helper
method:

1
2
3
4
5
6

// ...
public function index()
{

$contentsDir = $this->getParameter('kernel.project_dir').'/contents';
// ...

}

Returning JSON Response

To return JSON from a controller, use the json() helper method. This returns a JsonResponse object
that encodes the data automatically:

1
2
3
4
5
6
7
8
9

// ...
public function index()
{

// returns '{"username":"jane.doe"}' and sets the proper Content-Type header
return $this->json(['username' => 'jane.doe']);

// the shortcut defines three optional arguments
// return $this->json($data, $status = 200, $headers = [], $context = []);

}

If the serializer service is enabled in your application, it will be used to serialize the data to JSON.
Otherwise, the json_encode11 function is used.

Streaming File Responses

You can use the file()12 helper to serve a file from inside a controller:

1
2
3
4
5

public function download()
{

// send the file contents and force the browser to download it
return $this->file('/path/to/some_file.pdf');

}

The file() helper provides some arguments to configure its behavior:

11. https://secure.php.net/manual/en/function.json-encode.php

12. https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/AbstractController.php

PDF brought to you by
generated on August 13, 2019

Chapter 4: Controller | 40

https://symfony.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

use Symfony\Component\HttpFoundation\File\File;
use Symfony\Component\HttpFoundation\ResponseHeaderBag;

public function download()
{

// load the file from the filesystem
$file = new File('/path/to/some_file.pdf');

return $this->file($file);

// rename the downloaded file
return $this->file($file, 'custom_name.pdf');

// display the file contents in the browser instead of downloading it
return $this->file('invoice_3241.pdf', 'my_invoice.pdf', ResponseHeaderBag::DISPOSITION_INLINE);

}

Final Thoughts
In Symfony, a controller is usually a class method which is used to accept requests, and return a
Response object. When mapped with a URL, a controller becomes accessible and its response can be
viewed.

To facilitate the development of controllers, Symfony provides an AbstractController. It can be
used to extend the controller class allowing access to some frequently used utilities such as render()
and redirectToRoute(). The AbstractController also provides the
createNotFoundException() utility which is used to return a page not found response.

In other articles, you'll learn how to use specific services from inside your controller that will help you
persist and fetch objects from a database, process form submissions, handle caching and more.

Keep Going!
Next, learn all about rendering templates with Twig.

Learn more about Controllers
• Extending Action Argument Resolving
• How to Customize Error Pages
• How to Forward Requests to another Controller
• How to Define Controllers as Services
• How to Create a SOAP Web Service in a Symfony Controller
• How to Upload Files

PDF brought to you by
generated on August 13, 2019

Chapter 4: Controller | 41

https://symfony.com

Listing 5-1

Chapter 5

Creating and Using Templates

As explained in the previous article, controllers are responsible for handling each request that comes into
a Symfony application and they usually end up rendering a template to generate the response contents.

In reality, the controller delegates most of the heavy work to other places so that code can be tested and
reused. When a controller needs to generate HTML, CSS or any other content, it hands the work off to
the templating engine.

In this article, you'll learn how to write powerful templates that can be used to return content to the
user, populate email bodies, and more. You'll learn shortcuts, clever ways to extend templates and how
to reuse template code.

Templates
A template is a text file that can generate any text-based format (HTML, XML, CSV, LaTeX ...). The
most familiar type of template is a PHP template - a text file parsed by PHP that contains a mix of text
and PHP code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

<!DOCTYPE html>
<html>

<head>
<title>Welcome to Symfony!</title>

</head>
<body>

<h1><?= $page_title ?></h1>

<ul id="navigation">
<?php foreach ($navigation as $item): ?>

<a href="<?= $item->getHref() ?>">

<?= $item->getCaption() ?>

<?php endforeach ?>

</body>

</html>

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 42

https://symfony.com

Listing 5-2

Listing 5-3

Listing 5-4

Listing 5-5

But Symfony packages an even more powerful templating language called Twig1. Twig allows you to write
concise, readable templates that are more friendly to web designers and, in several ways, more powerful
than PHP templates:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<!DOCTYPE html>
<html>

<head>
<title>Welcome to Symfony!</title>

</head>
<body>

<h1>{{ page_title }}</h1>

<ul id="navigation">
{% for item in navigation %}

{{ item.caption }}
{% endfor %}

</body>

</html>

Twig defines three types of special syntax:
{{ ... }}{{ ... }}

"Says something": prints a variable or the result of an expression to the template.

{% ... %}{% ... %}

"Does something": a tag that controls the logic of the template; it is used to execute statements such
as for-loops for example.

{# ... #}{# ... #}

"Comment something": it's the equivalent of the PHP /* comment */ syntax. It's used to add single or
multi-line comments. The content of the comments isn't included in the rendered pages.

Twig also contains filters, which modify content before being rendered. The following makes the title
variable all uppercase before rendering it:

1 {{ title|upper }}

Twig comes with a long list of tags2, filters3 and functions4 that are available by default. You can even add
your own custom filters, functions (and more) via a Twig Extension. Run the following command to list
them all:

1 $ php bin/console debug:twig

Twig code will look similar to PHP code, with subtle, nice differences. The following example uses a
standard for tag and the cycle() function to print ten div tags, with alternating odd, even classes:

1
2
3
4
5

{% for i in 1..10 %}
<div class="{{ cycle(['even', 'odd'], i) }}">

<!-- some HTML here -->
</div>

{% endfor %}

Throughout this article, template examples will be shown in both Twig and PHP.

1. https://twig.symfony.com

2. https://twig.symfony.com/doc/2.x/tags/index.html

3. https://twig.symfony.com/doc/2.x/filters/index.html

4. https://twig.symfony.com/doc/2.x/functions/index.html

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 43

https://symfony.com

Listing 5-6

Listing 5-7

Why Twig?

Twig templates are meant to be simple and won't process PHP tags. This is by design: the Twig
template system is meant to express presentation, not program logic. The more you use Twig,
the more you'll appreciate and benefit from this distinction. And you'll be loved by web designers
everywhere.

Twig can also do things that PHP can't, such as whitespace control, sandboxing, automatic HTML
escaping, manual contextual output escaping, and the inclusion of custom functions and filters that
only affect templates. Twig contains a lot of features that make writing templates easier and more
concise. Take the following example, which combines a loop with a logical if statement:

1
2
3
4
5
6
7

{% for user in users if user.active %}

{{ user.username }}
{% else %}

No users found
{% endfor %}

Twig Template Caching

Twig is fast because each template is compiled to a native PHP class and cached. But don't worry: this
happens automatically and doesn't require you to do anything. And while you're developing, Twig is
smart enough to re-compile your templates after you make any changes. That means Twig is fast in
production, but convenient to use while developing.

Template Inheritance and Layouts
More often than not, templates in a project share common elements, like the header, footer, sidebar or
more. In Symfony, this problem is thought about differently: a template can be decorated by another
one. This works exactly the same as PHP classes: template inheritance allows you to build a base "layout"
template that contains all the common elements of your site defined as blocks (think "PHP class with
base methods"). A child template can extend the base layout and override any of its blocks (think "PHP
subclass that overrides certain methods of its parent class").

First, build a base layout file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

{# templates/base.html.twig #}
<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>{% block title %}Test Application{% endblock %}</title>

</head>
<body>

<div id="sidebar">
{% block sidebar %}

Home
Blog

{% endblock %}

</div>

<div id="content">
{% block body %}{% endblock %}

</div>
</body>

</html>

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 44

https://symfony.com

Listing 5-8

Listing 5-9

Though the discussion about template inheritance will be in terms of Twig, the philosophy is the
same between Twig and PHP templates.

This template defines the base HTML skeleton document of a two-column page. In this example, three
{% block %} areas are defined (title, sidebar and body). Each block may be overridden by a child
template or left with its default implementation. This template could also be rendered directly. In that
case the title, sidebar and body blocks would retain the default values used in this template.

A child template might look like this:

1
2
3
4
5
6
7
8
9
10
11

{# templates/blog/index.html.twig #}
{% extends 'base.html.twig' %}

{% block title %}My cool blog posts{% endblock %}

{% block body %}
{% for entry in blog_entries %}

<h2>{{ entry.title }}</h2>
<p>{{ entry.body }}</p>

{% endfor %}
{% endblock %}

The parent template is stored in templates/, so its path is base.html.twig. The template
naming conventions are explained fully in Template Naming and Locations.

The key to template inheritance is the {% extends %} tag. This tells the templating engine to first
evaluate the base template, which sets up the layout and defines several blocks. The child template is
then rendered, at which point the title and body blocks of the parent are replaced by those from the
child. Depending on the value of blog_entries, the output might look like this:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>My cool blog posts</title>

</head>
<body>

<div id="sidebar">

Home
Blog

</div>

<div id="content">
<h2>My first post</h2>
<p>The body of the first post.</p>

<h2>Another post</h2>
<p>The body of the second post.</p>

</div>
</body>

</html>

Notice that since the child template didn't define a sidebar block, the value from the parent template
is used instead. Content within a {% block %} tag in a parent template is always used by default.

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 45

https://symfony.com

Listing 5-10

You can use as many levels of inheritance as you want! See How to Organize Your Twig Templates
Using Inheritance for more info.

When working with template inheritance, here are some tips to keep in mind:

• If you use {% extends %} in a template, it must be the first tag in that template;

• The more {% block %} tags you have in your base templates, the better. Remember, child
templates don't have to define all parent blocks, so create as many blocks in your base templates
as you want and give each a sensible default. The more blocks your base templates have, the more
flexible your layout will be;

• If you find yourself duplicating content in a number of templates, it probably means you should
move that content to a {% block %} in a parent template. In some cases, a better solution may be
to move the content to a new template and include it (see Including other Templates);

• If you need to get the content of a block from the parent template, you can use the {{ parent()
}} function. This is useful if you want to add to the contents of a parent block instead of completely
overriding it:

1
2
3
4
5
6
7

{% block sidebar %}
<h3>Table of Contents</h3>

{# ... #}

{{ parent() }}
{% endblock %}

Template Naming and Locations
By default, templates can live in two different locations:
templates/templates/

The application's views directory can contain application-wide base templates (i.e. your application's
layouts and templates of the application bundle) as well as templates that override third party
bundle templates.

vendor/path/to/CoolBundle/Resources/views/vendor/path/to/CoolBundle/Resources/views/

Each third party bundle houses its templates in its Resources/views/ directory (and subdirectories).
When you plan to share your bundle, you should put the templates in the bundle instead of the
templates/ directory.

Most of the templates you'll use live in the templates/ directory. The path you'll use will be relative
to this directory. For example, to render/extend templates/base.html.twig, you'll use the
base.html.twig path and to render/extend templates/blog/index.html.twig, you'll use the
blog/index.html.twig path.

Referencing Templates in a Bundle

If you need to refer to a template that lives in a bundle, Symfony uses the Twig namespaced syntax
(@BundleName/directory/filename.html.twig). This allows for several types of templates,
each which lives in a specific location:

• @AcmeBlog/Blog/index.html.twig: This syntax is used to specify a template for a specific
page. The three parts of the string, each separated by a slash (/), mean the following:

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 46

https://symfony.com

• @AcmeBlog: is the bundle name without the Bundle suffix. This template lives in the
AcmeBlogBundle (e.g. src/Acme/BlogBundle);

• Blog: (directory) indicates that the template lives inside the Blog subdirectory of Resources/views/;
• index.html.twig: (filename) the actual name of the file is index.html.twig.

Assuming that the AcmeBlogBundle lives at src/Acme/BlogBundle, the final path to the layout
would be src/Acme/BlogBundle/Resources/views/Blog/index.html.twig.

• @AcmeBlog/layout.html.twig: This syntax refers to a base template that's specific to the
AcmeBlogBundle. Since the middle, "directory", portion is missing (e.g. Blog), the template lives at
Resources/views/layout.html.twig inside AcmeBlogBundle.

Using this namespaced syntax instead of the real file paths allows applications to override templates that
live inside any bundle.

Template Suffix

Every template name also has two extensions that specify the format and engine for that template.

Filename Format Engine

blog/index.html.twig HTML Twig

blog/index.html.php HTML PHP

blog/index.css.twig CSS Twig

By default, any Symfony template can be written in either Twig or PHP, and the last part of the extension
(e.g. .twig or .php) specifies which of these two engines should be used. The first part of the extension,
(e.g. .html, .css, etc) is the final format that the template will generate. Unlike the engine, which
determines how Symfony parses the template, this is an organizational tactic used in case the same
resource needs to be rendered as HTML (index.html.twig), XML (index.xml.twig), or any other
format. For more information, read the How to Work with Different Output Formats in Templates section.

Tags and Helpers
You already understand the basics of templates, how they're named and how to use template inheritance.
The hardest parts are already behind you. In this section, you'll learn about a large group of tools available
to help perform the most common template tasks such as including other templates, linking to pages and
including images.

Symfony comes bundled with several specialized Twig tags and functions that ease the work of the
template designer. In PHP, the templating system provides an extensible helper system that provides
useful features in a template context.

You've already seen a few built-in Twig tags like {% block %} and {% extends %}. Here you will
learn a few more.

Including other Templates

You'll often want to include the same template or code fragment on several pages. For example, in an
application with "news articles", the template code displaying an article might be used on the article detail
page, on a page displaying the most popular articles, or in a list of the latest articles.

When you need to reuse a chunk of PHP code, you typically move the code to a new PHP class or
function. The same is true for templates. By moving the reused template code into its own template, it
can be included from any other template. First, create the template that you'll need to reuse.

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 47

https://symfony.com

Listing 5-11

Listing 5-12

Listing 5-13

Listing 5-14

1
2
3
4
5
6
7

{# templates/article/article_details.html.twig #}
<h2>{{ article.title }}</h2>
<h3 class="byline">by {{ article.authorName }}</h3>

<p>
{{ article.body }}

</p>

Including this template from any other template is achieved with the {{ include() }} function:

1
2
3
4
5
6
7
8
9
10

{# templates/article/list.html.twig #}
{% extends 'layout.html.twig' %}

{% block body %}
<h1>Recent Articles<h1>

{% for article in articles %}
{{ include('article/article_details.html.twig', { 'article': article }) }}

{% endfor %}
{% endblock %}

Notice that the template name follows the same typical convention. The
article_details.html.twig template uses an article variable, which we pass to it. In this
case, you could avoid doing this entirely, as all of the variables available in list.html.twig are also
available in article_details.html.twig (unless you set with_context5 to false).

The {'article': article} syntax is the standard Twig syntax for hash maps (i.e. an array with
named keys). If you needed to pass in multiple elements, it would look like this: {'foo': foo,
'bar': bar}.

Linking to Pages

Creating links to other pages in your application is one of the most common jobs for a template. Instead
of hardcoding URLs in templates, use the path Twig function (or the router helper in PHP) to generate
URLs based on the routing configuration. Later, if you want to modify the URL of a particular page, all
you'll need to do is change the routing configuration: the templates will automatically generate the new
URL.

First, link to the "welcome" page, which is accessible via the following routing configuration:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/Controller/WelcomeController.php

// ...
use Symfony\Component\Routing\Annotation\Route;

class WelcomeController extends AbstractController
{

/**
* @Route("/", name="welcome", methods={"GET"})
*/
public function index()
{

// ...
}

}

To link to the page, use the path() Twig function and refer to the route:

5. https://twig.symfony.com/doc/2.x/functions/include.html

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 48

https://symfony.com

Listing 5-15

Listing 5-16

Listing 5-17

Listing 5-18

Listing 5-19

1 Home

As expected, this will generate the URL /. Now, for a more complicated route:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/Controller/ArticleController.php

// ...
use Symfony\Component\Routing\Annotation\Route;

class ArticleController extends AbstractController
{

/**
* @Route("/article/{slug}", name="article_show", methods={"GET"})
*/
public function show($slug)
{

// ...
}

}

In this case, you need to specify both the route name (article_show) and a value for the {slug}
parameter. Using this route, revisit the recent_list.html.twig template from the previous section
and link to the articles correctly:

1
2
3
4
5
6

{# templates/article/recent_list.html.twig #}
{% for article in articles %}

{{ article.title }}

{% endfor %}

You can also generate an absolute URL by using the url() Twig function:

1 Home

Linking to Assets

Templates also commonly refer to images, JavaScript, stylesheets and other assets. You could hard-code
the web path to these assets (e.g. /images/logo.png), but Symfony provides a more dynamic option
via the asset() Twig function.

To use this function, install the asset package:

1 $ composer require symfony/asset

You can now use the asset() function:

1
2
3

<link href="{{ asset('css/blog.css') }}" rel="stylesheet"/>

The asset() function's main purpose is to make your application more portable. If your application
lives at the root of your host (e.g. http://example.com), then the rendered paths should be
/images/logo.png. But if your application lives in a subdirectory (e.g. http://example.com/
my_app), each asset path should render with the subdirectory (e.g. /my_app/images/logo.png).

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 49

https://symfony.com

Listing 5-20

Listing 5-21

Listing 5-22

The asset() function takes care of this by determining how your application is being used and
generating the correct paths accordingly.

The asset() function supports various cache busting techniques via the version, version_format,
and json_manifest_path configuration options.

If you need absolute URLs for assets, use the absolute_url() Twig function as follows:

1

Including Stylesheets and JavaScripts in Twig
No site would be complete without including JavaScript files and stylesheets. In Symfony, the inclusion
of these assets is handled elegantly by taking advantage of Symfony's template inheritance.

This section will teach you the philosophy behind including stylesheet and JavaScript assets in
Symfony. If you are interested in compiling and creating those assets, check out the Webpack Encore
documentation a tool that seamlessly integrates Webpack and other modern JavaScript tools into
Symfony applications.

Start by adding two blocks to your base template that will hold your assets: one called stylesheets
inside the head tag and another called javascripts just above the closing body tag. These blocks will
contain all of the stylesheets and JavaScripts that you'll need throughout your site:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

{# templates/base.html.twig #}
<html>

<head>
{# ... #}

{% block stylesheets %}
<link href="{{ asset('css/main.css') }}" rel="stylesheet"/>

{% endblock %}
</head>
<body>

{# ... #}

{% block javascripts %}
<script src="{{ asset('js/main.js') }}"></script>

{% endblock %}
</body>

</html>

This looks almost like regular HTML, but with the addition of the {% block %}. Those are useful when
you need to include an extra stylesheet or JavaScript from a child template. For example, suppose you
have a contact page and you need to include a contact.css stylesheet just on that page. From inside
that contact page's template, do the following:

1
2
3
4
5
6
7
8
9
10

{# templates/contact/contact.html.twig #}
{% extends 'base.html.twig' %}

{% block stylesheets %}
{{ parent() }}

<link href="{{ asset('css/contact.css') }}" rel="stylesheet"/>
{% endblock %}

{# ... #}

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 50

https://symfony.com

Listing 5-23

Listing 5-24

In the child template, you override the stylesheets block and put your new stylesheet tag inside of
that block. Since you want to add to the parent block's content (and not actually replace it), you also use
the parent() Twig function to include everything from the stylesheets block of the base template.

You can also include assets located in your bundles' Resources/public/ folder. You will need to
run the php bin/console assets:install target [--symlink] command, which copies
(or symlinks) files into the correct location. (By default, the target is the public/ directory of your
application.)

1 <link href="{{ asset('bundles/acmedemo/css/contact.css') }}" rel="stylesheet"/>

The end result is a page that includes main.js and both the main.css and contact.css stylesheets.

Referencing the Request, User or Session

Symfony also gives you a global app variable in Twig that can be used to access the current user, the
Request and more.

See How to Access the User, Request, Session & more in Twig via the app Variable for details.

Output Escaping
Twig performs automatic "output escaping" when rendering any content in order to protect you from
Cross Site Scripting (XSS) attacks.

Suppose description equals I <3 this product:

1
2
3
4
5

{# output escaping is on automatically #}
{{ description }} {# I <3 this product #}

{# disable output escaping with the raw filter #}
{{ description|raw }} {# I <3 this product #}

PHP templates do not automatically escape content.

For more details, see How to Escape Output in Templates.

Final Thoughts
The templating system is just one of the many tools in Symfony. And its job is simple: allow us to render
dynamic & complex HTML output so that this can ultimately be returned to the user, sent in an email or
something else.

Keep Going!
Before diving into the rest of Symfony, check out the configuration system.

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 51

https://symfony.com

Learn more
• How to Use PHP instead of Twig for Templates
• How to Access the User, Request, Session & more in Twig via the app Variable
• How to Dump Debug Information in Twig Templates
• How to Embed Controllers in a Template
• How to Escape Output in Templates
• How to Work with Different Output Formats in Templates
• How to Inject Variables into all Templates (i.e. global Variables)
• How to Embed Asynchronous Content with hinclude.js
• How to Organize Your Twig Templates Using Inheritance
• How to Use and Register Namespaced Twig Paths
• How to Render a Template without a custom Controller
• How to Check the Syntax of Your Twig Templates
• How to Write a custom Twig Extension

PDF brought to you by
generated on August 13, 2019

Chapter 5: Creating and Using Templates | 52

https://symfony.com

Listing 6-1

Listing 6-2

Chapter 6

Configuring Symfony

Configuration Files

Symfony applications are configured with the files stored in the config/ directory, which has this
default structure:

1
2
3
4
5
6
7

your-project/
├─ config/
│ ├─ packages/
│ ├─ bundles.php
│ ├─ routes.yaml
│ └─ services.yaml
├─ ...

The routes.yaml file defines the routing configuration; the services.yaml file configures the
services of the service container; the bundles.php file enables/ disables packages in your application.

You'll be working most in the config/packages/ directory. This directory stores the configuration
of every package installed in your application. Packages (also called "bundles" in Symfony and "plugins/
modules" in other projects) add ready-to-use features to your projects.

When using Symfony Flex, which is enabled by default in Symfony applications, packages update the
bundles.php file and create new files in config/packages/ automatically during their installation.
For example, this is the default file created by the "API Platform" package:

1
2
3
4

config/packages/api_platform.yaml
api_platform:

mapping:
paths: ['%kernel.project_dir%/src/Entity']

Splitting the configuration into lots of small files is intimidating for some Symfony newcomers. However,
you'll get used to them quickly and you rarely need to change these files after package installation

PDF brought to you by
generated on August 13, 2019

Chapter 6: Configuring Symfony | 53

https://symfony.com

Listing 6-3

Listing 6-4

To learn about all the available configuration options, check out the Symfony Configuration
Reference or run the config:dump-reference command.

Configuration Formats

Unlike other frameworks, Symfony doesn't impose you a specific format to configure your applications.
Symfony lets you choose between YAML, XML and PHP and throughout the Symfony documentation,
all configuration examples will be shown in these three formats.

There isn't any practical difference between formats. In fact, Symfony transforms and caches all of them
into PHP before running the application, so there's not even any performance difference between them.

YAML is used by default when installing packages because it's concise and very readable. These are the
main advantages and disadvantages of each format:

• YAML: simple, clean and readable, but not all IDEs support autocompletion and validation for it.
Learn the YAML syntax;

• XML:autocompleted/validated by most IDEs and is parsed natively by PHP, but sometimes it
generates too verbose configuration. Learn the XML syntax1;

• PHP: very powerful and it allows to create dynamic configuration, but the resulting configuration
is less readable than the other formats.

Importing Configuration Files

Symfony loads configuration files using the Config component, which provides advanced features such as
importing other configuration files, even if they use a different format:

1
2
3
4
5
6
7
8
9

config/services.yaml
imports:

- { resource: 'legacy_config.php' }
ignore_errors silently discards errors if the loaded file doesn't exist
- { resource: 'my_config_file.xml', ignore_errors: true }
glob expressions are also supported to load multiple files
- { resource: '/etc/myapp/*.yaml' }

...

Configuration Parameters
Sometimes the same configuration value is used in several configuration files. Instead of repeating it, you
can define it as a "parameter", which is like a reusable configuration value. By convention, parameters are
defined under the parameters key in the config/services.yaml file:

1
2
3
4
5
6
7
8
9
10
11
12

config/services.yaml
parameters:

the parameter name is an arbitrary string (the 'app.' prefix is recommended
to better differentiate your parameters from Symfony parameters).
app.admin_email: 'something@example.com'

boolean parameters
app.enable_v2_protocol: true

array/collection parameters
app.supported_locales: ['en', 'es', 'fr']

1. https://en.wikipedia.org/wiki/XML

PDF brought to you by
generated on August 13, 2019

Chapter 6: Configuring Symfony | 54

https://symfony.com

Listing 6-5

Listing 6-6

Listing 6-7

Listing 6-8

13
14
15
16
17
18
19
20

binary content parameters (encode the contents with base64_encode())
app.some_parameter: !!binary VGhpcyBpcyBhIEJlbGwgY2hhciAH

PHP constants as parameter values
app.some_constant: !php/const GLOBAL_CONSTANT
app.another_constant: !php/const App\Entity\BlogPost::MAX_ITEMS

...

When using XML configuration, the values between <parameter> tags are not trimmed. This
means that the value of the following parameter will be '\n something@example.com\n':

1
2
3

<parameter key="app.admin_email">
something@example.com

</parameter>

Once defined, you can reference this parameter value from any other configuration file using a special
syntax: wrap the parameter name in two % (e.g. %app.admin_email%):

1
2
3
4
5
6

config/packages/some_package.yaml
some_package:

any string surrounded by two % is replaced by that parameter value
email_address: '%app.admin_email%'

...

If some parameter value includes the % character, you need to escape it by adding another % so
Symfony doesn't consider it a reference to a parameter name:

1
2
3
4

config/services.yaml
parameters:

Parsed as 'https://symfony.com/?foo=%s&bar=%d'
url_pattern: 'https://symfony.com/?foo=%%s&bar=%%d'

Due to the way in which parameters are resolved, you cannot use them to build paths in imports
dynamically. This means that something like the following doesn't work:

1
2
3

config/services.yaml
imports:

- { resource: '%kernel.project_dir%/somefile.yaml' }

Configuration parameters are very common in Symfony applications. Some packages even define their
own parameters (e.g. when installing the translation package, a new locale parameter is added to the
config/services.yaml file).

Read the Accessing Configuration Values section of this article to learn about how to use these configuration
parameters in services and controllers.

Configuration Environments
You have just one application, but whether you realize it or not, you need it to behave differently at
different times:

• While developing, you want to log everything and expose nice debugging tools;

PDF brought to you by
generated on August 13, 2019

Chapter 6: Configuring Symfony | 55

https://symfony.com

Listing 6-9

Listing 6-10

• After deploying to production, you want that same application to be optimized for speed and only
log errors.

The files stored in config/packages/ are used by Symfony to configure the application services. In
other words, you can change the application behavior by changing which configuration files are loaded.
That's the idea of Symfony's configuration environments.

A typical Symfony application begins with three environments: dev (for local development), prod (for
production servers) and test (for automated tests). When running the application, Symfony loads the
configuration files in this order (the last files can override the values set in the previous ones):

1. config/packages/*.yaml (and .xml and *.php files too);
2. config/packages/<environment-name>/*.yaml (and .xml and *.php files too);
3. config/packages/services.yaml (and services.xml and services.php files too);

Take the framework package, installed by default, as an example:

• First, config/packages/framework.yaml is loaded in all environments and it configures the framework with
some options;

• In the prod environment, nothing extra will be set as there is no config/packages/prod/framework.yaml

file;
• In the dev environment, there is no file either (config/packages/dev/framework.yaml does not exist).
• In the test environment, the config/packages/test/framework.yaml file is loaded to override some of the

settings previously configured in config/packages/framework.yaml.

In reality, each environment differs only somewhat from others. This means that all environments share a
large base of common configurations, which is put in files directly in the config/packages/ directory.

See the configureContainer() method of the Kernel class to learn everything about the loading order of
configuration files.

Selecting the Active Environment

Symfony applications come with a file called .env located at the project root directory. This file is used
to define the value of environment variables and it's explained in detail later in this article.

Open the .env file (or better, the .env.local file if you created one) and edit the value of the APP_ENV
variable to change the environment in which the application runs. For example, to run the application in
production:

1
2

.env (or .env.local)
APP_ENV=prod

This value is used both for the web and for the console commands. However, you can override it for
commands by setting the APP_ENV value before running them:

1
2
3
4
5

Use the environment defined in the .env file
$ php bin/console command_name

Ignore the .env file and run this command in production
$ APP_ENV=prod php bin/console command_name

Creating a New Environment

The default three environments provided by Symfony are enough for most projects, but you can define
your own environments too. For example, this is how you can define a staging environment where the
client can test the project before going to production:

PDF brought to you by
generated on August 13, 2019

Chapter 6: Configuring Symfony | 56

https://symfony.com

Listing 6-11

Listing 6-12

Listing 6-13

1. Create a configuration directory with the same name as the environment (in this case, config/

packages/staging/);
2. Add the needed configuration files in config/packages/staging/ to define the behavior of the new

environment. Symfony loads first the files in config/packages/*.yaml, so you must only configure
the differences with those files;

3. Select the staging environment using the APP_ENV env var as explained in the previous section.

It's common for environments to be similar between each other, so you can use symbolic links2

between config/packages/<environment-name>/ directories to reuse the same
configuration.

Configuration Based on Environment Variables

Using environment variables3 (or "env vars" for short) is a common practice to configure options that
depend on where the application is run (e.g. the database credentials are usually different in production
and in your local machine).

Instead of defining those as regular options, you can define them as environment variables and reference
them in the configuration files using the special syntax %env(ENV_VAR_NAME)%. The values of these
options are resolved at runtime (only once per request, to not impact performance).

This example shows how to configure the database connection using an env var:

1
2
3
4
5
6

config/packages/doctrine.yaml
doctrine:

dbal:
by convention the env var names are always uppercase
url: '%env(DATABASE_URL)%'

...

The next step is to define the value of those env vars in your shell, your web server, etc. This is explained
in the following sections, but to protect your application from undefined env vars, you can give them a
default value using the .env file:

1
2

.env
DATABASE_URL=sqlite:///%kernel.project_dir%/var/data.db

The values of env vars can only be strings, but Symfony includes some env var processors to transform their
contents (e.g. to turn a string value into an integer).

In order to define the actual values of env vars, Symfony proposes different solutions depending if the
application is running in production or in your local development machine.

Independent from the way you set environmnet variables, you may need to run the debug:container
command with the --env-vars option to verify that they are defined and have the expected values:

1
2
3
4
5
6
7
8
9

$ php bin/console debug:container --env-vars

---------------- ----------------- ---
Name Default value Real value
---------------- ----------------- ---
APP_SECRET n/a "471a62e2d601a8952deb186e44186cb3"
FOO "[1, "2.5", 3]" n/a
BAR null n/a
---------------- ----------------- ---

2. https://en.wikipedia.org/wiki/Symbolic_link

3. https://en.wikipedia.org/wiki/Environment_variable

PDF brought to you by
generated on August 13, 2019

Chapter 6: Configuring Symfony | 57

https://symfony.com

Listing 6-14

Listing 6-15

10
11
12
13
14
15

you can also filter the list of env vars by name:
$ php bin/console debug:container --env-vars foo

run this command to show all the details for a specific env var:
$ php bin/console debug:container --env-var=FOO

Configuring Environment Variables in Development

Instead of defining env vars in your shell or your web server, Symfony proposes a convenient way of
defining them in your local machine based on a file called .env (with a leading dot) located at the root
of your project.

The .env file is read and parsed on every request and its env vars are added to the $_ENV PHP variable.
The existing env vars are never overwritten by the values defined in .env, so you can combine both.

This is for example the content of the .env file to define the value of the DATABASE_URL env var shown
earlier in this article:

1
2

.env
DATABASE_URL="mysql://db_user:db_password@127.0.0.1:3306/db_name"

In addition to your own env vars, this .env file also contains the env vars defined by the third-party
packages installed in your application (they are added automatically by Symfony Flex when installing
packages).

Configuring Environment Variables in Production

In production, the .env files are also parsed and loaded on each request so you can override the env vars
already defined in the server. In order to improve performance, you can run the dump-env command
(available when using Symfony Flex 1.2 or later).

This command parses all the .env files once and compiles their contents into a new PHP-optimized file
called .env.local.php. From that moment, Symfony will load the parsed file instead of parsing the
.env files again:

1 $ composer dump-env prod

Update your deployment tools/workflow to run the dump-env command after each deploy to
improve the application performance.

Creating .env files is the easiest way of using env vars in Symfony applications. However, you can also
configure real env vars in your servers and operating systems.

SymfonyCloud, the cloud service optimized for Symfony applications, defines some utilities to
manage env vars4 in production.

4. https://symfony.com/doc/master/cloud/cookbooks/env.html

PDF brought to you by
generated on August 13, 2019

Chapter 6: Configuring Symfony | 58

https://symfony.com

Listing 6-16

Listing 6-17

Beware that dumping the contents of the $_SERVER and $_ENV variables or outputting the
phpinfo() contents will display the values of the environment variables, exposing sensitive
information such as the database credentials.

The values of the env vars are also exposed in the web interface of the Symfony profiler. In practice
this shouldn't be a problem because the web profiler must never be enabled in production.

Managing Multiple .env Files

The .env file defines the default values for all env vars. However, it's common to override some of those
values depending on the environment (e.g. to use a different database for tests) or depending on the
machine (e.g. to use a different OAuth token on your local machine while developing).

That's why you can define multiple .env files to override env vars. The following list shows the files
loaded in all environments. The .env file is the only mandatory file and each file content overrides the
previous one:

• .env: defines the default values of the env vars needed by the application;
• .env.local: defines machine-specific overrides for env vars on all environments. This file is not

committed to the repository, so these overrides only apply to the machine which contains the file
(your local computer, production server, etc.);

• .env.<environment> (e.g. .env.test): overrides env vars only for some environment but for all machines;
• .env.<environment>.local (e.g. .env.test.local): defines machine-specific env vars overrides only for

some environment. It's similar to .env.local, but the overrides only apply to some particular
environment.

The real environment variables defined in the server always win over the env vars created by the
.env files.

The .env and .env.<environment> files should be committed to the shared repository because they
are the same for all developers and machines. However, the env files ending in .local (.env.local
and .env.<environment>.local) should not be committed because only you will use them. In
fact, the .gitignore file that comes with Symfony prevents them from being committed.

Applications created before November 2018 had a slightly different system, involving a .env.dist
file. For information about upgrading, see: Nov 2018 Changes to .env & How to Update.

Accessing Configuration Values
Controllers and services can access all the configuration parameters. This includes both the parameters
defined by yourself and the parameters created by packages/bundles. Run the following command to see
all the parameters that exist in your application:

1 $ php bin/console debug:container --parameters

Parameters are injected in services as arguments to their constructors. Service autowiring doesn't work for
parameters. Instead, inject them explicitly:

1
2
3

config/services.yaml
parameters:

app.contents_dir: '...'

PDF brought to you by
generated on August 13, 2019

Chapter 6: Configuring Symfony | 59

https://symfony.com

Listing 6-18

Listing 6-19

4
5
6
7
8

services:
App\Service\MessageGenerator:

arguments:
$contentsDir: '%app.contents_dir%'

If you inject the same parameters over and over again, use instead the services._defaults.bind
option. The arguments defined in that option are injected automatically whenever a service constructor
or controller action define an argument with that exact name. For example, to inject the value of the
kernel.project_dir parameter whenever a service/controller defines a $projectDir argument, use this:

1
2
3
4
5
6
7
8
9

config/services.yaml
services:

_defaults:
bind:

pass this value to any $projectDir argument for any service
that's created in this file (including controller arguments)
$projectDir: '%kernel.project_dir%'

...

Read the article about binding arguments by name and/or type to learn more about this powerful feature.

Finally, if some service needs to access to lots of parameters, instead of injecting each of them
individually, you can inject all the application parameters at once by type-hinting any of its constructor
arguments with the ContainerBagInterface5:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

// src/Service/MessageGenerator.php
// ...

use Symfony\Component\DependencyInjection\ParameterBag\ContainerBagInterface;

class MessageGenerator
{

private $params;

public function __construct(ContainerBagInterface $params)
{

$this->params = $params;
}

public function someMethod()
{

// get any container parameter from $this->params, which stores all of them
$sender = $this->params->get('mailer_sender');
// ...

}
}

Keep Going!
Congratulations! You've tackled the basics in Symfony. Next, learn about each part of Symfony
individually by following the guides. Check out:

• Forms
• Databases and the Doctrine ORM
• Service Container
• Security

5. https://github.com/symfony/symfony/blob/master/src/Symfony/Component/DependencyInjection/ParameterBag/ContainerBagInterface.php

PDF brought to you by
generated on August 13, 2019

Chapter 6: Configuring Symfony | 60

https://symfony.com

• Swift Mailer
• Logging

And all the other topics related to configuration:

• Nov 2018 Changes to .env & How to Update
• Environment Variable Processors
• Understanding how the Front Controller, Kernel and Environments Work together
• Building your own Framework with the MicroKernelTrait
• How To Create Symfony Applications with Multiple Kernels
• How to Override Symfony's default Directory Structure
• Using Parameters within a Dependency Injection Class

PDF brought to you by
generated on August 13, 2019

Chapter 6: Configuring Symfony | 61

https://symfony.com

	Getting Started Version: master generated on August 13, 2019
	

	Contents at a Glance
	Installing & Setting up the Symfony Framework
	Technical Requirements
	Creating Symfony Applications
	Running Symfony Applications
	Setting up an Existing Symfony Project
	Installing Packages
	Checking Security Vulnerabilities
	Symfony LTS Versions
	The Symfony Demo application
	Start Coding!
	Learn More

	Create your First Page in Symfony
	Creating a Page: Route and Controller
	Annotation Routes
	Auto-Installing Recipes with Symfony Flex
	The bin/console Command
	The Web Debug Toolbar: Debugging Dream
	Rendering a Template
	Checking out the Project Structure
	What's Next?
	Go Deeper with HTTP & Framework Fundamentals

	Routing
	Creating Routes
	Matching HTTP Methods
	Matching Expressions
	Debugging Routes

	Route Parameters
	Parameters Validation
	Optional Parameters
	Parameter Conversion
	Special Parameters
	Extra Parameters
	Slash Characters in Route Parameters

	Route Groups and Prefixes
	Getting the Route Name and Parameters
	Special Routes
	Rendering Templates
	Redirecting to URLs and Routes
	Redirecting URLs with Trailing Slashes

	Sub-Domain Routing
	Localized Routes (i18n)
	Generating URLs
	Generating URLs in Controllers
	Generating URLs in Services
	Generating URLs in Templates
	Generating URLs in JavaScript
	Generating URLs in Commands
	Checking if a Route Exists
	Forcing HTTPS on Generated URLs

	Troubleshooting
	Learn more about Routing

	Controller
	A Simple Controller
	Mapping a URL to a Controller

	The Base Controller Class & Services
	Generating URLs
	Redirecting
	Rendering Templates
	Fetching Services

	Generating Controllers
	Managing Errors and 404 Pages
	The Request object as a Controller Argument
	Managing the Session
	Flash Messages

	The Request and Response Object
	Accessing Configuration Values
	Returning JSON Response
	Streaming File Responses

	Final Thoughts
	Keep Going!
	Learn more about Controllers

	Creating and Using Templates
	Templates
	Twig Template Caching

	Template Inheritance and Layouts
	Template Naming and Locations
	Referencing Templates in a Bundle
	Template Suffix

	Tags and Helpers
	Including other Templates
	Linking to Pages
	Linking to Assets

	Including Stylesheets and JavaScripts in Twig
	Referencing the Request, User or Session
	Output Escaping
	Final Thoughts
	Keep Going!
	Learn more

	Configuring Symfony
	Configuration Files
	Configuration Formats
	Importing Configuration Files

	Configuration Parameters
	Configuration Environments
	Selecting the Active Environment
	Creating a New Environment

	Configuration Based on Environment Variables
	Configuring Environment Variables in Development
	Configuring Environment Variables in Production
	Managing Multiple .env Files

	Accessing Configuration Values
	Keep Going!

