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Abstract 

Cold atmospheric plasma (CAP) was shown to affect cells not only directly, but also indirectly by 

means of plasma pre-treated solution.  This study investigated a new application of CAP generated 

in deionized (DI) water for the cancer therapy. In our experiments, the CAP solution was generated 

in DI water using helium as carrier gas. We report on the effects of this plasma solution in breast 

(MDA-MD-231) and gastric (NCI-N87) cancer cells. The results revealed that apoptosis efficiency 

was dependent on the plasma exposure time and on the levels of reactive oxygen and nitrogen 

species (ROS and RNS). The plasma solution that resulted from 30-minute treatment of DI water 

had the most significant effect in the rate of apoptosis.  
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1. Introduction 

Plasma is a fully or partially ionized gas consisting of positive and negative ions, free electrons, 

free radicals, ozone and ultraviolet radiation1,2. Historically, plasma could be generated only at 

high temperatures or in vacuum3,4, while more recent studies have reported on plasma generated 

at atmospheric pressure and at room temperature. This type of plasma is referred to as non-thermal 

plasma or cold atmospheric plasma (CAP)5. The potential applications of CAP have created a new 

field of study known as plasma medicine6. One of the main benefits of the CAP technology 

includes its ability to offer a minimally-invasive surgery option that allows for selective cell death 

without influencing the healthy tissue. Some of the applications of CAP include: sterilization of 

infected tissue, inactivation of microorganisms, wound healing, skin regeneration, blood 

coagulation, tooth bleaching, and cancer therapy6-11. According to several studies, the main 

therapeutic effects of this technology are linked to presence of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) generated from the plasma10,12. The dose of the plasma species 

delivered to target tissue site are determined by plasma experimental parameters. Wiseman et. al. 

has reported that extreme amounts of reactive species (RS) are able to induce cell apoptosis while 

damaging proteins, lipids, and DNA13. Additional studies have reported on cancer cell effects from 

direct and indirect treatment through plasma irradiated medium14-16. While effects of plasma-

stimulated medium in cancer cells and microbial inactivation are under current investigation17,18, 

the effects of helium plasma generated in DI water are yet to be evaluated. 

In this study, we have designed a CAP device submerged in DI water using helium as feeding gas. 

The plasma solution produced for this device is also referred to as plasma generated in DI water. 

This plasma solution has the potential to be utilized as an oral medicine or to even be paired with 

other drugs or used as standalone drug and injected into tumors.  Here, we have investigated the 
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effects of the plasma generated in DI water for 5, 10, 20, and 30 min on human breast and gastric 

cancer cells. The voltage/current, optical emission spectrum and discharge density of helium 

plasma were characterized. The ROS/RNS concentrations of plasma solutions and relative 

metabolic activity of breast and gastric cancer cells were also determined. 

2. Materials and Methods  

The human breast cancer cell line, MDA-MB-231, was provided by Dr. Zhang’s lab at the George 

Washington University. MDA-MD-231 cells were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM, Life Technologies) supplemented with 10% (v/v) fetal bovine serum (Atlantic 

Biologicals) and 1% (v/v) penicillin and streptomycin (Life Technologies). The human gastric 

cancer cell line, NCI-N87, was purchased from American Type Culture Collection (ATCC). NCI-

N87 cells were cultured in RPMI-1640 Medium (ATCC® 30-2001™) supplemented with 10% 

(v/v) fetal bovine serum (Atlantic Biologicals). Both cell cultures were maintained at 37 °C in a 

humidified incubator containing 5% (v/v) CO2. All fluorescence and absorbance measurements 

were recorded with the Synergy H1 Multi-Mode plate reader. The results for the mean ± standard 

deviation were plotted with Origin 8. A student t-test was performed to check for statistical 

significance (*p<0.05, **p<0.01, ***p<0.001). The sample size for all experiments was n=3. 

The cells were plated in 96-well flat-bottom plates at 3000 cells/well in 70 μL of complete cell 

culture medium. The cells were incubated for 24 hours to ensure proper cell adherence and stability. 

Cell confluency was confirmed at about 40%. Cells were further incubated at 37 °C for 24 and 48 

hours in the presence of 30 μl of DMEM, RMPI, untreated DI water (0 min), and plasma solutions.  

The relative metabolic activity of the breast cancer cells was measured for each incubation time 

point (24 and 48 hours) with an MTT assay. 100 μL of MTT solution (3-(4, 5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide) (Sigma-Aldrich) was added to each well followed by a 3-
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hour incubation. The MTT solution was discarded and 100 μL/well of solvent (0.4% (v/v) HCl in 

anhydrous isopropanol) was added to each well.  The absorbance was recorded at 570 nm with 

microplate reader. The relative metabolic activity of the gastric cancer cells was measured with a 

Cell Counting Kit 8 assay from Dojindo Molecular Technologies, MD.  After each incubation time 

point (24 and 48 hours), the original culture medium was aspirated and replaced with 10 μL/well 

of CCK 8 reagent. The plates were incubated for 3 hours at 37 °C. The absorbance was measured 

at 450 nm using a microplate reader. 

A Fluorimetric Hydrogen Peroxide Assay Kit (Sigma-Aldrich) was used for measuring the levels 

of H2O2 in the plasma solution. A detailed protocol can be found on the Sigma-Aldrich website. 

Briefly, we added 50 μl of standard curve samples, controls, and experimental samples to a black 

96-well flat-bottom plates. Additionally, we added 50 μL of Master Mix to each of wells. The 

plates were incubated at room temperature for 30 minutes protected from light. Fluorescence was 

measured with a microplate reader at Ex/Em: 540/590 nm.  

RNS level in plasma solution were determined with the Griess Reagent System (Promega 

Corporation) according to the instructions provided by the manufacturer. The absorbance was 

measured at 540 nm with a microplate reader. Hydroxyl free radical levels were measured by 

utilizing a methylene blue solution. 0.01g/L of methylene blue (MB) in DI water was treated with 

plasma for 0, 5, 10, 20, and 30 min. 100 μL/well of these solutions were added in triplicate to a 

black 96-well clear bottom plate. The absorbance was measured at 664 nm with a microplate reader. 

UV-visible-NIR in the wavelength range of 200-850 nm, was used to detect and investigate 

presence of various RNS and ROS (nitrogen [N2], nitric oxide [–NO], nitrogen cation [N+2], atomic 

oxygen [O], and hydroxyl radical [–OH]) in plasma generated in DI water. The spectrometer and 

the detection probe were purchased from Stellar Net Inc. The optical probe was placed in front of 
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the plasma jet nozzle at a distance of 3.5 cm. The integration time for data collection was set to 

100 ms. 

 

3. Results and Discussions  
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Fig. 1. (a) Diagram of the CAP device setup consisting of a HV pulse generator connected to a pin-to-plate electrode 

system submerged in deionized water. (b) Measured voltage and current generated by the CAP device. (c) 

Temperature and pH changes of plasma solutions based on treatment time. 

The CAP device submerged in DI water is shown in Fig. 1a. The device consisted of 2 electrodes 

assembled with a central powered electrode (1 mm in diameter) and a grounded outer electrode 

wrapped around the outside of the quartz tube (4.5 mm in diameter). The electrodes were 
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connected to a secondary output high voltage transformer. The graphs of CAP for current and 

voltage are shown in Fig. 1b. The peak-peak voltage was about 7 kV and the average current was 

about 0.40 mA. The frequency of the discharge generated in DI water was around 25 kHz. 

Industrial grade helium with a flow rate of 0.4 L/min was used for testing. The plasma produced 

inside DI water generated four plasma solutions after 5, 10, 20 and 30 minutes of treatment. Fig. 

1c shows that the temperature of plasma solution increases while pH decreases with treatment time. 
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Fig. 2. Optical emission spectrum detected from the plasma device submerged in DI water in the 250-800 nm 

wavelength range. 

 

The reactive species produced from the CAP device in DI water are shown in Fig. 2. The 

identification of the emission bands was performed according to the reference19. In the 250-300 

nm wavelength range, weak emission bands were detected as NO lines20. The emission bands 

between 300 and 500 nm have still not been clearly identified in the literature21. However, we 

anticipated that OH was present at 309 nm, while the wavelength of 337, 358, and 381 nm could 

be indicative of the low-intensity N2 second-positive system (𝐶3Π𝑢−𝐵3Π𝑔). The bands between 
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250 nm and 425 nm could be defined as ROS/RNS. The helium bands were assigned between 500 

and 750 nm as shown in Fig. 2.   
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Fig. 3. (a) The schematics of the RMS experimental setup. (b) Temporal evolution of plasma density in helium cold 

atmospheric plasma jet in air 

The Rayleigh microwave scattering system (RMS) was used to determine the intensity of the 

electrons. RMS consisted of two microwave horns that were used for the radiation and detection 
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of the microwave signal as shown in Fig. 3a. The scattered signal was measured after the linearly 

polarized microwave radiation was scattered on the collinearly-oriented plasma channel. A 

homodyne I/O Mixer providing in-phase (I) and quadrature (Q) outputs was used to detect the 

scattered signal. For the entire range of scattered signals, the amplifiers and mixer were operated 

in linear mode. Plasma density was obtained from plasma conductivity by using the following 

expression: 𝜎 (𝛺−1𝑐𝑚−1) =
2.82×10−4𝑛𝑒𝑣𝑚

(𝑤2+𝑣𝑚
2 )

, where 𝑣𝑚  is the frequency of the electron-neutral 

collisions, 𝑛𝑒 is the plasma density, and 𝑤 is the angular frequency22. Plasma conductivity can be 

expressed as 𝑈 = 𝐴𝜎𝑉, where  𝐴 = 263.8 𝑉𝛺/𝑐𝑚2, 𝑈 is the output signal and 𝜀 is the scatter 

constant23. The volume of the plasma column was determined from the intensified charged-

coupled device (ICCD) images. The radius (𝑅) of the streamer column was determined from the 

size of the central highly luminous filament. Temporal evolution of plasma density is presented in 

Fig. 3b with an average electron density of 2.56 × 1012 cm-3. The waveform of the discharge voltage 

has been inserted in Fig. 2(b). Fig. 3b shows three electron density peaks per one discharge period 

that correspond to the discharge voltage. The electron density and its discharge voltage waveform 

in one complete discharge period are aligned with regard to the x-axis (time). The temporal 

fluctuation and discharge voltage (Fig. 3b) were different from the power source frequency (Fig. 

1c) because the system’s hardware worked in air resulting into discharge frequency and voltage 

alterations. The circuit diagram in Fig. 1a indicates that the pair of electrodes are actually a 

capacitive load of the transformer. Therefore, a different capacitance between the electrodes could 

result into different discharge voltage and frequency. 
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Fig. 4.  (a) H2O2 and (b) NO2
- concentrations in plasma generated DI water using Helium as carrier gas, and (c) 

relative methylene blue (hydroxy radicals), (n=3) 

CAP can produce chemically reactive species in DI water. Many of the radicals generated during 

the discharge can contribute to complex reactions24. These reactions result in the formation of other 

short- and long-lived radicals or species. H2O2 and NO2
- are relatively long-lived species in plasma 

solution. The H2O2 concentration in the plasma solution produced by the DI water submerged CAP 

device is shown in Fig. 4a. The concentration of H2O2 increased with treatment time up to 20 

minutes. While between 20 and 30 minutes the concentration decreased. The methylene blue (MB) 

was used to quantify the generation of hydroxyl free radicals (•OH), (Fig. 4c). It is well established 

that MB reacts with the hydroxyl free radicals (•OH) of the aqueous solution by resulting in a 
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visible color change. H2O2 is produced in DI water within a few microsecond from hydroxyl 

(•OH)25. A description of the possible mechanism of H2O2 formation can be found in one of our 

recent publications26.  

     

     

Fig. 5 The morphology of (a, b, c, d, and e) breast cancer cell and (f, g, h, i, and j) gastric cancer cells. (a) and (f) are 

0 h with 100% DMEM and RPMI, respectively. (b) 100% DMEM, (c) 70% DMEM + 30% DI water, (g) 100% 

RPMI, and (h) 70% RPMI + 30% DI water after a 24-hour incubation. (d) 100% DMEM, (e) 70% DMEM + 30% DI 

water, (i) 100% RPMI, and (j) 70% RPMI + 30% DI water after a 48-hour incubation. 

In this study, the plasma solution was obtained from CAP generated in DI water with 5 min, 10 

min, 20 min, and 30 min treatment time. Hydrogen peroxide is thermodynamically unstable and 

decomposes to form water and oxygen. The rate of decomposition increases with rising 

temperature27. Fig. 1c. shows that the temperature of plasma solutions increases with treatment 
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48 h 24 h 24 h 0 h 

48 h 48 h 24 h 24 h 

48 h 

Control 

70% DMEM+ 

30% DI water Control 100% DMEM 100% DMEM 

70% DMEM+ 

30% DI water 

100% RPMI 

70% RPMI + 

30% DI water 100% RPMI 

70% RPMI + 

30% DI water 
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time. These results may explain the decrease in H2O2 concentration that occurs after 20 min. The 

concentration of NO2
- continuously increases with treatment time as shown in Fig. 4b. The NO2

- 

mainly originates as NO, while most of NO is formed in the gas phase during the afterglow a few 

milliseconds after the discharge pulse. It is known that NO2
- is a primary breakdown product of 

NO in DI water28. Due to DI water contact with air, it is possible that O2 and perhaps N2 are coming 

from air. Another possibility is that N2 is from the industrial grade helium. 

We foresee that in future, the plasma solution might be paired with drugs which assist against 

cancers of the digestive system.  In this study, we not only show the effects of DI water treated by 

CAP, we have also investigated plasma generated in RPMI and DMEM. However, we have found 

that plasma generated in RPMI and DMEM is very unstable, which lead to inaccurate results. 

Furthermore, it is very difficult to directly treat blood with plasma due to the fact that blood 

coagulates and it has a higher viscosity coefficient than water. Thus, we can use the strategy of 

plasma generated in water for injecting it into the bloodstream around breast area. Fig. 5 shows 

the morphology of breast cancer cells and gastric cancer cells with and without 30% DI water at 

24 and 48 hour incubations.  The cells with and without DI water appear morphologically similar 

for both incubation time points. Fig. 6 shows the relative metabolic activity of the human breast 

and gastric cancer when they were exposed to DMEM/RPMI, untreated DI water (0 min) and 

plasma solutions (5, 10, 20, and 30 mins) for 24 and 48 hour incubations.  
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Fig. 6. The effects of the five solutions: DMEM/RPMI, untreated DI water (0 min), and plasma solutions generated 

in DI water during 5, 10, 20, and 30 min treatment. Cell relative metabolic activity of the human breast cancer cells 

(MDA-MB-231) at (a) 24-hour incubation and (b) 48-hour incubation. Cell relative metabolic activity of human 

gastric cancer cells (NCI-N87) at (c) 24-hour incubation and (d) 48-hour incubation. The ratios of surviving cells for 

each cell line were calculated relative to controls (DI water (0 min)). Student t-test was performed, and the statistical 

significance compared to cells present in DMEM/RPMI (first bar) is indicated as *p < 0.05, **p < 0.01, ***p < 

0.005. (n=3) 

Initially, we measured the cell relative metabolic activity using the same assay for both cell lines. 

However, during our testing, we found that MTT was better for quantifying changes in the breast 

cancer cells, while Cell Counting Kit 8 assay was more effective for gastric cancer cells. DMEM, 

RPMI, and untreated DI water (0 min) were used as controls to normalize all data for the cell 

relative metabolic activity. Fig. 6a and Fig. 6c show that after 24 hours, the relative metabolic 

activity of the breast and gastric cancer cells treated with DI water (0 min) decreased to 14.0% and 

17.6% in comparison to the DMEM/RPMI control condition. The relative metabolic activity of 
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the breast and gastric cancer cells treated by plasma solution was lower than that of the untreated 

DI water (0 min) and dropped with increasing treatment time. After 48 hours of incubation, the 

cell relative metabolic activity of the breast cancer cells (compared with DMEM) decreased by 

approximately 23.4%, 27.8%, 40.1%, and 44.7%, respectively, according to 5, 10, 20, and 30 min 

treatment duration (Fig. 5b). Whereas the relative metabolic activity of the gastric cancer cells 

(compared with RPMI) decreased by 42.0%, 40.3%, 45.0%, and 52.1%, respectively, according to 

treatment durations ranging from 5-30 min. (Fig. 5d).  The most significant effect based on the 

relative metabolic activity was observed for the 30 min plasma treated solution.  

A decrease in cell relative metabolic activity was accompanied with an increase in the 

concentration of NO2
-  and H2O2. ROS and RNS are known to induce cell proliferation as well as 

cell death. ROS are known to induce both apoptosis and necrosis29, while RNS can induce cell 

death via damage DNA30. Our results in Fig. 3 show that the ROS concentration is highest at 20-

minute treatment while the RNS concentration is highest at 30-minute. The trend of cell death can 

be attributed to the increase of RNS concentration with treatment time. A synergistic effect of RNS 

and ROS is suspected to play a key role in the apoptosis of the plasma solutions. NO2
- 

concentration increased with treatment time, while H2O2 concentration decreased after 20 minutes 

of plasma treatment. Thus, no H2O2 might be present in solutions treated for longer than 30 min, 

therefore those types of plasma solutions might not be useful. 

4. Conclusions 

In summary, cold atmospheric plasma was generated in DI water using helium as carrier gas after 

5, 10, 20, and 30 min. ROS concentration initially increased with treatment time and then 

decreased after 20 min, while RNS concentration continually increased with treatment time. A 

synergistic effect of RNS and ROS present in the plasma solution is suspected to play a key role 
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in the rate apoptosis. The plasma generated in DI water during a 30-minute treatment had the most 

significant affect in inducing apoptosis in both breast and gastric cancer cells. 
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