Gravitational Tunneling Machine

Fran De Aquino

Professor Emeritus of Physics, Maranhao State University, S.Luis/MA, Brazil. Copyright © 2014 by Fran De Aquino. All Rights Reserved.

A new tunneling machine is described in this article. It works based on the gravity-control technology, and can reach high velocities through rocky means; possibly few *tens of meters per hour*, moreover it can move itself in *any directions below the ground*. This machine can be highly useful for urban tunneling, drainage, exploration, water supply, water diversion and accessing the mines of diamonds, coal, oil, and several others types of minerals existent in the Earth's crust.

Key words: Gravity-control technology, tunneling technology, Subterranean Space Forming, Mining Equipment.

1. Introduction

The drilling of tunnels through rocky means is a very hard work to be performed without the use of appropriate drilling machines. Several researchers in many countries had been making attempts to developing tunneling machines [1, 2, 3].

In the decade of 70 of the last century a group of scientists created the *geowinchester* technology for underground workings. At the same time the first experimental prototype of the drilling machine called *geohod* (ELANG-3) was created.

Pneumatic punchers were developed and are widely used in several countries. These machines include their underground movement control, telecommanding as well underground location and position control [4, 5, 6].

In the early 2000s, a team of Russian scientists led by Professor Vladimir Aksionov started building a new generation of *geohods* with improved geowinchester technology.

Tunnel boring isn't an easy job. The world's largest tunnel boring machine (called Bertha) consumes 18,600 kWh and moves at a speed of about 10 m per day [7].

Currently a new model of *geohod* is being developed [8]. It will have a diameter of 3.2 meters and a length of 4.5 meters (without additional modules). It will be able to reach a speed of 6 m/h. This device has no similar in the world. Creation of a tunneling machine that can *rapidly* move itself in *any directions below the ground* is highly relevant for urban tunneling, drainage, exploration, water supply, water diversion and accessing the mines of diamonds, coal, oil, and several others types of minerals existent in the Earth's crust.

In this article we show how gravitycontrol technology (BR Patent Number: PI0805046-5, July 31, 2008 [9]) can be used for the development this machine, here called of *Gravitational Tunneling Machine* (GTM).

2. Theory

The quantization of gravity shows that the gravitational mass m_g and inertial mass m_i are not equivalents, but correlated by means of a factor χ , which, under certain circumstances can be negative. The correlation equation is [10]

$$m_g = \chi \ m_{i0} \tag{1}$$

where m_{i0} is the *rest* inertial mass of the particle.

The expression of χ can be put in the following forms [10]:

$$\chi = \frac{m_g}{m_{i0}} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{W}{\rho \ c^2} \ n_r\right)^2} - 1 \right] \right\}$$
(2)

$$\chi = \frac{m_g}{m_{i0}} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{D \ n_r^2}{\rho c^3} \right)^2} - 1 \right] \right\}$$
(3)

where W is the density of electromagnetic energy on the particle (J/kg); D is the radiation power density; ρ is the matter density of the particle (kg/m^3) ; n_r is the index of refraction, and c is the speed of light.

Equations (2) and (3) show that only for W = 0 or D = 0 the gravitational mass is equivalent to the inertial mass ($\chi = 1$). Also, these equations show that the gravitational mass of a particle can be significatively reduced or made strongly *negative* when the particle is subjected to high-densities of electromagnetic energy.

Also, it was shown that, if the *weight* of a particle in a side of a lamina is $\vec{P} = m_g \vec{g}$ (\vec{g} perpendicular to the lamina) then the weight of the same particle, in the other side of the lamina is $\vec{P}' = \chi m_g \vec{g}$, where $\chi = m_g / m_{i0}$ (m_g and m_{i0} are respectively, the gravitational mass and the inertial mass of the lamina). Only when $\chi = 1$, the weight is equal in both sides of the lamina. The lamina works as a Gravitational Shielding. This is the *Gravitational Shielding* effect. Since $P' = \chi P = (\chi m_g)g = m_g(\chi g)$, we can consider that $m'_g = \chi m_g$ or that $g' = \chi g$.

If we take two parallel gravitational shieldings, with χ_1 and χ_2 respectively, then the gravitational masses become: $m_{g1} = \chi_1 m_g$, $m_{g2} = \chi_2 m_{g1} = \chi_1 \chi_2 m_g$, and the gravity will be given by $g_1 = \chi_1 g$, $g_2 = \chi_2 g_1 = \chi_1 \chi_2 g$. In the case of multiples gravitational shieldings, with $\chi_1, \chi_2, ..., \chi_n$, we can write that, after the n^{th} gravitational shielding the gravitational mass, m_{gn} , and the gravity, g_n , will be given by

$$m_{gn} = \chi_1 \chi_2 \chi_3 \dots \chi_n m_g , \quad g_n = \chi_1 \chi_2 \chi_3 \dots \chi_n g \quad (4)$$

This means that, *n* superposed gravitational shieldings with different $\chi_1, \chi_2, \chi_3, ..., \chi_n$ are equivalent to a single gravitational shielding with $\chi = \chi_1 \chi_2 \chi_3 ... \chi_n$.



Fig. 1 – *Plane* and *Spherical* Gravitational Shieldings. When the radius of the gravitational shielding (b) is very small, any particle inside the spherical crust will have its gravitational mass given by $m'_g = \chi m_g$, where m_g is its gravitational mass out of the crust.

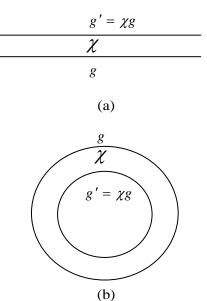


Fig. 2 – The gravity acceleration in both sides of the gravitational shielding.

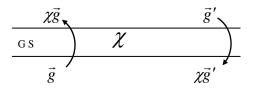


Fig. 3 – Gravitational Shielding (GS). If the gravity at a side of the GS is \vec{g} (\vec{g} perpendicular to the lamina) then the gravity at the other side of the GS is $\chi \vec{g}$. Thus, in the case of \vec{g} and \vec{g}' (see figure above) the resultant gravity at each side is $\vec{g} + \chi \vec{g}'$ and $\vec{g}' + \chi \vec{g}$, respectively.

The extension of the shielding effect, i.e., the distance at which the gravitational shielding effect reach, beyond the gravitational shielding, depends basically of the magnitude of the shielding's surface. Experiments show that, when the shielding's surface is large (a disk with radius a) the action of the gravitational shielding extends up to a distance $d \cong 20a$ [11]. When the shielding's surface is very small the extension of the shielding effect becomes experimentally undetectable.

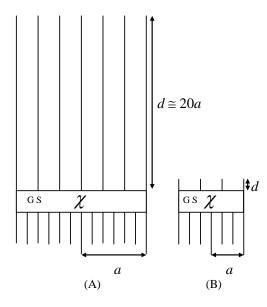


Fig. 4 - When the shielding's surface is large the action of the gravitational shielding extends up to a distance $d \cong 20a$ (A). When the shielding's surface is *very small* the extension of the shielding effect becomes experimentally undetectable (B).

Now consider figure 5, which shows a set of *n* spherical gravitational shieldings, with $\chi_1, \chi_2, ..., \chi_n$, respectively. When these gravitational shielding are *deactivated*, the gravity generated is $g = -Gm_{gs}/r^2 \cong -Gm_{0s}/r^2$, where m_{i0s} is the total inertial mass of the *n* spherical gravitational shieldings. When the system is *actived*, the gravitational mass becomes $m_{gs} = (\chi_1 \chi_2 ... \chi_n) m_{0s}$, and the gravity is given by

$$g' = (\chi_1 \chi_2 \dots \chi_n) g = -(\chi_1 \chi_2 \dots \chi_n) Gm_{0s} / r^2 \qquad (5)$$

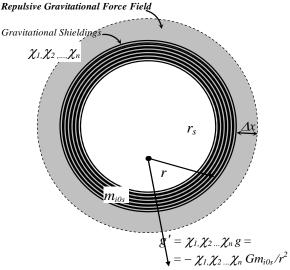


Fig. 5 – *Repulsive Gravitational Field Force* produced by the Spherical Gravitational Shieldings (1,2,...,n), (n odd).

If we make $(\chi_1\chi_2...\chi_n)$ negative (*n* odd) the gravity g' becomes *repulsive*, producing a pressure p upon the matter around the sphere. This pressure can be expressed by means of the following equation

$$p = \frac{F}{S} = \frac{m_{i0}(matter)g'}{S} = \frac{\rho_{i}(matter)S\Delta xg'}{S} = \frac{\rho_{i}(matter)\Delta xg'}{S} = \rho_{i}(matter)\Delta xg'$$
(6)

Substitution of Eq. (5) into Eq. (6), gives

$$p = -(\chi_1 \chi_2 \dots \chi_n) \rho_{i(matter)} \Delta x \left(Gm_{i0s} / r^2 \right)$$
(7)

If the matter around the sphere is only the atmospheric air ($p_a = 1.013 \times 10^5 N.m^{-2}$), then, in order to expel all the atmospheric air from the inside the belt with Δx - thickness (See Fig. 5), we must have $p > p_a$. This requires that

$$(\chi_1\chi_2...\chi_n) > \frac{p_a r^2}{\rho_{i}(matter)\Delta x Gm_{i0s}}$$
(8)

Satisfied this condition, *all* the matter is expelled from this region, except the *Continuous Universal Fluid* (CUF), which density is $\rho_{CUF} \cong 10^{-27} kg.m^{-3}$ [12].

The density of the Universal Quantum Fluid is clearly not uniform along the Universe. At supercompressed state, it gives origin to the known matter (quarks, electrons, protons, neutrons, etc). Thus, the gravitational arises with mass the supercompression state. At the normal state (free space, far from matter), the local inertial mass of Universal Quantum Fluid does not generate gravitational mass, i.e., $\chi = 0$. However, if some bodies are placed in the neighborhoods, then this value will become greater than zero, due to proximity effect, and the gravitational mass will have a non-null value. This is the case of the region with Δx thickness, i.e., in spite of *all* the matter be expelled from the region, remaining in place just the Universal Quantum Fluid, the proximity of neighboring matter makes nonnull the gravitational mass of this region, but extremely close to zero, in such way that, the value of $\chi = m_{\rm g}/m_{\rm lo}$ is also extremely close to zero (m_{i0} is the inertial mass of the Universal Quantum Fluid in the mentioned region).

Since in the region with Δx - thickness, the value of χ is extremely close to zero, we can conclude that *the gravitational mass of the sphere*, which is given by $m_{gs} = \chi(\chi_1\chi_2...\chi_n)m_{i0s}$, becomes very close to zero.

Now consider Fig. 6, where we show a Gravitational Tunneling Machine, which works based on the principles above described. Encrusted inside the tungsten tip of the tunneling machine there is a set of nplane gravitational shieldings, with $\chi_1, \chi_2, ..., \chi_n$, respectively. Just before the gravitational shielding χ_1 there is a *cube of tungsten*, which produces a gravity acceleration g_i on its surface (See Fig.6). When the set of gravitational shielding is actived the gravity g_i is increased to $(\chi_1 \dots \chi_n) g_i$. Thus, if *n* is *odd*, the rock in front of the tunneling machine will be attracted to it with a gravitational force given by $F_e = M_{ge}(\chi_1 \dots \chi_n)g_i$, where M_{ge} is the gravitational mass of the rock. Similarly, the tunneling machine will be attracted to the rock with gravitational force a

 $F_i = M_{gi}(\chi_1, \dots, \chi_n)g_e$, where g_e is the gravity produced by M_{ge} on the surface of the rock (See Fig.6). Thus, by increasing the values of (χ_1,\ldots,χ_n) the pressure upon the rock can surpass its compressive strength, and the tunneling machine progresses. The compressive strength of the tungsten is about 100GPa while the maximum compressive strength of the rocks is about 1GPa. Consequently, the strong compression does not affect the tungsten tip of the tunneling machine. In order to support this enormous compression, it is necessary to use, between the tungsten plates of the gravity control cells, Silicon Carbide (SiC) (or similar), whose compressive strength is about 10GPa (See Fig.6).

Note that before the tungsten cube there is a cell with air. When the set of gravitational shielding is actived the gravity acceleration upon the air molecules becomes equal to $(\chi_1, \dots, \chi_n)g_e$, then if condition (8) is satisfied, all the matter will be expelled from this cell, except the Continuous Universal Fluid (CUF), which density is $\rho_{CUF} \cong 10^{-27} \, kg.m^{-3}$. As we have already seen, the consequence is that the gravitational mass of the air in this region becomes extremely close to zero, and consequently, the value of χ in this region (χ_0) is also extremely close to zero. This works as a strong attenuator of gravity, reducing the enormous gravity $(\chi_1...,\chi_n)g_e$ down to $\chi_0(\chi_1,\ldots,\chi_n)g_e$. Thus, the value of the gravity acceleration $(\chi_1 \dots \chi_n) g_e$ before the air cell is practically nullified (See Fig. 6).

Note that the axis of the tunneling machine can be easily displaced. This makes possible the machine move itself in *any directions below the ground*.

Obviously, this machine can include systems to control its underground movement, as well underground location and position, etc. Also additional modules can be included for others specific uses.

In order to drill the rock, the pressure, p = F/S, exerted by the tunneling machine on the rock must be proportional to compressive strength of the rock, σ_r , i.e.,

$$p = k\sigma_r \tag{9}$$

where *k* is the factor of proportionality. For $k \le 1$ the force *F* does not carry out work. The work just occurs for k > 1. In this case we can write that

$$dW = (k-1)Fdr \qquad for \qquad k > 1 \qquad (10)$$

Then the potential energy U(r) is given by

$$U(r) = \int_{\infty}^{r} dW = \int_{\infty}^{r} (k-1)Fdr =$$

= $\int_{\infty}^{r} (k-1)(\chi_{1}\chi_{2}...\chi_{n})G\frac{M_{gi}M_{ge}}{r^{2}}dr =$
= $(k-1)(\chi_{1}\chi_{2}...\chi_{n})GM_{gi}M_{ge}\left[-\frac{1}{r}\right]_{\infty}^{r} =$
= $-(k-1)(\chi_{1}\chi_{2}...\chi_{n})GM_{gi}M_{ge}$ (11)

On the other hand, the kinetic energy of the tunneling machine is

$$E_{k} = F.r = M_{gi} (\chi_{1}\chi_{2}...\chi_{n})g_{e}r =$$
$$= M_{gi} (\chi_{1}\chi_{2}...\chi_{n}) \left(\frac{v^{2}}{2}\right)$$
(12)

By comparing equations (11) and (12), we obtain

$$v = \sqrt{2(k-1)\frac{GM_{ge}}{r}} \tag{13}$$

For pressure p = 10GPa(maximum the tungsten) supported by and $\sigma_r = 0.2 GPa$ (compressive strength of granite), we get $k = p/\sigma_r = 50$. Considering just a granite block in front of the tunneling machine, whose center of mass is at a distance $r \cong 10m$ of the center of mass of the tunneling tip, then we can assume $M_{ge} \approx 100 \ tons$. Thus, for $k=50\,$ Eq. (13), gives

$$v \approx 10 \, m \,/\, h \tag{14}$$

5

This is therefore the order of magnitude of the velocity of the tunneling through the granite. Note that this velocity is greater than the velocity of the new model of geohod mentioned at the introduction of this work. Through soft soil $\sigma_r \cong 50kPa$ the velocity of the tunneling increases to $\approx 1km/h$.

Since k is expressed by

$$k = \frac{p}{\sigma_r} = \frac{(\chi_1 \chi_2 \dots \chi_n) M_{gig_e}}{S\sigma_r} =$$
$$= (\chi_1 \chi_2 \dots \chi_n) \frac{GM_{ge} M_{gi}}{S\sigma_r r^2}$$
(15)

we can conclude that, for k = 50, $M_{gi} = M_{ge} \approx 100 \text{ tons}$, $S = (3.2)^2 = 10.2m^2$, $r \approx 10m$ and $\sigma_r = 0.2GPa$, we must have

$$(\chi_1 \chi_2 \dots \chi_n) = \frac{S \sigma_r r^2 k}{G M_{ge} M_{gi}} \approx 10^{12}$$
(16)

Thus, if $\chi_1 = \chi_2 = ... = \chi_n$ and n = 8, we get

$$\chi_1 = \chi_2 = \dots = \chi_8 = \chi = \sqrt[8]{10^{12}} \approx -31.6$$
 (17)

This is, therefore, the necessary value of χ , at each gravity control cell, in order to produce $(\chi_1 \chi_2 ... \chi_n) \approx 10^{12}$.

It is important to note that the energy necessary to move this tunneling machine is just the energy used to produce the gravitational shieldings. This is a very small amount of energy, and can be supplied by a common battery only. Thus, this is the world's most economical tunneling machine, and has no analogues in the world, and represents a completely new type of tunneling machine.

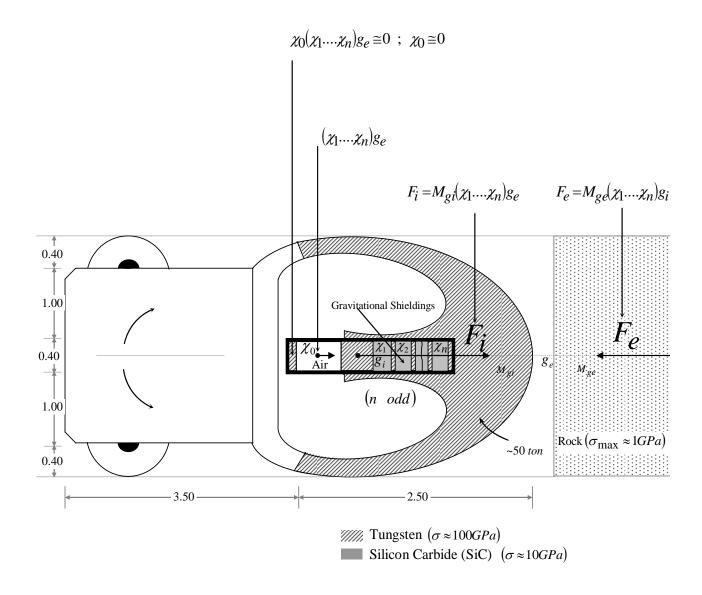


Fig. 6 - Gravitational Tunneling Machine

References

- Zhuravleva, V. N. (1964) Dream-Called Discoveries, Knizh. Izd., Tambov.
- [2] Kyun, G. et al., (1983) Underground No-Go Pipeline Laying, Stroyizdat, Moscow.
- [3] Malyshev, V. I. et al., (1958) Downhole rock boring machine, Byull. Izobret, No. 10.
- [4] A. D. Kostylev (1996) Design of remote-controlled pneumatic drilling machines, Journal of Mining Science, No. 6.
- [5] Kostylev, A. D. et al., (2001) Controlled pneumatic puncher, Journal of Mining Science, No. 3.
- [6] Syrskii, V. P. et al., E (2001) Device determining depth and space orientation of controlled pneumatic puncher in soil, Journal of Mining Science, No. 3.
- [7] http://www.wsdot.wa.gov/Projects/Viaduct/About/Tunneling
- [8] http://emmb.ru/yurga/video/Stalnoy_krot_My_sverlim_zemlyu/
- [9] De Aquino, F. (2008) Process and Device for Controlling the Locally the Gravitational Mass and the Gravity Acceleration, BR Patent Number: PI0805046-5, July 31, 2008.
- [10] De Aquino, F. (2010) Mathematical Foundations of the Relativistic Theory of Quantum Gravity, Pacific Journal of Science and Technology, 11 (1), pp. 173-232.
- [11] Modanese, G., (1996), Updating the Theoretical Analysis of the Weak Gravitational Shielding Experiment, supr-con/9601001v2.
- [12] De Aquino, F. (2011) The Universal Quantum Fluid, http://vixra.org/abs/1202.0041