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Outline of Tutorial

1 Bayesian computation

2 Bayesian regression

3 Bayesian hierarchical modeling

4 Bayesian factor analysis

Examples and code are in accompanying folders.
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Bayesian Computation

The key reason for the increased popularity of Bayesian
methods in the social and behavioral sciences has been the
(re)-discovery of numerical algorithms for estimating the
posterior distribution of the model parameters given the data.

Prior to these developments, it was virtually impossible to
analytically derive summary measures of the posterior
distribution, particularly for complex models with many
parameters.

Rather than attempting the impossible task of analytically
solving for estimates of a complex posterior distribution, we can
instead draw samples from p(θ|y) and summarize the
distribution formed by those samples. This is referred to as
Monte Carlo integration.

The two most popular methods of MCMC are the Gibbs
sampler and the Metropolis-Hastings algorithm.
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MCMC

Bayesian inference focuses on estimating features of the
posterior distribution, such as point estimates (e.g. the EAP or
MAP) and posterior probability intervals.

For complex, high-dimensional problems involving multiple
integrals, solving expectations can be virtually impossible.

Rather than attempting the impossible task of analytically
solving high dimensional problems, we can instead draw
samples from the posterior distribution and summarize the
distribution formed by those samples.

This is referred to as Monte Carlo integration.
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MCMC is based on first drawing T samples of the parameters
of interest {θt, t = 1, . . . , T} from the posterior distribution p(θ|y)
and approximating the expectation by

E[p(θ|y)] ≈ 1

T

T∑
t=1

p(θt|y). (1)

Assuming the samples are independent of one another, the law
of large numbers ensures that the approximation in equation (1)
will be increasingly accurate as T increases.

Samples do not have to be drawn independently. All that is
required, is that the sequence {θt, t = 1, . . . , T} results in
samples throughout the support of the distribution

The “Markov Chain” allows sampling throughout the support of
a distribution while also relaxing the assumption of independent
sampling.
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Formally, a Markov chain is a sequence of dependent random
variables {θs}

θ0, θ1, . . . , θs, . . . (2)

such that the conditional probability of θs given all of the past
variables depends only on θs−1 – that is, only on the immediate
past variable.

This conditional probability is referred to as the transition kernel
K of the Markov chain.
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The Markov chain has a number of very important properties.

Over a long sequence, the chain will “forget” its initial state θ0

and converge to its stationary distribution p(θ|y), which does not
depend either on the number of samples T or on the initial state
θ0.

The number of iterations prior to the stability of the distribution
is referred to as the burn-in samples.

Letting m represent the initial number of burn-in samples, we
can obtain an ergodic average of the posterior distribution
p(θ|y) as

p̄(θ|y) =
1

T −m

T∑
t=m+1

p(θt|y). (3)
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More on Chains

A decision must be made regarding the number of Markov
chains to be generated, as well as the number of iterations of
the sampler.

Each chain samples from another location of the posterior
distribution based on starting values.

With multiple chains it may be the case that fewer iterations are
required.

In some cases, the same result can be obtained from one
chain, although often requiring a considerably larger number of
iterations.

Once the chain has stabilized, the burn-in samples are
discarded. Summary statistics, including the posterior mean,
mode, standard deviation, and posterior probability intervals,
are calculated on the post-burn-in iterations.
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Convergence Diagnostics

It is crucial to assess the convergence of MCMC algorithms.

The difficulty of assessing convergence stems from the very
nature of MCMC in that the MCMC algorithm is designed to
converge in distribution rather than to a point estimate.

Because there is not a single adequate assessment of
convergence, it is common to inspect several different
diagnostics that examine varying aspects of convergence.
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1 Trace/history plots

2 ACF plots

3 Geweke diagnostic

4 Gelman-Rubin-Brooks diagnostic
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Brief Introduction to rjags

For this tutorial we will use the R interface of the program
“JAGS” (Just Another Gibbs Sampler ; Plummer, 2015)

JAGS is a BUGS like program (Bayes Under Gibbs Sampling;
Spiegelhalter, Thomas and Best 2000).

BUGS was the first program (within WinBUGS) that made
Bayesian analysis possible.
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Steps when using rjags:

1 Bring in data and use R to do any manipulations - e.g. handling
missing data, etc.

2 Write model in jags and save as a .bug file.

3 Pass the data and model to JAGS using the jags.model
command.

4 Use coda.samples and update to run the Gibbs sample.

5 Use R to inspect results and get plots.
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See file “normal.rjags.html”
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Bayesian Model Building

The frequentist and Bayesian goals of model building are the
same.

1 Model specification based on prior knowledge

2 Model estimation and fitting

3 Model evaluation and modification

4 Model choice
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Despite these similarities there are important differences.

A major difference between the Bayesian and frequentist goals
of model building lie in the model specification stage.

Because the Bayesian perspective explicitly incorporates
uncertainty regarding model parameters using priors, the first
phase of modeling building requires the specification of a full
probability model for the data and the parameters of the model.

Model fit implies that the full probability model fits the data.
Lack of model fit may be due to incorrect specification of
likelihood, the prior distribution, or both.
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Another difference between the Bayesian and frequentist goals
of model building relates to the justification for choosing a
particular model among a set of competing models.

Model building and model choice in the frequentist domain is
based primarily on choosing the model that best fits the data.

This has certainly been the key motivation for model building,
respecification, and model choice in the context of structural
equation modeling (Kaplan 2009).

In the Bayesian domain, the choice among a set of competing
models is based on which model provides the best posterior
predictions.

That is, the choice among a set of competing models should be
based on which model will best predict what actually happened.
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Posterior Predictive Checking

A very natural way of evaluating the quality of a model is to
examine how well the model fits the actual data.

In the context of Bayesian statistics, the approach to examining
how well a model predicts the data is based on the notion of
posterior predictive checks, and the accompanying posterior
predictive p-value.

The general idea behind posterior predictive checking is that
there should be little, if any, discrepancy between data
generated by the model, and the actual data itself.

Posterior predictive checking is a method for assessing the
specification quality of the model. Any deviation between the
data generated from the model and the actual data implies
model misspecification.
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In the Bayesian context, the approach to examining model fit
and specification utilizes the posterior predictive distribution of
replicated data.
Let yrep be data replicated from our current model.

Posterior Predictive Distribution

p(yrep|y) =

∫
p(yrep|θ)p(θ|y)dθ

=

∫
p(yrep|θ)p(y|θ)p(θ)dθ (4)

Equation (4) states that the distribution of future observations
given the present data, p(yrep|y), is equal to the probability
distribution of the future observations given the parameters,
p(yrep|θ), weighted by the posterior distribution of the model
parameters.
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To assess model fit, posterior predictive checking implies that
the replicated data should match the observed data quite
closely if we are to conclude that the model fits the data.

One approach to model fit in the context of posterior predictive
checking is based on Bayesian p-values.

Denote by T (y) a test statistic (e.g. χ2) based on the data, and
let T (yrep) be the same test statistics for the replicated data
(based on MCMC). Then, the Bayesian p-value is defined to be

p-value = pr[T (yrep, θ) ≥ T (y, θ)|y]. (5)

The p-value is the proportion of replicated test values that equal
or exceed the observed test value. High (or low if signs are
reversed) values indicate poor model fit.
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Bayes Factors

A very simple and intuitive approach to model building and
model selection uses so-called Bayes factors (Kass & Raftery,
1995)

In essence, the Bayes factor provides a way to quantify the
odds that the data favor one hypothesis over another. A key
benefit of Bayes factors is that models do not have to be
nested.

Consider two competing models, denoted as M1 and M2, that
could be nested within a larger space of alternative models. Let
θ1 and θ2 be the two parameter vectors associated with these
two models.

These could be two regression models with a different number
of variables, or two structural equation models specifying very
different directions of mediating effects.
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The goal is to develop a quantity that expresses the extent to
which the data support M1 over M2. One quantity could be the
posterior odds of M1 over M2, expressed as

Bayes Factors
p(M1|y)

p(M2|y)
=
p(y|M1)

p(y|M2)
×
[
p(M1)

p(M2)

]
. (6)

Notice that the first term on the right hand side of equation (6) is
the ratio of two integrated likelihoods.

This ratio is referred to as the Bayes factor for M1 over M2,
denoted here as B12.

Our prior opinion regarding the odds of M1 over M2, given by
p(M1)/p(M2) is weighted by our consideration of the data,
given by p(y|M1)/p(y|M2).

21 / 45



Outline

Bayesian
Computation

Bayesian
Model
Building
Posterior
Predictive
Checking

Bayes Factors

Bayesian
Linear
Regression

Bayesian
Model
Averaging

Multilevel
Modeling

Bayesian
Factor
Analysis

The goal is to develop a quantity that expresses the extent to
which the data support M1 over M2. One quantity could be the
posterior odds of M1 over M2, expressed as

Bayes Factors
p(M1|y)

p(M2|y)
=
p(y|M1)

p(y|M2)
×
[
p(M1)

p(M2)

]
. (6)

Notice that the first term on the right hand side of equation (6) is
the ratio of two integrated likelihoods.

This ratio is referred to as the Bayes factor for M1 over M2,
denoted here as B12.

Our prior opinion regarding the odds of M1 over M2, given by
p(M1)/p(M2) is weighted by our consideration of the data,
given by p(y|M1)/p(y|M2).

21 / 45



Outline

Bayesian
Computation

Bayesian
Model
Building
Posterior
Predictive
Checking

Bayes Factors

Bayesian
Linear
Regression

Bayesian
Model
Averaging

Multilevel
Modeling

Bayesian
Factor
Analysis

The goal is to develop a quantity that expresses the extent to
which the data support M1 over M2. One quantity could be the
posterior odds of M1 over M2, expressed as

Bayes Factors
p(M1|y)

p(M2|y)
=
p(y|M1)

p(y|M2)
×
[
p(M1)

p(M2)

]
. (6)

Notice that the first term on the right hand side of equation (6) is
the ratio of two integrated likelihoods.

This ratio is referred to as the Bayes factor for M1 over M2,
denoted here as B12.

Our prior opinion regarding the odds of M1 over M2, given by
p(M1)/p(M2) is weighted by our consideration of the data,
given by p(y|M1)/p(y|M2).

21 / 45



Outline

Bayesian
Computation

Bayesian
Model
Building
Posterior
Predictive
Checking

Bayes Factors

Bayesian
Linear
Regression

Bayesian
Model
Averaging

Multilevel
Modeling

Bayesian
Factor
Analysis

This weighting gives rise to our updated view of evidence
provided by the data for either hypothesis, denoted as
p(M1|y)/p(M2|y).

An inspection of equation (6) also suggests that the Bayes
factor is the ratio of the posterior odds to the prior odds.

In practice, there may be no prior preference for one model over
the other. In this case, the prior odds are neutral and
p(M1) = p(M2) = 1/2.

When the prior odds ratio equals 1, then the posterior odds is
equal to the Bayes factor.
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Bayesian Information Criterion

A popular measure for model selection used in both frequentist
and Bayesian applications is based on an approximation of the
Bayes factor and is referred to as the Bayesian information
criterion (BIC), also referred to as the Schwarz criterion.

Consider two models, M1 and M2 with M2 nested in M1. Under
conditions where there is little prior information, the BIC can be
written as

.

BIC = −2 log(θ̂|y) + p log(n) (7)

where −2 log θ̂|y describes model fit while p log(n) is a penalty
for model complexity, where p represents the number of
variables in the model and n is the sample size.
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The BIC is often used for model comparisons. The difference
between two BIC measures comparing, say M1 to M2 can be
written as

.

∆(BIC12) = BIC(M1) −BIC(M2) (8)

= log(θ̂1|y)− log(θ̂2|y)− 1

2
(p1 − p2) log(n)
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Rules of thumb have been developed to assess the quality of
the evidence favoring one hypothesis over another using Bayes
factors and the comparison of BIC values from two competing
models. Using M1 as the reference model,

BIC Difference Bayes Factor Evidence against M2

0 to 2 1 to 3 Weak
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong
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Deviance Information Criterion

The BIC (ironically) is not fundamentally Bayesian

An explicitly Bayesian approach to model comparison has been
developed based on the notion of Bayesian deviance.

Define Bayesian deviance as

Bayes Deviance

D(θ) = −2 log[p(y|θ)] + 2 log[h(y)], (9)

To make this Bayesian this, we obtain a posterior mean over θ
by defining

.

D(θ) = Eθ[−2log[p(y|θ)|y] + 2log[h(y)]. (10)
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Deviance Information Criterion

The BIC (ironically) is not fundamentally Bayesian

An explicitly Bayesian approach to model comparison has been
developed based on the notion of Bayesian deviance.
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Let D(θ̄) be a posterior estimate of θ. We can define the
effective dimension of the model as qD = D(θ)−D(θ̄).

We then add the model fit term D(θ) to obtain the deviance
information criterion (DIC) - namely,

Deviance Information Criterion

DIC = D(θ) + qD = 2D(θ)−D(θ̄). (11)

The DIC can be obtained by calculating equation (10) over
MCMC samples.

Models with the lowest DIC values are preferred.
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Bayesian Linear Regression

We will start with the basic multiple regression model.

Let y be an n-dimensional vector (y1, y2, . . . , yn)′

(i = 1, 2, . . . , n) of reading scores from n students on the PIRLS
reading assessment, and let X be an n× k matrix containing k
background and attitude measures. Then, the normal linear
regression model can be written as

.

y = Xβ + u, (12)

All the usual regression assumptions apply

We assume that student level PIRLS reading scores scores are
generated from a normal distribution.
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Variables in this model are:

1 male (1=male)

2 ASBG04 = # of books in home

3 ASBGSBS = Bullying/teasing at school (higher values mean less
bullying/teasing)

4 ASBGSMR = Students motivated to read

5 ASBGSCR = Students confidence in their reading

6 ASBR05E = Teacher is easy to understand

7 ASBR05F = Interested in what teacher says

8 ASBR05G = Teacher gives interesting things to read
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See files “multiple.regression.m1.rjags.html” and
“multiple.regression.m2.rjags.html”
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Bayesian Model Averaging

The selection of a particular model from a universe of possible
models can also be characterized as a problem of uncertainty.
This problem was succinctly stated by Hoeting, Raftery &
Madigan (1999) who write

.
“Standard statistical practice ignores model uncertainty. Data analysts
typically select a model from some class of models and then proceed as if
the selected model had generated the data. This approach ignores the
uncertainty in model selection, leading to over-confident inferences and
decisions that are more risky than one thinks they are.”(pg. 382)

An approach to addressing the problem is the method of
Bayesian model averaging (BMA). We will show this in the
regression example.
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Bayesian Model Averaging

Consider a quantity of interest such as a future observation
denoted as Υ.

Next, consider a set of competing models Mk, k = 1, 2, . . . ,K
that are not necessarily nested.

The posterior distribution of Υ given data y can be written as

.

p(Υ|y) =

K∑
k=1

p(Υ|Mk)p(Mk|y). (13)

where p(Mk|y) is the posterior probability of model Mk written
as

.

p(Mk|y) =
p(y|Mk)p(Mk)∑K
l=1 p(y|Ml)p(Ml)

, l 6= k. (14)
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The interesting feature of equation (14) is that p(Mk|y) will likely
be different for different models.

The term p(y|Mk) can be expressed as an integrated likelihood

.

p(y|Mk) =

∫
p(y|θk,Mk)p(θk|Mk)dθk, (15)

where p(θk|Mk) is the prior distribution of θk under model Mk

(Raftery et al., 1997).

BMA provides an approach for combining models specified by
researchers.

Madigan and Raftery (1994) show that BMA provides better
predictive performance than that of a single model based on a
log-score rule.
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BMA is difficult to implement.

1 The number of terms in p(Υ|y) =
∑K

k=1 p(Υ|Mk)p(Mk|y) can be
quite large and the corresponding integrals are hard to compute.

2 Eliciting p(Mk) may not be straightforward. The uniform prior
1/M is often used.

3 Choosing the class of models to average over is also challenging.

The problem of reducing the overall number of models that one
could incorporate in the summation has led to solutions based
on Occam’s window and Markov Chain Monte Carlo Model
Composition – M3 (Madigan and Raftery, 1994).
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See file “BMA.html”
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Multilevel Modeling

A common feature of data collection in the social sciences is
that units of analysis (e.g. students or employees) are nested in
higher organizational units (e.g. schools or companies,
respectively).

The PIRLS study deliberately samples schools (within a
country) and then takes a sample of 4th grade students within
sampled schools.

Such data collection plans are generically referred to as
clustered sampling designs.
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In addition to being able to incorporate priors directly into a
multilevel model, the Bayesian conception of multilevel
modeling has another advantage – namely it clears up a great
deal of confusion in the presentation of multilevel models.

The literature on multilevel modeling attempts to make a
distinction between so-called “fixed-effects” and
“random-effects”.

Gelman and Hill have recognized this issue and present five
different definitions of fixed and random effects.

The advantage of the Bayesian approach is that all parameters
are assumed to be random. When conceived as a Bayesian
hierarchical model, much of the confusion around terminology
disappears.
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Bayesian Random Effects ANOVA

Perhaps the most basic multilevel model is the random effects
analysis of variance model.

As a simple example consider whether there are differences
among G schools (g = 1, 2, . . . , G) on the outcome of student
reading performance y obtained from n students
(i = 1, 2, . . . , n).

In this example, it is assumed that the G schools are a random
sample from a population of schools.
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The model can be written as a two level hierarchical linear
model as follows: Let

Level - 1

yig = βg + rig, (16)

The model for the school random effect can be written as

Level - 2

βg = µ+ ug, (17)

Inserting equation (17) into equation (16) yields
.

yig = µ+ ug + rig. (18)
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For equation (18), we first specify the distribution of the reading
performance outcome yig given the school effect ug and the
within school variance σ2. Specifically,

.

yig|ug, σ2 ∼ N(ug, σ
2). (19)

Next specify the prior distribution on the remaining model
parameters. For this model, we specify conjugate priors

.

ug|µ, ω2 ∼ N(0, ω2), (20)
µ ∼ N(b0, B0), (21)

σ2 ∼ inverse-Gamma(a, b), (22)

ω2 ∼ inverse-Gamma(a, b), (23)
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We can arrange all of the parameters of the random effects
ANOVA model into a vector θ and write the prior distribution as

.

p(θ) = p(u1, u2, . . . , uG, µ, σ
2, ω2), (24)

where under the assumption of exchangeability of the school
effects ug we obtain

.

p(θ) =
G∏
g=1

p(ug|µ, ω2)p(µ)p(σ2)p(ω2). (25)
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See files “one.way.anova.html”, “multilevel.regression.m1.html”
and “multilevel.regression.m2.html”.
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Bayesian Factor Analysis

We write the confirmatory factor analysis model as

CFA Model

y = α+ Λη + ε, (26)

Under conventional assumptions we obtain the model
expressed in terms of the population covariance matrix Σ as

.

Σ = ΛΦΛ′ + Ψ, (27)
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Conjugate Priors for Factor Analysis
Parameters

Let θnorm = {α,Λ} be the set of free model parameters that
are assumed to follow a normal distribution and let
θIW = {Φ,Ψ} be the set of free model parameters that are
assumed to follow an inverse-Wishart distribution. Thus,

.

θnorm ∼ N(µ,Ω), (28)

The uniqueness covariance matrix Ψ is assumed to follow an
inverse-Wishart distribution. Specifically,

.

θIW ∼ IW (R, δ), (29)

Different choices for R and δ will yield different degrees of
“informativeness” for the inverse-Wishart distribution.
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See file “CFA.rjags.html”
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