

MongoDB - Cheat Sheet
Version 1.0 / 27th December 2012 / Page 1 of 4

More information can be found from the MongoDB Tutorial
@ http://blog.codecentric.de/en/2012/12/mongodb-tutorial/

About this Cheat Sheet Basic Information
The idea behind this is to have all (well, most) information from the above
mentioned Tutorial immediately available in a very compact format. All commands
can be used on a small data basis created in the insert-section. All information in
this sheet comes without the slightest warranty for correctness. Use at your own
risk. Have fun !

 Download MongoDB http://www.mongodb.org/downloads

 JSON Specification http://www.json.org/

 BSON Specification http://bsonspec.org/

 Java Tutorial http://www.mongodb.org/display/DOCS/Java+Tutorial

Inserting Documents

db.ships.insert({name:'USS Enterprise-D',operator:'Starfleet',type:'Explorer',class:'Galaxy',crew:750,codes:[10,11,12]})

db.ships.insert({name:'USS Prometheus',operator:'Starfleet',class:'Prometheus',crew:4,codes:[1,14,17]})

db.ships.insert({name:'USS Defiant',operator:'Starfleet',class:'Defiant',crew:50,codes:[10,17,19]})

db.ships.insert({name:'IKS Buruk',operator:' Klingon Empire',class:'Warship',crew:40,codes:[100,110,120]})

db.ships.insert({name:'IKS Somraw',operator:' Klingon Empire',class:'Raptor',crew:50,codes:[101,111,120]})

db.ships.insert({name:'Scimitar',operator:'Romulan Star Empire',type:'Warbird',class:'Warbird',crew:25,codes:[201,211,220]})

db.ships.insert({name:'Narada',operator:'Romulan Star Empire',type:'Warbird',class:'Warbird',crew:65,codes:[251,251,220]})

Finding Documents Basic Concepts & Shell Commands

db.ships.findOne() Finds one arbitrary document db.ships.<command> db – implicit handle to the used database

ships – name of the used collection

db.ships.find().prettyPrint() Finds all documents and using nice
formatting

 use <database> Switch to another database

db.ships.find({}, {name:true, _id:false}) Shows only the names of the ships show collections Lists the available collections

db.ships.findOne({'name':'USS Defiant'}) Finds one document by attribute help Prints available commands and help

Finding Documents using Operators BSON Types

$gt / $gte greater than / greater than equals db.ships.find({class:{$gt:’P'} String 2

$lt / $lte lesser than / lesser than equals db.ships.find({class:{$lte:’P'} Array 4

$exists does an attribute exist or not db.ships.find({type:{$exists:true}}) Binary Data 5

$regex Perl-style pattern matching db.ships.find({name:{$regex:’^USS\\sE’}}) Date 9

$type search by type of an element db.ships.find({name : {$type:2}}) http://www.w3resource.com/mongodb/mongodb-type-operators.php

MongoDB - Cheat Sheet
Version 1.0 / 27th December 2012 / Page 2 of 4

More information can be found from the MongoDB Tutorial
@ http://blog.codecentric.de/en/2012/12/mongodb-tutorial/

Updating Documents

G+ Community Page:
https://plus.google.com/u/0/communities/
115421122548465808444

db.ships.update({name : 'USS Prometheus'}, {name : 'USS Something'}) Replaces the whole document

db.ships.update({name : 'USS Something'},

 {$set : {operator : 'Starfleet', class : 'Prometheus'}})

sets / changes certain attributes
of a given document

db.ships.update({name : 'USS Something'},

 {$unset : {operator : 1}})

removes an attribute from a
given document

Removing Documents

db.ships.remove({name : 'USS Prometheus'}) removes the document

db.ships.remove({name:{$regex:’^USS\\sE’}}) removes using operator

Each individual document removal is atomic with respect to a concurrent reader or writer. No client will see a document half
removed.

Working with Indexes

Creating an index db.ships.ensureIndex({name : 1})

Dropping an index db.ships.dropIndex({name : 1})

Creating a compound index db.ships.ensureIndex({name : 1, operator : 1, class : 0})

Dropping a compound index db.ships.dropIndex({name : 1, operator : 1, class : 0})

Creating a unique compound index db.ships.ensureIndex({name : 1, operator : 1, class : 0}, {unique : true})

Indexes – Hints & Stats Top & Stats System Commands

db.ships.find ({'name':'USS Defiant'}).explain() Explains index usage ./mongotop Shows time spent per operations per collection

db.ships.stats() Index statistics ./mongostat Shows snapshot on the MongoDB system

db.ships.totalIndexSize() Index size

MongoDB - Cheat Sheet
Version 1.0 / 27th December 2012 / Page 3 of 4

More information can be found from the MongoDB Tutorial
@ http://blog.codecentric.de/en/2012/12/mongodb-tutorial/

∑

A
G
G
R
E
G
A
T
I
O
N

F
R
A
M
E
W
O
R
K

Pipeline Stages Comparison with SQL

$project Change the set of documents by modifying keys and values. This is a 1:1 mapping.
WHERE

GROUP BY

HAVING

SELECT

ORDER BY

LIMIT

SUM

COUNT

JOIN

$match

$group

$match

$project

$sort

$limit

$sum

$sum

$unwind

$match This is a filtering operation and thus this can reduce the amount of documents that are given as input to the
next stage. This can be used for example if aggregation should only happen on a subset of the data.

$group This does the actual aggregation and as we are grouping by one or more keys this can have a reducing effect
on the amount of documents.

$sort Sorting the documents one way or the other for the next stage. It should be noted that this might use a lot of
memory. Thus if possible one should always try to reduce the amount of documents first.

$skip With this it is possible to skip forward in the list of documents for a given amount of documents. This allows
for example starting only from the 10th document. Typically this will be used together with “$sort” and
especially together with “$limit”.

$limit This limits the amount of documents to look at by the given number starting from the current position.

$unwind This is used to unwind document that are using arrays. When using an array the data is kind of pre-joined and
this operation will be undone with this to have individual documents again. Thus with this stage we will
increase the amount of documents for the next stage.

Aggregation Examples

db.ships.aggregate([{$group : {_id : "$operator", num_ships :

 {$sum : 1}}}])

Counts the number of ships per operator, would be in SQL:
SELECT operator, count(*) FROM ships GROUP BY operator;

db.ships.aggregate([{$project : {_id : 0, operator : {$toLower

 : "$operator"}, crew : {"$multiply" : ["$crew",10]}}}])

Combination of $project-stage and $group-stage.

Aggregation Expressions

$sum Summing up values db.ships.aggregate([{$group : {_id : "$operator", num_ships : {$sum : "$crew"}}}])

$avg Calculating average values db.ships.aggregate([{$group : {_id : "$operator", num_ships : {$avg : "$crew"}}}])

$min / $max Finding min/max values db.ships.aggregate([{$group : {_id : "$operator", num_ships : {$min : "$crew"}}}])

$push Pushing values to a result
array

db.ships.aggregate([{$group : {_id : "$operator", classes : {$push: "$class"}}}])

$addToSet Pushing values to a result
array without duplicates

db.ships.aggregate([{$group : {_id : "$operator", classes : {$addToSet :

"$class"}}}])

$first / $last Getting the first / last
document

db.ships.aggregate([{$group : {_id : "$operator", last_class : {$last :

"$class"}}}])

MongoDB - Cheat Sheet
Version 1.0 / 27th December 2012 / Page 4 of 4

More information can be found from the MongoDB Tutorial
@ http://blog.codecentric.de/en/2012/12/mongodb-tutorial/

 Replica Sets

 Type Allowed to
vote?

Can become
Primary?

Description

 Regular Yes Yes This is the most typical kind of node. It can act as a primary or
secondary node

 Arbiter Yes No Arbiter nodes are only there for voting purposes. They can be
used to ensure that there is a certain amount of nodes in a replica
set even though there are not that many physical servers.

 Delayed Yes No Often used as a disaster recovery node. The data stored here is
usually a few hours behind the real working data.

 Hidden No No Often used for analytics in the replica set.

Sharding

In the context of replica sets the value for the w-parameter now means the
amount of nodes that have acknowledged a write. There is a useful short
notation to ensure write was done to a majority of nodes by using
w=’majority’. For the journal-parameter the value of one is still the best that
can be done. It means the data is written to the journal of the primary node.

 Every document has to define a shard-key.
 The value of the shard-key is immutable.
 The shard-key must be part of an index and it must be the first field in that index.
 There can be no unique index unless the shard-key is part of it and is then the first field.
 Reads done without specifying the shard-key will lead to requests to all the different shards.
 The shard-key must offer sufficient cardinality to be able to utilize all shards.

Durability of Writes

 w – This tells the driver to wait for the write to be acknowledged. It also ensures no indexes are

violated. Nevertheless the data can still be lost as it is not necessarily already persisted to disc.

 j – This stands for journal-mode. It tells the driver to wait until the journal has been committed to

disk. Once this has happened it is quite sure that the write will be persistent unless there are any

disc-failures.
w=0 j=0 This is “fire and forget”.

w=1 j=0 Waits for an acknowledgement that the write was received and no indexes have been
violated. Data can still be lost.

w=1 j=1 The most save configuration by waiting for the write to the journal to be completed.

w=0 j=1 Basically the same as above.

