Human Computation: Papers from the 2011 AAAT Workshop (WS-11-11)

Human Intelligence Needs Artificial Intelligence

Daniel S. Weld

Mausam

Peng Dai

Dept of Computer Science and Engineering
University of Washington
Seattle, WA-98195
{weld,mausam,daipeng} @ cs.washington.edu

Abstract

Crowdsourcing platforms, such as Amazon Mechanical Turk,
have enabled the construction of scalable applications for
tasks ranging from product categorization and photo tagging
to audio transcription and translation. These vertical appli-
cations are typically realized with complex, self-managing
workflows that guarantee quality results. But constructing
such workflows is challenging, with a huge number of alter-
native decisions for the designer to consider.

We argue the thesis that “Artificial intelligence methods can
greatly simplify the process of creating and managing com-
plex crowdsourced workflows.” We present the design of
CLOWDER, which uses machine learning to continually re-
fine models of worker performance and task difficulty. Us-
ing these models, CLOWDER uses decision-theoretic opti-
mization to 1) choose between alternative workflows, 2) opti-
mize parameters for a workflow, 3) create personalized inter-
faces for individual workers, and 4) dynamically control the
workflow. Preliminary experience suggests that these opti-
mized workflows are significantly more economical (and re-
turn higher quality output) than those generated by humans.

Introduction

Crowd-sourcing marketplaces, such as Amazon Mechani-
cal Turk, have the potential to allow rapid construction of
complex applications which mix human computation with
Al and other automated techniques. Example applications
already span the range from product categorization (Crowd-
flower prod ), photo tagging (Tagasauris ), business list-
ing verifications (Mediapiston a) to audio/video transcrip-
tion (Mediapiston b; Speakertext ), proofreading (Servio e )
and translation (Servio t ).

In order to guarantee quality results from potentially
error-prone workers, most applications use complex, self-
managing workflows with independent production and re-
view stages. For example, iterative improvement (Little
et al. 2009) and find-fix-verify workflows (Bernstein et al.
2010) are popular patterns. But devising these patterns
and adapting them to a new task is both complex and
time consuming. Existing development environments, e.g.
Turkit (Little et al. 2009) simplify important issues, such as
control flow and debugging, but many challenges remain.
For example, in order to craft an effective application, the
designer must:

67

e Choose between alternative workflows for accomplish-
ing the task. For example, given the task of transcribing
an MP3 file, one could ask a worker to do the transcrip-
tion, or first use speech recognition and then ask work-
ers to find and fix errors. Depending on the accuracy
and costs associated with these primitive steps, one or the
other workflow may be preferable.

e Optimize the parameters for a selected workflow. Sup-
pose one has selected the workflow which uses a single
worker to directly transcribe the file; before one can start
execution, one must determine the value of continuous pa-
rameters, such as the price, the length of the audio file,
etc.. If the audio track is cut into snippets which are too
long, then transcription speed may fall, since workers of-
ten prefer short jobs. But if the audio track is cut into
many short files, then accuracy may fall because of lost
context for the human workers. A computer can method-
ically try different parameter values to find the best.

e Create tuned interfaces for the expected workers. The
precise wording, layout and even color of an interface can
dramatically affect the performance of users. One can
use Fitt’s Law or alternative cost models to automatically
design effective interfaces (Gajos, Wobbrock, and Weld
2010). Comprehensive “A-B” testing of alternative de-
signs, automated by computer, is also essential (Kohavi,
Henne, and Sommerfield 2007).

e Control execution of the final workflow. Some deci-
sions, for example the number of cycles in an iterative
improvement workflow and the number of voters used
for verification, can not be optimally determined a priori.
Instead, decision-theoretic methods, which incorporate a
model of worker accuracy, can dramatically improve on
naive strategies such as majority vote (Dai, Mausam, and
Weld 2010).

Our long-term goal is to prove the value of Al methods
on these problems and to build intelligent tools that facili-
tate the rapid construction of effective crowd-sourced work-
flows. Our first system, TURKONTROL (Dai, Mausam, and
Weld 2010; 2011), used a partially-observable Markov de-
cision process (POMDP) to perform decision-theoretic op-
timization of iterative, crowd-sourced workflows. This pa-



DT planner

renderer

rendered
job

learner

worker
marketplace

Figure 1: Architecture of the CLOWDER system.

per presents the design of our second system, CLOWDER!,
which we are just starting to implement. We start by summa-
rizing the high-level architecture of CLOWDER. Subsequent
sections detail the Al reasoning used in its major compo-
nents. We end with a discussion of related work and conclu-
sions.

Overview of CLOWDER

Figure 1 depicts the proposed architecture of CLOWDER.
At its core, CLOWDER has the capability to generate, se-
lect from, optimize, and control a variety of workflows and
also automatically render the best interfaces for a task. It
achieves this by accessing a library of pre-defined workflow
patterns expressed in a hierarchical task network (HTN)-like
representation (Nau et al. 2003). Along with each HTN it
maintains the relevant planning and learning routines. The
learning routine learns task and user models. These pa-
rameters aid in controlling the workflow dynamically using
a decision-theoretic planner. Finally, it optimizes the task
interfaces based on user performance. Overall, it aims to
achieve a higher quality-cost-completion time trade-off by
optimizing each step of the process. CLOWDER proposes
the following novel features:

e A declarative language to specify workflows.
CLOWDER’s language is inspired by the HTN rep-
resentation. An HTN is a hierarchy of tasks, in which
each parent task is broken into multiple children tasks.
At the lowest level are the primitive actions that can be
directly executed (in our case, jobs that are solved either
by machines or are crowd-sourced). Thus, HTN provides
a systematic way to explore the possible ways to solve
the larger problem. A workflow can be quite naturally
represented in an HTN-like representation.

e Shared models for common task types. Most crowd-
sourcing jobs can be captured with a relatively small num-
ber of job classes, such as jobs with discrete alternatives,
creating/improving content, efc. By having a library of job
types CLOWDER will be able to share parameters across
similar job types. Given a new task, CLOWDER can trans-
fer the knowledge from similar prior tasks, speeding up
the learning process. E.g., it could use audio transcription
parameters to seed those for the handwriting recognition
task, as they are quite similar.

1t is said that nothing is as difficult as herding cats, but maybe
decision theory is up to the task? A clowder is a group of cats.

68

o Integrated modeling of workers. CLOWDER models
and continually updates its worker’s quality parameters.
This is especially necessary, since workers often perform
poor quality work, so tracking their work and rewarding
the good workers is imperative to a healthy functioning
platform. While a worker’s quality could change based
on the task (people not good at writing English descrip-
tions could still be potent audio transcribers), we can seed
their task-specific quality parameters based on their aver-
age parameters from similar prior tasks.

o Comprehensive Decision-Theoretic Control. A work-
flow has several choices to make including pricing, bonus,
number of iterations or voters, and interface layout. Our
previous work, TURKONTROL, optimized a subset of
these factors for a specific type of workflow. CLOWDER
will extend TURKONTROL by allowing a large number of
workflows and optimizing for all of these choices.

We now discuss each of these components in detail.

Modeling Worker Performance

Poor quality workers present a major challenge for crowd-
sourced applications. Although early studies concluded
that the majority of workers on Mechanical Turk are dili-
gent (Snow et al. 2008), more recent investigations suggest
a plethora of spam workers. Moreover, the error rates are
quite high for open-ended tasks like improving an artifact or
fixing grammatical errors (Bernstein et al. 2010).

Ipeirotis (Ipeirotis b) has suggested several important im-
provements to the Mechanical Turk marketplace platform,
one of which is a better reputation system for evaluat-
ing workers. He argues that payment should be separated
from evaluation, employers should be allowed to rate work-
ers, and the platform should provide more visibility into
a worker’s history. Worker quality should be reported as
a function of job type in addition to aggregate measures.
By surfacing limited information, such as percentage ac-
ceptance and number of completed hits, Mechanical Turk
makes it easy for spam workers to pose as responsible by
rank boosting (Ipeirotis a; Eickhoff and de Vries 2011). Yet
even if Mechanical Turk is slow to improve its platform, al-
ternative marketplaces, such as eLance, guru, oDesk, and
vWorker, are doing so.

But even if Ipeirotis’ improved reputation system is
widely adopted, the best requesters will still overlay
their own models and perform proprietary reasoning about
worker quality. In a crowd-sourced environment, the spe-
cific workflow employed (along with algorithms to control
it) is likely to represent a large part of a requester’s com-
petitive advantage. The more an employer knows about the
detailed strengths and weaknesses of a worker, the better the
employer can apply the worker to appropriate jobs within
that workflow. Thus, knowledge about a worker provides
a proprietary advantage to an employer and is unlikely to
be fully shared. Just as today’s physically-based organiza-
tions spend considerable resources on monitoring employee
performance, we expect crowd-sourced worker modeling to
be an area of ongoing innovation. TURKONTROL devised a



n

O
@@@@

m

Figure 2: A plate model of ballot jobs; b represents the ballot
outcome; 7y, a worker’s individual error parameter; d, the difficulty
of the job and w, truth value of the job. I is the prior on workers’
errors. Shaded nodes represent observed variables.

novel approach to worker modeling, which CLOWDER ex-
tends.

Learning a Model of Simple Tasks: Let us focus on the
simplest tasks first — predicting the worker behavior when
answering a binary question. The learning problem is to
estimate the probability of a worker x answering a binary
ballot question correctly. While prior work has assumed all
workers to be independent, we realize that worker inputs are
actually correlated — their errors often depend on the intrin-
sic difficulty of the question (d). We assume conditional
independence of workers given the difficulty. We model a
random worker’s accuracy by a parametrized distribution:
ax(d) = 2[1 — (1 —d)7x]. Lower 7 represents a better per-
forming worker. We seek to continually estimate 7y values
for a worker working on our jobs.

Figure 2 presents our generative model of such jobs in
plate notation; shaded variables are observed. Here b rep-
resents the ballot by one worker, and v represents the true
value of the question.

We seek to learn 7. Moreover, we use the mean 7 as an
estimate for future, unseen workers. To generate training
data for our task we select m questions and post 7 copies of
ballot jobs. We use b; , to denote x™" worker’s ballot on the
i'" question. Let w; = true( false) be the ground truth for

ith question and let d; denote the difficulty of answering this
question. We take human expert labels for true answer and
difficulty of a question. Assuming uniform prior over 7y, we
can estimate y, parameters using maximum likelihood.

Alternatively, we could also use a pure unsupervised ap-
proach (akin to (Whitehill et al. 2009)) using the EM algo-
rithm to jointly estimate the true labels, difficulties and 7y
parameters of a worker. Supervised learning leads to bet-
ter learning, so that will be the algorithm of choice, in case
getting some labeled data isn’t too costly.

For a new worker, we initially use the mean %, and as
we obtain more information about them continually update
their parameter using a simple update rule. At the question

answering time, we can use the existing ballots b, uniform
prior on I', and our conditional independence assumption to
estimate the true values .

P([b,@,d) o P(b]7,,d)
=TT ITE Pbix |7, diy wi).
Learning Complex Worker Models: In addition to sim-
ple binary questions, TURKONTROL also studies a specific

case of learning more complex worker models that arise in
the iterative improvement workflow — learning a worker’s

69

improvement model. Here, we wish to estimate the proba-
bility distribution of the quality of a new artifact (§') when a
worker x tries to improve an artifact of quality 4. Learning
such two dimensional distributions is a challenging prob-
lem. TURKONTROL assumes specific distribution shapes
and applies parameter fitting techniques to make the prob-
lem tractable (Dai, Mausam, and Weld 2011).

Similar ideas apply to learning other more complex mod-
els. In CLOWDER we propose to enable learning capability
for a wide variety of worker models. We list a few below
based on the job type. We anticipate that existing models
from other tasks will aid in seeding the worker models for a
new task, which can be continually updated as we gain more
information about a worker on the task at hand.

e Discrete alternatives. Workers may be asked to choose
between more than 2 discrete alternatives. A simple ex-
tension of our ballot model suffices for this.

e Find jobs. The Soylent word processor popularized
a crowd-sourcing design pattern called Find-Fix-Verify
which “splits complex crowd intelligence tasks into a
series of generation and review stages that utilize in-
dependent agreement and voting to produce reliable re-
sults.” (Bernstein et al. 2010). Find jobs typically present
a worker with a sequence of data, e.g., a textual passage,
and ask the worker to identify flaw locations in that se-
quence, e.g. the location of grammatical errors. Since
only a few locations can be returned, we can learn models
of these jobs with an extension of the discrete alternatives
framework.

o Improvement jobs. This class of job (also known as a
“Fix” job) requires the worker to revise some piece of
content, perhaps by fixing a grammatical error or by ex-
tending a written description of a picture. We can employ
and extend curve fitting ideas in (Dai, Mausam, and Weld
2011) to learn such models.

e Content creation jobs. This class of job would be used
when initializing an iterative improvement workflow or in
the first step of a transcription task. It can be modeled as
a degenerate case of an improvement job.

Optimizing & Controlling Workflows

Every given workflow has one or more parameters whose
value needs to be set before execution. The most obvious
examples are the price offered to worker for completion of
the job and HTML interface provided to workers, but other
workflows have additional parameters. For example, the
length of individual audio files in transcription or the num-
ber of distinct examples in a labeling task.

There are two basic methods for optimizing the param-
eters: blind and model-based search. If nothing is known
about the effect of the parameter, then blind search — enu-
merating different possible values and measuring the effect
on worker performance — will be necessary. The designer
will likely wish to specify the range of values for the system
to consider. If the system has been given or has learned a
model of the parameter’s effect, it can use direct optimiza-



submit a

3

initial
artifact (a) I Generate Estimate
— mprovement improvement prior for
needed? job o

ap’ By
) Update
Voting Generate pospteriors -
needed? ballot job f ,
ora, a

o < betterof @ anda’

L

initial
artifact (@) | Generate Updat.e Find more picka [f.| Generate Fix more Generate Upda'te verification
> Eingnir | | Posterior flaw to fix Fix HIT verify HIT | | Posteriors 5
of flaw f flaws? N flaws? ¥ forall a’s needed;

< submit the best combination of all o’s

Figure 4: Decision-theoretic Computations needed to control the Soylent word processor.

tion or branch and bound to find good parameter values be-
fore issuing any jobs to actual workers.

Execution Control: Probably the biggest benefit of
decision-theoretic modeling of a workflow is the ability to
automatically control the different pieces of the task and dy-
namically allocate the resources to the sub-tasks that are ex-
pected to yield largest benefits. The benefits are evaluated in
terms of the utility that is given as the input by the requester.

CLOWDER will extend the decision-theoretic control
methodology used in TURKONTROL (Dai, Mausam, and
Weld 2010). Consider an iterative-improvement workflow in
which an artifact (e.g., an English description of an image)
created by the first worker goes through several improve-
ment iterations; each iteration comprising an improvement
and a ballot phase (Little et al. 2009). An improvement job
solicits &', an improvement of the current artifact x. In the
ballot phase, zero or more workers complete a ballot job,
voting whether the most recent ‘improvement’ really is bet-
ter than the predecessor. The best artifact is promoted to the
next iteration.

TURKONTROL controls this workflow based on its belief
about the quality of the two artifacts as informed by priors
and the noisy ballots. Figure 3 shows the relevant decision
points for iterative improvement: Which artifact is the best
so far? Is it good enough to return or should a worker be
tasked to improve it? Should another worker be tasked to
compare two artifacts? These decisions are answered using
a Partially Observable Markov Decision Process (POMDP)
formulation, where the (latent) world state includes the qual-
ity of the two artifacts. Initial experiments show that this
form of decision-theoretic control can save as much as 28%
of the cost to achieve a given quality of artifact compared
to previously-proposed policies (Dai, Mausam, and Weld
2011).

Indeed, iterative improvement is not the only workflow

70

that can benefit from decision-theoretic control. In Figure
4 we propose the initial design of a controller for Soylent
(Bernstein et al. 2010), a word processor that uses a Find-
Fix-Verify workflow to shorten and rewrite text written by
the user. There are several decision points, such as whether
to request more flaws, fixes or votes; and also which flaws to
ask the fixes for, and how to combine the various artifacts to
submit the final version. CLOWDER will implement general
purpose routines to control several workflows that can be
expressed in its general representation language (see next
section).

Because of it’s high-dimensional and continuous state
space, solving a POMDP is a notoriously hard problem.
For the case of iterative-improvement workflows a sim-
ple k-step lookahead greedy search performed remarkably
well; however, more sophisticated methods may be neces-
sary as we increase the number of decision points made
by the agent. We will investigate a variety of strate-
gies, including discretization and the Monte Carlo meth-
ods pioneered in UCT (Kocsis and Szepesvari 2006)). Our
prior experience with approximate and optimal, MDP and
POMDP algorithms (e.g., (Dai, Mausam, and Weld 2010;
Kolobov, Mausam, and Weld 2009)) will come in handy in
scaling to the larger problems.

Pricing Jobs: There are several ways to compute the best
price for a job. Once a concrete interface has been selected,
it is easy to measure the time required to complete a job;
multiplying by an expected hourly rate produces a price.
But money is not a worker’s only motivation; the intellec-
tual challenge of a job and even attractiveness of a Ul can
reduce the necessary wage (Toomim et al. 2011).

Mason and Watts (Mason and Watts 2009) showed that
increasing the payment for a task on Mechanical Turk in-
creased the quantity of tasks performed by a worker but not
the quality. So, if the task comes with a deadline then the



variation of the price with the rate of completion of tasks
could determine the pay. Moreover, there are methods for
improving worker performance and these may be explored
by CLOWDER.

Awarding Bonuses: Paying an optional bonus for higher
quality (or more rapidly-completed) work is a tried and
tested way to motivate better submissions from the work-
ers. For an automated agent the decision question will be
(1) When to pay a bonus? (2) Under what quality conditions
should a bonus be paid? and (3) What magnitude bonus
should be paid? Intuitively, if we had an expectation on the
total cost of a job, and we ended up saving some of that
money, a fraction of the agent’s savings could be used to
reward the workers who did well in this task.

Other Parameters: CLOWDER will provide support to
learn a variety of workflow parameters. First, we will study
common workflows to abstract away the typical classes of
parameters. For example, a common parameter type is the
size of the decomposition. Whether we wish to recognize a
long handwriting task, or transcribe a large audio file, or ask
people to identify grammatical errors in a long essay, there
is an optimum length in which to subdivide the problem.
A short length may result in poor quality output because the
relevant context will be missing, whereas a long length could
also result in poor quality, since the workers may lose focus
in the middle. Moreover, workers do not like really long
jobs, so the completion rates may fall too. An easy blind
way to learn the optimum length is by using binary search.
However, if other tasks have solved similar problems in the
past then we can adapt their parameters and explore regions
close to the existing parameters for a more efficient learning.
We propose to add support for typical parameter types,
which can greatly boost a workflow’s performance. This
will also be a subroutine in selecting one workflow over an-
other, since each workflow needs to be evaluated in their best
configuration to compare against another workflow.

Optimizing Interfaces: The layout of an interface and
choice of widgets for entering data can make an enormous
difference in the productivity of the interface’s users. Lead-
ing Internet companies perform detailed quantitative analy-
sis of the user-behavior and completion rates of Web-based
product-search and checkout workflows (Kohavi, Henne,
and Sommerfield 2007) — small changes can have dramatic
effects on productivity. It stands to reason, therefore, that
the Ul layout of crowd-sourced jobs is a critical factor in
how quickly they can be completed and hence the payment
necessary to motivate this completion. Interestingly, the job
interfaces for many jobs on Mechanical Turk appears poor
— ignoring various guidelines and tips. Furthermore, many
workers post suggestions on how to improve workflows to
help requesters improve the flow.

CLOWDER will extend our previous work on auto-
matic generation of personalized user interfaces, which
uses a functional representation for interfaces and the
SUPPLE algorithm for decision-theoretic interface personal-
ization (Gajos, Wobbrock, and Weld 2010). We developed
learning algorithms for inducing the user-preference models
necessary to drive the optimization process, but one could

71

also use Fitt’s law for the common case of able-bodied work-
ers. Finally, we demonstrated that our automatic personal-
ized interfaces significantly decreased the time required to
perform a wide class of tasks (Gajos, Wobbrock, and Weld
2010). These methods are perfectly suited to the task of
optimizing Web-based workflows. After using SUPPLE to
shortlist a few interfaces with good expected performance,
CLOWDER will generate trial runs of the tasks using each in-
terface thus automating traditional “A-B” testing to pick the
interface which performs best in practice (Kohavi, Henne,
and Sommerfield 2007).

Generating Complex Workflows

Different tasks require very different kinds of workflows to
achieve quality output. Often, these are carefully engineered
after significant human effort and extensive testing. We pro-
pose to automate part of the process with CLOWDER per-
forming the testing and workflow selection.

For instance, in the audio transcription task, one could just
use the output from the speech recognition system. Or one
could improve the machine output in a Find-Fix-Verify like
workflow. Or, one may decide to completely do away with
machine recognition and use workers to directly transcribe
the audio. In this situation, one worker could transcribe the
whole audio or one may divide the audio into smaller audio
files. There could be additional quality control workers that
score previous transcription quality. Indeed, CastingWords
employs a proprietary workflow for audio transcription.

To realize the vision of an intelligent crowd-sourcing
agent capable of dealing with a variety of tasks, CLOWDER
will facilitate the process of searching through these dif-
ferent workflows and thus assisting the human designer
in the selection process. However, to initiate this search,
CLOWDER needs a language to represent the potential work-
flows that solve the task. We anticipate that the language
will resemble the declarative hierarchical task network rep-
resentation (Nau et al. 2003) from the automated planning
literature. This could be augmented with workflow-specific
primitives for data input (such as observation actions) using
a variant of the SUPPLE representation (Gajos, Wobbrock,
and Weld 2010) .

A hierarchical task network, which is commonly used in
domain-specific planning literature, is a natural representa-
tion for our purposes. An HTN subdivides each task hier-
archically into a set of subtasks, and also maintains the pre-
conditions and effects of applying each subtask. Thus, given
a workflow represented as an HTN, CLOWDER can easily
enumerate all the workflows that solve the given task.

The next challenge is to select the best workflow. A
better workflow maximizes the utility obtaining the best
quality-cost-completion time tradeoff. However, enumerat-
ing each potential workflow and evaluating it individually
can be time-consuming as well as financially wasteful. We
will develop routines that, given an HTN, will evaluate each
workflow-component in their hierarchical order. CLOWDER
will compute the expected utility of each subtask, which can
then be used to select the best workflow for the whole task.

Automatically selecting workflows is a rather challenging
direction for CLOWDER, but one that will go a long way in



realizing the potential of crowd-sourcing by making it con-
venient for requesters to create complex workflows without
needing to understand the mathematical calculations neces-
sary to execute them efficiently.

Related Work

Shahaf and Horvitz (Shahaf and Horvitz 2010) also use an
HTN-style decomposition algorithm to find a coalition of
workers, each with different skill sets, to solve a task. Our
workflow selection ideas are inspired by their work.

Other researchers have studied modeling worker compe-
tencies. Whitehill er al. (Whitehill et al. 2009) also model
problem difficulty, though they use the unsupervised EM al-
gorithm. Wellinder et al. (Welinder et al. 2010) add anno-
tation bias and multi-dimensional parameters. Kern et al.
(Kern, Thies, and Satzger 2010) also make predictions on
whether to elicit new answers. Donmez et al. study worker
accuracies as a function of time (Donmez, Carbonell, and
Schneider 2010).

Recently Zhang ef al. (Zhang et al. 2011) argue that all as-
pects of the workflow right from designing to controlling can
be crowd-sourced. In many ways, our thesis is in direct con-
trast with theirs. We believe that all tasks are not well-suited
for unskilled crowd-sourced workers — often they do not
have a global picture, humans are not best at numeric opti-
mizations, in which computers excel. Thus, mixed-initiative
systems that collaborate machine intelligence with humans
are essential to success of complex, crowd-sourcing tasks.

Conclusions

Amazon Mechanical Turk has the tagline ‘Artificial Artifi-
cial Intelligence’” emphasizing the ability of the crowd in per-
forming several tasks commonly attributed for Al systems.
In this paper we argue that Al techniques are rather essen-
tial in managing, controlling, executing, and evaluating the
tasks performed on crowd-sourcing platforms.

We outline the design of our system, CLOWDER, that (1)
uses machine learning to continually refine the models of
worker performance and task difficulty, (2) is able to opti-
mize the parameters and interfaces in a workflow to achieve
the best quality-cost-completion time trade-off, (3) can dy-
namically control a workflow to react to and anticipate the
effect of better or worse workers finishing a task, and (4) has
the ability to select one among the multiple possible work-
flows for a task based on automatic evaluation of the differ-
ent optimized workflows.

CLOWDER combines core ideas from different subfields
of artificial intelligence, such as decision-theoretic analysis,
model-based planning and execution, machine learning and
constraint optimization to solve the multitude of subprob-
lems that arise in the design. The implementation of the
system is in progress.

We believe that a mixed-initiative system that combines
the power of artificial intelligence with that of artificial arti-
ficial intelligence has the potential to revolutionize the ways
of business processes. We already see several innovative
crowd-sourcing applications; we can easily anticipate many

72

more, as CLOWDER reduces the requester skills and compu-
tational overhead required to field an application.

Acknowledgments

This work was supported by the WRF / TJ Cable Profes-
sorship, Office of Naval Research grant NO0014-06-1-0147,
and National Science Foundation grants IIS 1016713 and IIS
1016465.

References

Bernstein, M.; Little, G.; Miller, R.; Hartmann, B.; Ackerman, M.;
Karger, D.; Crowell, D.; and Panovich, K. 2010. Soylent: A word
processor with a crowd inside. In UIST.
http://crowdflower.com/solutions/prod_cat/index.html.

Dai, P.; Mausam; and Weld, D. S. 2010. Decision-theoretic control
of crowd-sourced workflows. In AAAII0O.

Dai, P.; Mausam; and Weld, D. S. 2011. Artificial intelligence for
artificial, artificial intelligence. In AAAIL

Donmez, P.; Carbonell, J. G.; and Schneider, J. 2010. A probabilis-
tic framework to learn from multiple annotators with time-varying
accuracy. In SDM, 826-837.

Eickhoff, C., and de Vries, A. 2011. How crowdsourcable is your
task? In Proceedings of the WSDM Workshop on Crowdsourcing
for Search and Datamining.

Gajos, K. Z.; Wobbrock, J. O.; and Weld, D. S. 2010. Automati-
cally generating personalized user interfaces with SUPPLE. Artifi-
cial Intelligence 174:910-950.

Ipeirotis, P. Be a top Mechanical Turk worker: You need $5 and 5
minutes. http://behind-the-enemy-lines.blogspot.com/2010/10/be-
top-mechanical-turk-worker-you-need.html.

Ipeirotis, P. Plea to Amazon: Fix Mechanical Turk! http://behind-
the-enemy-lines.blogspot.com/2010/10/plea-to-amazon-fix-
mechanical-turk.html.

Kern, R.; Thies, H.; and Satzger, G. 2010. Statistical quality con-
trol for human-based electronic services. In In Proc. of ICSOC,
243-257.

Kocsis, L., and Szepesvéri, C. 2006. Bandit based monte-carlo
planning. In ECML, 282-293.

Kohavi, R.; Henne, R. M.; and Sommerfield, D. 2007. Practical
guide to controlled experiments on the web: listen to your cus-
tomers not to the hippo. In KDD.

Kolobov, A.; Mausam; and Weld, D. 2009. ReTraSE: Integrat-
ing paradigms for approximate probabilistic planning. In Procs. of
1JCAI 2009.

Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C. 20009.
Turkit: tools for iterative tasks on mechanical turk. In HCOMP.

Mason, W., and Watts, D. 2009. Financial incentives and the
“performance of crowds”. In Human Computation Workshop
(HComp2009).

http://crowdflower.com/solutions/blv/index.html.
http://castingwords.com.

Nau, D.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu, D.; and
Yaman, F. 2003. SHOP2: An HTN planning system. JAIR 20:379—
404.

http://www.serv.io/edit.
http://www.serv.io/translation.

Shahaf, D., and Horvitz, E. 2010. Generlized markets for human
and machine computation. In AAAIL



Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. 2008. Cheap
and fast — but is it good? evaluating non-expert annotations for
natural language tasks. In EMNLP’08.

http://speakertext.com.
http://www.tagasauris.com.

Toomim, M.; Kriplean, T.; Portner, C.; and Landay, J. A. 2011.
Utility of human-computer interactions: Toward a science of pref-
erence measurement. In CHI.

Welinder, P.; Branson, S.; Belongie, S.; and Perona, P. 2010. The
multidimensional wisdom of crowds. In In Proc. of NIPS, 2424—
2432.

Whitehill, J.; Ruvolo, P.; Wu, T.; Bergsma, J.; and Movellan, J.
2009. Whose vote should count more: Optimal integration of labels
from laberlers of unknown expertise. In In Proc. of NIPS, 2035—
2043.

Zhang, H.; Horvitz, E.; Miller, R. C.; and Parkes, D. C. 2011.
Corwdsourcing general computation. In CHI Workshop on Crowd-
sourcing and Human Computation.

73



