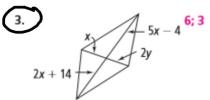
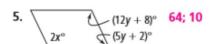

Do Now:

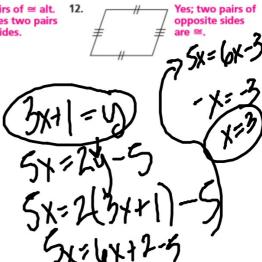
Please get out WB 6-3 and get a graphic organizer off my desk. Then answer this question....

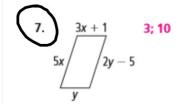

Got It? 2. What are the measures of the numbered angles in rhombus PQRS?

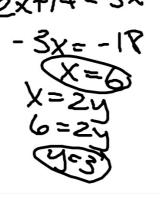
Homework Check:

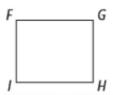

Can you prove that the quadrilateral is a parallelogram based on the given information? Explain.

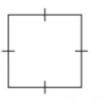
12.



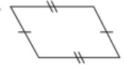

Yes; diagonals bisect each other.






Can you prove that the quadrilateral is a parallelogram based on the given information? Explain.

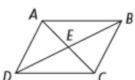
14. $\overline{FG} \parallel \overline{IH}, \overline{FI} \parallel \overline{GH}$

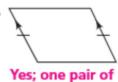


yes; opp. sides parallel

17.

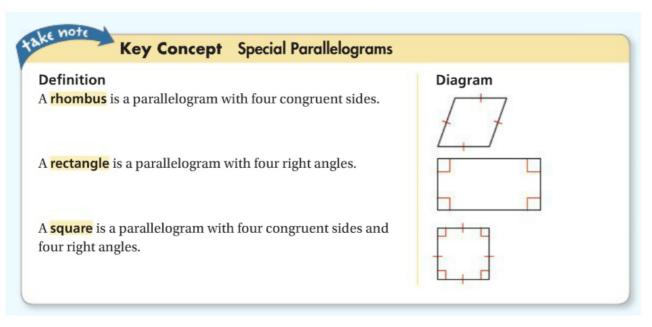
yes; opposite sides ≅




yes; opposite sides ≅

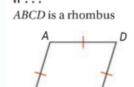
yes; opposite 🛦 ≅

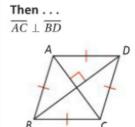
18. $\overline{AE}\cong \overline{EC}$, $\overline{BE}\cong \overline{ED}$



opposite sides is parallel and ≅.

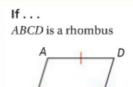
Yes; diagonals bisect each other.

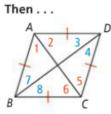

6-4 Properties of Rhombuses, Rectangle, and Squares **Take notes on your graphic organizer!**



Theorem

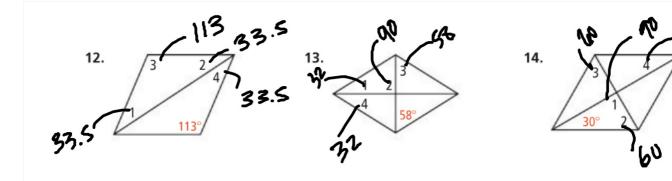
If a parallelogram is a rhombus, then its diagonals are perpendicular.





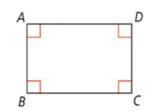
Theorem 6-14

Theorem

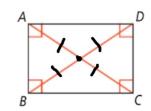

If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles.

 $\begin{array}{c|cccc}
\hline
3 & & \angle 1 \cong \angle 2 \\
& \angle 3 \cong \angle 4 \\
& \angle 5 \cong \angle 6 \\
& \angle 7 \cong \angle 8
\end{array}$

You will prove Theorem 6-14 in Exercise 45.



Theorem 6-15


If a parallelogram is a rectangle, then its diagonals are congruent. If . . .

ABCD is a rectangle

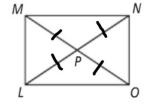
Then . . .

 $\overline{AC} \cong \overline{BD}$

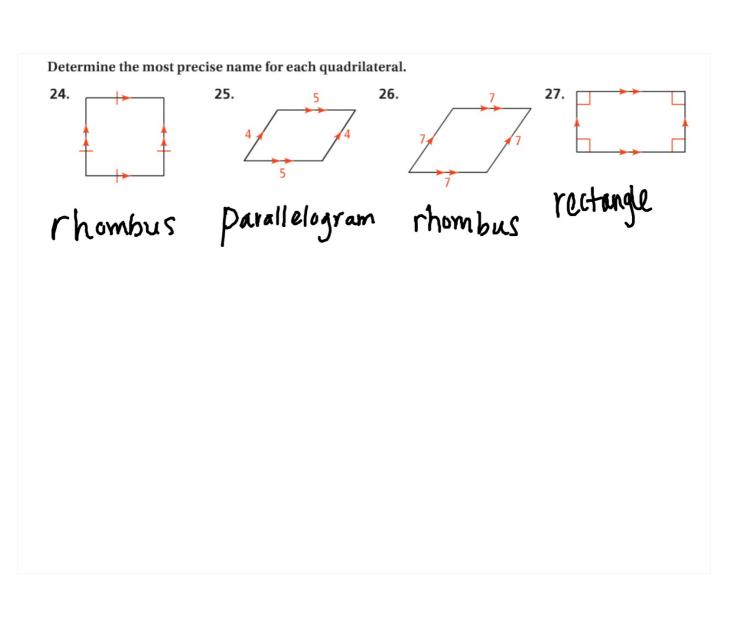
You will prove Theorem 6-15 in Exercise 41.

Problem 3 Finding Diagonal Length

Multiple Choice In rectangle RSBF, SF = 2x + 15 and RB = 5x - 12. What is the length of a diagonal?


Think

2x+15=5x-12

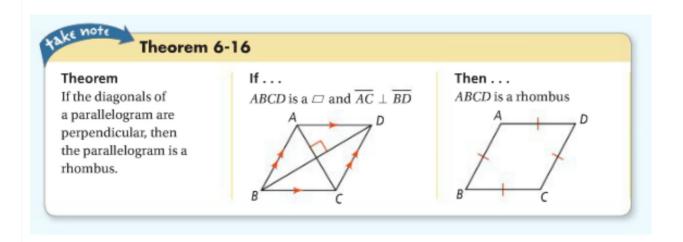


Got It? 3. a. If LN = 4x - 17 and MO = 2x + 13, what are the lengths of the diagonals of rectangle LMNO?

b. Reasoning What type of triangle is $\triangle PMN$? Explain.

$$4x-17=2x+13$$

 $2x=30$
 $x=15$
 $2(15)+13=43$

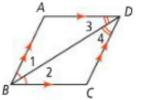

List the quadrilaterals that have the given property. Choose among parallelogram, rhombus, rectangle, and square.

- 28. All sides are ≅. Square + v hombus
- **30.** Opposite sides are ||. A ⊥ ⊥
- 32. All & are right &. rectangle 7 square
- **34.** Diagonals bisect each other. $A \cup A$
- 36. Diagonals are ⊥. Square, rhombus

List the quadrilaterals that have the given property. Choose among parallelogram, rhombus, rectangle, and square.

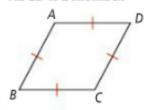
- **29.** Opposite sides are \cong . $A[\{\}]$
- **31.** Opposite \triangle are \cong .
- **33.** Consecutive △ are supplementary. All
- 35. Diagonals are =. 1ectangle Square
- 37. Each diagonal bisects opposite △.
 Square + rhombus

6-5 Conditions for Rhombuses, Rectangles. and Squares



ake note

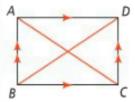
Theorem 6-17


Theorem

If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a rhombus. If . . . ABCD is a \square , $\angle 1 \cong \angle 2$, and $\angle 3 \cong \angle 4$

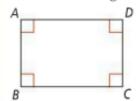
Then . . .

ABCD is a rhombus

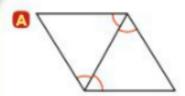

You will prove Theorem 6-17 in Exercise 23.

Theorem 6-18

Theorem


If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle. If . . .

ABCD is a \square , and $\overline{AC} \cong \overline{BD}$

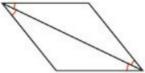

Then . . .

ABCD is a rectangle

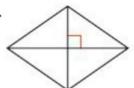
You will prove Theorem 6-18 in Exercise 24.

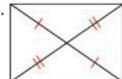
Can you conclude that the parallelogram is a rhombus, a rectangle, or a square? Explain.

rhombus



Square

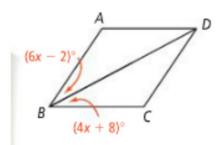

e Can you conclude that the parallelogram is a rhombus, a rectangle, or a square? Explain.


Q '

9.

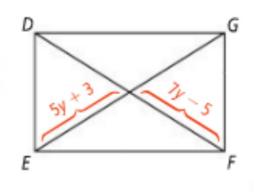
10.

Thombus


rhombus

NO parallelogram

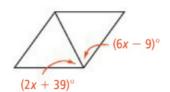
Problem 2 Using Properties of Special Parallelograms


Algebra For what value of x is $\Box ABCD$ a rhombus?

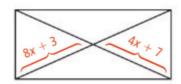
Got It? 2. For what value of y is $\square DEFG$ a rectangle?

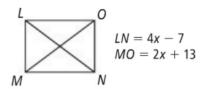
$$5y+3=7y-5$$

-2y=-8
 $y=4$



For what value of x is the figure the given special parallelogram?




See Problem 2.

11. rhombus

12. rectangle

$$x=12$$

Homework:

WB 6-4 # 1-17 odds,20-23 WB 6-5 #1-10,13-16 p/43