6.3 Class Notes

Double angle formulas (note: each of these is easy to derive from the sum formulas letting both $A=\theta$ and $B=\theta$)

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$ $\sin 2\theta = 2\cos \theta \sin \theta$

Half-angle formulas

 $\tan\frac{\theta}{2} = \frac{\sin\theta}{1+\cos\theta} or \frac{1-\cos\theta}{\sin\theta}$ $\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$ $\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$

Let us derive the formula for the $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$.

 $\cos 2\theta = \cos (\theta + \theta) = (\cos \theta)(\cos \theta) - (\sin \theta)(\sin \theta)$ using the sum of two angles formula for $\cos (A + B)$ and letting $A=B=\theta$.

 $=\cos^2\theta - \sin^2\theta$

We can derive two more formulas for $\cos 2\theta$ by manipulating the Pythagorean Identity: $\cos^2\theta + \sin^2\theta = 1$

Solve this for $\cos^2 \theta$ and you have $\cos^2 \theta = 1 - \sin^2 \theta$. Now plug in to the double angle formula:

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = (1 - \sin^2 \theta) - \sin^2 \theta = 1 - 2 \sin^2 \theta$

Similarly, you can show that $\cos 2\theta = 2 \cos^2 \theta - 1$.

EXAMPLES:

1) Given
$$\cos \theta = \frac{2}{\sqrt{5}}, \frac{3\pi}{2} < \theta < 2\pi$$
, use a double angle formula to find sin 2 θ .

2) Given $\sin \theta = -\frac{\sqrt{3}}{3}$, $\pi < \theta < \frac{3\pi}{2}$, use a double angle formula to find $\cos 2\theta$.

3) Given $\cos \theta = \frac{3}{\sqrt{10}}$, $0 < \theta < \frac{\pi}{2}$, use a double angle formula to find tan 2 θ .

IDENTITIES

1) Select the formula for $\cos(x + y)$.

2) Select the formula for $\tan 2\theta$.

Half Angle Formulas

These can be tricky. You need to remember that the + or – in the formula depends upon the quadrant in which $\theta/2$ lies (not θ) along with the particular trig function you are evaluating.

EXAMPLES

1) Given $\cos \theta = -3/5$ and $\pi < \theta < 3\pi/2$, find the exact value of $\tan \theta/2$.

2) Use a half-angle formula to find the exact value of sin $(21\pi/8)$.

Steps to solve these type problems:

1) Simplify the angle by subtracting off full rotations.

- 2) Determine the quadrant for θ/2.
 3) Double θ/2. This is θ.
- 3) Double $\theta/2$.
- 4) Find $\cos \theta$.
- 5) Plug in to the correct formula (look back to #2 to decide whether to use + or -)

6) Simplify. Please note: in these problems you will have trouble getting the correct

answer unless you use rationalized numbers such as $\sqrt{2}/2$.

3) Use a half-angle formula to find the exact value of $\cos(-29\pi/12)$.

4) Use a half-angle formula to find the exact value of sin (- $\pi/12$).

4) Complete the following identity:
$$1 + \tan^2 \frac{\theta}{2}$$

A) $-\csc^2 \frac{\theta}{2}$ B) $\sec^2 \frac{\theta}{2}$ C) $\csc^2 \frac{\theta}{2}$ D) $-\sec^2 \frac{\theta}{2}$