6.3 Class Notes

Double angle formulas (note: each of these is easy to derive from the sum formulas letting both $\mathrm{A}=\theta$ and $\mathrm{B}=\theta$) $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \quad \sin 2 \theta=2 \cos \theta \sin \theta \quad \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

Half-angle formulas

$\cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}}$
$\sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}$
$\tan \frac{\theta}{2}=\frac{\sin \theta}{1+\cos \theta}$ or $\frac{1-\cos \theta}{\sin \theta}$

Let us derive the formula for the $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$.

$$
\begin{aligned}
\cos 2 \theta=\cos (\theta+\theta) & =(\cos \theta)(\cos \theta)-(\sin \theta)(\sin \theta) \quad \begin{array}{l}
\text { using the sum of two angles formula for } \\
\text { cos }(A+B) \text { and letting } A=B=\theta .
\end{array} \\
& =\cos ^{2} \theta-\sin ^{2} \theta
\end{aligned}
$$

We can derive two more formulas for $\cos 2 \theta$ by manipulating the Pythagorean Identity: $\cos ^{2} \theta+\sin ^{2} \theta=1$

Solve this for $\cos ^{2} \theta$ and you have $\cos ^{2} \theta=1-\sin ^{2} \theta$. Now plug in to the double angle formula:
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=\left(1-\sin ^{2} \theta\right)-\sin ^{2} \theta=1-2 \sin ^{2} \theta$
Similarly, you can show that $\cos 2 \theta=2 \cos ^{2} \theta-1$.

EXAMPLES:

1) Given $\cos \theta=\frac{2}{\sqrt{5}}, \frac{3 \pi}{2}<\theta<2 \pi$, use a double angle formula to find $\sin 2 \theta$.
2) Given $\sin \theta=-\frac{\sqrt{3}}{3}, \pi<\theta<\frac{3 \pi}{2}$, use a double angle formula to find $\cos 2 \theta$.
3) Given $\cos \theta=\frac{3}{\sqrt{10}}, 0<\theta<\frac{\pi}{2}$, use a double angle formula to find $\tan 2 \theta$.

IDENTITIES

1) Select the formula for $\cos (x+y)$.
2) Select the formula for $\tan 2 \theta$.

Half Angle Formulas

These can be tricky. You need to remember that the + or - in the formula depends upon the quadrant in which $\theta / 2$ lies (not θ) along with the particular trig function you are evaluating.

EXAMPLES

1) Given $\cos \theta=-3 / 5$ and $\pi<\theta<3 \pi / 2$, find the exact value of $\tan \theta / 2$.
2) Use a half-angle formula to find the exact value of $\sin (21 \pi / 8)$.
Steps to solve these type problems:
3) Simplify the angle by subtracting off full rotations.
4) Determine the quadrant for $\theta / 2$.
5) Double $\theta / 2$. This is θ.
6) Find $\cos \theta$.
7) Plug in to the correct formula (look back to \#2 to decide whether to use + or -)
(6) Simplify. Please note: in these problems you will have trouble getting the correct
answer unless you use rationalized numbers such as $\sqrt{2} / 2$.
8) Use a half-angle formula to find the exact value of $\cos (-29 \pi / 12)$.
9) Use a half-angle formula to find the exact value of $\sin (-\pi / 12)$.
10) Complete the following identity: $1+\tan ^{2} \frac{\theta}{2}$
A) $-\csc ^{2} \frac{\theta}{2}$
B) $\sec ^{2} \frac{\theta}{2}$
C) $\csc ^{2} \frac{\theta}{2}$
D) $-\sec ^{2} \frac{\theta}{2}$
