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Abstract. Discriminative Correlation Filters (DCF) have demonstrated
excellent performance for visual object tracking. The key to their success
is the ability to efficiently exploit available negative data by including
all shifted versions of a training sample. However, the underlying DCF
formulation is restricted to single-resolution feature maps, significantly
limiting its potential. In this paper, we go beyond the conventional DCF
framework and introduce a novel formulation for training continuous
convolution filters. We employ an implicit interpolation model to pose
the learning problem in the continuous spatial domain. Our proposed
formulation enables efficient integration of multi-resolution deep feature
maps, leading to superior results on three object tracking benchmarks:
OTB-2015 (+5.1% in mean OP), Temple-Color (+4.6% in mean OP),
and VOT2015 (20% relative reduction in failure rate). Additionally, our
approach is capable of sub-pixel localization, crucial for the task of ac-
curate feature point tracking. We also demonstrate the effectiveness of
our learning formulation in extensive feature point tracking experiments.
Code and supplementary material are available at http://www.cvl.isy.
liu.se/research/objrec/visualtracking/conttrack/index.html.

1 Introduction

Visual tracking is the task of estimating the trajectory of a target in a video.
It is one of the fundamental problems in computer vision. Tracking of objects
or feature points has numerous applications in robotics, structure-from-motion,
and visual surveillance. In recent years, Discriminative Correlation Filter (DCF)
based approaches have shown outstanding results on object tracking benchmarks
[30,46]. DCF methods train a correlation filter for the task of predicting the
target classification scores. Unlike other methods, the DCF efficiently utilize all
spatial shifts of the training samples by exploiting the discrete Fourier transform.

Deep convolutional neural networks (CNNs) have shown impressive perfor-
mance for many tasks, and are therefore of interest for DCF-based tracking. A
CNN consists of several layers of convolution, normalization and pooling opera-
tions. Recently, activations from the last convolutional layers have been success-
fully employed for image classification. Features from these deep convolutional
layers are discriminative while preserving spatial and structural information.
Surprisingly, in the context of tracking, recent DCF-based methods [10,35] have
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Fig. 1. Visualization of our continuous convolution operator, applied to a multi-
resolution deep feature map. The feature map (left) consists of the input RGB patch
along with the first and last convolutional layer of a pre-trained deep network. The sec-
ond column visualizes the continuous convolution filters learned by our framework. The
resulting continuous convolution outputs for each layer (third column) are combined
into the final continuous confidence function (right) of the target (green box).

demonstrated the importance of shallow convolutional layers. These layers pro-
vide higher spatial resolution, which is crucial for accurate target localization.
However, fusing multiple layers in a DCF framework is still an open problem.

The conventional DCF formulation is limited to a single-resolution feature
map. Therefore, all feature channels must have the same spatial resolution, as in
e.g. the HOG descriptor. This limitation prohibits joint fusion of multiple con-
volutional layers with different spatial resolutions. A straightforward strategy to
counter this restriction is to explicitly resample all feature channels to the same
common resolution. However, such a resampling strategy is both cumbersome,
adds redundant data and introduces artifacts. Instead, a principled approach for
integrating multi-resolution feature maps in the learning formulation is preferred.

In this work, we propose a novel formulation for learning a convolution opera-
tor in the continuous spatial domain. The proposed learning formulation employs
an implicit interpolation model of the training samples. Our approach learns a
set of convolution filters to produce a continuous-domain confidence map of the
target. This enables an elegant fusion of multi-resolution feature maps in a joint
learning formulation. Figure 1 shows a visualization of our continuous convolu-
tion operator, when integrating multi-resolution deep feature maps. We validate
the effectiveness of our approach on three object tracking benchmarks: OTB-
2015 [46], Temple-Color [32] and VOT2015 [29]. On the challenging OTB-2015
with 100 videos, our object tracking framework improves the state-of-the-art
from 77.3% to 82.4% in mean overlap precision.

In addition to multi-resolution fusion, our continuous domain learning for-
mulation enables accurate sub-pixel localization. This is achieved by labeling the
training samples with sub-pixel precise continuous confidence maps. Our formu-
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lation is therefore also suitable for accurate feature point tracking. Further, our
learning-based approach is discriminative and does not require explicit interpo-
lation of the image to achieve sub-pixel accuracy. We demonstrate the accuracy
and robustness of our approach by performing extensive feature point tracking
experiments on the popular MPI Sintel dataset [7].

2 Related Work

Discriminative Correlation Filters (DCF) [5,11,24] have shown promising results
for object tracking. These methods exploit the properties of circular correlation
for training a regressor in a sliding-window fashion. Initially, the DCF approaches
[5,23] were restricted to a single feature channel. The DCF framework was later
extended to multi-channel feature maps [4,13,17]. The multi-channel DCF allows
high-dimensional features, such as HOG and Color Names, to be incorporated for
improved tracking. In addition to the incorporation of multi-channel features,
the DCF framework has been significantly improved lately by, e.g., including
scale estimation [9,31], non-linear kernels [23,24], a long-term memory [36], and
by alleviating the periodic effects of circular convolution [11,15,18].

With the advent of deep CNNs, fully connected layers of the network have
been commonly employed for image representation [38,43]. Recently, the last
(deep) convolutional layers were shown to be more beneficial for image classifi-
cation [8,33]. On the other hand, the first (shallow) convolutional layer was shown
to be more suitable for visual tracking, compared to the deeper layers [10]. The
deep convolutional layers are discriminative and possess high-level visual infor-
mation. In contrast, the shallow layers contain low-level features at high spatial
resolution, beneficial for localization. Ma et al. [35] employed multiple convolu-
tional layers in a hierarchical ensemble of independent DCF trackers. Instead,
we propose a novel continuous formulation to fuse multiple convolutional layers
with different spatial resolutions in a joint learning framework.

Unlike object tracking, feature point tracking is the task of accurately es-
timating the motion of distinctive key-points. It is a core component in many
vision systems [1,27,39,48]. Most feature point tracking methods are derived from
the classic Kanade-Lucas-Tomasi (KLT) tracker [34,44]. The KLT tracker is a
generative method, that is based on minimizing the squared sum of differences
between two image patches. In the last decades, significant effort has been spent
on improving the KLT tracker [2,16]. In contrast, we propose a discriminative
learning based approach for feature point tracking.
Our approach: Our main contribution is a theoretical framework for learn-
ing discriminative convolution operators in the continuous spatial domain. Our
formulation has two major advantages compared to the conventional DCF frame-
work. Firstly, it allows a natural integration of multi-resolution feature maps, e.g.
combinations of convolutional layers or multi-resolution HOG and color features.
This property is especially desirable for object tracking, detection and action
recognition applications. Secondly, our continuous formulation enables accurate
sub-pixel localization, crucial in many feature point tracking problems.
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3 Learning Continuous Convolution Operators

In this section, we present a theoretical framework for learning continuous con-
volution operators. Our formulation is generic and can be applied for supervised
learning tasks, such as visual tracking and detection.

3.1 Preliminaries and Notation

In this paper, we utilize basic concepts and results in continuous Fourier anal-
ysis. For clarity, we first formulate our learning method for data defined in a
one-dimensional domain, i.e. for functions of a single spatial variable. We then
describe the generalization to higher dimensions, including images, in section 3.5.

We consider the space L2(T ) of complex-valued functions g : R→ C that are
periodic with period T > 0 and square Lebesgue integrable. The space L2(T ) is
a Hilbert space equipped with an inner product 〈·, ·〉. For functions g, h ∈ L2(T ),

〈g, h〉 =
1

T

∫ T

0

g(t)h(t) dt , g ∗ h(t) =
1

T

∫ T

0

g(t− s)h(s) ds . (1)

Here, the bar denotes complex conjugation. In (1) we have also defined the
circular convolution operation ∗ : L2(T )× L2(T )→ L2(T ).

In our derivations, we use the complex exponential functions ek(t) = ei
2π
T kt

since they are eigenfunctions of the convolution operation (1). The set {ek}∞−∞
further forms an orthonormal basis for L2(T ). We define the Fourier coefficients
of g ∈ L2(T ) as ĝ[k] = 〈g, ek〉. For clarity, we use square brackets for functions
with discrete domains. Any g ∈ L2(T ) can be expressed in terms of its Fourier
series g =

∑∞
−∞ ĝ[k]ek. The Fourier coefficients satisfy Parseval’s formula ‖g‖2 =

‖ĝ‖2`2 , where ‖g‖2 = 〈g, g〉 and ‖ĝ‖2`2 =
∑∞
−∞ |ĝ[k]|2 is the squared `2-norm.

Further, the Fourier coefficients satisfy the two convolution properties ĝ ∗ h = ĝĥ

and ĝh = ĝ ∗ ĥ, where ĝ ∗ ĥ[k] :=
∑∞
l=−∞ ĝ[k − l]ĥ[l].

3.2 Our Continuous Learning Formulation

Here we formulate our novel learning approach. The aim is to train a continu-
ous convolution operator based on training samples xj . The samples consist of
feature maps extracted from image patches. Each sample xj contains D feature
channels x1j , . . . , x

D
j , extracted from the same image patch. Conventional DCF

formulations [11,17,24] assume the feature channels to have the same spatial
resolution, i.e. have the same number of spatial sample points. Unlike previ-
ous works, we eliminate this restriction in our formulation and let Nd denote
the number of spatial samples in xdj . In our formulation, the feature channel

xdj ∈ RNd is viewed as a function xdj [n] indexed by the discrete spatial variable

n ∈ {0, . . . , Nd − 1}. The sample space is expressed as X = RN1 × . . .× RND .
To pose the learning problem in the continuous spatial domain, we introduce

an implicit interpolation model of the training samples. We regard the continuous
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interval [0, T ) ⊂ R to be the spatial support of the feature map. Here, the scalar
T represents the size of the support region. In practice, however, T is arbitrary
since it represents the scaling of the coordinate system. For each feature channel
d, we define the interpolation operator Jd : RNd → L2(T ) of the form,

Jd
{
xd
}

(t) =

Nd−1∑
n=0

xd[n]bd

(
t− T

Nd
n

)
. (2)

The interpolated sample Jd
{
xd
}

(t) is constructed as a superposition of shifted
versions of an interpolation function bd ∈ L2(T ). In (2), the feature values xd[n]
act as weights for each shifted function. Similar to the periodic assumption in
the conventional discrete DCF formulation, a periodic extension of the feature
map is also performed here in (2).

As discussed earlier, our objective is to learn a linear convolution operator
Sf : X → L2(T ). This operator maps a sample x ∈ X to a target confidence
function s(t) = Sf{x}(t), defined on the continuous interval [0, T ). Here, s(t) ∈ R
is the confidence score of the target at the location t ∈ [0, T ) in the image.
Similar to other discriminative methods, the target is localized by maximizing
the confidence scores in an image region. The key difference in our formulation
is that the confidences are defined on a continuous spatial domain. Therefore,
our formulation can be used to localize the target with higher accuracy.

In our continuous formulation, the operator Sf is parametrized by a set
of convolution filters f = (f1, . . . , fD) ∈ L2(T )D. Here, fd ∈ L2(T ) is the
continuous filter for feature channel d. We define the convolution operator as,

Sf{x} =

D∑
d=1

fd ∗ Jd
{
xd
}
, x ∈ X . (3)

Here, each feature channel is first interpolated using (2) and then convolved
with its corresponding filter. Note that the convolutions are performed in the
continuous domain, as defined in (1). In the last step, the convolution responses
from all filters are summed to produce the final confidence function.

In the standard DCF, each training sample is labeled by a discrete function
that represents the desired convolution output. In contrast, our samples xj ∈ X
are labeled by confidence functions yj ∈ L2(T ), defined in the continuous spatial
domain. Here, yj is the desired output of the convolution operator Sf{xj} applied
to the training sample xj . This enables sub-pixel accurate information to be
incorporated in the learning. The filter f is trained, given a set of m training
sample pairs {(xj , yj)}m1 ⊂ X × L2(T ), by minimizing the functional,

E(f) =

m∑
j=1

αj ‖Sf{xj} − yj‖2 +

D∑
d=1

∥∥wfd∥∥2 . (4)

Here, the weights αj ≥ 0 control the impact of each training sample. We ad-
ditionally include a spatial regularization term, similar to [11], determined by
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the penalty function w. This regularization enables the filter to be learned on
arbitrarily large image regions by controlling the spatial extent of the filter f .
Spatial regions typically corresponding to background features are assigned a
large penalty in w, while the target region has small penalty values. Thus, w en-
codes the prior reliability of features depending on their spatial location. Unlike
[11], the penalty function w is defined on the whole continuous interval [0, T ) and
periodically extended to w ∈ L2(T ). Hence,

∥∥wfd∥∥ <∞ is required in (4). This
is implied by our later assumption of w having finitely many non-zero Fourier
coefficients ŵ[k]. Next, we derive the procedure to train the continuous filter f ,
using the proposed formulation (4).

3.3 Training the Continuous Filter

To train the filter f , we minimize the functional (4) in the Fourier domain. By
using results from Fourier analysis it can be shown1 that the Fourier coefficients

of the interpolated feature map are given by Ĵd
{
xd
}

[k] = Xd[k]b̂d[k]. Here,

Xd[k] :=
∑Nd−1
n=0 xd[n]e

−i 2π
Nd

nk
, k ∈ Z is the discrete Fourier transform (DFT)

of xd. By using linearity and the convolution property in section 3.1, the Fourier
coefficients of the output confidence function (3) are derived as

Ŝf{x}[k] =

D∑
d=1

f̂d[k]Xd[k]b̂d[k] , k ∈ Z . (5)

By applying Parseval’s formula to (4) and using (5), we obtain

E(f) =

m∑
j=1

αj

∥∥∥∥∥
D∑
d=1

f̂dXd
j b̂d − ŷj

∥∥∥∥∥
2

`2

+
D∑
d=1

∥∥∥ŵ ∗ f̂d∥∥∥2
`2
. (6)

Hence, the functional E(f) can equivalently be minimized with respect to the

Fourier coefficients f̂d[k] for each filter fd. We exploit the Fourier domain for-
mulation (6) to minimize the original loss (4).

For practical purposes, the filter f needs to be represented by a finite set
of parameters. One approach is to employ a parametric model to represent an
infinite number of coefficients. In this work, we instead obtain a finite representa-
tion by minimizing (6) over the finite–dimensional subspace V = span{ek}K1

−K1
×

. . .× span{ek}KD−KD ⊂ L
2(T )D. That is, we minimize (6) with respect to the co-

efficients {f̂d[k]}Kd−Kd , while assuming f̂d[k] = 0 for |k| > Kd. In practice, Kd

determines the number of filter coefficients f̂d[k] to be computed for feature
channel d during learning. Increasing Kd leads to a better estimate of the filter
fd at the cost of increased computations and memory consumption. In our ex-
periments, we set Kd =

⌊
Nd
2

⌋
such that the number of stored filter coefficients

for channel d equals the spatial resolution Nd of the training sample xd.

1 See the supplementary material for a detailed derivation.
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To derive the solution to the minimization problem (6) subject to f ∈ V , we

introduce the vector of non-zero Fourier coefficients f̂d = (f̂d[−Kd] · · · f̂d[Kd])
T ∈

C2Kd+1 and define the coefficient vector f̂ =
[
(f̂1)T · · · (f̂D)T

]T
. Further, we de-

fine ŷj = (ŷj [−K] · · · ŷj [K])T be the vectorization of the K := maxdKd first
Fourier coefficients of yj . To simplify the regularization term in (6), we let L be
the number of non-zero coefficients ŵ[k], such that ŵ[k] = 0 for all |k| > L. We
further define Wd to be the (2Kd + 2L+ 1)× (2Kd + 1) Toeplitz matrix corre-

sponding to the convolution operator Wdf̂
d = vec ŵ ∗ f̂d. Finally, let W be the

block-diagonal matrix W = W1 ⊕ · · · ⊕WD. The minimization of the functional
(6) subject to f ∈ V is equivalent to the following least squares problem,

EV (f̂) =

m∑
j=1

αj

∥∥∥Aj f̂ − ŷj

∥∥∥2
2

+
∥∥∥W f̂

∥∥∥2
2
. (7)

Here, the matrix Aj = [A1
j · · ·ADj ] has 2K + 1 rows and contains one diagonal

block Adj per feature channel d with 2Kd + 1 columns containing the elements

{Xd
j [k]b̂d[k]}Kd−Kd . In (7), ‖ · ‖2 denotes the standard Euclidian norm in CM .

To obtain a simple expression of the normal equations, we define the sample
matrix A = [AT

1 · · ·AT
m]T, the diagonal weight matrix Γ = α1I ⊕ · · · ⊕ αmI and

the label vector ŷ = [ŷT
1 · · · ŷT

m]T. The minimizer of (7) is found by solving the
normal equations, (

AHΓA+WHW
)
f̂ = AHΓ ŷ . (8)

Here, H denotes the conjugate-transpose of a matrix. Note that (8) forms a sparse
linear equation system if w has a small number of non-zero Fourier coefficients
ŵ[k]. In our object tracking framework, presented in section 4.2, we employ
the Conjugate Gradient method to iteratively solve (8). For our feature point
tracking approach, presented in section 4.3, we use a single-channel feature map
and a constant penalty function w for improved efficiency. This results in a
diagonal system (8), which can be efficiently solved by a direct computation.

3.4 Desired Confidence and Interpolation Function

Here, we describe the choice of the desired convolution output yj and the in-
terpolation function bd. We construct both yj and bd by periodically repeating
functions defined on the real line. In general, the T -periodic repetition of a
function g is defined as gT (t) =

∑∞
−∞ g(t − nT ). In the derived Fourier do-

main formulation (6), the functions yj and bd are represented by their respective
Fourier coefficients. The Fourier coefficients of a periodic repetition gT can be
retrieved from the continuous Fourier transform ĝ(ξ) of g(t) as ĝT [k] = 1

T ĝ( kT ).2

We use this property to compute the Fourier coefficients of yj and bd.

To construct the desired convolution output yj , we let uj ∈ [0, T ) denote the
estimated location of the target object or feature point in sample xj . We define

yj as the periodic repetition of the Gaussian function exp
(
− (t−uj)2

2σ2

)
centered
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at uj . This provides the following expression for the Fourier coefficients,

ŷj [k] =

√
2πσ2

T
exp

(
−2σ2

(
πk

T

)2

− i2π
T
ujk

)
. (9)

The variance σ2 is set to a small value to obtain a sharp peak. Further, this
ensures a negligible spatial aliasing. In our work, the functions bd are constructed
based on the cubic spline kernel b(t). The interpolation function bd is set to the
periodic repetition of a scaled and shifted version of the kernel b

(
Nd
T

(
t− T

2Nd

))
, to

preserve the spatial arrangement of the feature pyramid. The Fourier coefficients
of bd are then obtained as b̂d[k] = 1

Nd
exp

(
− i πNd k

)
b̂
(
k
Nd

)
.2

3.5 Generalization to Higher Dimensions

The proposed formulation can be extended to domains of arbitrary number
of dimensions. For our tracking applications we specifically consider the two-
dimensional case, but higher-dimensional spaces can be treated similarly. For
images, we use the space L2(T1, T2) of square-integrable periodic functions of two
variables g(t1, t2). The complex exponentials are then given by ek1,k2(t1, t2) =

ei
2π
T1
k1t1ei

2π
T2
k2t2 . For the desired convolution output yj , we employ a 2-dimensional

Gaussian function. Further, the interpolation functions are obtained as a sep-
arable combination of the cubic spline kernel, i.e. b(t1, t2) = b(t1)b(t2). The
derivations presented in section 3.3 also hold for the higher dimensional cases.

4 Our Tracking Frameworks

We apply our continuous learning formulation for two problems: visual object
tracking and feature point tracking. We first present the localization procedure,
which is based on maximizing the continuous confidence function. This is shared
for both the object and feature point tracking frameworks.

4.1 Localization Step

Here, the aim is to localize the tracked target or feature point using the learned
filter f . This is performed by first extracting a feature map x ∈ X from the region
of interest in an image. The Fourier coefficients of the confidence score function
s = Sf{x} are then calculated using (5). We employ a two-step approach for
maximizing the score s(t) on the interval t ∈ [0, T ). To find a rough initial
estimate, we first perform a grid search, where the score function is evaluated at
the discrete locations s

(
Tn

2K+1

)
for n = 0, . . . , 2K. This is efficiently implemented

as a scaled inverse DFT of the non-zero Fourier coefficients ŝ[k], k = −K, . . . ,K.
The maximizer obtained in the grid search is then used as the initialization for
an iterative optimization of the Fourier series expansion s(t) =

∑K
−K ŝ[k]ek(t).

We employ the standard Newton’s method for this purpose. The gradient and
Hessian are computed by analytic differentiation of s(t).

2 Further details are given in the supplementary material.
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4.2 Object Tracking Framework

We first present the object tracking framework based on our continuous learning
formulation introduced in section 3.2. We employ multi-resolution feature maps
xj extracted from a pre-trained deep network.3 Similar to DCF based trackers
[11,13,24], we extract a single training sample xj in each frame. The sample is
extracted from an image region centered at the target location and the region
size is set to 52 times the area of the target box. Its corresponding importance
weight is set to αj =

αj−1

1−λ using a learning rate parameter λ = 0.0075. The
weights are then normalized such that

∑
j αj = 1. We store a maximum of

m = 400 samples by replacing the sample with the smallest weight. The Fourier
coefficients ŵ of the penalty function w are computed as described in [11]. To
detect the target, we perform a multi-scale search strategy [11,31] with 5 scales
and a relative scale factor 1.02. The extracted confidences are maximized using
the grid search followed by five Newton iterations, as described in section 4.1.

The training of our continuous convolution filter f is performed by iteratively
solving the normal equations (8). The work of [11] employed the Gauss-Seidel
method for this purpose. However, this approach suffers from a quadratic com-
plexity O(D2) in the number of feature channels D. Instead, we employ the
Conjugate Gradient (CG) [37] method due to its computational efficiency. Our
numerical optimization scales linearly O(D) and is therefore especially suitable
for high-dimensional deep features. In the first frame, we use 100 iterations to
find an initial estimate of the filter coefficients f̂ . Subsequently, 5 iterations per
frame are sufficient by initializing CG with the current filter.2

4.3 Feature Point Tracking Framework

Here, we describe the feature point tracking framework based on our learning
formulation. For computational efficiency, we assume a single-channel feature
map (D = 1), e.g. a grayscale image, and a constant penalty function w(t) = β.
Under these assumptions, the normal equations (8) form a diagonal system of
equations. The filter coefficients are directly obtained as,

f̂ [k] =

∑M
j=1 αjXj [k]b̂[k]ŷj [k]∑M

j=1 αj
∣∣Xj [k]b̂[k]

∣∣2 + β2
, k = −K, . . . ,K . (10)

Here, we have dropped the feature dimension index for the sake of clarity. In
this case (single feature channel and constant penalty function), the training
equation (10) resembles the original MOSSE filter [5]. However, our continuous
formulation has several advantages compared to the original MOSSE. Firstly, our
formulation employs an implicit interpolation model, given by b̂. Secondly, each
sample is labeled by a continuous-domain confidence yj , that enables sub-pixel
information to be incorporated in the learning. Thirdly, our convolution operator
outputs continuous confidence functions, allowing accurate sub-pixel localization
of the feature point. In our experiments, we show that the advantages of our
continuous formulation are crucial for accurate feature point tracking.

3 We use imagenet-vgg-m-2048, available at: http://www.vlfeat.org/matconvnet/.

http://www.vlfeat.org/matconvnet/
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Table 1. A baseline comparison when using different combinations of convolutional
layers in our object tracking framework. We report the mean OP (%) and AUC (%) on
the OTB-2015 dataset. The best results are obtained when combining all three layers
in our framework. The results clearly show the importance of multi-resolution deep
feature maps for improved object tracking performance.

Layer 0 Layer 1 Layer 5 Layers 0, 1 Layers 0, 5 Layers 1, 5 Layers 0, 1, 5

Mean OP 58.8 78.0 60.0 77.8 70.7 81.8 82.4
AUC 49.9 65.8 51.1 65.7 59.0 67.8 68.2

5 Experiments

We validate our learning framework for two applications: tracking of objects and
feature points. For object tracking, we perform comprehensive experiments on
three datasets: OTB-2015 [46], Temple-Color [32], and VOT2015 [29]. For feature
point tracking, we perform extensive experiments on the MPI Sintel dataset [7].

5.1 Baseline Comparison

We first evaluate the impact of fusing multiple convolutional layers from the deep
network in our object tracking framework. Table 1 shows the tracking results,
in mean overlap precision (OP) and area-under-the-curve (AUC), on the OTB-
2015 dataset. OP is defined as the percentage of frames in a video where the
intersection-over-union overlap exceeds a threshold of 0.5. AUC is computed
from the success plot, where the mean OP over all videos is plotted over the
range of thresholds [0, 1]. For details about the OTB protocol, we refer to [45].

In our experiments, we investigate the impact of the input RGB image layer
(layer 0), the first convolutional layer (layer 1) and the last convolutional layer
(layer 5). No significant gain in performance was observed when adding inter-
mediate layers. The shallow layer (layer 1) alone provides superior performance
compared to using only the deep convolutional layer (layer 5). Fusing the shal-
low and deep layers provides a large improvement. The best results are obtained
when combining all three convolutional layers in our learning framework. We
employ this three-layer combination for all further object tracking experiments.

We also compare our continuous formulation with the discrete DCF for-
mulation by performing explicit resampling of the feature layers to a common
resolution. For a fair comparison, all shared parameters are left unchanged. The
layers (0, 1 and 5) are resampled with bicubic interpolation such that the data
size of the training samples is preserved. On OTB-2015, the discrete DCF with
resampling obtains an AUC score of 47.7%, compared to 68.2% for our continu-
ous formulation. This dramatic reduction in performance is largely attributed to
the reduced resolution in layer 1. To mitigate this effect, we also compare with
only resampling layers 0 and 5 to the resolution of layer 1. This improves the
result of the discrete DCF to 60.8% in AUC, but at the cost of a 5-fold increase
in data size. Our continuous formulation still outperforms the discrete DCF as
it avoids artifacts introduced by explicit resampling.
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Table 2. A Comparison with state-of-the-art methods on the OTB-2015 and Temple-
Color datasets. We report the mean OP (%) for the top 10 methods on each dataset.
Our approach outperforms DeepSRDCF by 5.1% and 5.0% respectively.

DSST SAMF TGPR MEEM LCT HCF Staple SRDCF SRDCFdecon DeepSRDCF C-COT

OTB-2015 60.6 64.7 54.0 63.4 70.1 65.5 69.9 72.9 76.7 77.3 82.4
Temple-Color 47.5 56.1 51.6 62.2 52.8 58.2 63.0 62.2 65.8 65.4 70.4
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Fig. 2. Success plots showing a comparison with state-of-the-art on the OTB-2015 (a)
and Temple-Color (b) datasets. Only the top 10 trackers are shown for clarity. Our
approach improves the state-of-the-art by a significant margin on both these datasets.

5.2 OTB-2015 Dataset

We validate our Continuous Convolution Operator Tracker (C-COT) in a com-
prehensive comparison with 20 state-of-the-art methods: ASLA [25], TLD [26],
Struck [21], LSHT [22], EDFT [14], DFT [41], CFLB [18], ACT [13], TGPR
[19], KCF [24], DSST [9], SAMF [31], MEEM [47], DAT [40], LCT [36], HCF
[35], Staple [3] and SRDCF [11]. We also compare with SRDCFdecon, which
integrates the adaptive decontamination of the training set [12] in SRDCF, and
DeepSRDCF [10] employing activations from the first convolutional layer.
State-of-the-art Comparison: Table 2 (first row) shows a comparison with
state-of-the-art methods on the OTB-2015 dataset.4 The results are reported
as mean OP over all the 100 videos. The HCF tracker, based on hierarchical
convolutional features, obtains a mean OP of 65.5%. The DeepSRDCF employs
the first convolutional layer, similar to our baseline “Layer 1” in table 1, and
obtains a mean OP of 77.3%. Our approach achieves the best results with a
mean OP of 82.4%, significantly outperforming DeepSRDCF by 5.1%.

Figure 2a shows the success plot on the OTB-2015 dataset. We report the
AUC score for each tracker in the legend. The DCF-based trackers HCF and
Staple obtain AUC scores of 56.6% and 58.4% respectively. Among the com-
pared methods, the SRDCF and its variants SRDCFdecon and DeepSRDCF

4 Detailed results are provided in the supplementary material.
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Fig. 3. An evaluation of the spatial (left) and temporal (right) robustness to initial-
izations on the OTB-2015 dataset. We compare the top 10 trackers. Our approach
demonstrates superior robustness compared to state-of-the-art methods.

provide the best results, all obtaining AUC scores above 60%. Overall, our tracker
achieves the best results, outperforming the second best method by 3.9%.
Robustness to Initialization: We evaluate the robustness to initializations
using the protocol provided by [46]. Each tracker is evaluated using two differ-
ent initialization strategies: spatial robustness (SRE) and temporal robustness
(TRE). The SRE criteria initializes the tracker with perturbed boxes, while the
TRE criteria starts the tracker at 20 frames. Figure 3 provides the SRE and TRE
success plots. Our approach obtains consistent improvements in both cases.

5.3 Temple-Color Dataset

Here, we evaluate our approach on the Temple-Color dataset [32] containing 128
videos. The second row of table 2 shows a comparison with state-of-the-art meth-
ods. The DeepSRDCF tracker provides a mean OP score of 65.4%. MEEM and
SRDCFdecon obtain mean OP scores of 62.2% and 65.8% respectively. Different
from these methods, our C-COT does not explicitly manage the training set to
counter occlusions and drift. Our approach still improves the start-of-the-art by
a significant margin, achieving a mean OP score of 70.4%. A further gain in
performance is expected by incorporating the unified learning framework [12] to
handle corrupted training samples. In the success plot in Figure 2b, our method
obtains an absolute gain of 3.8% in AUC compared to the previous best method.

5.4 VOT2015 Dataset

The VOT2015 dataset [29] consists of 60 challenging videos compiled from a
set of more than 300 videos. Here, the performance is measured both in terms
of accuracy (overlap with the ground-truth) and robustness (failure rate). In
VOT2015, a tracker is restarted in the case of a failure. We refer to [29] for details.
Table 3 shows the comparison of our approach with the top 10 participants in the
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Table 3. Comparison with state-of-the-art methods on the VOT2015 dataset. The
results are presented in terms of robustness and accuracy. Our approach provides im-
proved robustness with a significant reduction in failure rate.

S3Tracker RAJSSC Struck NSAMF SC-EBT sPST LDP SRDCF EBT DeepSRDCF C-COT

Robustness 1.77 1.63 1.26 1.29 1.86 1.48 1.84 1.24 1.02 1.05 0.82
Accuracy 0.52 0.57 0.47 0.53 0.55 0.55 0.51 0.56 0.47 0.56 0.54

challenge according to the VOT2016 rules [28]. Among the compared methods,
RAJSSC achieves favorable results in terms of accuracy, at the cost of a higher
failure rate. EBT achieves the best robustness among the compared methods.
Our approach improves the robustness with a 20% reduction in failure rate,
without any significant degradation in accuracy.

5.5 Feature Point Tracking

We validate our approach for robust and accurate feature point tracking. Here,
the task is to track distinctive local image regions. We perform experiments
on the MPI Sintel dataset [7], based on the 3D-animated movie “Sintel”. The
dataset consists of 23 sequences, featuring naturalistic and dynamic scenes with
realistic lighting and camera motion blur. The ground-truth dense optical flow
and occlusion maps are available for each frame. Evaluation is performed by
selecting approximately 2000 feature points in the first frame of each sequence.
We use the Good Features to Track (GFTT) [42] feature selector, but discard
points at motion boundaries due to their ambiguous motion. The ground-truth
tracks are then generated by integrating flow vectors over the sequence. The flow
vectors are obtained by a bilinear interpolation of the dense ground-truth flow.
We terminate the ground-truth tracks using the provided occlusion maps.

We compare our approach to MOSSE [5] and KLT [34,44]. The OpenCV im-
plementation of KLT, used in our experiments, employs a pyramidal search [6]
to accommodate for large translations. For a fair comparison, we adopt a simi-
lar pyramid approach for our method and MOSSE, by learning an independent
filter for each pyramid level. Further, we use the window size of 31 × 31 pixels
and 3 pyramid levels for all methods. For both our method and MOSSE we use
a learning rate of λ = 0.1 and set the regularization parameter to β = 10−4. For
the KLT we use the default settings in OpenCV. Unlike ours and the MOSSE
tracker, the KLT tracks feature points frame-to-frame without memorizing ear-
lier appearances. In addition to our standard tracker, we also evaluate a frame-
to-frame version (Ours-FF) of our method by setting the learning rate to λ = 1.

For quantitative comparisons, we use the endpoint error (EPE), defined as
the Euclidian distance between the tracked point and its corresponding ground-
truth location. Tracked points with an EPE smaller than 3 pixels are regarded as
inliers. Figure 4 (left) shows the distribution of EPE computed over all sequences
and tracked points. We also report the average inlier EPE for each method in the
legend. Our approach achieves superior accuracy, with an inlier error of 0.449
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Fig. 4. Feature point tracking results on the MPI Sintel dataset. We report the end-
point error (EPE) distribution (left) and precision plot (center) over all sequences and
points. In the legends, we display the average inlier EPE and the inlier ratio for the
error distribution and precision plot respectively. Our approach provides consistent im-
provements, both in terms of accuracy and robustness, compared to existing methods.
The example frame (right) from the Sintel dataset visualizes inlier trajectories obtained
by our approach (red) along with the ground-truth (green).

pixels. We also provide the precision plot (Figure 4, center), where the fraction
of points with an EPE smaller than a threshold is plotted. The legend shows the
inlier ratio for each method. Our tracker achieves superior robustness in compar-
ison to the KLT, with an inlier ratio of 0.886. Compared to MOSSE, our method
obtains significantly improved precision at sub-pixel thresholds (< 1 pixel). This
clearly demonstrates that our continuous formulation enables accurate sub-pixel
feature point tracking, while being robust. Unlike the frame-to-frame KLT, our
method provides a principled procedure for updating the tracking model, while
memorizing old samples. The experiments show that already our frame-to-frame
variant (Ours-FF) provides a spectacular improvement compared to the KLT.
Hence, our gained performance is due to both the model update and the pro-
posed continuous formulation. On a desktop machine, our Matlab code achieves
real-time tracking of 300 points at a single scale, utilizing only a single CPU.

6 Conclusions

We propose a generic framework for learning discriminative convolution opera-
tors in the continuous spatial domain. We validate our framework for two prob-
lems: object tracking and feature point tracking. Our formulation enables the
integration of multi-resolution feature maps. In addition, our approach is capable
of accurate sub-pixel localization. Experiments on three object tracking bench-
marks demonstrate that our approach achieves superior performance compared
to the state-of-the-art. Further, our method obtains substantially improved ac-
curacy and robustness for real-time feature point tracking.

Note that, in this work, we do not use any video data to learn an application
specific deep feature representation. This is expected to further improve the
performance of our object tracking framework. Another research direction is to
incorporate motion-based deep features into our framework, similar to [20].
Acknowledgments: This work has been supported by SSF (CUAS), VR (EMC2),
CENTAURO, the Wallenberg Autonomous Systems Program, NSC and Nvidia.
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