
Different Optimal Solutions in Shared Path Graphs

Kira Goldner 
Oberlin College 

Oberlin, OH 44074 
(610) 324-3931 

ksgoldner@gmail.com 
 
ABSTRACT 
We examine an expansion upon the basic 
shortest path in graphs problem.  We define 
journeys to be source-destination pairs in 
weighted and connected graphs, and allow 
them to equally split the cost of shared edges.  
In this new problem, there are multiple 
possible definitions of optimality.  We 
investigate three: minimizing the total 
resources—the sum of the journeys’ costs—
of a graph’s journeys; minimizing individual 
journeys’ costs using analysis from game 
theory with an aim of stable formations called 
Strong Nash Equilibria; and minimizing the 
maximum cost that any journey in a graph has 
to pay, a cooperative solution.  We developed 
heuristics that, given any weighted, connected 
graph and a set of journeys, can manipulate 
the journeys into routes that approach these 
definitions of optimal.  Two versions, speedy 
and exhaustive, were developed of the Strong 
Nash Equilibrium heuristic.  Results showed 
that the speedy version was equally as 
effective as the exhaustive version 99.0% of 
the time.  18% of the tests on the cooperative 
heuristic gave different results from different 
initial conditions, indicating potential room 
for improvement. 

1. INTRODUCTION 
The problem of shared shortest paths in 
graphs concerns any given weighted, 
connected graph with any number of 
specified journeys. We define a weighted 
graph as 

€ 

G = (V ,E), where V is a set of 
vertices, and E is a set of edges, connecting 
pairs of vertices together.  Each edge is given 
a weight, which can be viewed as a “cost” to 
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traverse that edge.  We define journeys as 
pairs of a source vertex and a destination 
vertex.  A path is a sequence of edges from a 
journey’s source to its destination, and a 
journey’s cost is the sum of its share of the 
costs of the edges in its path. 
The well-known basic problem concerns 
finding the shortest paths in graphs given any 
set of journeys and a weighted, connected 
graph.  Dijkstra’s Algorithm [2] successfully 
finds the lowest cost path for each journey. 

Our problem is an expansion of this. We 
permit journeys to equally split the cost of 
any edges shared amongst those using the 
edge instead of each individually paying the 
full price.  In the situations we consider, any 
edge can be shared by any number of 
journeys, without restriction.  This sharing 
condition gives journeys incentives to take 
paths that they might not otherwise take, 
depending on the paths that other journeys are 
taking and how they might be able to overlap. 
Figure 1 is an example of this.  While the 
sequence of A-E-C-D would cost 10 for an 
unshared path, because AE is shared by two 
journeys, each only pay 3.5 to traverse the 
edge.  The shared cost of the A-E-C-D 
sequence is 5 as compared to the original 
route of the  journey, costing 7. 

Additionally, allowing journeys to share the 
cost of edges has an effect upon optimality.  
We define the total resources of the journeys’ 
current paths to be the sum of the costs of 
each journey on a graph.   



 

In an unshared graph, finding each journey’s 
own shortest path also minimizes the total 
resources used.  However, in a shared path 
graph, to minimize total resources, journeys 
may take a slightly longer path in terms of 
shared cost.  Such journeys may be sharing 
edges that largely reduce the shared costs of 
multiple other journeys, hence minimizing the 
total resources.  This concept can be 
considered a global view—a perspective of 
the journeys considered as a whole.   
For a local view—one where we look into 
each journey individually instead of grouping 
them together collectively—we can also see 
journeys as independent and inherently 
selfish, aiming to minimize the cost of their 
own paths with no regard to total resources.  
We can apply game theory to this concept for 
further analysis. 
Due to these complications, optimality 
conditions must be specified when trying to 
find optimal solutions for the journeys of a 
shared path graph.  This paper looks into a 
few different optimality conditions and how 
we have developed heuristics to approach 
them. 

2. BACKGROUND 
2.1 Past Heuristics 
Past work [3] has been completed in 
developing heuristics that approach optimal 
solutions in minimizing the total resources of 
a graph’s journeys.  This problem is an 
instance of the Steiner Forest problem, a 
known NP-Complete problem [5], so 
heuristics were needed to approximate an 
optimal solution.  Two heuristics specifically 
were quite effective and impacted our own 
research. 

The first heuristic is the DEASE heuristic—
Delete Edge And Share Edge.  The heuristic 
assumes an initial routing of journeys created 
by some pre-processing step.  (We use the 
unshared shortest paths connecting each 
journey, but any initial routing of journeys 
will do.)  First, the heuristic considers every 
edge in the graph.  If an edge has at least two 
journeys over it and is therefore a shared 
edge, then the edge is momentarily deleted.  
Any journeys that previously used the deleted 
edge are then rerouted by their new shortest 
shared paths.  If enough journeys improve, 
then the journeys keep the alternative routes 
and the edge is replaced.  If not, the edge and 
journeys are put back into their previous 
places. 
By deleting shared edges and rerouting the 
journeys that use them, the DEASE heuristic 
encourages sharing, often reducing the costs 
of the total resources, although not 
necessarily of all individual journeys. 

The second heuristic is the Spanning Tree 
Approximation.  The heuristic uses Prim’s 
Algorithm to find the minimum spanning tree 
of the graph in question.  The journeys are 
then routed over the spanning tree.  As each 
journey only has one possible path over the 
spanning tree, it is clear that sharing edges is 
encouraged.  The paths over the spanning tree 
are then put back onto the full graph with all 
of its edges.  The minimum spanning tree 
forces journeys to take not necessarily their 

Figure 1. Graph (a) shows the three journeys routed by 
their traditional shortest paths.  Graph (b) allows 

sharing and gives journey  incentive to use a 
different path. 

 
. 

 
 



shortest paths, but sharing generally reduces 
the cost of total resources used by journeys in 
the graph. 
2.2 Game Theory 
In some heuristics, we apply game theory to 
shared path graphs.  Journeys are assumed to 
be inherently selfish, looking for their 
shortest possible path with no respect to total 
resources or the costs of other journeys.  
Under these conditions, if a journey, given 
how all of the other journeys are presently 
routed, can change its strategy to give itself a 
lower cost path, then it will. 
A Nash Equilibrium [4] is a situation where 
no journey has any incentive to change its 
strategy given how the rest of the journeys are 
behaving.  Because no individual journey has 
incentive to move on its own, this is a form of 
stability.  Nash Equilibria finding algorithms 
were already developed in past research on 
the subject [3]. 
However, the concept of Nash Equilibrium 
does not address the idea of multiple journeys 
strategizing together.  Given how the rest of 
the journeys are behaving, a coalition may 
form and change their routes if every member 
of this group could improve by together 
choosing alternative paths.  A Strong Nash 
Equilibrium [1] exists when no coalition of 
the journeys on the graph can together change 
their paths to benefit every member.  In this 
case, journeys have absolutely no incentive to 
change their paths on their own or in a group. 
These formations are extremely stable and are 
the ideal formation for which we look.  
If we refer to the three journeys present in 
figure 2 by their destination vertex—E, F, 
and G—we can see how the three possible 
coalitions cause the graph to defect.  In graph 
(a), journeys E and G could both benefit by 
forming a coalition and taking alternate paths. 
In graph (b), the formation caused by this 
change, the coalition of F and E can defect to 
benefit both journeys.  Graph (c) is the 
depiction of this, but the coalition of F and G 

will defect back to graph (a).  Because the 
sequence of coalitions forms a cycle of 
defections, there is no Strong Nash 
Equilibrium in this graph. 

Nash Equilibria have been proven to exist in 
every graph [6].  However, figure 2 provides 
a counterexample that Strong Nash Equilibria 
do not exist in every graph.  Furthermore, 
determining the existence of Strong Nash 
Equilibria (SNE) is Complete [7].  

3. DEFINITIONS OF OPTIMALITY 
In our work, we have considered three 
conditions of optimality for journeys in 
graphs.  The first definition of optimality, 
investigated in previous work [3] is 
minimizing the total resources, or as 
previously discussed, minimizing the sum of 
the cost of all of the journeys in a graph.  Our 
second definition is finding the lowest 
possible cost paths for each individual 
journey using game theory.  Within this 
definition, we look for a Strong Nash 
Equilibrium, the most stable solutions where 
each individual journey has reached its 

Figure 2. In this graph, coalitions will always have 
incentive to change paths.  The graph will cycle through 

the above defections.  No Strong Nash Equilibrium 
exists in this graph. 
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optimal path.  The final definition pertains to 
minimizing the maximum cost that any 
individual journey in the graph must pay, and 
may be thought of as the cooperative or fair 
solution. 
These different definitions of optimality have 
various real world applications.  Minimizing 
the total resources used by journeys in a 
graph is very practical when the same agency 
is paying for the costs of all of the journeys, 
such as in a network of roads or telephone 
wires.  It can be worthwhile to lengthen some 
journeys to minimize the total amount of 
concrete paid for by the government overall. 

The game theory aspect of looking for Strong 
Nash Equilibria is applicable to situations like 
carpooling, where individuals can reduce 
their gas costs by splitting legs of journeys.  
In situations where Strong Nash Equilibria 
exist, because the solutions are very stable, 
highways or public transit systems could be 
designed off of the predicted stable behavior 
of individuals. 
An application of a cooperative solution is 
considering a game theory-like example 
where journeys are inherently selfish, but an 
agency, such as the government, steps in and 
imposes regulations on the journeys to reduce 
the amount paid by outlying journeys. 
4. STABILITY AND STRONG NASH 
EQUILIBRIA 
4.1 SNE Heuristic 
The Strong Nash Equilibrium (SNE) 
Heuristic determines whether or not Strong 
Nash Equilibria exist within a given graph, 
and finds one if they do.  The heuristic uses 
graphs already routed by pre-existing 
heuristics.  To attempt to find a Strong Nash 
Equilibrium, the heuristic would be given a 
maximum coalition of size of n-1 where n is 
the number of journeys.  We call this the 
exhaustive version.   

Pseudocode for the heuristic is as follows: 
 for each possible coalition size up to the  

 given maximum do 
 try all possible coalitions of that size (in  
 some arbitrary order) 

 remove their current routings from the  
 graph 
 reroute them using shortest path and  
 spanning tree heuristics 
 if any re-routing exists where all  
 coalition members improve: 

  commit this new routing 

  remember that we have changed a  
  coalition’s paths 

 repeat the above loop a number of times  
 equal to the number of journeys. 

When the heuristic finishes, there are three 
possible outcomes.  First, if no coalitions 
have ever changed paths, then the original 
graph is assumed to be in an SNE, at least for 
coalitions up to the given maximum size.  
The second outcome occurs if some coalitions 
changed paths, but none changed for at least 
the last iteration of the “try possible 
coalitions” loop.  We assume that since the 
graph has stopped defecting that the graph 
has moved to an SNE.  The final outcome is 
when coalitions have changed paths within 
the last iteration of the “try possible 
coalitions” loop.  In this case, we conclude 
that that graph is caught in a never-ending 
cycle of defections.  No SNE can be found for 
the graph in this instance. 
4.2 Heuristic Effectiveness 
The SNE Heuristic relies upon other 
heuristics.  As it uses heuristics to determine 
if each coalition has a better rerouting that 
benefits every coalition member, it may be 
missing truly optimal routes.  Additionally, it 
does not calculate the shared edge costs 
completely accurately when rerouting the 
coalition members via the Spanning Tree 
heuristic.  Edge costs are estimated based on 
the number of non-coalition members using 
them, and these estimates are used when the 
minimum spanning tree is found.  The 
inaccuracy in edge costs may lead to a 



spanning tree other than the true minimum 
being used to reroute the coalition members. 

A complication that we ran into in the early 
development of the exhaustive heuristic was 
that, in one case, the heuristic determined that 
a Strong Nash Equilibrium did not exist 
within the graph that actually had an SNE.  
The issue was that the exhaustive version was 
cycling through the same large coalitions and 
defecting with each of those.  However, if it 
were to check the coalitions in a different 
order of size, it would defect in a different 
way and find a Strong Nash Equilibrium.  We 
maintain a list of changed coalitions to keep 
track of the coalitions that cause the graph to 
defect.  If the coalition has already caused 
change in the graph, the heuristic will 
postpone choosing that coalition and keep 
looking. 
The exhaustive version of the heuristic 
performs closest to optimal when the given 
maximum coalition size is n-1.  However, 
testing 2n coalitions provides for an 
intractable running time.  We looked into 
comparing the solution that the heuristic 
found when testing all 2n coalitions with the 
solution that the heuristic found when only 
testing coalitions of size 2 and 3, pairs and 
trios, which we call the speedy version.  
The results of our tests were extremely 
promising. 400 tests were run on a variety of 
vertex and journey ranges: the number of 
vertices in a graph ranged between 5, 10, 15, 
and 30, while the number of journeys given 
were either 5 or 10.  Each test generated a 
random graph and random set of journeys 
with the given parameters: number of 
vertices, number of journeys, and a range for 
the edge costs.  It then used four different pre-
existing heuristics on the graph to generate 
four starting formations, and then ran the 
SNE heuristic on these formations.  All of our 
tests are designed on graphs that are 
randomly created to be sparse, to encourage 
journeys that span several edges.  Our sample 

graphs randomly create a connected graph 
with 1.2 times as many edges as vertices, with 
weights distributed over a range of 1 to 10.  
We have other graph generation algorithms 
that create graphs that encourage other kinds 
of sharing, and a possible avenue of future 
work would be to examine how our heuristics 
do on these graphs. 

Table 1. SNE Heuristic Test Results 
Vertices/
Journeys % SNE found % Speedy = 

exhaustive 
5/5 95% 100% 

5/10 90% 100% 

10/5 98% 100% 

10/10 93% 95% 

15/5 95% 100% 

15/10 88% 100% 

30/5 100% 100% 

30/10 94% 97% 

Table 1 shows examples of the testing.  The 
first two columns refer to the 8 different kinds 
of randomly generated graphs.  Statistics for 
each are averaged over the varying graphs 
produced and the four starting formations for 
each on which the SNE heuristic ran.  The 
“percent SNE found” refers to the how often 
the SNE heuristic determined the graph to 
either already be in or converge to a SNE.  
The last column reports how frequently the 
speedy version and the exhaustive version of 
the heuristic found the same routing of 
journeys in the graph. 

Of the 100 different graphs, each with four 
different starting formations, the discrepancy 
was minimal between the solutions that the 
SNE heuristic found with the exhaustive 
version verses the speedy version.  Only 4 of 
the 400 different graph formations did not 
have both the speedy solution and the 
exhaustive solution produce the exact same 
graph.  The graphs for these four varied in 
number of vertices, but all were of the 10-
journey variety. 



Of the 100 graphs, there were 15 in which the 
SNE heuristic determined that there was no 
Strong Nash Equilibrium from one starting 
formation yet identified one from a different 
starting formation.  We attribute this disparity 
to the assumptions made based on the 
outcomes of the SNE heuristic described 
previously. 

5. COOPERATION 
 

5.1 Cooperative Heuristic 
Our third definition of optimality concerns 
minimizing the maximum cost that any 
journey pays in a graph.  This solution can be 
considered cooperative, because, for example, 
instead of one journey paying 5 and the other 
paying 9 as in graph (a) of Figure 3, they 
could be forced into a formation where they 
each pay 7 as in graph (b), improving the 
maximum work that any one journey would 
have to do and making the costs a little more 
“fair.” 

 

We define a graph’s maxJourney to be the 
maximum of all of the graph’s journeys’ 
shared costs.  Our goal is to minimize 
maxJourney so that the highest cost paid by 
any journey in the graph is decreasing, 
although individual journey costs may 
increase or decrease.  The heuristic uses the 
same basic concept of the DEASE heuristic.  
When we delete a shared edge, the journeys 
that previously used that edge will be referred 
to as selected journeys. 
Pseudocode for the cooperative heuristic is: 

Given: a list of journeys J1…Jn already routed 
on some graph G 

 for each edge in G do 
 if more than one journey uses the edge:  
 save the selected journeys’ current  
 paths 

 delete the edge 

 reroute the selected journeys using the  
 spanning tree heuristic, adding each  
 journey back by its shortest path, or  
 adding the journeys back by shortest  
 path in reverse order 

 for each journey J1 to Jn do 
  if Ji has been removed by deleting  
  this edge: reroute it along its current  
  shortest path 

 if the maxJourney of  
 the graph improves or it stays the same  
 but the total resources improve: 

 change the graph to use this  
 formation 

 else: 
  for each journey Jn to J1 do 
   if Ji has been removed by deleting  
   this edge: reroute it along its current  
   shortest path 

  if the maxJourney of the graph  
  improves or it stays the same but the  
  total resources improve: 

 

Figure 3. Graph (a) shows the standard routing of the 
graph with one journey paying more than the other, 

while (b) reduces the maxJourney to cost less with the 
same total cost for both journeys. 

. 
 
 



   change the graph to use this  
   formation 

  else: 
  put the edge back and use the  
  saved paths   
When journeys are rerouted by adding them 
back by their shortest paths, they are added 
one at a time in the order that they are kept in 
the graph’s list of journeys.  This gives the 
journeys toward the end of the list an 
advantage.  Journeys take the path of their 
shortest path visible at the time added back.  
Since more journeys are routed on the graph 
by the time the journeys toward the end of the 
list are added back, they can take into account 
all of the possible reduced edges, as opposed 
to the journeys at the beginning of the list 
who cannot take the later journeys into 
account.  Journeys are rerouted in forward 
and backward order in attempt to minimize 
the effect that the order of rerouting has on 
the graph. 

5.2 Results 
Testing of the cooperative heuristic was 
extremely similar to that of the SNE heuristic.  
100 graphs were generated with the 
aforementioned conditions, each graph 
having four different starting formations 
determined by pre-existing heuristics.  These 
pre-existing heuristics were the 
aforementioned spanning tree approximation 
and DEASE heuristic in addition to a shortest 
path and traversal heuristic.  The cooperative 
heuristic was then run on each of these 
starting formations.  Data was then collected 
from the generated solutions: the cost of 
maxJourney, the total resources, and the 
number of defections.  The average of these 
three measurements correspond to the last 
three columns of Table 2.  The first two 
columns are the same as in the SNE heuristic 
tests. 

Ideally, the heuristic should defect the graph 
until it finds the formation with the least 
possible maxJourney and least possible total 

resources with that maxJourney.  However, of 
the 100 different graphs generated in the tests, 
18 of them found different solutions from the 
different starting formations. For example, 
this happened in one of our test cases with 15 
vertices and 5 journeys. The starting 
formation of the spanning tree approximation 
led to a cooperative solution with a 
maxJourney of 18, while the heuristic run on 
other starting formations of the same graph 
could only find a smallest maxJourney of 61.  
Since the heuristic did not find solutions as 
close to optimal on some starting formations 
as it did on others, the heuristic clearly has 
room for improvement. 

Table 2. Cooperative Heuristic Test 
Results 

Vertices/ 
Journeys 

Avg Num 
Defections 

Total 
Cost 

Avg 
maxJourney 

5/5 19.161 16.429 5.429 

5/10 17.667 21.267 3.900 

10/5 88.900 32.867 11.333 

10/10 89.417 42.050 8.367 

15/5 217.017 47.733 16.267 

15/10 211.000 64.129 11.156 

30/5 896.750 75.250 24.875 

30/10 892.750 116.889 23.111 

In looking at the number of defections from 
starting formation to solution, we were 
hoping to find a trend of which pre-existing 
heuristics find the closest-to-cooperative 
solution.  However, there was an overall lack 
of trends observed. 
An unexpected result was there was a 
correlation between 14 of the 15 graphs 
where the SNE heuristic found that there was 
no SNE from one formation and a different 
result for another and the graphs where the 
cooperative heuristic found differing 
solutions. 



6. CONCLUSIONS AND FUTURE 
WORK 
Thus far, we have successfully developed 
fairly quick and accurate heuristics that, given 
any weighted graph, and set of journeys, find 
fairly close to optimal solutions for several 
given definitions of optimal. 
Future work on this topic might include a 
more effective and faster cooperative 
heuristic.  We do not know currently how 
effective the heuristic is at providing the most 
cooperative solution because we have nothing 
to compare it to.  We only know that the 
heuristic was effective in finding the best 
solution in small test graphs where the 
solution could be determined by eye. 

Determining whether Strong Nash Equilibria 
exist in a graph is Complete [7].  
However, perhaps by looking into graphs 
where SNEs exist and studying conditions 
consistently present, the question of existence 
could be answered much more quickly. 
A field for future study could be 
differentiating between multiple Strong Nash 
Equilibria or Nash Equilibria and finding a 
way to assign values for best to worst 
formations.  While journeys may not have 
any incentive to move, depending on how 
much sharing is required, this could impact 
this value for further assessment of stability. 
Another question is to look into is the order 
of deletions in heuristics like DEASE and the 
cooperative heuristic.  As mentioned in 
regards to the order in which paths are added 
back during steps of the cooperative heuristic, 
order makes a difference.  Deletions cause the 
graph to start changing and can provide a 
different outcome than with a different order 
of deletions. Additionally, the order in which 
journeys or coalitions are considered in 
algorithms like the Nash Equilibrium finder 

and the SNE heuristic also provokes differing 
outcomes.  Further study of the subject could 
prevent resulting graphs being biased by an 
arbitrary order selected. 
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