
Different Optimal Solutions in Shared Path Graphs

Kira Goldner
Oberlin College

Oberlin, OH 44074
(610) 324-3931

ksgoldner@gmail.com

ABSTRACT
We examine an expansion upon the basic
shortest path in graphs problem. We define
journeys to be source-destination pairs in
weighted and connected graphs, and allow
them to equally split the cost of shared edges.
In this new problem, there are multiple
possible definitions of optimality. We
investigate three: minimizing the total
resources—the sum of the journeys’ costs—
of a graph’s journeys; minimizing individual
journeys’ costs using analysis from game
theory with an aim of stable formations called
Strong Nash Equilibria; and minimizing the
maximum cost that any journey in a graph has
to pay, a cooperative solution. We developed
heuristics that, given any weighted, connected
graph and a set of journeys, can manipulate
the journeys into routes that approach these
definitions of optimal. Two versions, speedy
and exhaustive, were developed of the Strong
Nash Equilibrium heuristic. Results showed
that the speedy version was equally as
effective as the exhaustive version 99.0% of
the time. 18% of the tests on the cooperative
heuristic gave different results from different
initial conditions, indicating potential room
for improvement.

1. INTRODUCTION
The problem of shared shortest paths in
graphs concerns any given weighted,
connected graph with any number of
specified journeys. We define a weighted
graph as

€

G = (V ,E), where V is a set of
vertices, and E is a set of edges, connecting
pairs of vertices together. Each edge is given
a weight, which can be viewed as a “cost” to

Sean McCulloch
Ohio Wesleyan University

Delaware, OH 43015
(740) 368-3663

stmccull@owu.edu

traverse that edge. We define journeys as
pairs of a source vertex and a destination
vertex. A path is a sequence of edges from a
journey’s source to its destination, and a
journey’s cost is the sum of its share of the
costs of the edges in its path.
The well-known basic problem concerns
finding the shortest paths in graphs given any
set of journeys and a weighted, connected
graph. Dijkstra’s Algorithm [2] successfully
finds the lowest cost path for each journey.

Our problem is an expansion of this. We
permit journeys to equally split the cost of
any edges shared amongst those using the
edge instead of each individually paying the
full price. In the situations we consider, any
edge can be shared by any number of
journeys, without restriction. This sharing
condition gives journeys incentives to take
paths that they might not otherwise take,
depending on the paths that other journeys are
taking and how they might be able to overlap.
Figure 1 is an example of this. While the
sequence of A-E-C-D would cost 10 for an
unshared path, because AE is shared by two
journeys, each only pay 3.5 to traverse the
edge. The shared cost of the A-E-C-D
sequence is 5 as compared to the original
route of the journey, costing 7.

Additionally, allowing journeys to share the
cost of edges has an effect upon optimality.
We define the total resources of the journeys’
current paths to be the sum of the costs of
each journey on a graph.

In an unshared graph, finding each journey’s
own shortest path also minimizes the total
resources used. However, in a shared path
graph, to minimize total resources, journeys
may take a slightly longer path in terms of
shared cost. Such journeys may be sharing
edges that largely reduce the shared costs of
multiple other journeys, hence minimizing the
total resources. This concept can be
considered a global view—a perspective of
the journeys considered as a whole.
For a local view—one where we look into
each journey individually instead of grouping
them together collectively—we can also see
journeys as independent and inherently
selfish, aiming to minimize the cost of their
own paths with no regard to total resources.
We can apply game theory to this concept for
further analysis.
Due to these complications, optimality
conditions must be specified when trying to
find optimal solutions for the journeys of a
shared path graph. This paper looks into a
few different optimality conditions and how
we have developed heuristics to approach
them.

2. BACKGROUND
2.1 Past Heuristics
Past work [3] has been completed in
developing heuristics that approach optimal
solutions in minimizing the total resources of
a graph’s journeys. This problem is an
instance of the Steiner Forest problem, a
known NP-Complete problem [5], so
heuristics were needed to approximate an
optimal solution. Two heuristics specifically
were quite effective and impacted our own
research.

The first heuristic is the DEASE heuristic—
Delete Edge And Share Edge. The heuristic
assumes an initial routing of journeys created
by some pre-processing step. (We use the
unshared shortest paths connecting each
journey, but any initial routing of journeys
will do.) First, the heuristic considers every
edge in the graph. If an edge has at least two
journeys over it and is therefore a shared
edge, then the edge is momentarily deleted.
Any journeys that previously used the deleted
edge are then rerouted by their new shortest
shared paths. If enough journeys improve,
then the journeys keep the alternative routes
and the edge is replaced. If not, the edge and
journeys are put back into their previous
places.
By deleting shared edges and rerouting the
journeys that use them, the DEASE heuristic
encourages sharing, often reducing the costs
of the total resources, although not
necessarily of all individual journeys.

The second heuristic is the Spanning Tree
Approximation. The heuristic uses Prim’s
Algorithm to find the minimum spanning tree
of the graph in question. The journeys are
then routed over the spanning tree. As each
journey only has one possible path over the
spanning tree, it is clear that sharing edges is
encouraged. The paths over the spanning tree
are then put back onto the full graph with all
of its edges. The minimum spanning tree
forces journeys to take not necessarily their

Figure 1. Graph (a) shows the three journeys routed by
their traditional shortest paths. Graph (b) allows

sharing and gives journey incentive to use a
different path.

.

shortest paths, but sharing generally reduces
the cost of total resources used by journeys in
the graph.
2.2 Game Theory
In some heuristics, we apply game theory to
shared path graphs. Journeys are assumed to
be inherently selfish, looking for their
shortest possible path with no respect to total
resources or the costs of other journeys.
Under these conditions, if a journey, given
how all of the other journeys are presently
routed, can change its strategy to give itself a
lower cost path, then it will.
A Nash Equilibrium [4] is a situation where
no journey has any incentive to change its
strategy given how the rest of the journeys are
behaving. Because no individual journey has
incentive to move on its own, this is a form of
stability. Nash Equilibria finding algorithms
were already developed in past research on
the subject [3].
However, the concept of Nash Equilibrium
does not address the idea of multiple journeys
strategizing together. Given how the rest of
the journeys are behaving, a coalition may
form and change their routes if every member
of this group could improve by together
choosing alternative paths. A Strong Nash
Equilibrium [1] exists when no coalition of
the journeys on the graph can together change
their paths to benefit every member. In this
case, journeys have absolutely no incentive to
change their paths on their own or in a group.
These formations are extremely stable and are
the ideal formation for which we look.
If we refer to the three journeys present in
figure 2 by their destination vertex—E, F,
and G—we can see how the three possible
coalitions cause the graph to defect. In graph
(a), journeys E and G could both benefit by
forming a coalition and taking alternate paths.
In graph (b), the formation caused by this
change, the coalition of F and E can defect to
benefit both journeys. Graph (c) is the
depiction of this, but the coalition of F and G

will defect back to graph (a). Because the
sequence of coalitions forms a cycle of
defections, there is no Strong Nash
Equilibrium in this graph.

Nash Equilibria have been proven to exist in
every graph [6]. However, figure 2 provides
a counterexample that Strong Nash Equilibria
do not exist in every graph. Furthermore,
determining the existence of Strong Nash
Equilibria (SNE) is Complete [7].

3. DEFINITIONS OF OPTIMALITY
In our work, we have considered three
conditions of optimality for journeys in
graphs. The first definition of optimality,
investigated in previous work [3] is
minimizing the total resources, or as
previously discussed, minimizing the sum of
the cost of all of the journeys in a graph. Our
second definition is finding the lowest
possible cost paths for each individual
journey using game theory. Within this
definition, we look for a Strong Nash
Equilibrium, the most stable solutions where
each individual journey has reached its

Figure 2. In this graph, coalitions will always have
incentive to change paths. The graph will cycle through

the above defections. No Strong Nash Equilibrium
exists in this graph.

.

optimal path. The final definition pertains to
minimizing the maximum cost that any
individual journey in the graph must pay, and
may be thought of as the cooperative or fair
solution.
These different definitions of optimality have
various real world applications. Minimizing
the total resources used by journeys in a
graph is very practical when the same agency
is paying for the costs of all of the journeys,
such as in a network of roads or telephone
wires. It can be worthwhile to lengthen some
journeys to minimize the total amount of
concrete paid for by the government overall.

The game theory aspect of looking for Strong
Nash Equilibria is applicable to situations like
carpooling, where individuals can reduce
their gas costs by splitting legs of journeys.
In situations where Strong Nash Equilibria
exist, because the solutions are very stable,
highways or public transit systems could be
designed off of the predicted stable behavior
of individuals.
An application of a cooperative solution is
considering a game theory-like example
where journeys are inherently selfish, but an
agency, such as the government, steps in and
imposes regulations on the journeys to reduce
the amount paid by outlying journeys.
4. STABILITY AND STRONG NASH
EQUILIBRIA
4.1 SNE Heuristic
The Strong Nash Equilibrium (SNE)
Heuristic determines whether or not Strong
Nash Equilibria exist within a given graph,
and finds one if they do. The heuristic uses
graphs already routed by pre-existing
heuristics. To attempt to find a Strong Nash
Equilibrium, the heuristic would be given a
maximum coalition of size of n-1 where n is
the number of journeys. We call this the
exhaustive version.

Pseudocode for the heuristic is as follows:
 for each possible coalition size up to the

 given maximum do
 try all possible coalitions of that size (in
 some arbitrary order)

 remove their current routings from the
 graph
 reroute them using shortest path and
 spanning tree heuristics
 if any re-routing exists where all
 coalition members improve:

 commit this new routing

 remember that we have changed a
 coalition’s paths

 repeat the above loop a number of times
 equal to the number of journeys.

When the heuristic finishes, there are three
possible outcomes. First, if no coalitions
have ever changed paths, then the original
graph is assumed to be in an SNE, at least for
coalitions up to the given maximum size.
The second outcome occurs if some coalitions
changed paths, but none changed for at least
the last iteration of the “try possible
coalitions” loop. We assume that since the
graph has stopped defecting that the graph
has moved to an SNE. The final outcome is
when coalitions have changed paths within
the last iteration of the “try possible
coalitions” loop. In this case, we conclude
that that graph is caught in a never-ending
cycle of defections. No SNE can be found for
the graph in this instance.
4.2 Heuristic Effectiveness
The SNE Heuristic relies upon other
heuristics. As it uses heuristics to determine
if each coalition has a better rerouting that
benefits every coalition member, it may be
missing truly optimal routes. Additionally, it
does not calculate the shared edge costs
completely accurately when rerouting the
coalition members via the Spanning Tree
heuristic. Edge costs are estimated based on
the number of non-coalition members using
them, and these estimates are used when the
minimum spanning tree is found. The
inaccuracy in edge costs may lead to a

spanning tree other than the true minimum
being used to reroute the coalition members.

A complication that we ran into in the early
development of the exhaustive heuristic was
that, in one case, the heuristic determined that
a Strong Nash Equilibrium did not exist
within the graph that actually had an SNE.
The issue was that the exhaustive version was
cycling through the same large coalitions and
defecting with each of those. However, if it
were to check the coalitions in a different
order of size, it would defect in a different
way and find a Strong Nash Equilibrium. We
maintain a list of changed coalitions to keep
track of the coalitions that cause the graph to
defect. If the coalition has already caused
change in the graph, the heuristic will
postpone choosing that coalition and keep
looking.
The exhaustive version of the heuristic
performs closest to optimal when the given
maximum coalition size is n-1. However,
testing 2n coalitions provides for an
intractable running time. We looked into
comparing the solution that the heuristic
found when testing all 2n coalitions with the
solution that the heuristic found when only
testing coalitions of size 2 and 3, pairs and
trios, which we call the speedy version.
The results of our tests were extremely
promising. 400 tests were run on a variety of
vertex and journey ranges: the number of
vertices in a graph ranged between 5, 10, 15,
and 30, while the number of journeys given
were either 5 or 10. Each test generated a
random graph and random set of journeys
with the given parameters: number of
vertices, number of journeys, and a range for
the edge costs. It then used four different pre-
existing heuristics on the graph to generate
four starting formations, and then ran the
SNE heuristic on these formations. All of our
tests are designed on graphs that are
randomly created to be sparse, to encourage
journeys that span several edges. Our sample

graphs randomly create a connected graph
with 1.2 times as many edges as vertices, with
weights distributed over a range of 1 to 10.
We have other graph generation algorithms
that create graphs that encourage other kinds
of sharing, and a possible avenue of future
work would be to examine how our heuristics
do on these graphs.

Table 1. SNE Heuristic Test Results
Vertices/
Journeys % SNE found % Speedy =

exhaustive
5/5 95% 100%

5/10 90% 100%

10/5 98% 100%

10/10 93% 95%

15/5 95% 100%

15/10 88% 100%

30/5 100% 100%

30/10 94% 97%

Table 1 shows examples of the testing. The
first two columns refer to the 8 different kinds
of randomly generated graphs. Statistics for
each are averaged over the varying graphs
produced and the four starting formations for
each on which the SNE heuristic ran. The
“percent SNE found” refers to the how often
the SNE heuristic determined the graph to
either already be in or converge to a SNE.
The last column reports how frequently the
speedy version and the exhaustive version of
the heuristic found the same routing of
journeys in the graph.

Of the 100 different graphs, each with four
different starting formations, the discrepancy
was minimal between the solutions that the
SNE heuristic found with the exhaustive
version verses the speedy version. Only 4 of
the 400 different graph formations did not
have both the speedy solution and the
exhaustive solution produce the exact same
graph. The graphs for these four varied in
number of vertices, but all were of the 10-
journey variety.

Of the 100 graphs, there were 15 in which the
SNE heuristic determined that there was no
Strong Nash Equilibrium from one starting
formation yet identified one from a different
starting formation. We attribute this disparity
to the assumptions made based on the
outcomes of the SNE heuristic described
previously.

5. COOPERATION

5.1 Cooperative Heuristic
Our third definition of optimality concerns
minimizing the maximum cost that any
journey pays in a graph. This solution can be
considered cooperative, because, for example,
instead of one journey paying 5 and the other
paying 9 as in graph (a) of Figure 3, they
could be forced into a formation where they
each pay 7 as in graph (b), improving the
maximum work that any one journey would
have to do and making the costs a little more
“fair.”

We define a graph’s maxJourney to be the
maximum of all of the graph’s journeys’
shared costs. Our goal is to minimize
maxJourney so that the highest cost paid by
any journey in the graph is decreasing,
although individual journey costs may
increase or decrease. The heuristic uses the
same basic concept of the DEASE heuristic.
When we delete a shared edge, the journeys
that previously used that edge will be referred
to as selected journeys.
Pseudocode for the cooperative heuristic is:

Given: a list of journeys J1…Jn already routed
on some graph G

 for each edge in G do
 if more than one journey uses the edge:
 save the selected journeys’ current
 paths

 delete the edge

 reroute the selected journeys using the
 spanning tree heuristic, adding each
 journey back by its shortest path, or
 adding the journeys back by shortest
 path in reverse order

 for each journey J1 to Jn do
 if Ji has been removed by deleting
 this edge: reroute it along its current
 shortest path

 if the maxJourney of
 the graph improves or it stays the same
 but the total resources improve:

 change the graph to use this
 formation

 else:
 for each journey Jn to J1 do
 if Ji has been removed by deleting
 this edge: reroute it along its current
 shortest path

 if the maxJourney of the graph
 improves or it stays the same but the
 total resources improve:

Figure 3. Graph (a) shows the standard routing of the
graph with one journey paying more than the other,

while (b) reduces the maxJourney to cost less with the
same total cost for both journeys.

.

 change the graph to use this
 formation

 else:
 put the edge back and use the
 saved paths
When journeys are rerouted by adding them
back by their shortest paths, they are added
one at a time in the order that they are kept in
the graph’s list of journeys. This gives the
journeys toward the end of the list an
advantage. Journeys take the path of their
shortest path visible at the time added back.
Since more journeys are routed on the graph
by the time the journeys toward the end of the
list are added back, they can take into account
all of the possible reduced edges, as opposed
to the journeys at the beginning of the list
who cannot take the later journeys into
account. Journeys are rerouted in forward
and backward order in attempt to minimize
the effect that the order of rerouting has on
the graph.

5.2 Results
Testing of the cooperative heuristic was
extremely similar to that of the SNE heuristic.
100 graphs were generated with the
aforementioned conditions, each graph
having four different starting formations
determined by pre-existing heuristics. These
pre-existing heuristics were the
aforementioned spanning tree approximation
and DEASE heuristic in addition to a shortest
path and traversal heuristic. The cooperative
heuristic was then run on each of these
starting formations. Data was then collected
from the generated solutions: the cost of
maxJourney, the total resources, and the
number of defections. The average of these
three measurements correspond to the last
three columns of Table 2. The first two
columns are the same as in the SNE heuristic
tests.

Ideally, the heuristic should defect the graph
until it finds the formation with the least
possible maxJourney and least possible total

resources with that maxJourney. However, of
the 100 different graphs generated in the tests,
18 of them found different solutions from the
different starting formations. For example,
this happened in one of our test cases with 15
vertices and 5 journeys. The starting
formation of the spanning tree approximation
led to a cooperative solution with a
maxJourney of 18, while the heuristic run on
other starting formations of the same graph
could only find a smallest maxJourney of 61.
Since the heuristic did not find solutions as
close to optimal on some starting formations
as it did on others, the heuristic clearly has
room for improvement.

Table 2. Cooperative Heuristic Test
Results

Vertices/
Journeys

Avg Num
Defections

Total
Cost

Avg
maxJourney

5/5 19.161 16.429 5.429

5/10 17.667 21.267 3.900

10/5 88.900 32.867 11.333

10/10 89.417 42.050 8.367

15/5 217.017 47.733 16.267

15/10 211.000 64.129 11.156

30/5 896.750 75.250 24.875

30/10 892.750 116.889 23.111

In looking at the number of defections from
starting formation to solution, we were
hoping to find a trend of which pre-existing
heuristics find the closest-to-cooperative
solution. However, there was an overall lack
of trends observed.
An unexpected result was there was a
correlation between 14 of the 15 graphs
where the SNE heuristic found that there was
no SNE from one formation and a different
result for another and the graphs where the
cooperative heuristic found differing
solutions.

6. CONCLUSIONS AND FUTURE
WORK
Thus far, we have successfully developed
fairly quick and accurate heuristics that, given
any weighted graph, and set of journeys, find
fairly close to optimal solutions for several
given definitions of optimal.
Future work on this topic might include a
more effective and faster cooperative
heuristic. We do not know currently how
effective the heuristic is at providing the most
cooperative solution because we have nothing
to compare it to. We only know that the
heuristic was effective in finding the best
solution in small test graphs where the
solution could be determined by eye.

Determining whether Strong Nash Equilibria
exist in a graph is Complete [7].
However, perhaps by looking into graphs
where SNEs exist and studying conditions
consistently present, the question of existence
could be answered much more quickly.
A field for future study could be
differentiating between multiple Strong Nash
Equilibria or Nash Equilibria and finding a
way to assign values for best to worst
formations. While journeys may not have
any incentive to move, depending on how
much sharing is required, this could impact
this value for further assessment of stability.
Another question is to look into is the order
of deletions in heuristics like DEASE and the
cooperative heuristic. As mentioned in
regards to the order in which paths are added
back during steps of the cooperative heuristic,
order makes a difference. Deletions cause the
graph to start changing and can provide a
different outcome than with a different order
of deletions. Additionally, the order in which
journeys or coalitions are considered in
algorithms like the Nash Equilibrium finder

and the SNE heuristic also provokes differing
outcomes. Further study of the subject could
prevent resulting graphs being biased by an
arbitrary order selected.

7. ACKNOWLEDGMENTS
This project was funded by the National
Science Foundation’s Research Experience
for Undergraduates Grant #1003992. Support
was also provided by Ohio Wesleyan
University.

8. REFERENCES
[1] Aumann, R. Acceptable points in general

cooperative n-person games.
Contributions to the Theory of Games, 4,
1959.

[2] Dijkstra, E. A Note on Two Problems in
Connexion with Graphs. Numerische
Mathematik, Vol. 1, 1959, pp. 269-271.

[3] Jagannatha, Z., Peterson, N., Quigley, S.,
Emerick, B., Earl, C., McCulloch, S. The
Shortest Path Problem in Graphs.
MCURCSM 2011
http://personal.denison.edu/~lalla/MCUR
CSM2011/12.pdf

[4] Nash, J. Equilibrium points in n-person
games. Proceedings of the National
Academy of Sciences, 36(1):48-49, 1950.

[5] Ravi, R., Agrawal, A., Klein, P. When
trees collide: An approximation algorithm
for the generalized steiner tree problem on
networks. Technical Report CS-90-32,
Brown University, Providence, RI, 1990.

[6] Rosenthal, R. W. A class of games
possessing pure-strategy nash equilibria.
International Journal of Game Theory,
2(1):65-67, 1973.

[7] Scarcello, F., Gotlob, G., Greco, G. Pure
nash equilibria: Hard and easy games.
Journal of Artificial Intelligence
Research, 24:195-220, 2005.

