ACTIVITY 16

Lesson 16-3

PLAN

Pacing: 1 class period
Chunking the Lesson
\#1 \#2 \#3-4
\#5 \#6 \#7-8

Check Your Understanding
Lesson Practice

TEACH

Bell-Ringer Activity

Tell whether each property is a property of every rhombus.

1. opposite sides are congruent [yes]
2. all angles are right angles [no]
3. diagonals are perpendicular [yes]

1 Activating Prior Knowledge

Students should recall the definition of a rhombus as they work to prove in Items 1 through 5 that if the diagonals of a quadrilateral are perpendicular, then the quadrilateral is a rhombus.

2 Think-Pair-Share, Group

Presentation, Discussion Groups,
Debriefing Students make a conjecture to complete the theorem and write an informal proof.

3-4 Think-Pair-Share, Group Presentation, Discussion Groups,

 Debriefing Students make a conjecture for the theorem and write a paragraph proof. Remind students that although the paragraph form is more informal than a two-column proof, each step must include a reason.5 Think-Pair-Share, Visualization
Students are led through the key steps in a proof of a theorem that they will use to prove that a parallelogram is a rhombus. As students work through this item, have them mark the congruent segments and angles on the diagram. They should note that the two congruent angles are between the two pairs of corresponding sides.

Lesson 16-3

Proving a Quadrilateral Is a Rhombus

6. Given quadrilateral $B I R D$ with coordinates $B(-2,-3), I(1,1), R(6,1)$, and $D(3,-3)$.
a. Show that quadrilateral BIRD is a parallelogram.

Method 1 Both pairs of opp sides parallel: slope of $\overline{B I}=$ slope of
$\overline{R D}=\frac{4}{3}$ and slope of $\overline{I R}=$ slope of $\overline{B D}=0$
Method 2 Both pairs of opp sides congruent: $B I=R D=5$ and $I R=B D=5$
Method 31 pair of opp sides \cong and $\|$: slope of $\overline{B I}=$ slope of $\overline{R D}=\frac{4}{3}$ and $B I=R D=5$ or slope of $\overline{I R}=$ slope of $\overline{B D}=0$ and $I R=B D=5$
Method 4 Diagonals bisect each other: midpt of $\overline{B R}=$ midpt of $\overline{I D}=(2,-1)$
b. Use the theorem in Item 5 to show $\square B I R D$ is a rhombus. Diagonals are perpendicular: slope of $\overline{B R}=\frac{1}{2}$ and slope of $\overline{I D}=-2$
7. Given $\square W E S T$ with $\overline{T E}$ that bisects $\angle W E S$ and $\angle W T S$.

a. List all angles congruent to $\angle 1$ and explain why. $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4 ; \angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$ (def of angle bisector) and $\angle 1 \cong \angle 4$ and $\angle 2 \cong \angle 3$ (alternate interior angles and def of parallelogram)
b. In $\triangle W E T, \overline{W T} \cong \overline{W E}$. In $\triangle S E T, \overline{S T} \cong \overline{S E}$. Explain. If two angles of a triangle are congruent, the sides opposite those angles are congruent.
c. Complete the theorem.

Theorem If a diagonal bisects \qquad in a parallelogram, then the parallelogram is a \qquad . a pair of opposite angles; rhombus.
8. Construct viable arguments. Write a proof that uses the theorem in Item 7 as the last reason.
Given: $\square B L U E$

$$
\triangle B L E \cong \triangle U L E
$$

Prove: $\square B L U E$ is a rhombus.

Statements	Reasons
1. $\triangle B L E \cong \triangle U L E$	1. Given
2. $\angle B L E \cong \angle U L E$	2. CPCTC
$\angle B E L \cong \angle U E L$	
3. $\overline{L E}$ bisects $\angle B L U$ and $\angle B E U$. 3. Def of bisect 4. $\square B L U E$ 4. Given 5. $\square B L U E$ is a 5. If a diagonal bisects a pair of opp \angle s in a parallelogram, rhombus. rhombus.	

My Notes

ACTIVITY 16 Continued

6 Think-Pair-Share, Group Presentation, Discussion Groups, Debriefing To show that a quadrilateral is a rhombus, students must first use a coordinate argument to show that it is a parallelogram, and then apply the theorem from Item 5 and another coordinate argument to show that a quadrilateral is a parallelogram.
7-8 Think-Pair-Share, Activating Prior Knowledge Students are led through the key steps in the proof that if a diagonal bisects a pair of opposite angles of a quadrilateral, then it is a rhombus. Students apply the theorem for congruent triangles from Item 7 and the definition of an angle bisector to write the proof. Have students mark the congruent parts of the triangles as they develop the proof.

ACTIVITY 16

9 Think-Pair-Share, Group Presentation, Discussion Groups, Debriefing This is an opportunity for students to review the third part of this activity. Lead a class discussion on ways of proving that a quadrilateral (or a parallelogram) is a rhombus. Either the teacher or one of the students can continue the "master list" from the previous class discussion at the end of the second part of the activity.

Check Your Understanding

Debrief students' answers to this item to ensure that they understand concepts related to proving that quadrilaterals are rhombuses.

Answers

10. Yes. If a rectangle is a square, it is a rhombus.

ASSESS

Students' answers to Lesson Practice problems will provide you with a formative assessment of their understanding of the lesson concepts and their ability to apply their learning. See the Activity Practice for additional problems for this lesson. You may assign the problems here or use them as a culmination for the activity.

LESSON 16-3 PRACTICE
11. $(-4,-2)$
12. $(2,-2)$
13. $(3,-2)$
14. a. $x=\frac{5}{2}$
b. $x=1$
15. 14.4 cm

ADAPT

Check students' answers to the Lesson Practice to ensure that they understand basic concepts related to proving that quadrilaterals are rhombuses. Students should ask themselves what must be true of the sides and angles of a quadrilateral in order for it to be a rhombus.

