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1 Latent variable interactions

Structural equation modeling with latent variable interactions has been discussed

with respect to maximum-likelihood estimation in Klein and Moosbrugger (2000).

Multivariate normality is assumed for the latent variables. The ML computations

are heavier than for models without latent variable interactions because numerical

integration is needed. For an overview of the ML approach and various estimators

suggested in earlier work, see Marsh et al. (2004). Arminger and Muthén (1998),

Klein and Muthén (2007), Cudeck et al. (2009), and Mooijaart and Bentler

(2010) discuss alternative estimators and algorithms. This section discusses

interpretation, model testing, explained variance, standardization, and plotting

of effects for models with latent variable interactions.

1.1 Model interpretation

As an example, consider the latent variable interaction model of Figure 1. The

figure specifies that the factor η3 is regressed on η1 and η2 as well as the interaction

between η1 and η2, as shown by the structural equation

η3 = β1 η1 + β2 η2 + β3 η1 × η2 + ζ3. (1)

The interaction variable η1 × η2 involves only one parameter, the slope β3. The

interaction variable does not have a mean or a variance parameter. It does not have

parameters for covariances with other variables. It can also not be a dependent

variable. As is seen in Figure 1, the model also contains a second structural

equation where η4 is linearly regressed on η3, so that there is no direct effect on
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Figure 1: Structural equation model with interaction between latent variables

 

η4 from η1 and η2, or their interaction.

For ease of interpretation the (1) regression can be re-written in the equivalent

form

η3 = (β1 + β3 η2) η1 + β2 η2 + ζ3, (2)

where (β1 + β3 η2) is a moderator function (Klein & Moosbrugger, 2000) so that

the β1 strength of influence of η1 on η3 is moderated by β3 η2. The choice of

moderator when translating (1) to (2) is arbitrary from an algebraic point of

view, and is purely a choice based on ease of substantive interpretation. As an

example, Cudeck et al. (2009) considers school achievement (η3) influenced by

general reasoning (η1), quantitative ability (η2), and their interaction. In line with

(2) the interaction is expressed as quantitative ability moderating the influence of

general reasoning on school achievement. Plotting of interactions further aids the

interpretation as discussed in Section 1.5.
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1.2 Model testing

As pointed out in Mooijaart and Satorra (2009), the likelihood-ratio χ2 obtained

by ML for models without latent variable interactions is not sensitive to incorrectly

leaving out latent variable interactions. For example, the model of Figure 1

without the interaction term β3 η1 × η2 fits data generated as in (1) perfectly.

This is due to general maximum-likelihood results on robustness to non-normality

(Satorra, 1992, 2002). Misfit can be detected only by considering higher-order

moments than the second-order variances and covariances of the outcomes.

Without involving higher-order moments, a reasonable modeling strategy is to

first fit a model without interactions and obtain a good fit in terms of the ML

likelihood-ratio χ2. An interaction term can then be added and the β3 significance

of the interaction significance tested by either a z-test or a likelihood-ratio χ2

difference test (Klein & Moosbrugger, 2000). Likelihood-ratio or Wald tests can

be used to test the joint significance of several interaction terms.

1.3 Mean, variance, and R2

To compute a dependent variable mean, variance, and R2 for models with latent

variable interactions, the following results are needed. As discussed in Chapter ??,

the covariance between two variables xj and xk is defined as

Cov(xj, xk) = E(xj xk)− E(xj) E(xk), (3)

so that the variance is obtained as

Cov(xj, xj) = V (xj) = E(x2j)− [E(xj)]
2. (4)
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With E(xj) = 0 or E(xk) = 0, (3) gives the mean of a product

E(xj xk) = Cov(xj, xk). (5)

Assuming multivariate normality for four random variables xi, xj, xk, xl any

third-order moment about the mean (µ) is zero (see, e.g., Anderson, 1984),

E(xi − µi)(xj − µj)(xk − µk) = 0, (6)

while the fourth-order moment about the mean is a function of covariances,

E(xi − µi)(xj − µj)(xk − µk)(xl − µl) = σij σkl + σik σjl + σil σjk, (7)

where for example σjk = Cov(xj, xk) and σkk = V ar(xk). This gives

E(xj xk xj xk) = V (xj) V (xk) + 2 [Cov(xj, xk)]2, (8)

so that the variance of a product is obtained as

V (xj xk) = E(xj xk xj xk)− [E(xj xk)]2 (9)

= V (xj) V (xk) + 2 [Cov(xj, xk)]2 − [Cov(xj, xk]2 (10)

= V (xj) V (xk) + [Cov(xj, xk)]2, (11)

Consider the application of these results to the mean and variance of the factor

η3 in (1) of Figure 1. Because of zero factor means, using (5) the mean of η3 in
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(1) is obtained as

E(η3) = β1 0 + β2 0 + β3 E(η1 η2) + 0 (12)

= β3 Cov(η1, η2). (13)

Using (4), the variance of η3 is

V (η3) = E(η3 η3)− [E(η3)]
2, (14)

where the second term has already been determined. As for the first term,

multiplying the right-hand side of (1) by itself results in products of two, three,

and four factors. Expectations for three- and four-factor terms are simplified by

the following two results, assuming bivariate normality and zero means for η1 and

η2. All third-order moments E(ηi ηj ηk) are zero by (6). The formula (8) is used

to obtain the result

E(η1 η2 η1 η2) = V (η1) V (η2) + 2 [Cov(η1, η2)]
2. (15)

Collecting terms, it follows that the variance of η3 is obtained as

V (η3) = β2
1 V (η1) + β2

2 V (η2) + 2 β1 β2 Cov(η1, η2) + β2
3 V (η1 η2) + V (ζ3), (16)

where by (11)

V (η1 η2) = V (η1) V (η2) + [Cov(η1, η2)]
2, (17)
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R-square for η3 can be expressed as usual as

[V (η3)− V (ζ3)]/V (η3). (18)

Using (16), the proportion of V (η3) contributed by the interaction term can be

quantified as (cf. Mooijaart & Satorra, 2009; p. 445)

β2
3 [V (η1) V (η2) + [Cov(η1, η2)]

2]/V (η3). (19)

Consider as a hypothetical example the latent variable interaction model of

Figure 2. Here, the latent variable interaction is between an exogenous and an

endogenous latent variable. This example is useful to study the details of how to

portray the model. The structural equations are

η1 = β η2 + ζ1, (20)

η3 = β1 η1 + β2 η2 + β3 η1 × η2 + ζ3. (21)

Let β = 1, β1 = 0.5, β2 = 0.7, β3 = 0.4, V (η2) = 1, V (ζ1) = 1, and V (ζ3) = 1.

This implies that V (η1) = β2 V (η2) + V (ζ1) = 12 × 1 + 1 = 2 and Cov(η1, η2) =

β V (η2) = 1× 1 = 1. Using (16), V (η3) = 3.17. The η3 R-square is 0.68 and the

variance percentage due to the interaction is 15%.

1.4 Standardization

Because latent variables have arbitrary metrics, it is useful to also present

interaction effects in terms of standardized latent variables. Noting that (21)
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Figure 2: Structural equation model with interaction between an exogenous and
an endogenous latent variable

 

is identical to (1), the model interpretation is aided by considering the moderator

function (β1 + β3 η2) η1 of (2), so that η2 moderates the η1 influence on η3.

As usual, standardization is obtained by dividing by the standard deviation

of the dependent variable and multiplying by the standard deviation of the

independent variable. The standardized β1 and β3 coefficients in the term

(β1 + β3 η2) η1 are obtained by dividing both by
√
V (η3) =

√
3.17, multiplying

β1 by
√
V (η1) =

√
2, and multiplying β3 by

√
V (η1)

√
V (η2) =

√
2. This gives

a standardized β1 = 0.397 and a standardized β3 = 0.318. The standardization

of β3 is in line with Wen, Marsh, and Hau (2010; equation 10). These authors

discuss why standardization of β3 using
√
V (η1)

√
V (η2) is preferred over using√

V (η1 × η2).
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The standard deviation change in η3 as a function of a one standard deviation

change in η1 can now be evaluated at different values of η2 using the moderator

function. At the zero mean of η2, a standard deviation increase in η1 leads to

a 0.397 standard deviation increase in η3. At one standard deviation above the

mean of η2, a standard deviation increase in η1 leads to a 0.397+0.318×1 = 0.715

standard deviation increase in η3. At one standard deviation below the mean of

η2, a standard deviation increase in η1 leads to a 0.397−0.318×1 = 0.079 standard

deviation increase in η3. In other words, the biggest effect of η1 on η3 occurs for

subjects with high values on η2.

1.5 Plotting of interactions

The interaction can be plotted as in Figure 3. Using asterisks to denote

standardization, consider the rearranged (21),

η∗3 = (β∗
1 + β∗

3 η
∗
2) η∗1 + β∗

2 η
∗
2 + ζ∗3 . (22)

Using (22), the three lines in the figure are expressed as follows in terms of the

conditional expectation function for η∗3 at the three levels of η∗2,

E(η∗3|η∗1, η∗2 = 0) = β∗
1 η

∗
1, (23)

E(η∗3|η∗1, η∗2 = 1) = (β∗
1 + β∗

3) η∗1 + β∗
2 , (24)

E(η∗3|η∗1, η∗2 = −1) = (β∗
1 − β∗

3) η∗1 − β∗
2 . (25)

(26)

Here, the standardized value β∗
2 = β2×

√
V (η2)/

√
V (η3) = 0.7×1/

√
3.17 = 0.393.
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Figure 3: Interaction plot for structural equation model with interaction between
an exogenous and an endogenous latent variable
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2 Standardization in matrix terms

This section describes standardization of the general model in Mplus when latent

variable interactions are present. Suppose that Y is a vector of dependent

variables, X is a vector of covariates, η is a vector of latent variables. All residuals

are assumed normal.

Suppose that the variables (Y ,η,X) are split into two disjoint set of variables

V1 and V2. V1 set of dependent variables that are not part of interaction terms

and V2 is a set of variables that are a part of interaction terms. Suppose that V1

is a vector of size p1 and V2 is a vector of size p2. The SEM equation is given by

these two equations

V1 = α1 +B1V1 + C1V2 +
k∑

i=1

Di(V2,f(i)V2,g(i)) + ε1
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V2 = α2 +B2V2 + ε2

where α1, B1, C1, Di, α2, B2 are model parameters. The vectors α1, Di are of length

p1 while the vector α2 is of length p2. The matrices B1, C1 and B2 are of size

p1 × p1, p1 × p2 and p2 × p2 respectively.

The residual variable ε1 has zero mean and variance covariance Θ and ε2

has zero mean and variance covariance Ψ. The residuals ε1 are not considered

independent of the residuals ε2. Let’s call the covariance F = Cov(ε1, ε2). The

functions f(i) and g(i) simply define the interaction terms, i.e., f(i) and g(i) are

integers between 1 and p2 and k is the number of interaction terms in the model.

We can assume that all covariates X are in the V2 vector and the V1 vector

consists only of η and Y variables that are regressed on interaction terms, while

the remaining η and Y variables are in vector V2. We can compute the model

implied mean and variance for these variables as follows. For the variables V2 we

get

E(V2) = µ2 = (1−B2)
−1α2

V ar(V2) = Σ2 = (1−B2)
−1Ψ((1−B2)

−1)T

For V1 we get

E(V1) = (1−B1)
−1α1+(1−B1)

−1C1µ2+(1−B1)
−1

k∑
i=1

Di(µ2,f(i)µ2,g(i)+Σ2,f(i),g(i)).

Denote by

V20 = V2 − µ2

µ10 = (1−B1)
−1α1 + (1−B1)

−1C1µ2 + (1−B1)
−1

k∑
i=1

Di(µ2,f(i)µ2,g(i))
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V10 = (1−B1)
−1C1V20 + (1−B1)

−1ε1 + (1−B1)
−1

k∑
i=1

Di(µ2,f(i)V20,g(i))+

(1−B1)
−1

k∑
i=1

Di(V20,f(i)µ2,g(i)).

Then

V1 = µ10 + V10 + (1−B1)
−1

k∑
i=1

Di(V20,f(i)V20,g(i)).

Another representation for V10 is

V10 = QV20 + (1−B1)
−1ε1

where the matrix Q combines all the coefficients from the terms involving V20.

The above equation is essentially the definition of Q. Note now that

Cov(ε1, V20) = F ((1−B2)
−1)T

and thus

V ar(V10) = QΣ2Q
T + (1−B1)

−1Θ((1−B1)
−1)T +Q(1−B2)

−1F T ((1−B1)
−1)T+

(1−B1)
−1F ((1−B2)

−1)TQT .

Using the fact that the covariance between V20,f(i)V20,g(i) and V20 and the

covariance between V20,f(i)V20,g(i) and ε1 are zero we get that

V ar(V1) = V ar(V10) +
∑
i,j

DiCov(V20,f(i)V20,g(i), V20,f(j)V20,g(j))D
T
j =

12



V ar(V10) +
∑
i,j

DiD
T
j (Σ2,f(i),f(j)Σ2,g(i),g(j) + Σ2,f(i),g(j)Σ2,g(i),f(j)).

Note also that

Cov(V1, V2) = Cov(V10, V20) = QΣ2 + (1−B1)
−1F ((1−B2)

−1)T .
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