
Determining a Central Controlling Processor with Fault Tolerant Method in
Distributed System

Mehdi EffatParvar1, MohammadReza Effatparvar2, Akbar Bemana3, Mehdi Dehghan4

1Islamic Azad University of Ardebil, Ardebil, Iran
2Young Researcher Club, Islamic Azad University of Qazvin, Qazvin, Iran

3Islamic Azad University of Hashtroud, Hashtroud Iran
4Computer & IT Eng Deportment of Amir Kabir University, Tehran, Iran.

E-mail: Mehdi_Effatparvar@yahoo.com

Abstract
Central Controlling Processor is applied in many

scientific fields such as computer network, centralized
mutual exclusion algorithm, centralized control IPC,
Berkeley algorithm, etc. Central Controlling Processor
in distributed systems is a very important problem, and
this problem must be solved by suitable algorithms.
The main goal of Central Controlling Processor is
synchronizing the process at optimal using of the
resources. In this paper we call the Central
Controlling Processor as a leader many different
algorithms have been presented for leader election.
The most important leader election algorithms are the
Bully and Ring algorithms. Ring election algorithm is
one of the classic method which is used to virtual ring
and determine the process with highest number as the
coordinator, and one of the most important leader
election algorithm is the Bully algorithm. In this paper
we will describe novel approaches with fault tolerant
method to improve the Bully and Ring algorithms. Our
simulation shows that our algorithm is more efficient
rather than the Ring algorithm in number of message
passing. By doing this, performance and behavior will
be improved and message passing will be reduced.

1. Introduction

Leader election in distributed systems is a very

important problem that it solves by using suitable
election algorithms. In election algorithm we intend to
elect a single coordinator for some processes in
distributed systems. In distributed systems, processors
communicate with each other using shared memory or
by exchanging messages with each other. For
processors to perform any distributed task effectively
the processors require coordination. In a pure
distributed system, there is no central controlling
processor that arbitrates decisions. Without a central

authority or coordinator, any processor has to
communicate with all processors in the network to
make decision. Often during the decision process, not
all processors make the same decision. Communication
between processors takes time and further more,
making the decision takes time. Coordination among
processors becomes difficult when consistency is
needed among all processors. Centralized controlling
processor(s) can be selected among the group of
available processors to reduce the complexity of
decision making. Many distributed algorithms require
one process to act as coordinator, initiator, or otherwise
perform some special role. In general, it does not
matter which process takes on this special
responsibility, but one of them has to do it.

Leader election is a technique that can be used to
break the symmetry of distributed Systems. By
determining a central controlling processor (leader) in
the distributed systems a processor is elected as the
leader among the group of processors in the distributed
systems. This processor acts as the centralized
controller of this decentralized distributed system.

Some applications of leader election include finding
a spanning tree with the elected leader as root[19],
breaking a deadlock , reconstructing a lost token in a
token ring network, using leader election in Ad Hoc
network [17,18].

Leader election algorithms for static networks are
popular. These algorithms work by constructing
several spanning trees with a prospective leader at the
root of the spanning tree and recursively reducing the
number of spanning trees to one. However, these
algorithms work only if the topology remains static and
hence cannot be used in a mobile setting.

The purpose of leader election [1] is to choose a
processor that will coordinate activities of the system.
In any leader election algorithm, a leader is usually
decided based on some criterion such as choosing the
processor with the largest identifier as the leader. At

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

the time when the leader is decided, the processors
reach the terminated states. The terminated states, in a
leader election algorithm, are partitioned into elected
states and non-elected states. When a processor enters
a non-elected state (or an elected state), the processors
always remain in the non-elected state (or an elected
state). Any leader election algorithm must be satisfied
by the safety and liveness condition for an execution to
be admissible. The liveness condition states that every
processor will eventually enter an elected state or a
non-elected state.

The safety condition for leader election requires that
only a single processor can enter the elected state. This
processor becomes the leader of the distributed system.
Several leader election algorithms have been proposed
over the years [2-12]. Some of the grand election
algorithms that we can mention to them are Bully
algorithm, Ring algorithm, Chang and Roberts’
algorithm [13], Peterson’s election algorithm [16],
Lelann’s algorithm [15], Franklin’s algorithm [14].
Such leader election algorithms proposed until now
require processors to be directly involved in leader
election. Information is exchanged between processors
by transmitting messages to each other. The processors
exchange messages with each other and try to reach an
agreement. Once an agreement is reached, a processor
will be elected as leader and all other processors will
acknowledge the presence of the leader.

In this paper we present new approach for Bully
algorithm with fault tolerant , that it decrease the
message complexity of Bully, and also a new approach
for decreasing the message in Ring algorithm is
represented.

6 1

2

34

5

6 1

2

34

5
Election

Election

El
ec

tio
n

6 1

2

34

5

6 1

2

34

5
OK

OK

O
K

 (a) (b)

6 1

2

34

5

6 1

2

34

5
Coordinator=4

6 1

2

34

5

6 1

2

34

5 El
ec

tio
n

Elec
tio

n

 (c) (d)

6 1

2

34

5

6 1

2

34

5

O
K

6 1

2

34

5

6 1

2

34

5

Co
or

di
na

to
r

 (e) (f)

Figure 1: Process 2 notices the coordinator has
crashed so sends an election message to
processes 3, 4, 5(a), and receives OK message
from processes 3, 4 it means that Ok message of
process 5 is failed (b), then process 4 is selected
as a coordinator (c), and process 4 according to
algorithm sends an election message and selects
process 5 as a coordinator (d,e,f).

2. Modified Bully Algorithm with Fault
Tolerant Mechanism

As it has been mentioned, in Bully algorithm the

number of messages that should be exchanged between
processes is very high. By presenting the new approach
with sort mechanism we decrease the number of
messages. Bully with the sort mechanism has a little
message passing, but it may consume more time in
contrast with Bully Algorithm to find the leader, we
describe another approach to modify Bully. In this
Algorithm when process P notices that the leader has
crashed, it sends an election message to all processes
with higher ID number.

Each process that receives election message sends
its ID as a respond to process P. If no process
responses to process P, it will broadcast one
coordinator message to all processes. If some processes
response to process P, it will select the process with the
highest ID number as coordinator and that will send a
new message with selected ID number to all processes.
In this manner all processes know the new leader.

This approach is a suitable way to select the leader, but
when the process with the highest ID number is sent,
its message to process P maybe lost. So we want to
present a fault tolerant mechanism to prevent this fault.
To do this, when process P selected the highest ID
number it sends the selected ID to all processes, now
the new leader sends election message to processes
with greater ID number to be sure that there is no
process with great ID numbers.

 If a message is received from processes with great
ID numbers, it introduces the greatest one as leader.
Otherwise it remains the leader again.

3. Modified Ring Algorithm

The methods presented in previous section were

about the methods to choose the leader. In this section,
we want to introduce an appropriate method to modify
Ring algorithm. In this method, the number of message
passing in Ring decreases and it prevents sending
additional messages to selected leader.

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

As it is seen in Figure 2, when a process notices that
the leader has crashed, it starts sending its ID number
in Ring. So it is not necessary for all processes to start
sending their own IDs in the Ring. The ID number sent
by it reaches to neighbor in the Ring. At this moment
the receiving process compares the received ID with its
own, and sends whichever is the greatest. This
comparison is done by all the processes in the Ring, so
only the greatest ID remains in the Ring, and
ultimately the ID returns back to its sender. If the ID
equals with process ID, the leader becomes known and
sends the coordinator message to the Ring.

It is seen that the above method decreases the

overhead sent message greatly. So, if a lot of processes
notice the leader has crashed, only the message of the
process with the greatest ID number turns around in
the Ring and sending smaller ID numbers in the Ring
is prevented. This means that if the message with the
lower ID reaches to the process which has noticed the
leader has crashed, the received message becomes
redundant and after this no message is sent there. In
implementation the flags can be used to recognize the
processes which have noticed the death of the leader.
Figure 2 shows this Ring algorithm.

4. Modified Ring with Fault Tolerant

After describing the Modified Ring algorithm in

this section we would present this algorithm, so we
explain new method to fault tolerant the Modified
Ring.

In this method we use another process ID beside the
leader ID’s. It means that in this method every
processor send two IDs to its neighbor. One ID
determines the leader in the ring and other ID is spare
and it is our leader surrogate. In this method when a
process notices that the leader has crashed it select the
surrogate instead of old leader and it will become
leader. So by doing this method when in first time the
leader crashed the processors do not need to determine
the leader because the leader has been selected before.

 As it is seen in Figure 3, when a process notices
that the leader has crashed, it starts sending its ID
number and one null number in Ring. So it is not
necessary for all processes to start sending their own
IDs in the Ring. The ID number sent by it reaches to
neighbor in the Ring. At this moment the receiving
process compares the received IDs with its own, and
sends two greatest numbers. It means that processors
sent the next greatest ID beside the main greatest ID
that we call it surrogate. This comparison is done by all
the processes in the Ring, so the two greatest ID
remains in the Ring, and ultimately the ID returns back
to its sender. If the ID equals with process ID, the
leader becomes known and sends the coordinator
message to the Ring. In this method the processes
which have noticed the death of the leader send the
coordinator message to the Ring and in this packet two
ID has been determined. We can use this method in
impermanent environments.

In implementation the flags can be used to
recognize the processes which have noticed the death
of the leader. Figure 3 shows this method. As you see
in figure, processes 2 and 5 have noticed the death of
the leader so the sent the packet with two IDs one of
them are their own ID and the other is null. Other
processes put the second greatest ID instead of the null
number and ultimately the leader and its surrogate will
be determined.

6 1

2

34

5 *

*

ID=2ID=4

6 1

2

34

5

2<3

4<5

ID=5

ID=3

(a) (b)

6 1

2

34

5

3<4

4<5
ID=5

1<56 1

2

34

5

ID=5

(c) (d)

5=5

6 1

2

34

5 ID=5

 (e)

Figure 2: Processes 2, 4 notice that coordinator
has crashed concurrently (a), so they send their
ID in the Ring (b), and according to algorithm,
greatest ID remains in the Ring and its sender
becomes known as a coordinator (c, d, e).

12

3

4

5

6

7

8

*

*

2 , NULL

5 ,
 N

ULL

a

12

3

4

5

6

7

8

2 , 1

7 , 5

b
*

*

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

5. Evaluation Result

After describing the represented algorithm, in this

section we will compare and evaluate the gained
results. We will also compare the complexity of
message passing between the algorithms and show the
improvement of them.

5.1. Analytical Comparison of Modified Bully
with Fault Tolerant Mechanism

In Modified Bully with Fault Tolerant Mechanism

we have previous parameters, so if only one process
detects crashed coordinator we have:

)2()(2

)2()()()(

−+−=

−+−+−=

nin

nininN i (1)

Which has Order . When we use the fault
tolerant mechanism according to Figure 4 message
passing will increase.

)(nO

12

3

4

5

6

7

87 , 5

c
*

*

6 , 2

12

3

4

5

6

7

8

7 ,
 5

d
*

*

6 ,
 5

12

3

4

5

6

7

8

*

*
e

7 , 5

7 , 6

12

3

4

5

6

7

8

f
*

*

7 , 6

7 , 5

12

3

4

5

6

7

8

g
*

*

7 , 6

7 ,
 6

12

3

4

5

6

7

8

h
*

*
7 , 6

Figure 3: Processes 2, 5 notice that coordinator has
crashed concurrently, so they send their packet to
neighbor, these packets turn in the ring and surrogate
ID add to these packets. Ultimately the leader and
surrogate are selected.

[])()2()(2

)2()(2)2()(2
'

'
)(

innin

ninninN i

−+−+−=

−+−+−+−= (2)

In which is a selected leader ID number in first

step. The Order of this method is . Figure 4
shows the comparison between Bully Algorithm and
modified Bully with fault tolerant mechanism. Figure 5
shows the fault number between modified Bully and
modified Bully with fault tolerant mechanism.

'i
)(2nO

0

5000

10000

15000

20000

25000

4 30 60 90 120 149

The process ID notice that coordinator has crashed (N=150)

N
um

be
r o

f m
es

sa
ge

 p
as

si
ng

Bully
Modified Bully with fault tolerant

Figure 4: The comparison of message passing in
Bully and Modified Bully with fault tolerant (If only
one process notices that the coordinator has crashed
(N=150)).

0

50

100

150

200

250

300

350

400

450

500

4 30 60 90 120 149

Processes ID notice that coodinator has crashed

N
um

be
r o

f m
es

sa
ge

 p
as

si
ng

Modified Bully
Modified Bully with fault tolerant

Figure 5: The comparison of message passing
between Modified Bully and Modified Bully with
fault tolerant mechanism.

Table 1 indicates the number of fault, sent and
received message in modified Bully with fault tolerant
mechanism. For example, if the 4-th process found that
the coordinator has crashed, it will send 145 messages
to the processes with larger IDs. But, because of the

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

Table 1: The number of message passing in Modified Bully with fault tolerant mechanism

Number of
Message in

message to
process

with larger
ID

Received
message

from process
with larger ID

Process
ID

Sent
messages

Received
messages

Number
of fault

Coordinator
messages Bully with

fault tolerant
4 442 145 133 12 7 7 149

30 385 119 110 9 3 3 149
60 341 89 32 57 35 35 149
90 270 59 51 8 5 5 149

120 205 29 20 9 3 3 149
149 150 1 0 0 0 0 149

occurrence of the fault in the network, it is impossible
to receive all the messages, therefore, it will receive
133 messages. So, 12 faults have occurred. After the
primary determination of the coordinator by a message
the selected coordinator again sends messages to
processes with greater ID than itself and this number is
produced at random and it is 7. It also receives 7
messages from these processes and finally the main
coordinator will be selected and all the processes
receive its ID.

5.2.Modified Ring Algorithm

In this section we will exam modified Ring
Algorithm at first we compare the message complexity
of Ring Algorithm with modified Ring. Assume that
the set of processes in from the
processes that find out the crashed coordinator
concurrently so the total message passing is:

{ miiiS ,..., 21= }

}

]

{ } nnT

miii ×= ,..., 21
 (3)

{ miiin ,..., 21
is the number of processes detecting

crashed coordinator and n is the number of processes
in the Ring. As you see it Order is . The
complexity of message passing in modified Ring
Algorithm is:

)(2nO

)(2/12/)1(
2

0
nnnnin

i
−=−=∑ =

 (4)

Which has Order . In fact modified Ring

Algorithm reduces the message passing that we obtain
it from following formula:

)(2nO

[∑ =

+−−=−
n

i
ininin

1
)1)((2/1)((5)

So the complexity of modified Ring is much lower

than the Ring Algorithm.
Figure 6 shows the comparison between Ring and

modified Ring Algorithms. In our simulation we

assume that the number of existing processes in the
ring is 10 and the topology of the Ring has been
products randomly. The number of message passing in
different status is shown when several processes notice
that coordinator has crashed concurrently.

6. Conclusion and Future Works

Election Algorithms in distributed system play an

important role in the system operation. The important
algorithms for this kind of work are Bully and Ring
Algorithms. The approaches presented in this article
have improved these two Algorithms. In modifying
Bully Algorithm according to this article; new
approaches have been presented.

To improve Bully Algorithm was used simultane-
ously with fault tolerant mechanism. This algorithm
reduces the number of message passing to select the
leader, and we compare it with Bully Algorithm the
improvement of this algorithm was shown in Figure 4.
In this paper a new method is also introduced to
improve Ring Algorithm. Modified Ring Algorithm is
a suitable approach to leader election and it reduces the
message complexity when several processes concur-
ently notice that the coordinator has crashed. So the
bandwidth and message passing will be improved.

0

50

100

150

200

250

2 4 6 8 10

Number of processes notice that coodinator has crashed

N
um

be
r o

f m
es

sa
ge

 p
as

si
ng

Modified Ring

Ring

Figure 6: The comparison of message passing in
Ring and Modified Ring when several processes
concurrently notice that coordinator has crashed.

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

Also we presented modified Ring algorithm with fault
tolerant method in section 4.

In future works we will use these algorithms to
leader election in Ad hoc and sensor network as a
distributed form. It is also possible to use the election
algorithms in dynamic environments.

7. References

[1] J. Welch and H. Attiya, Distributed Computing:
Fundamentals, Simulations, and Advanced Topic, London,
UK: McGraw-Hill Publishing Company, 2001.
[2] Y. Afek and A. Gafni, “Time and message bounds for
election in synchronous and asynchronous complete
networks,” in Proc. 4th Annu. ACM Symp. on Principles of
Distributed Computing, Minaki, Canada, Aug. 1985, pp. 186-
195.
[3] J. E. Burns, “A formal model for message passing
systems,” Tech. Rep. TR-91, Indiana University, Sep. 1980.
[4] D. Dolev, M. Klawe, and M. Rodeh, “An O(nlogn)
unidirectional distributed algorithm for extrema finding in a
circle,” Journal of Algorithms, vol. 3, no. 3, pp. 245- 260,
Sep. 1982.
[5] G. Fredrickson and N. Lynch, “The impact of
synchronous communication on the problem of electing a
leader in a ring,” in Proc. 16th Annu. ACM Symp. on
Theory of Computing, Washington, D.C., 1984, pp. 493-503.
[6] E. Gafni and Y. Afek, “Election and traversal in
unidirectional networks,” in Proc. 3rd Annu. ACM Symp. on
Principles of Distributed Computing, Vancouver, B.C.,
Canada, Aug. 1984, pp. 190-198.
[7] R. G. Gallager, Choosing a leader in a network,
Unpublished memorandum, M.I.T., Cambridge, Mass., 1977.
[8] R. G. Gallager, P. M. Humblet, and P. M. Spira, “A
distributed algorithm for minimum-weight spanning trees,”
ACM Trans. Program. Lang. Syst., vol. 5, no. 1, pp. 66-77,
Jan. 1983.
[9] P. Humblet, “Selecting a leader in a clique in O(n log n)
messages,” in Intern. Memo., Laboratory for Information and
Decision Systems, M.I.T., Cambridge, Mass., 1984.
[10] E. Korach, S. Moran, and S. Zaks, “Tight lower and
upper bounds for some distributed algorithms for a complete
network of processors,” in Proc. 3rd Annu. ACM Symp. on
Principles of Distributed Computing, Vancouver, B.C.,
Canada, pp. 199-207, Aug. 1984.
[11] I. Lavalléé and G. Roucairol, “A fully distributed
(minimal) spanning tree algorithm,” Information Processing
Letters, 23, pp. 55-62, Aug. 1986.
[12] P. M. B. Vitanyi, “Distributed election in an
Archimedean ring of processors,” in Proc. 16th Annu. ACM
Symp. on Theory of Computing, Washington, D.C., pp. 542-
547, 1984.
[13] E. Chang and R. Roberts, “An improved algorithm for
decentralized extrema-finding in circular configurations of
processes,” Communications of the ACM}, pp. 281-283, 22,
5, 1979.
[14] W. R. Franklin, “On an improved algorithm for
decentralized extrema finding in circular configurations of
processors,” Communication of the ACM, pp. 336-337, 25,
1982.

[15] G. LeLann, Distributed systems - towards a formal
approach, Information Processing Letters, pp. 155-160, 1977.
[16] G. L. Peterson, “An O(nlogn) unidirectional algorithm
for the circular extrema problem,” ACM Trans. Program.
Lang. Syst. 758-762, 4,4 (Oct. 1982).
[17] N. Malpani, J. Welch and N. Vaidya, “Leader Election
Algorithms for Mobile Ad Hoc Networks,” In Fourth
International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications, Boston, MA,
August 2000.
[18] P. Basu, N. Khan and T. Little, “A Mobility based
metric for clustering in mobile ad hoc networks,” In
International Workshop on Wireless Networks and Mobile
Computing, Apr. 2001.
[19] R. Gallager, P. Humblet and P. Spira, “A Distributed
Algorithm for MinimumWeight Spanning Trees,” In ACM
Transactions on Programming Languages and Systems,
vol.4, no.1, pages 66-77, January 1983.

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

