A New Model of the Neutron Based on π -Mesons

Yibing Qiu

Abstract: this article put forward a model of the neutron based on π -mesons

Main viewpoint & conclusions:

A free π -meson is unstable, a short time after (not more than 8.4 ×10⁻¹⁷ seconds), the free π -meson fission to an electron and a neutrino;^[1] and a free neutron also is unstable, after a short period of time (about 14 minutes and 42 seconds), the free neutron fission to a proton, an electron and a neutrino;^[2] even the neutrino has no its own antiparticle,^[3] There is

	a π -meson \rightarrow an electron + a neutrino	(i)
	a neutron \rightarrow a proton + an electron + a neutrino	(ii)
Then we have		
	a π -meson = an electron + a neutrino	and
	a neutron = a proton + an electron + a neutrino	
Even		
	a neutron = a proton + a π -meson	

That is to saying; the neutron is one kind of composite particles that is composed of a proton with a π -meson.

The image select from the network, not for any commercial purposes, thanks to authors.

References

- [1] Pion http://en.wikipedia.org/wiki/Pion
- [2] Neutron http://en.wikipedia.org/wiki/Neutron
- [3] The Neutrino Has No its own Antiparticle http://rxiv.org/abs/1601.0232