An Introduction to Algebra

Michael Torpey
University of St Andrews

2017-01-20

What is algebra?

- That thing you do in school:

$$
3 x+1=10 \quad \Longrightarrow \quad x=3
$$

- Something to do with groups?
- Something without a strict definition?
- Something like this:

> Solve if uragenius !

$$
\begin{aligned}
& \beta+\beta+\beta=\mathbf{3 0} \\
& b+Q+Q=20 \\
& \square+\square D+D P=9 \\
& \int_{0 \cdot 0-1}^{\infty} \frac{\sin (\ell)}{\operatorname{lin}} d \ell=\text { ? }
\end{aligned}
$$

Origins of "algebra"

- Arabic الحبر al-jabr - reunion of broken parts
- The Compendious Book on Calculation by Completion and Balancing (Al-kitab al-mukhtasar fi hisab al-jabr wa'l-muqabala), Muhammad ibn Musa al-Khwarizmi, c. 820 CE.
- Translated into Latin in 1145 by Robert of Chester as Liber Algebrae et Almucabola
- Covers methods for solving quadratic equations of six different types
- Other English words from Arabic: algorithm (الخوارزمى), cipher (صفر), average (عوارية),
 cube (مكعب), degree (درجة)

Elementary algebra

- Arithmetic: applying operations to known numbers

$$
1+2+3+4+5=15
$$

- Algebra: applying operations to unfixed variables

$$
\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)
$$

- Solving equations
- Taught from secondary school
- Essential to all branches of mathematics \& statistics
- You all know this stuff

Abstract algebra

- The study of algebraic structures

Definition

An algebraic structure is a set S together with some operations on S, satisfying some axioms.

- Motivated by concrete problems: modular arithmetic, systems of equations, permutations...
- First studied abstractly starting in the late 19th century, increasing in popularity into the 20th century

Definition

A group $(G, *)$ is a set G together with one binary operation * : $G \times G \rightarrow G$ which satisfies associativity, identity and inverses.

Groups

- Very well studied
- First defined abstractly in the mid-19th century

Definition

A group $(G, *)$ is a set G together with one binary operation * : $G \times G \rightarrow G$ which satisfies associativity, identity and inverses, i.e.

- $(x * y) * z=x *(y * z)$ for all $x, y, z \in G$,
- there exists an identity $e \in G$ such that $e x=x e=x$ for any $x \in G$,
- each $x \in G$ has an inverse $x^{-1} \in G$ such that $x x^{-1}=x^{-1} x=e$.

Examples of groups:

- Integers under addition: $(\mathbb{Z},+)$
- Natural numbers 0 to $n-1$ under modular addition: $\left(\mathbb{Z}_{n},+{ }_{n}\right)$
- Permutations on some set X under composition: S_{X}
- Thompson's groups F, T, and V

Semigroups

- Not so well understood
- First defined in 1908, studied more after 1950

Definition

A semigroup $(S, *)$ is a set S together with one binary operation *: $S \times S \rightarrow S$ which satisfies associativity, i.e.

- $(x * y) * z=x *(y * z)$ for all $x, y, z \in S$.

Definition

A monoid is a semigroup with an identity.
Examples of semigroups:

- Integers under multiplication: (\mathbb{Z}, \times)
- Transformations on some set X under composition: S_{X}
- Partial permutations on some set X under composition: I_{X}
- Words over some alphabet A under concatenation: A^{*}
- Any group

Rings

Rings

- Also a generalisation of numbers
- First defined in the late 19th century

Definition

A ring $(R,+, \cdot)$ is a set R together with two binary operations
$+: R \times R \rightarrow R$ and $\cdot: R \times R \rightarrow R$ such that:

- $(R,+)$ is a commutative group (we call the identity " 0 ")
- (R, \cdot) is a monoid (we call the identity " 1 ")
- . is distributive over +, i.e.

$$
x(y+z)=x y+x z, \quad(x+y) z=x z+y z
$$

Examples of rings:

- Integers under addition and multiplication: $(\mathbb{Z},+, \cdot)$
- The Gaussian integers under complex addition and multiplication: $(\mathbb{Z}[i],+, \cdot)$

Fields

Fields

Definition

A field $(F,+, \cdot)$ is a ring in which every element except 0 has a multiplicative inverse

Examples of fields:

- Rational numbers under addition and multiplication: $(\mathbb{Q},+, \cdot)$
- Complex numbers under addition and multiplication: $(\mathbb{C},+, \cdot)$
- Functions on some geometric objects under pointwise addition and multiplication
- Finite fields of prime-power size
- All rings

Homomorphism and isomorphism

- Finding relationships between algebraic objects

Definition

An object homomorphism is a function $\phi: X_{1} \rightarrow X_{2}$ from one object to another which respects the operations defined on it.

- What if two structures are "the same"?

Definition

An object isomorphism is an object homomorphism $\iota: X_{1} \rightarrow X_{2}$ which is bijective. We say X_{1} and X_{2} are isomorphic.
Two objects X_{1} and X_{2} are isomorphic if you can rename X_{1} 's elements to get X_{2}.

Other objects

- Set - just a set with no operations
- Semilattice/lattice - a partially ordered set with meet (and join) operations
- Group ring - sums of elements of a group with coefficients from a ring
- Algebra - a set over a field, with three operations
- and many more...

Computational algebra

- How many ways can I permute a Rubik's cube?

GAP - Groups, Algorithms, Programming

- Computational algebra system with a focus on group theory
- Started in 1986 at RWTH Aachen, development moved to St Andrews in 1997
- Since 2005, an equal partnership between Aachen, St Andrews, Brunswick \& Colorado
- Many packages available for a variety of algebraic objects

Thank you for listening

