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This 

 

Technical Document

 

 provides a detailed description of RiskMetrics

 



 

, a set of techniques and data 
to measure market risks in portfolios of fixed income instruments, equities, foreign exchange, commod-
ities, and their derivatives issued in over 30 countries. This edition has been expanded significantly from 
the previous release issued in May 1995.

We make this methodology and the corresponding RiskMetrics

 



 

 data sets available for three reasons:

1. We are interested in promoting greater transparency of market risks. Transparency is the key to 
effective risk management.

2. Our aim has been to establish a benchmark for market risk measurement. The absence of a common 
point of reference for market risks makes it difficult to compare different approaches to and mea-
sures of market risks. Risks are comparable only when they are measured with the same yardstick.

3. We intend to provide our clients with sound advice, including advice on managing their market 
risks. We describe the RiskMetrics

 



 

 methodology as an aid to clients in understanding and eval-
uating that advice.

Both J.P. Morgan and Reuters are committed to further the development of RiskMetrics

 



 

 as a fully 
transparent set of risk measurement methods. We look forward to continued feedback on how to main-
tain the quality that has made RiskMetrics

 



 

 the benchmark for measuring market risk.

RiskMetrics

 



 

 is based on, but differs significantly from, the risk measurement methodology developed 
by J.P. Morgan for the measurement, management, and control of market risks in its trading, arbitrage, 
and own investment account activities. 

 

We remind our readers that no amount of sophisticated an-
alytics will replace experience and professional judgment in managing risks

 

. RiskMetrics

 



 

 is noth-
ing more than a high-quality tool for the professional risk manager involved in the financial markets and 
is not a guarantee of specific results.

• J.P. Morgan and Reuters have teamed up to enhance RiskMetrics

 



 

. Morgan will continue to be 
responsible for enhancing the methods outlined in this document, while Reuters will control the 
production and distribution of the RiskMetrics

 



 

 data sets.
• Expanded sections on methodology outline enhanced analytical solutions for dealing with nonlin-

ear options risks and introduce methods on how to account for non-normal distributions.
• Enclosed diskette contains many examples used in this document. It allows readers to experiment 

with our risk measurement techniques.
• All publications and daily data sets are available free of charge on J.P. Morgan’s Web page on the 
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This book

 

This is the reference document for RiskMetrics

 



 

. It covers all aspects of RiskMetrics and super-
sedes all previous editions of the 

 

Technical Document

 

. It is meant to serve as a reference to the 
methodology of statistical estimation of market risk, as well as detailed documentation of the ana-
lytics that generate the data sets that are published daily on our Internet Web sites.

This document reviews

1. The conceptual framework underlying the methodologies for estimating market risks.

2. The statistics of financial market returns.

3. How to model financial instrument exposures to a variety of market risk factors.

4. The data sets of statistical measures that we estimate and distribute daily over the Internet 
and shortly, the Reuters Web.

Measurement and management of market risks continues to be as much a craft as it is a science. 
It has evolved rapidly over the last 15 years and has continued to evolve since we launched 
RiskMetrics in October 1994. Dozens of professionals at J.P. Morgan have contributed to the 
development of this market risk management technology and the latest document contains entries 
or contributions from a significant number of our market risk professionals.

We have received numerous constructive comments and criticisms from professionals at Central 
Banks and regulatory bodies in many countries, from our competitors at other financial institu-
tions, from a large number specialists in academia and last, but not least, from our clients. Without 
their feedback, help, and encouragement to pursue our strategy of open disclosure of methodology 
and free access to data, we would not have been as successful in advancing this technology as 
much as we have over the last two years.

 

What is RiskMetrics?

 

RiskMetrics is a set of tools that enable participants in the financial markets to estimate their expo-
sure to market risk under what has been called the “Value-at-Risk framework”. RiskMetrics has 
three basic components:

• A set of market risk measurement methodologies outlined in this document.

• Data sets of volatility and correlation data used in the computation of market risk.

• Software systems developed by J.P.Morgan, subsidiaries of Reuters, and third party vendors 
that implement the methodologies described herein.

With the help of this document and the associated line of products, users should be in a position 
to estimate market risks in portfolios of foreign exchange, fixed income, equity and commodity 
products.

 

J.P. Morgan and Reuters team up on RiskMetrics

 

In June 1996, J.P. Morgan signed an agreement with Reuters to cooperate on the building of a new 
and more powerful version of RiskMetrics. Since the launch of RiskMetrics in October 1994, we 
have received numerous requests to add new products, instruments, and markets to the daily vola-
tility and correlation data sets. We have also perceived the need in the market for a more flexible 
VaR data tool than the standard matrices that are currently distributed over the Internet. The new 
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partnership with Reuters, which will be based on the precept that both firms will focus on their 
respective strengths, will help us achieve these objectives.

 

Methodology

 

J.P. Morgan will continue to develop the RiskMetrics set of VaR methodologies and publish them 
in the quarterly 

 

RiskMetrics Monito

 

r and in the annual 

 

RiskMetrics—Technical Document

 

.

 

RiskMetrics data sets

 

Reuters will take over the responsibility for data sourcing as well as production and delivery of the 
risk data sets. The current RiskMetrics data sets will continue to be available on the Internet free of 
charge and will be further improved as a benchmark tool designed to broaden the understanding of 
the principles of market risk measurement. 

When J.P. Morgan first launched RiskMetrics in October 1994, the objective was to go for broad 
market coverage initially, and follow up with more granularity in terms of the markets and instru-
ments covered. This over time, would reduce the need for proxies and would provide additional 
data to measure more accurately the risk associated with non-linear instruments. 

The partnership will address these new markets and products and will also introduce a new cus-
tomizable service, which will be available over the Reuters Web service. The customizable 
RiskMetrics approach will give risk managers the ability to scale data to meet the needs of their 
individual trading profiles. Its capabilities will range from providing customized covariance matri-
ces needed to run VaR calculations, to supplying data for historical simulation and stress-testing 
scenarios.

More details on these plans will be discussed in later editions of the 

 

RiskMetrics Monitor

 

.

 

Systems

 

Both J.P. Morgan and Reuters, through its Sailfish subsidiary, have developed client-site 
RiskMetrics VaR applications. These products, together with the expanding suite of third party 
applications will continue to provide RiskMetrics implementations.

 

What is new in this fourth edition?

 

In terms of content, the Fourth Edition of the 

 

Technical Document

 

 incorporates the changes and 
refinements to the methodology that were initially outlined in the 1995–1996 editions of the 

 

RiskMetrics Monitor

 

:

•

 

Expanded framework:

 

  We have worked extensively on refining the analytical framework 
for analyzing options risk without having to perform relatively time consuming simulations 
and have outlined the basis for an improved methodology which incorporates better informa-
tion on the tails of distributions related to financial asset price returns; we’ve also developed a 
data synchronization algorithm to refine our volatility and correlation estimates for products 
which do not trade in the same time zone;

•

 

New markets:

 

  We expanded the daily data sets to include estimated volatilities and correla-
tions of additional foreign exchange, fixed income and equity markets, particularly in South 
East Asia and Latin America.

•

 

Fine-tuned methodology:

 

  We have modified the approach in a number of ways. First, we’ve 
changed our definition of price volatility which is now based on a total return concept; we’ve 
also revised some of the algorithms used in our mapping routines and are in the process of 
redefining the techniques used in estimating equity portfolio risk.
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•

 

RiskMetrics products:

 

  While we have continued to expand the list of third parties providing 
RiskMetrics products and support, this is no longer included with this document. Given the 
rapid pace of change in the availability of risk management software products, readers are 
advised to consult our Internet web site for the latest available list of products. This list, 
which now includes FourFifteen

 



 

, J.P. Morgan’s own VaR calculator and report generating 
software, continues to grow, attesting to the broad acceptance RiskMetrics has achieved.

•

 

New tools to use the RiskMetrics data sets:

 

  We have published an Excel add-in function 
which enables users to import volatilities and correlations directly into a spreadsheet. This 
tool is available from our Internet web site.

The structure of the document has changed only slightly. As before, its size warrants the following 
note:  One need not read and understand the entire document in order to benefit from RiskMetrics. 
The document is organized in parts that address subjects of particular interest to many readers.

Part I: Risk Measurement Framework

This part is for the general practitioner. It provides a practical framework on how to 
think about market risks, how to apply that thinking in practice, and how to interpret the 
results. It reviews the different approaches to risk estimation, shows how the calcula-
tions work on simple examples and discusses how the results can be used in limit man-
agement, performance evaluation, and capital allocation.

Part II: Statistics of Financial Market Returns

This part requires an understanding and interest in statistical analysis. It reviews the 
assumptions behind the statistics used to describe financial market returns and how dis-
tributions of future returns can be estimated. 

Part III: Risk Modeling of Financial Instruments

This part is required reading for implementation of a market risk measurement system. 
It reviews how positions in any asset class can be described in a standardized fashion 
(foreign exchange, interest rates, equities, and commodities). Special attention is given 
to derivatives positions. The purpose is to demystify derivatives in order to show that 
their market risks can be measured in the same fashion as their underlying.

Part IV: RiskMetrics Data Sets

This part should be of interest to users of the RiskMetrics data sets. First it describes the 
sources of all daily price and rate data. It then discusses the attributes of each volatility 
and correlation series in the RiskMetrics data sets. And last, it provides detailed format 
descriptions required to decipher the data sets that can be downloaded from public or 
commercial sources. 

Appendices

This part reviews some of the more technical issues surrounding methodology and regu-
latory requirements for market risk capital in banks and demonstrates the use of Risk-
Metrics with the example diskette provided with this document. Finally, Appendix H 
shows you how to access the RiskMetrics data sets from the Internet.
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RiskMetrics examples diskette

This diskette is located inside the back cover. It contains an Excel workbook that 
includes some of the examples shown in this document. Such examples are identified by 
the icon shown here.

 

Future plans

 

We expect to update this 

 

Technical Document

 

 annually as we adapt our market risk standards to 
further improve the techniques and data to meet the changing needs of our clients. 

RiskMetrics is a now an integral part of J.P. Morgan’s Risk Management Services group which 
provides advisory services to a wide variety of the firm’s clients. We continue to welcome any sug-
gestions to enhance the methodology and adapt it further to the needs of the market. All sugges-
tions, requests and inquiries should be directed to the authors of this publication or to your local 
RiskMetrics contacts listed on the back cover.
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Part I:  Risk Measurement Framework

 

Chapter 1. Introduction

 

Jacques Longerstaey
Morgan Guaranty Trust Company
Risk Management Advisory
(1-212) 648-4936

 

riskmetrics@jpmorgan.com

 

This chapter serves as an introduction to the RiskMetrics product. RiskMetrics is a set of method-
ologies and data for measuring market risk. By market risk, we mean the potential for changes in 
value of a position resulting from changes in market prices.

We define risk as the degree of uncertainty of future net returns. This uncertainty takes many 
forms, which is why most participants in the financial markets are subject to a variety of risks. A 
common classification of risks is based on the source of the underlying uncertainty:

• Credit risk estimates the potential loss because of the inability of a counterparty to meet its 
obligations.

• Operational risk results from errors that can be made in instructing payments or settling trans-
actions.

• Liquidity risk is reflected in the inability of a firm to fund its illiquid assets.

• Market risk, the subject of the methodology described in this document, involves the uncer-
tainty of future earnings resulting from changes in market conditions, (e.g., prices of assets, 
interest rates). Over the last few years measures of market risk have become synonymous 
with the term Value-at-Risk.

RiskMetrics has three basic components:

• The first is a set of methodologies outlining how risk managers can compute Value-at-Risk on 
a portfolio of financial instruments. These methodologies are explained in this 

 

Technical Document

 

, which is an annual publication, and in the 

 

RiskMetrics

 

 

 

Monitor

 

, the 
quarterly update to the 

 

Technical Documen

 

t.

• The second is data that we distribute to enable market participants to carry out the methodol-
ogies set forth in this document.

• The third is Value-at-Risk calculation and reporting software designed by J.P. Morgan, 
Reuters, and third party developers. These systems apply the methodologies set forth in this 
document and will not be discussed in this publication.

This chapter is organized as follows:

• Section 1.1 presents the definition of Value-at-Risk (VaR) and some simple examples of how 
RiskMetrics offers the inputs necessary to compute VaR. The purpose of this section is to 
offer a basic approach to VaR calculations.

• Section 1.2 describes more detailed examples of VaR calculations for a more thorough under-
standing of how RiskMetrics and VaR calculations fit together. In Section 1.2.2 we provide an 
example of how to compute VaR on a portfolio containing options (nonlinear risk) using two 
different methodologies.

• Section 1.3 presents the contents of RiskMetrics at both the general and detailed level. This 
section provides a step-by-step analysis of the production of RiskMetrics volatility and corre-
lation files as well as the methods that are necessary to compute VaR. For easy reference we 
provide section numbers within each step so that interested readers can learn more about that 
particular subject.



 

6 Chapter 1.  Introduction

RiskMetrics

 



 

 —Technical Document
Fourth Edition

 

Reading this chapter requires a basic understanding of statistics. For assistance, readers can refer 
to the glossary at the end of this document.

 

1.1  An introduction to Value-at-Risk and RiskMetrics

 

Value-at-Risk is a measure of the maximum potential change in value of a portfolio of financial 
instruments with a given probability over a pre-set horizon. VaR answers the question:  how much 
can I lose with 

 

x

 

% probability over a given time horizon. For example, if you think that there is a 
95% chance that the DEM/USD exchange rate will not fall by more than 1% of its current value 
over the next day, you can calculate the maximum potential loss on, say, a USD 100 million 
DEM/USD position by using the methodology and data provided by RiskMetrics. The following 
examples describe how to compute VaR using standard deviations and correlations of financial 
returns (provided by RiskMetrics) under the assumption that these returns are normally distrib-
uted. (RiskMetrics provides alternative methodological choices to address the inacurracies result-
ing from this simplifying assumption).

• 

 

Example 1:

 

  You are a USD-based corporation and hold a DEM 140 million FX position. What 
is your VaR over a 1-day horizon given that there is a 5% chance that the realized loss will be 
greater than what VaR projected? The choice of the 5% probability is discretionary and differs 
across institutions using the VaR framework.

What is your exposure? The first step in the calculation is to compute your exposure 
to market risk (i.e., mark-to-market your position). As a USD- 
based investor, your exposure is equal to the market value of 
the position in your base currency. If the foreign exchange 
rate is 1.40 DEM/USD, the market value of the position is 
USD 100 million.

What is your risk? Moving from exposure to risk requires an estimate of how 
much the exchange rate can potentially move. The standard 
deviation of the return on the DEM/USD exchange rate, mea-
sured historically can provide an indication of the size of rate 
movements. In this example, we calculated the DEM/USD 
daily standard deviation to be 0.565%. Now, under the stan-
dard RiskMetrics assumption that standardized returns 
(  on DEM/USD are normally distributed given the 
value of this standard deviation, VaR is given by 1.65 times 
the standard deviation (that is, 1.65

 

σ

 

) or 0.932% (see 
Chart 1.1). This means that the DEM/USD exchange rate is 
not expected to drop more than 0.932%, 95% of the time. 

 

RiskMetrics provides users with the VaR statistics 1.65

 

σ

 

.

 

 

In USD, the VaR of the position

 

1

 

 is equal to the market value 
of the position times the estimated volatility or:

FX Risk:  $100 million 

 

×

 

 0.932%  = $932,000

What this number means is that 95% of the time, you will not 
lose more than $932,000 over the next 24 hours.

 

1

 

This is a simple approximation.

 

Chart 1.1

 

VaR statistics 

5%

No. of observations

rt/σt

rt σt⁄( )
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• 

 

Example 2:

 

  Let’s complicate matters somewhat. You are a USD-based corporation and hold a 
DEM 140 million position in the 10-year German government bond. What is your VaR over a 
1-day horizon period, again, given that there is a 5% chance of understating the realized loss? 

What is your exposure? The only difference versus the previous example is that you 
now have both interest rate risk on the bond and FX risk result-
ing from the DEM exposure. The exposure is still USD 100 
million but it is now at risk to two market risk factors.

What is your risk? If you use an estimate of 10-year German bond standard devia-
tion of 0.605%, you can calculate:

Interest rate risk: $100 million 

 

×

 

 1.65 

 

× 

 

0.605% = $999,000
FX Risk: $100 million 

 

×

 

 1.65 

 

× 

 

0.565%  = $932,000

Now, the total risk of the bond is not simply the sum of the 
interest rate and FX risk because the correlation

 

2

 

 between the 
return on the DEM/USD exchange rate the return on the 10-
year German bond is relevant. In this case, we estimated the 
correlation between the returns on the DEM/USD exchange 
rate and the 10-year German government bond to be 

 

−

 

0.27. 
Using a formula common in standard portfolio theory, the total 
risk of the position is given by:

[1.1]

 

To compute VaR in this example, RiskMetrics provides 
users with the VaR of interest rate component 
(i.e., 1.65 

 

× 

 

0.605), the VaR of the foreign exchange position 
(i.e., 1.65 

 

× 

 

0.565) and the correlation between the two 
return series, 

 

−

 

0.27.

1.2  A more advanced approach to Value-at-Risk using RiskMetrics

 

Value-at-Risk is a number that represents the potential change in a portfolio’s future value. How 
this change is defined depends on (1) the horizon over which the portfolio’s change in value is 
measured and (2) the “degree of confidence” chosen by the risk manager. 

VaR calculations can be performed without using standard deviation or correlation forecasts. 
These are simply 

 

one

 

 set of inputs that can be used to calculate VaR, and that RiskMetrics pro-
vides for that purpose. The principal reason for preferring to work with standard deviations (vola-
tility) is the strong evidence that the volatility of financial returns is predictable. Therefore, if 
volatility is predictable, it makes sense to make forecasts of it to predict future values of the return 
distribution.

 

2

 

Correlation is a measure of how two series move together. For example, a correlation of 1 implies that two series 
move perfectly together in the same direction.

VaR σ2
Interest rate σFX

2
2 ρInterest rate, FX σInterest rate σFX×××( )+ +=

VaR 0.999( ) 2 0.932( ) 2 2 0.27– 0.999 0.932×××( )+ +=

$ 1.168 million=
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Suppose we want to compute the Value-at-Risk of a portfolio over a 1-day horizon with a 5% 
chance that the actual loss in the portfolio’s value is greater than the VaR estimate. The Value-at-
Risk calculation consists of the following steps.

1. Mark-to-market the current portfolio. Denote this value by .

2. Define the future value of the portfolio, , as  where

 

3

 

 

 

r

 

 represents the return 
on the portfolio over the horizon. For a 1-day horizon, this step is unnecessary as 
RiskMetrics assumes a 0 return.

3. Make a forecast of the 1-day return on the portfolio and denote this value by , such that 
there is a 5% chance that the actual return will be less than . Alternatively expressed, 

Probability  = 5%.

4. Define the portfolio’s future “worst case” value , as . The Value-at-Risk esti-

mate is simply .

Notice that the VaR estimate can be written as . In the case that  is sufficiently 
small,  so that . is approximately equal to . 
The purpose of a risk measurement system such as RiskMetrics is to offer a means to com-
pute . 

Within this more general framework we use a simple example to demonstrate how the RiskMetrics 
methodologies and data enable users to compute VaR. Assume the forecast horizon over which 
VaR is measured is one day and the level of “confidence” in the forecast to 5%. Following the 
steps outlined above, the calculation would proceed as follows:

1. Consider a portfolio whose current marked-to-market value, , is USD 500 million.

2. To carry out the VaR calculation we require 1-day forecasts of the mean . Within the 
RiskMetrics framework, we assume that the mean return over a 1-day horizon period is 
equal to 0.

3. We also need the standard deviation, , of the returns in this portfolio. Assuming that the 
return on this portfolio is distributed conditionally normal, . The 
RiskMetrics data set provides the term 1.65 . Hence, setting  and 

, we get .

 

4

 

 

4. This yields a Value-at-Risk of USD 25.8 million (given by ). 

The histogram in Chart 1.2 presents future changes in value of the portfolio. VaR reduces risk to 
just one number, i.e., a loss associated with a given probability. It is often useful for risk managers 
to focus on the total distribution of potential gains and losses and we will discuss why this is so 
later in this document. (See Section 6.3).

 

3

 

Where e is approximately 2.27183

 

4

 

This number is computed from 

V0

V1 V1 V0e
r

=

r̂
r̂

r r̂<( )

V̂1 V̂1 V0e
r̂

=

V0 V̂1–

V0 1 e–
r̂

 
 

r̂
e

r̂
1 r̂+≈ VaR is approximately equal toV0 r̂ V0 r̂

r̂

V0

µ1 0

σ1 0
r̂ 1.65σ1 0– µ1 0+=

σ1 0 µ1 0 0=
σ1 0 0.0321= V1 USD 474.2 million=

e
1.65σ–

 
 

V0

V0 V̂1–
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Chart 1.2

 

Simulated portfolio changes

 

1.2.1  Using RiskMetrics to compute VaR on a portfolio of cash flows

 

Calculating VaR usually involves more steps than the basic ones outlined in the examples above. 
Even before calculating VaR, you need to estimate to which risk factors a particular portfolio is 
exposed. The preferred methodology for doing this is to decompose financial instruments into their 
basic cash flow components. The RiskMetrics methodology and data allow users to compute the 
VaR on portfolios consisting of a variety of cash flows. We use a simple example (a portfolio con-
sisting of three cash flows) to demonstrate how to compute VaR.

 

Step 1.

 

Each financial position in a portfolio is expressed as one or more cash flows that are 
marked-to-market at current market rates. For example, consider an instrument that gives 
rise to three USD 100 cash flows each occurring in 1, 4, and 7 months’ time as shown in 
Chart 1.3.

 

Chart 1.3

 

Actual cash flows

 

Step 2.

 

When necessary, the actual cash flows are converted to RiskMetrics cash flows by map-
ping (redistributing) them onto a standard grid of maturity vertices, known as RiskMetrics 
vertices, which are fixed at the following intervals: 

1m 3m 6m 12m 2yr 3yr 4yr 5yr 7yr 9yr 10yr 15yr 20yr 30yr

The purpose of the mapping is to standardize the cash flow intervals of the instrument such 
that we can use the volatilities and correlations that are routinely computed for the given 
vertices in the RiskMetrics data sets. (It would be impossible to provide volatility and cor-
relation estimates on every possible maturity so RiskMetrics provides a mapping method-

-48 -40 -32 -24 -16 -8 0 8 16 24 32 40 48
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

P/L ($million)

95% confidence:

$25.8 million

Probability

100 100100

1m 4m 7m

Principal flows
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ology which distributes cash flows to a workable set of standard maturities). The 
methodology for mapping cash flows is detailed in Chapter 6. 

To map the cash flows, we use the RiskMetrics vertices closest to the actual vertices and 
redistribute the actual cash flows as shown in Chart 1.4.

 

Chart 1.4

 

Mapping actual cash flows onto RiskMetrics vertices

 

The RiskMetrics cash flow map is used to work backwards to calculate the return for each 
of the actual cash flows from the cash flow at the associated RiskMetrics vertex, or vertices.

For each actual cash flow, an analytical expression is used to express the relative change in 
value of the actual cash flow in terms of an underlying return on a particular instrument. 
Continuing with Chart 1.4, we can write the return on the actual 4-month cash flow in 
terms of the combined returns on the 3-month (60%) and 6-month (40%) RiskMetrics cash 
flows:

[1.2]

where

Similarly, the return on the 7-month cash flow can be written as

[1.3]

Note that the return on the actual 1-month cash flow is equal to the return on the 1-month 
instrument.

 

Step 3.

 

VaR is calculated at the 5th percentile of the distribution of portfolio return, and for a spec-
ified time horizon. In the example above, the distribution of the portfolio return, , is 
written as:

[1.4]

RiskMetrics cashflows

100

Actual cashflows

100 60 3040 70

100 110 3060

Cashflow mapping

100 100

1m 4m 7m

1m 3m 6m 12m

1m 3m 6m 12m

r4m 0.60r3m 0.40r6m+=

 r4m return on the actual 4-month cash flow=

r3m return on the 3-month RiskMetrics cash flow=

r6m return on the 6-month RiskMetrics cash flow=

r7m 0.70r6m 0.30r12m+=

rp

rp 0.33r1m 0.20r3m 0.37r6m 0.10r12m+ + +=
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where, for example the portfolio weight 0.33 is the result of 100 divided by the total port-
folio value 300. 

Now, to compute VaR at the 95th percent confidence level we need the fifth percentile of 
the portfolio return distribution. Under the assumption that  is distributed conditionally 
normal, the fifth percentile is −1.65  where  is the standard deviation of the portfolio 
return distribution. Applying Eq. [1.1] to a portfolio containing more than two instruments 
requires using simple matrix algebra. We can thus express this VaR calculation as follows:

[1.5]  

where  is a vector of VaR estimates per instrument,

,

 and R is the correlation matrix

[1.6]

where, for example,  is the correlation estimate between 1-month and 3-month 
returns.

Note that RiskMetrics provides the vector of information 

as well as the correlation matrix R. What the user has to provide are the actual port-
folio weights. 

1.2.2  Measuring the risk of nonlinear positions

When the relationship between position value and market rates is nonlinear, then we cannot esti-
mate changes in value by multiplying “estimated changes in rates” by “sensitivity of the position 
to changing rates;” the latter is not constant (i.e., the definition of a nonlinear position). In our pre-
vious examples, we could easily estimate the risk of a fixed income or foreign exchange product 
by assuming a linear relationship between the value of an instrument and the value of its underly-
ing. This is not a reasonable assumption when dealing with nonlinear products such as options.

RiskMetrics offers two methodologies, an analytical approximation and a structured Monte 
Carlo simulation to compute the VaR of nonlinear positions:

1. The first method approximates the nonlinear relationship via a mathematical expression 
that relates the return on the position to the return on the underlying rates. This is done by 
using what is known as a Taylor series expansion.

This approach no longer necessarily assumes that the change in value of the instrument is 
approximated by its delta alone (the first derivative of the option’s value with respect to the 
underlying variable) but that a second order term using the option’s gamma (the second 
derivative of the option’s value with respect to the underlying price) must be introduced to 

rp
σp σp

VaR V RV
T

=

V

V 0.33 1.65σ⋅ 1m( ) 0.20 1.65σ3m⋅( ) 0.37 1.65σ6m⋅( ) 0.10 1.65σ12m⋅( ), , ,[ ]=

R

1 ρ3m 1m, ρ6m 1m, ρ12m 1m,

ρ1m 3m, 1 ρ6m 3m, ρ12m 3m,

ρ1m 6m, ρ3m 6m, 1 ρ12m 6m,

ρ1m 12m, ρ3m 12m, ρ6m 12m, 1

=

ρ1m 3m,

V 1.65σ1m( ) 1.65σ3m( ) 1.65σ6m( ) 1.65σ12m( ), , ,[ ]=
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measure the curvature of changes in value around the current value. In practice, other 
“greeks” such as vega (volatility), rho (interest rate) and theta (time to maturity) can also be 
used to improve the accuracy of the approximation. In Section 1.2.2.1, we present two 
types of analytical methods for computing VaR—the delta and delta-gamma approxima-
tion.

2. The second alternative, structured Monte Carlo simulation, involves creating a large num-
ber of possible rate scenarios and revaluing the instrument under each of these scenarios. 
VaR is then defined as the 5th percentile of the distribution of value changes. Due to the 
required revaluations, this approach is computationally more intensive than the first 
approach.

The two methods differ not in terms of how market movements are forecast (since both use the 
RiskMetrics volatility and correlation estimates) but in how the value of portfolios changes as a 
result of market movements. The analytical approach approximates changes in value, while the 
structured Monte Carlo fully revalues portfolios under various scenarios.

Let us illustrate these two methods using a practical example. We will consider throughout this 
section a portfolio comprised of two assets:

Asset 1:  a future cash flow stream of DEM 1 million to be received in one year’s time. The cur-
rent 1-year DEM rate is 10% so the current market value of the instrument is DEM 909,091. 

Asset 2:  an at-the-money (ATM) DEM put/USD call option with contract size of 
DEM 1 million and expiration date one month in the future. The premium of the option is 0.0105 
and the spot exchange rate at which the contract was concluded is 1.538 DEM/USD. We assume 
the implied volatility at which the option is priced is 14%.

The value of this portfolio depends on the USD/DEM exchange rate and the one-year DEM bond 
price. Technically, the value of the option also changes with USD interest rates and the implied 
volatility, but we will not consider these effects. Our risk horizon for the example will be five days. 
We take as the daily volatilities of these two assets  and  and as the 
correlation between the two .

Both alternatives will focus on price risk exclusively and therefore ignore the risk associated with 
volatility (vega), interest rate (rho) and time decay (theta risk). 

1.2.2.1  Analytical method
There are various ways to analytically approximate nonlinear VaR. This section reviews the two 
alternatives which we discussed previously.

Delta approximation
The standard VaR approach can be used to come up with first order approximations of portfolios 
that contain options. (This is essentially the same simplification that fixed income traders use when 
they focus exclusively on the duration of their portfolio). The simplest such approximation is to 
estimate changes in the option value via a linear model, which is commonly known as the ”delta 
approximation.” Delta is the first derivative of the option price with respect to the spot exchange 
rate. The value of δ for the option in this example is −0.4919.

In the analytical method, we must first write down the return on the portfolio whose VaR we are 
trying to calculate. The return on this portfolio consisting of a cash flow in one year and a put on 
the DEM/call on the USD is written as follows:

[1.7]  

σFX 0.42%= σB 0.08%=
ρ 0.17–=

rp =r1y rDEM
USD
--------------

δrDEM
USD
--------------

+ +
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where 

Under the assumption that the portfolio return is normally distributed, VaR at the 95% confidence 
level is given by 

[1.8]

Using our volatilities and correlations forecasts for DEM/USD and the 1-year DEM rate (scaled up 
to the weekly horizon using the square root of time rule), the weekly VaR for the portfolio using 
the delta equivalent approach can be approximated by:

Market value in USD VaR(1w)
1-yr DEM cash flow $591,086 $1,745
FX position - FX hedge $300,331 $4,654

Diversified VaR
$4,684

Delta-gamma approximation
The delta approximation is reasonably accurate when the exchange rate does not change signifi-
cantly, but less so in the more extreme cases. This is because the delta is a linear approximation of 
a non linear relationship between the value of the exchange rate and the price of the option as 
shown in Chart 1.5. We may be able to improve this approximation by including the gamma term, 
which accounts for nonlinear (i.e. squared returns) effects of changes in the spot rate (this attempts 
to replicate the convex option price to FX rate relationship as shown in Chart 1.5). The expression 
for the portfolio return is now

[1.9]

where 

In this example,  = DEM/USD 15.14.

Now, the gamma term (the fourth term in Eq. [1.9]) introduces skewness into the distribution of 
 (i.e., the distribution is no longer symmetrical around its mean). Therefore, since this violates 

one of the assumptions of normality (symmetry) we can no longer calculate the 95th percentile 
VaR as 1.65 times the standard deviation of . Instead we must find the appropriate multiple (the 
counterpart to −1.65) that incorporates the skewness effect. We compute the 5th percentile of ’s 
distribution (Eq. [1.9]) by computing its first four moments, i.e., ’s mean, variance, skewness 
and kurtosis. We then find distribution whose first four moments match those of ’s. (See 
Section 6.3 for details.) 

r1 p the price return on the 1-year German interest rates=

rDEM
USD
--------------

the return on the DEM/USD exchange rate=

δ the delta of the option=

VaR = 1.65 σ1y
2

1 δ+( ) 2σDEM
USD
--------------

2
2 1 δ+( ) ρ

1y
DEM
USD
--------------,

σ1yσDEM
USD
--------------

+ +

rp =r1y rDEM
USD
--------------

δrDEM
USD
--------------

0.5 Γ PDEM
USD
--------------

rDEM
USD
-------------- 

 
2

⋅+ + +

PDEM
USD
--------------

the value of the DEM/USD exchange rate when the VaR forecast is made=

Γ the gamma of the option.=

Γ

rP

rp
rp

rp
rp
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Applying this methodology to this approach we find the VaR for this portfolio to be USD 3,708. 
Note that in this example, incorporating gamma reduces VaR relative to the delta only approxima-
tion (from USD 5006 to USD 3708).

Chart 1.5
Value of put option on USD/DEM
strike = 0.65 USD/DEM. Value in USD/DEM.

1.2.2.2  Structured Monte-Carlo Simulation
Given the limitations of analytical VaR for portfolios whose P/L distributions may not be symmet-
rical let alone normally distributed, another possible route is to use a model which instead of esti-
mating changes in value by the product of a rate change (σ) and a sensitivity (δ, Γ), focuses on 
revaluing positions at changed rate levels. This approach is based on a full valuation precept where 
all instruments are marked to market under a large number of scenarios driven by the volatility and 
correlation estimates.

The Monte Carlo methodology consists of three major steps:

1. Scenario generation —Using the volatility and correlation estimates for the underlying 
assets in our portfolio, we produce a large number of future price scenarios in accordance 
with the lognormal models described previously. The methodology for generating scenarios 
from volatility and correlation estimates is described in Appendix E.

2. Portfolio valuation — For each scenario, we compute a portfolio value.

3. Summary — We report the results of the simulation, either as a portfolio distribution or as 
a particular risk measure.

Using our volatility and correlation estimates, we can apply our simulation technique to our exam-
ple portfolio. We can generate a large number of scenarios (1000 in this example case) of DEM 
1-year and DEM/USD exchange rates at the 1-week horizon. Chart 1.6 shows the actual distribu-
tions for both instruments as well as the scattergram indicating the degree of correlation (−0.17) 
between the two rate series. 
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Chart 1.6
Histogram and scattergram of rate distributions
2-yr DEM rate and DEM/USD rate

With the set of interest and foreign exchange rates obtained under simulation, we can revalue both 
of the instruments in our portfolio. Their respective payouts are shown in Chart 1.7.

Chart 1.7
Valuation of instruments in sample portfolio
Value of the cash flow stream     Value of the FX option 

The final task is to analyze the distribution of values and select the VaR using the appropriate per-
centile. Chart 1.8 shows the value of the components of the portfolio at the end of the horizon 
period.
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Chart 1.8
Representation of VaR
Histogram of portfolio values

The charts above provide a visual indication as to why the delta approximation is usually not suit-
able for portfolios that contain options. The distribution of returns in portfolios that include 
options is typically skewed. The standard delta equivalent VaR approach expects symmetry around 
the mean and applies a basic normal distribution approach (i.e., the 95% percentile equates to a 
1.65 standard deviation move). In this case, the lack of symmetry in the distribution does not allow 
us to apply the normal approximation. Furthermore, the distribution’s skewness results in a VaR 
number that is basically position dependent (i.e., the risk is different whether you are long or short 
the option).

1.3  What RiskMetrics provides

As discussed previously, RiskMetrics has three basic components which are detailed below.

1.3.1  An overview

With RiskMetrics J.P. Morgan and Reuters provide

1. A set of methodologies for statistical market risk measures that are based on, but differ sig-
nificantly from, the methodology developed and used within J.P. Morgan. This approach 
was developed so as to enable other financial institutions, corporate treasuries, and inves-
tors to estimate their market risks in a consistent and reasonable fashion. Methodology 
defines how positions are to be mapped and how potential market movements are estimated 
and is detailed in the following chapters. 

2. Daily recomputed data sets which are comprehensive sets of consistently estimated instru-
ment level VaRs (i.e., 1.65 standard deviations) and correlations across a large number of 
asset classes and instruments. We currently distribute three different data sets over the 
Internet: one for short term trading risks, the second for intermediate term investment risks 
and the third for regulatory reporting. These are made available to the market free of 
charge. 

In the near future, a more customizable version of RiskMetrics where users will be able to 
create covariance matrices from a large underlying database according to various numerical 
methods will be made available over the Reuters Web. This product will not replace the 
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data sets available over the Internet but will provide subscribers to the Reuters services 
with a more flexible tool.

The four basic classes of instruments that RiskMetrics methodology and data sets cover are 
represented as follows:

• Fixed income instruments are represented by combinations of amounts of cash flows in 
a given currency at specified dates in the future. RiskMetrics applies a fixed number of 
dates (14 vertices) and two types of credit standings:  government and non-govern-
ment. The data sets associated with fixed income are zero coupon instrument VaR sta-
tistics, i.e., 1.65σ, and correlations for both government and swap yield curves.

• Foreign exchange transactions are represented by an amount and two currencies. 
RiskMetrics allows for 30 different currency pairs (as measured against the USD).

• Equity instruments are represented by an amount and currency of an equity basket 
index in any of 30 different countries. Currently, RiskMetrics does not consider the 
individual characteristics of a company stock but only the weighted basket of compa-
nies as represented by the local index.

• Commodities positions are represented by amounts of selected standardized commod-
ity futures contracts traded on commodity exchanges

3. Software provided by J.P. Morgan, Reuters and third party firms that use the RiskMetrics 
methodology and data documented herein.

Chart 1.9
Components of RiskMetrics

Since the RiskMetrics methodology and the data sets are in the public domain and freely available, 
anyone is free to implement systems utilizing these components of RiskMetrics. Third parties have 
developed risk management systems for a wide range of clients using different methodologies. 
The following paragraphs provide a taxonomy comparing the different approaches.
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1.3.2  Detailed specification

The section below provides a brief overview of how the RiskMetrics datasets are produced and 
how the parameters we provide can be used in a VaR calculation.

1.3.2.1  Production of volatility and correlation data sets
RiskMetrics provides the following sets of volatility and corresponding correlation data files. One 
set is for use in estimating VaR with a forecast horizon of one day. The other set is optimized for a 
VaR forecast horizon of one month. The third set is based on the quantitative criteria set by the 
Bank for International Settlements on the use of VaR models to estimate the capital required to 
cover market risks. The process by which these data files are constructed are as follows:

1. Financial prices are recorded from global data sources. (In 1997, RiskMetrics will switch to 
using Reuters data exclusively). For certain fixed income instruments we construct zero 
rates. See Chapter 9 for data sources and RiskMetrics building blocks.

2. Fill in missing prices by using the Expectation Maximization algorithm (detailed in 
Section 8.2). Prices can be missing for a variety of reasons, from technical failures to holi-
day schedules.

3. Compute daily price returns on all 480 time series (Section 4.1).

4. Compute standard deviations and correlations of financial price returns for a 1-day VaR 
forecast horizon. This is done by constructing exponentially weighted forecasts. (See 
Section 5.2). Production of the daily statistics also involves setting the sample daily mean 
to zero. (See Section 5.3). If data is recorded at different times (Step 1), users may require 
an adjustment algorithm applied to the correlation estimates. Such an algorithm is 
explained in Section 8.5. Also, users who need to rebase the datasets to account for a base 
currency other than the USD should see Section 8.4.

5. Compute standard deviations and correlations of financial price returns for 1-month VaR 
forecast horizon. This is done by constructing exponentially weighted forecasts 
(Section 5.3). Production of the monthly statistics also involves setting the sample daily 
mean to zero.

1.3.2.2  RiskMetrics VaR calculation
1. The first step in the VaR calculation is for the user to define three parameters: 

(1) VaR forecast horizon—the time over which VaR is calculated, (2) confidence level—the 
probability that the realized change in portfolio will be less than the VaR prediction, and (3) 
the base currency.

2. For a given portfolio, once the cash flows have been identified and marked-to-market 
(Section 6.1) they need to be mapped to the RiskMetrics vertices (Section 6.2).

3. Having mapped all the positions, a decision must be made as to how to compute VaR. If the 
user is willing to assume that the portfolio return is approximately conditionally normal, 
then download the appropriate data files (instrument level VaRs and correlations) and com-
pute VaR using the standard RiskMetrics approach (Section 6.3).

4. If the user’s portfolio is subject to nonlinear risk to the extent that the assumption of condi-
tional normality is no longer valid, then the user can choose between two methodologies—
delta-gamma and structured Monte Carlo. The former is an approximation of the latter. See 
Section 6.3 for a description of delta-gamma and Chapter 7for an explanation of structured 
Monte Carlo. 
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Chapter 2. Historical perspective of VaR
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Measuring the risks associated with being a participant in the financial markets has become the 
focus of intense study by banks, corporations, investment managers and regulators. Certain risks 
such as counterparty default have always figured at the top of most banks’ concerns. Others such 
as market risk (the potential loss associated with market behavior) have only gotten into the lime-
light over the past few years. Why has the interest in market risk measurement and monitoring 
arisen? The answer lies in the significant changes that the financial markets have undergone over 
the last two decades.

1. Securitization:  Across markets, traded securities have replaced many illiquid instruments, 
e.g., loans and mortgages have been securitized to permit disintermediation and trading. 
Global securities markets have expanded and both exchange traded and over-the-counter 
derivatives have become major components of the markets. 

These developments, along with technological breakthroughs in data processing, have gone 
hand in hand with changes in management practices—a movement away from management 
based on accrual accounting toward risk management based on marking-to-market of posi-
tions. Increased liquidity and pricing availability along with a new focus on trading led to 
the implementation of frequent revaluation of positions, the mark-to-market concept. 

As investments became more liquid, the potential for frequent and accurate reporting of 
investment gains and losses has led an increasing number of firms to manage daily earnings 
from a mark-to-market perspective. The switch from accrual accounting to mark-to-market 
often results in higher swings in reported returns, therefore increasing the need for manag-
ers to focus on the volatility of the underlying markets. The markets have not suddenly 
become more volatile, but the focus on risks through mark-to-market has highlighted the 
potential volatility of earnings. 

Given the move to frequently revalue positions, managers have become more concerned 
with estimating the potential effect of changes in market conditions on the value of their 
positions.

2. Performance:  Significant efforts have been made to develop methods and systems to mea-
sure financial performance. Indices for foreign exchange, fixed income securities, commod-
ities, and equities have become commonplace and are used extensively to monitor returns 
within and/or across asset classes as well as to allocate funds. 

The somewhat exclusive focus on returns, however, has led to incomplete performance 
analysis. Return measurement gives no indication of the cost in terms of risk (volatility of 
returns). Higher returns can only be obtained at the expense of higher risks. While this 
trade-off is well known, the risk measurement component of the analysis has not received 
broad attention.

Investors and trading managers are searching for common standards to measure market 
risks and to estimate better the risk/return profile of individual assets or asset classes. Not-
withstanding the external constraints from the regulatory agencies, the management of 
financial firms have also been searching for ways to measure market risks, given the poten-
tially damaging effect of miscalculated risks on company earnings. As a result, banks, 
investment firms, and corporations are now in the process of integrating measures of mar-
ket risk into their management philosophy. They are designing and implementing market 
risk monitoring systems that can provide management with timely information on positions 
and the estimated loss potential of each position.

Over the last few years, there have been significant developments in conceptualizing a common 
framework for measuring market risk. The industry has produced a wide variety of indices to mea-
sure return, but little has been done to standardize the measure of risk. Over the last 15 years many 
market participants, academics, and regulatory bodies have developed concepts for measuring 
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market risks. Over the last five years, two approaches have evolved as a means to measure market 
risk. The first approach, which we refer to as the statistical approach, involves forecasting a portfo-
lio’s return distribution using probability and statistical models. The second approach is referred to 
as scenario analysis. This methodology simply revalues a portfolio under different values of mar-
ket rates and prices. Note that in stress scenario analysis does not necessarily require the use of a 
probability or statistical model.   Instead, the future rates and prices that are used in the revaluation 
can be arbitrarily chosen. Risk managers should use both approaches—the statistical approach to 
monitor risks continuously in all risk-taking units and the scenario approach on a case-by-case 
basis to estimate risks in unique circumstances. 

 

This document explains, in detail, the statistical 
approach—RiskMetrics—to measure market risk.

 

This chapter is organized as follows:

• Section 2.1 reviews how VaR was developed to support the risk management needs of trading 
activities as opposed to investment books. Though the distinction to date has been an account-
ing one not an economic one, VaR concepts are now being used across the board.

• Section 2.2 looks at the basic steps of the risk monitoring process.

• Section 2.3 reviews the alternative VaR models currently being used and how RiskMetrics 
provides end-users with the basic building blocks to test different approaches.

 

2.1  From ALM to VaR

 

A well established method of looking at market risks in the banking industry is to forecast earn-
ings under predetermined price/rate market conditions (or scenarios). Earnings here are defined as 
earnings reported in a firm’s Financial Statements using generally accepted accounting principles. 
For many institutions the bulk of activities are reported on an accrual basis, i.e., transactions are 
booked at historical costs +/- accruals. Only a limited number of trading items are marked to mar-
ket. Because changes in market rates manifest themselves only slowly when earnings are reported 
on an accrual basis, the simulation of income has to be done over extended periods, i.e., until most 
of the transactions on the books mature. Chart 2.1 illustrates this conventional Asset/Liability 
Management approach.

 

Chart 2.1

 

Asset liability management

 

There are two major drawbacks to this methodology:

• It requires projecting market rate developments over extended periods into the future.
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• It supports the illusion that gains and losses occur at the time they show up in the accrual 
accounts (i.e., when they are realized following accounting principles). What this means is 
that return is only defined as net interest earnings, a framework which ignores the change in 
price component of the return function.

Every investor would agree that the total return on a bond position is the sum of the interest 
earned and the change in the value of the bond over a given time horizon. Traditional ALM, as 
a result of accounting conventions, ignores the change in value of the instrument since posi-
tions are not marked to market. This has often lead crafty ALM managers to create positions 
which look attractive on paper because of high net interest earnings, but which would not per-
form as well if their change in market value were considered.

The market risk in trading positions is usually measured differently and managed separately. Trad-
ing positions are marked-to-market and the market value is then subjected to projections of 
changes in short term in rates and prices. This is much less hazardous as rate forecasts are usually 
limited to short horizons, i.e., the time it should take to close out or hedge the trading position.

 

Chart 2.2

 

Value-at-Risk management in trading

 

The distinction between accrual items and trading items and their separate treatment for market 
risk management has led to significant complications—particularly when transactions classified as 
“trading items” under generally accepted accounting principles are used to hedge transactions 
classified as “accrual items”. In an effort to overcome this difficulty, many firms – particularly 
those with relatively large trading books have expanded the market risk approach to also include 
accrual items, at least for internal risk management reporting. This is done by estimating the fair 
market value of the accrual items and the changes in their fair value under different short term sce-
narios. Thus we are witnessing the evolution of an alternative to the conventional approach of 
Asset/Liability Management, the Value-at-Risk approach. It started in pure trading operations, but 
is now gaining increased following in the financial industry.
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Chart 2.3

 

Comparing ALM to VaR management

 

The advantages of VaR Management are that it

• Incorporates the mark-to-market approach uniformly.

• Relies on a much shorter horizon forecast of market variables. This improves the risk estimate 
as short horizon forecasts tend to be more accurate than long horizon forecasts.

Of course, drawbacks exist. One of them is that it may not be trivial to mark certain transactions to 
market or even understand their behavior under certain rate environments. This is particularly true 
for instruments such as demand deposits in a retail banking environment for example. Whatever 
the difficulties, the aim of getting an integrated picture of a firm’s exposure to market risks is 
worth a number of assumptions, some of which may be reasonable representations of reality. In the 
case of demand deposits, a recent article by Professor Robert Jarrow outlines how power swaps 
could be modelled to represent a retail bank’s core deposit base risks (RISK, February 1996). 

Some critics also argue that marking-to-market all transactions over short time periods creates too 
much “earnings” or volatility. Looking at risks in this fashion may be misleading. This is the direc-
tion of the industry and its accounting regulators however and it will be up to financial analysts to 
adapt to the new environment. The volatility of earnings will not just appear out of the blue. The 
changes in accounting practices will ultimately show economic reality as it really is.

Market risk can be absolute or relative. In its absolute form, what is measured is the loss in the 
value of a position or a portfolio resulting from changes in market conditions. Absolute market 
risk is what managers of trading operations measure. Corporates who wish to estimate real poten-
tial losses from their treasury operations also focus on absolute market risk. Regulators are inter-
ested in absolute market risks in relation to a firm’s capital. When investment performance is 
measured against an index, the inherent market risk is relative in the sense that it measures the 
potential underperformance against a benchmark. 

 

2.2  VaR in the framework of modern financial management

 

As discussed before there are two steps to VaR measurement. First, all positions need to be marked 
to market (valuation). Second we need to estimate the future variability of the market value. 
Chart 2.4 illustrates this point.
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Chart 2.4

 

Two steps beyond accounting

 

2.2.1  Valuation

 

Trading items are valued at their current prices/rates as quoted in liquid secondary markets. To 
value transactions for which, in the absence of a liquid secondary market, no market value exists, 
we first map them into equivalent positions, or decompose them into parts for which secondary 
market prices exist. The most basic such “part” is a single cash flow with a given maturity and cur-
rency of the payor. Most transactions can be described as a combination of such cash flows and 
thus can be valued approximately as the sum of market values of their component cash flows.

Only non-marketable items that contain options cannot be valued in this simple manner. For their 
valuation we also need expected volatilities and correlations of the prices and rates that affect their 
value, and we need an options pricing model. Volatilities describe potential movements in rates 
with a given probability; correlations describe the interdependencies between different rates and 
prices. Thus, for some valuations, we require volatilities and correlations. 

 

2.2.2  Risk estimation

 

Here we estimate value changes as a consequence of expected changes in prices and rates. The 
potential changes in prices are defined by either specific scenarios or a set of volatility and correla-
tion estimates. If the value of a position depends on a single rate, then the potential change in value 
is a function of the rates in the scenarios or volatility of that rate. If the value of a position depends 
on multiple rates, then the potential change in its value is a function of the combination 
of rates in each scenario or of each volatility and of each correlation between all pairs of rates.

Generating equivalent positions on an aggregate basis facilitates the simulation. As will be shown 
later, the simulation can be done algebraically (using statistics and matrix algebra), or exhaustively 
by computing estimated value changes for many combinations of rate changes.

In the RiskMetrics framework, forecasts of volatilities and correlations play a central role. They 
are required for valuations in the case of derivatives, the critical inputs for risk estimation. 

Market 
Risks

Total 
Position

Risk 
Projection

Mapping

Economic 
values

MappingAccrual 
items

Trading 
items

Accounting

Equivalent 
Position

Trading 
items

Valuation

 Current market  
rates & prices 

Projected scenarios or 
estimated volatilities & 

correlations

Balance 
Sheet



 

26 Chapter 2.  Historical perspective of VaR

RiskMetrics

 



 

 —Technical Document
Fourth Edition

 

2.3  Alternative approaches to risk estimation

 

More than one VaR model is currently being used and most practitioners have selected an 
approach based on their specific needs, the types of positions they hold, their willingness to trade 
off accuracy for speed (or vice versa), and other considerations.

The different models used today differ on basically two fronts:

• How the changes in the values of financial instruments are estimated as a result of market 
movements.

• How the potential market movements are estimated.

What makes the variety of models currently employed is the fact that the choices made on the two 
fronts mentioned above can be mixed and matched in different ways.

 

2.3.1   Estimating changes in value

 

There are basically two approaches to estimating how the value of a portfolio changes as a result 
of market movements:  analytical methods and simulation methods. 

 

2.3.1.1  Analytical methods

 

One such method is the analytical sensitivity approach based on the following equation:

estimated value change = 

 

f 

 

(position sensitivity, estimated rate/price change)

where the position sensitivity factor establishes the relationship between the value of the instru-
ment and of the underlying rate or price, and determines the accuracy of the risk approximation. 

In its simplest form, the analytical sensitivity approach looks like this:

estimated value change = position sensitivity 

 

×

 

 estimated rate change

For example, the value change of a fixed income instrument can be estimated by using the instru-
ment’s duration. Although this linear approximation simplifies the convex price/yield relationship 
of a bond, it is extensively used in practice because duration often accounts for the most signifi-
cant percentage of the risk profile of a fixed income instrument. Similar simplifications can be 
made for options where the estimated change in value is approximated by the option’s delta.

The initial versions of RiskMetrics basically used an analytical VaR approach that assumed that 
market risk could be estimated by using a simple first-order approximation such as the one out-
lined above. We have since extended the analytical approach to account for nonlinear relationships 
between market value and rate changes (e.g., options), which requires accounting for gamma risk 
in addition to delta risk. The more refined version of the analytical approach looks like this:

estimated value change  = (position sensitivity 1 

 

×

 

 estimated rate change) 
+ 1/2 (position sensitivity 2) 

 

×

 

 (estimated rate change)

 

2

 

 +...

In the case of an option, the first-order position sensitivity is the delta, while the second-order term 
is the gamma. Higher order effects can also be estimated using an analytical approach, but the 
math typically gets more complex.

The analytical approach requires that positions be summarized in some fashion so that the esti-
mated rate changes can be applied. This process of aggregating positions is called mapping and is 
described in Chapter 6.
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The advantages of analytical models is that they are computationally efficient and enable users to 
estimate risk in a timely fashion.

 

2.3.1.2  Simulation methods

 

The second set of approaches, typically referred to as Full Valuation models rely on revaluing a 
portfolio of instruments under different scenarios. How these scenarios are generated varies across 
models, from basic historical simulation to distributions of returns generated from a set of volatil-
ity and correlation estimates such as RiskMetrics. Some models include user-defined scenarios 
that are based off of major market events and which are aimed at estimating risk in crisis condi-
tions. This process is often referred to a stress testing.

Full Valuation models typically provide a richer set of risk measures since users are able to focus 
on the entire distribution of returns instead of a single VaR number. Their main drawback is the 
fact that the full valuation of large portfolios under a significant number of scenarios is computa-
tionally intensive and takes time. It may not be the preferred approach when the goal is to provide 
senior management with a timely snapshot of risks across a large organization.

 

2.3.2  Estimating market movements

 

The second discriminant between VaR approaches is how market movements are estimated. There 
is much more variety here and the following list is not an exhaustive list of current practice.

 

RiskMetrics

 

RiskMetrics uses historical time series analysis to derive estimates of volatilities and correlations 
on a large set of financial instruments. It assumes that the distribution of past returns can be mod-
elled to provide us with a reasonable forecast of future returns over different horizons.

While RiskMetrics assumes conditional normality of returns, we have refined the estimation pro-
cess to incorporate the fact that most markets show kurtosis and leptokurtosis. We will be publish-
ing factors to adjust for this effect once the RiskMetrics customizable data engine becomes 
available on the Reuters Web.

These volatility and correlation estimates can be used as inputs to:

• Analytical VaR models

• Full valuation models. In Appendix E we outline how the RiskMetrics volatility and correla-
tion data sets can be used to drive simulations of future returns. 

 

Historical Simulation

 

The historical simulation approach, which is usually applied under a full valuation model, makes 
no explicit assumptions about the distribution of asset returns. Under historical simulation, portfo-
lios are valued under a number of different historical time windows which are user defined. These 
lookback periods typically range from 6 months to 2 years.

Once the RiskMetrics customizable data engine becomes available on the ReutersWeb, users will 
be able to access the underlying historical data needed to perform this type of simulation.

 

Monte Carlo Simulation

 

While historical simulation quantifies risk by replicating one specific historical path of market 
evolution, stochastic simulation approaches attempt to generate many more paths of market 
returns. These returns are generated using a defined stochastic process (for example, assume that 
interest rates follow a random walk) and statistical parameters that drive the process (for example, 
the mean and variance of the random variable).The RiskMetrics data sets can be used as inputs to 
this process.
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In addition, the following VaR models add refinements to the results generated by the approaches 
listed above.

 

Implied volatilities

 

Some practitioners will also look to the market to provide them with an indication of future poten-
tial return distributions. Implied volatility as extracted from a particular option pricing model is 
the market’s forecast of future volatility. Implied volatilities are often used in comparison to his-
tory to refine the risk analysis.

Implied volatilities are not currently used to drive global VaR models as this would require observ-
able options prices on all instruments that compose a portfolio. Unfortunately, the universe of con-
sistently observable options prices is not yet large enough; generally only exchange traded options 
are reliable sources of prices. In particular, the number of implied correlations that can be derived 
from traded options prices is insignificant compared to the number of correlations required to esti-
mate risks in portfolios containing many asset types.

 

User-defined scenarios

 

Most risk management models add user-defined rate and price movements to the standard VaR 
number, if only to test the effect of what could happen if historical patterns do not repeat them-
selves. Some scenarios are subjectively chosen while others recreate past crises events. The latter 
is referred to as stress testing and is an integral part of a well designed risk management process.

Selecting the appropriate measurement method is not, however, straightforward. Judgment in the 
choice of methodologies will always be important. Cost benefit trade-offs are different for each 
user, depending on his position in the markets, the number and types of instruments traded, and the 
technology available. Different choices can be made even at different levels of an organization, 
depending on the objectives. While trading desks of a bank may require precise risk estimation 
involving simulation on relatively small portfolios, senior management may opt for an analytical 
approach that is cost efficient and timely. It is important for senior management to know whether 
the risk of the institution is $10 million or $50 million. It is irrelevant for them to make the distinc-
tion between $10 million and $11 million. Achieving this level of accuracy at the senior manage-
ment level is not only irrelevant, but can also be unachievable operationally, or at a cost which is 
not consistent with shareholder value.

Since its introduction, RiskMetrics has become the umbrella name for a series of VaR methodolo-
gies, from the simple analytical estimation based on the precept that all instruments are linear (the 
so-called delta approximation) to the structured Monte Carlo simulation.

Not all participants with exposure to the financial and commodities markets will have the 
resources to perform extensive simulations. That is why we have strived in this update of the 
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 to refine analytical approximations of risk for non-linear 
instruments (the delta-gamma approximations). During 1997, the availability of historical rates 
and prices under the RiskMetrics customizable data engine will make historical simulation an 
option for users of our products. 
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Table 2.1

 

Two discriminating factors to review VaR models

How to estimate the change in the value of instruments

Analytical Full Valuation

How to estimate 
rate and price 
changes

Full VaR 
model

 

RiskMetrics Covariance matrices 
applied to standard 
instrument maps.

Covariance matrices used to define scenarios for 
structured Monte Carlo.

Historical 
simulation

Not applicable. Portfolios revalued under historical return distri-
butions (lookback period varies.

Monte Carlo Not applicable. Statistical parameters determine stochastic pro-
cesses. Sources of data vary (can include 
RiskMetrics covariance matrices).

 

Partial VaR 
model

 

Implied 
volatilities

Covariance matrices 
applied to standard 
instrument maps.

Covariance matrices used to define scenarios for 
structured Monte Carlo.

User defined Sensitivity analysis 
on single instruments.

Limited number of scenarios.
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The measures of market risk outlined in the preceding sections can have a variety of applications. 
We will highlight just a few: 

• To measure and compare market risks.

• To check the valuation/risk models.

• To evaluate the performance of risk takers on a return/risk basis.

• To estimate capital levels required to support risk taking.

 

3.1  Market risk limits

 

Position limits have traditionally been expressed in nominal terms, futures equivalents or other 
denominators unrelated to the amount of risk effectively incurred. The manager of a USD bond 
portfolio will be told for example that he cannot hold more than 100 million USD worth of U.S. 
Treasury bonds. In most cases, the measure contains some risk constraint expressed in a particular 
maturity or duration equivalent (if the 100 million limit is in 2-year equivalents, the manager will 
not be able to invest 100 million in 30-year bonds). Setting limits in terms of Value-at-Risk has 
significant advantages: position benchmarks become a function of risk and positions in different 
markets while products can be compared through this common measure. A common denominator 
rids the standard limits manuals of a multitude of measures which are different for every asset 
class. Limits become meaningful for management as they represent a reasonable estimate of how 
much could be lost. 

A further advantage of Value-at-Risk limits comes from the fact that VaR measures incorporate 
portfolio or risk diversification effects. This leads to hierarchical limit structures in which the risk 
limit at higher levels can be lower than the sum of risk limits of units reporting to it. 

 

Chart 3.1

 

Hierarchical VaR limit structure

 

Setting limits in terms of risk helps business managers to allocate risk to those areas which they 
feel offer the most potential, or in which their firms’ expertise is greatest. This motivates managers 
of multiple risk activities to favor risk reducing diversification strategies.

Business Area
VaR-Limit: 

$20MM

Business Group A
VaR-Limit: 

$10MM

Business Group B
VaR-Limit: 

$12MM

Business Group C
VaR-Limit: 

$8MM

Unit A1
VaR-Limit: 

$8MM

Unit A2
VaR-Limit: 

$7MM

Unit C1
VaR-Limit: 

$6MM

Unit C2
VaR-Limit: 

$5MM

Unit C3
VaR-Limit: 

$3MM
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3.2  Calibrating valuation and risk models

 

An effective method to check the validity of the underlying valuation and risk models is to com-
pare DEaR estimates with realized daily profits and losses over time. Chart 3.2 illustrates the con-
cept. The stars show the daily P&L of a global trading business during the first 7 months of 1993, 
the two lines show the Daily Earnings at Risk, plus and minus.

 

Chart 3.2

 

Ex post validation of risk models:  DEaR vs. actual daily P&L

 

By definition, the cone delimited by the 

 

+/−

 

DEaR lines should contain 90% of all the stars, 
because DEaR is defined as the maximum amount of expected profit or losses 90% of the time. If 
there are substantially more than 10% of the stars outside the DEaR-cone, then the underlying 
models underestimate the risks. If there are no stars outside the DEaR cone and not even close to 
the lines, then the underlying models overestimate the risks.

This type of chart is only a reasonable reflection of the risk statistics if the daily profit and losses 
are derived solely from overnight risk taking and not intraday trading and other activities. Often 
this is not the case. Then instead of the daily P&L you should plot what is often referred to as the 
“no-action-P&L”; it describes the hypothetical P&L on the position that would have been incurred 
if the previous day’s closing position had been kept for the next 24 hours and then revalued. This 
data is often difficult to collect.

 

3.3  Performance evaluation

 

To date, trading and position taking talent have been rewarded to a significant extent on the basis 
of total returns. Given the high rewards bestowed on outstanding trading talent this may bias the 
trading professionals towards taking excessive risks.It is often referred to as giving traders a free 
option on the capital of your firm. The interest of the firm or capital provider may be getting out of 
line with the interest of the risk taking individual unless the risks are properly measured and 
returns are adjusted for the amount of risk effectively taken. 
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To do this correctly one needs a standard measure of risks. Ideally risk taking should be evaluated 
on the basis of three interlinked measures:  revenues, volatility of revenues, and risks. This is illus-
trated by Chart 3.3:

 

Chart 3.3

 

Performance evaluation triangle

 

Including estimated (ex ante) and realized (ex post) volatility of profits adds an extra dimension to 
performance evaluation. The ratio of P&L over risk (risk ratio) and of P&L over volatility (Sharpe 
ratio) can be combined into what we define as a trader’s efficiency ratio (estimated risk/realized 
volatility) that measures an individual’s capacity to translate estimated risk into low realized vola-
tility of revenues.

Consider an example to illustrate the issue. Assume you have to evaluate Trader #1 relative to 
Trader #2 and the only information on hand is the history of their respective cumulative trading 
revenues (i.e., trading profits). This information allows you to compare their profits and volatility 
of their profits, but says nothing about their risks.

 

Chart 3.4

 

Example:  comparison of cumulative trading revenues
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With risk information you can compare the traders more effectively. Chart 3.5 shows, for the two 
traders the risk ratio, sharpe ratio, and efficiency ratio over time.

 

Chart 3.5

 

Example:  applying the evaluation triangle

 

Note, you have no information on the type of market these traders operate in or the size of posi-
tions they have taken. Nevertheless Chart 3.5 provides interesting comparative information which 
lead to a richer evaluation.

 

3.4  Regulatory reporting, capital requirement

 

Financial institutions such as banks and investment firms will soon have to meet capital require-
ments to cover the market risks that they incur as a result of their normal operations. Currently the 
driving forces developing international standards for market risk based capital requirements are 
the European Community which issued a binding Capital Adequacy Directive (EC-CAD) and the 
Basel Committee on Banking Supervision at the Bank for International Settlements (Basel Com-
mittee) which has recently come out with revised proposals on the use of banks internal models. 
(See Appendix F for more information.)

 

3.4.1  Capital Adequacy Directive

 

The European Union’s EEC 93/6 directive mandates banks and investment firms to set capital 
aside to cover market risks. In a nutshell the EC-CAD computes the capital requirement as a sum 
of capital requirements on positions of different types in different markets. It does not take into 
account the risk reducing effect of diversification. As a result, the strict application of the current 
recommendations will lead to financial institutions, particularly the ones which are active interna-
tionally in many different markets, to overestimate their market risks and consequently be required 
to maintain very high capital levels. While there may be some prudential advantages to this, it is 
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not an efficient allocation of financial resources and could lead certain activities to be moved out-
side the jurisdiction of the financial regulatory authorities.

 

3.4.2  Basel Committee Proposal

 

In January 1996, the Basel Committee on Banking Supervision of the BIS issued a revised consul-
tative proposal on an “Internal Model-Based Approach to Market Risk Capital Requirements” that 
represents a big step forward in recognizing the new quantitative risk estimation techniques used 
by the banking industry. These proposals recognize that current practice among many financial 
institutions has superseded the original guidelines in terms of sophistication, and that banks should 
be given the flexibility to use more advanced methodologies. This so-called “internal models” 
approach addresses a number of issues that were raised when banks commented on the original 
proposal dated April 1993.

Table 3.1 compares the methodologies for estimating market risks as recently proposed by the 
Basel Committee with the RiskMetrics methodology covered in this document. This comparison 
focuses exclusively on the so-called quantitative factors that the BIS guidelines will require banks 
to use. It does not address the qualitative ones related to the risk management process and which 
are beyond the scope of this document. 

While the methodologies outlined in the BIS proposals have come a long way in overcoming 
important objections to the first set of proposals, there are still a number of issues that will be 
debated further. In order to facilitate the discussion between regulators and regulated, we have 
published since mid-1995 in parallel with the existing volatility and correlation data sets, a 
RiskMetrics Regulatory Data Set. The distribution of this regulatory data set is not an endorsement 
of the Basel committee proposals and the following paragraphs which explain how the data set can 
be used do not constitute J.P. Morgan’s official position on the content and scope of the Basel com-
mittee proposal.

Consistent with the other RiskMetrics data sets, the Regulatory Data Set contains volatility esti-
mates for a 1-day holding period. Given that the BIS rules require market risk estimates to be cal-
culated over a 10-day holding period and a 99% confidence interval (i.e., 2.33 standard 
deviations), users will need to rescale the 1-day volatility (see Eq. [3.1]). The Basel proposals 
allow for this adjustment of data (they actually refer to scaling up VaR estimates but exclude this 
practice in the case of options since it only works for instruments’ whose pricing formulae are lin-
ear). Scaling up volatility estimates is perfectly legitimate, assuming no autocorrelation in the 
data. Scaling up Value-at-Risk does not work for options, though using scaled up volatilities to 
estimate the market risks of options with adequate pricing algorithms poses no problem. 

As in the other data sets, volatilities and correlations are measured as daily log changes in rates 
and prices. However, contrary to the exponential weighting schemes used for the other data sets, 
estimates in the Regulatory Data Set are based on simple moving averages of 1 year of historical 
data, sampled daily. 

To make it comparable to the standard data sets, the RiskMetrics Regulatory Data Set is based on 
95% confidence. Including the adjustment for the holding period, users downloading the data sets 
will need to rescale the volatility estimates according to the following equation, in order to meet 
the requirements set forth in the Basel proposals (this adjustment assumes a normal distribution. 
More refined methods incorporating the characteristics of fat tailed distributions are outlined in the 
statistics section of this document):

[3.1]  
VBasel

2.33
1.65
---------- V⋅

RiskMetrics RD
10⋅=

4.45 VRiskMetrics RD⋅=
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where

Correlations across asset classes (i.e., foreign exchange to government bonds for example) are 
supplied in the RiskMetrics Regulatory Data Set, despite the fact that actual use of empirical cor-
relations in the VaR estimates is subject to regulatory approval. The BIS has stated that the use of 
correlations across asset classes would be based on whether the supervisory authority was satisfied 
with the integrity of the estimation methodology.

VRiskMetrics RD volatilities provided in RiskMetrics Regulatory Dataset=

VBasel volatilities suggested by Basel Committee for use in internal models=
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Table 3.1

 

Comparing the Basel Committee proposal with RiskMetrics

 

Issue Basel Committee proposal RiskMetrics

Mapping: 

 

how positions are described 
in summary form

• Fixed Income:  at least 6 time buckets, differentiate 
government yield curves and spread curves.

• Equities: country indices, individual stocks on basis
of beta equivalent.

• Commodities:  to be included, not specified how.

• Fixed Income:  data for 7–10 buckets of government yield curves 
in 16 markets, 4 buckets money market rates in 27 markets, 4–6 
buckets in swap rates in 18 markets.

• Equities: country indices in 27 markets, individual stocks on beta 
(correction for non-systematic risk).

• Commodities: 80 volatility series in 11 commodities (spot and 
term).

 

Volatility

 

: 
how statistics of future price 
movement are estimated

• Volatility expressed in standard deviation of normal 
distribution proxy for daily historical observations 
year or more back. Equal weights or alternative 
weighting scheme provided effective observation 
period is at least one year.

• Estimate updated at least quarterly.

• Volatility expressed in standard deviation of normal distribution 
proxy for exponentially weighted daily historical observations 
with decay factors of .94 (for trading, 74 day cutoff 1%) and .97 
(for investing, 151 day cutoff at 1%).

• Special Regulatory Data Set, incorporating Basel Committee 
1-year moving average assumption.

• Estimates updated daily.

 

Adversity: 

 

size of adverse move in terms 
of normal distribution

• Minimum adverse move expected to happen with 
probability of 1% (2.32 standard deviations) over 10 
business days. Permission to use daily statistics 
scaled up with square root of 10 (3.1). Equivalent to 
7.3 daily standard deviations.

• For trading: minimum adverse move expected to happen with 
probability of 5% (1.65 standard deviation) over 1 business day.

• For investment: minimum adverse move expected to happen with 
probability of 5% (1.65 standard deviation) over 25 business 
days. 

 

Options: 

 

treatment of time value and 
non-linearity

• Risk estimate must consider effect of non-linear price 
movement (gamma-effect).

• Risk estimate must include effect of changes in 
implied volatilities (vega-effect).

• Non-linear price movement can be estimated analytically (delta-
gamma) or under simulation approach. Simulation scenarios to 
be generated from estimated volatilities and correlations.

• Estimates of volatilities of implied volatilities currently not pro-
vided, thus limited coverage of options risk.

 

Correlation: 

 

how risks are aggregated 
• Portfolio effect can be considered within asset classes 

(Fixed Income, Equity, Commodity, FX). Use of cor-
relations across asset classes subject to regulatory 
approval. 

• Correlations estimated with equally weighted daily 
data for more than one year.

• Full portfolio effect considered across all possible parameter 
combinations.

• Correlations estimated using exponentially weighted daily histor-
ical observations with decay factors of 0.94 (for trading, 74 day 
cutoff 1%) and 0.97 (for investing, 151 day cutoff at 1%).

 

Residuals: 

 

treatment of instrument 
specific risks 

• Instrument specific risks not covered by standard 
maps should be estimated.

• Capital requirements at least equal to 50% of charge 
calculated under standard methodology.

• Does not deal with specific risks not covered in standard maps.
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This chapter presents the statistical and probability underpinnings of the RiskMetrics model. It 
explains the assumptions commonly applied to forecast the distribution of portfolio returns and 
investigates the empirical validity of these assumptions. While we have tried to make this chapter 
self-contained, its subject matter does require a thorough grasp of elementary statistics. We have 
included many up-to-date references on specific topics so that the interested reader may pursue 
further study in these areas.

This chapter is organized as follows:

• Section 4.1 presents definitions of financial price returns and explains the type of returns 
applied in RiskMetrics. 

• Section 4.2 describes the basic random walk model for financial prices to serve as background 
to introducing the RiskMetrics model of returns.

• Section 4.3 looks at some observed time series properties of financial returns in the context of 
the random walk model.

• Section 4.4 summarizes the results presented in Sections 4.1 through 4.3.

• Section 4.5 reviews some popular models of financial returns and presents a review of the 
normal and lognormal distributions.

• Section 4.6 presents the RiskMetrics model as a modified random walk. This section lists the 
assumptions of the RiskMetrics model—that is, what RiskMetrics assumes about the evolu-
tion of financial returns over time and the distribution of returns at any point in time.

• Section 4.7 is a chapter summary.

 

4.1  Definition of financial price changes and returns

 

1

 

Risk is often measured in terms of price changes. These changes can take a variety of forms such 
as absolute price change, relative price change, and log price change. When a price change is 

 

defined relative to some initial price, it is known as a return.

 

 RiskMetrics measures change in 
value of a portfolio (often referred to as the adverse price move) in terms of log price changes 
also known as continuously-compounded returns. 

 

Next, we explain different definitions of 
price returns.

 

4.1.1  One-day (single period) horizon

 

Denote by  the price of a security at date 

 

t

 

. In this document, 

 

t

 

 is taken to represent one business 
day. 

The absolute price change on a security between dates 

 

t

 

 and 

 

t 

 

− 

 

1 (i.e., one day) is defined as

[4.1]

 

 

 

1

 

References for this section are, Campbell, Lo and MacKinley (1995) and Taylor, S. J. (1987). 

Pt

Dt Pt Pt 1––=
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The relative price change, or percent return

 

2

 

, , for the same period is 

[4.2]

If the gross return on a security is just , then the log price change (or continuously-com-
pounded return), , of a security is defined to be the natural logarithm of its gross return. That is,

[4.3]

where  is the natural logarithm of .

In practice, the main reason for working with returns rather than prices is that returns have more 
attractive statistical properties than prices, as will be shown below. Further, returns (relative and 
log price changes) are often preferred to absolute price changes because the latter do not measure 
change in terms of the 

 

given

 

 price level.

To illustrate the different results that different price changes can yield, Table 4.1 presents daily 
USD/DEM exchange rates for the period 28-Mar-96 through 12-Apr-96 and the corresponding 
daily absolute, relative, and log price changes.

As expected, all three series of price changes have the same sign for any given day. Also, notice 
the similarity between the log and relative price changes. In fact, we should expect these two 
return series to be similar to one another for small changes in the underlying prices. In contrast, the 
absolute change series is quite different from the other two series.

 

2

 

Although it is called “percent return,” the relative price change is expressed as a decimal number.

 

Table 4.1

 

Absolute, relative and log price changes* 

 

Date
 Price 

(USD/DEM), P

 

t

 

 Absolute price 
change (%), D

 

t

 

 Relative price 
change (%), R

 

t

 

 Log price 
change (%,) r

 

t

 

28-Mar-96 0.67654 0.427 0.635 0.633
29-Mar-96 0.67732 0.078 0.115 0.115
1-Apr-96 0.67422

 

−

 

0.310

 

−

 

0.458

 

−

 

0.459
2-Apr-96 0.67485 0.063 0.093 0.093
3-Apr-96 0.67604 0.119 0.176 0.176
4-Apr-96 0.67545

 

−

 

0.059

 

−

 

0.087

 

−

 

0.087
5-Apr-96 0.67449

 

−

 

0.096

 

−

 

0.142 -0.142
8-Apr-96 0.67668 0.219 0.325 0.324
9-Apr-96 0.67033

 

−

 

0.635

 

−

 

0.938

 

−

 

0.943
10-Apr-96 0.66680

 

−

 

0.353

 

−

 

0.527

 

−

 

0.528
11-Apr-96 0.66609

 

−

 

0.071

 

−

 

0.106

 

−

 

0.107
12-Apr-96 0.66503

 

−

 

0.106

 

−

 

0.159

 

−

 

0.159

* RiskMetrics foreign exchange series are quoted as USD per unit foreign currency given that 
the datasets are standardized for users whose base currency is the USD. This is the inverse of 
market quotation standards for most currency pairs.

Rt

Rt

Pt Pt 1––

Pt 1–
-----------------------=

1 Rt+
rt
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To further illustrate the potential differences between absolute and log price changes, Chart 4.1 
shows daily absolute and log price changes for the U.S. 30-year government bond over the first 
quarter of 1996.

 

Chart 4.1

 

Absolute price change and log price change in U.S. 30-year government bond

 

Chart 4.1 shows that movements of the two changes over time are quite similar although the mag-
nitude of their variation is different. This latter point and the results presented in Table 4.1 should 
make it clear that it is important to understand the convention chosen for measuring price changes.

 

4.1.2  Multiple-day (multi-period) horizon

 

The returns  and  described above are 1-day returns. We now show how to use them to com-
pute returns for horizons greater than one day.

Multiple-day percent returns over the most recent 

 

k

 

 days, , are defined simply as

[4.4]

In terms of 1-day returns, the multiple-day 

 

gross

 

 return  is given by the product of 
1-day gross returns. 

[4.5]

Note that in Eq. [4.5] the 

 

k

 

-day return is a discretely compounded return. For continuously com-
pounded returns, the multiple-day return  is defined as

[4.6]
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The continuously-compounded return  is the sum of 

 

k

 

 continuously-compounded 1-day 
returns. To see this we use the relation . The return  can then be 
written as

[4.7]

Notice from Eq. [4.7] that compounding, a multiplicative operation, is converted to an additive 
operation by taking logarithms. Therefore, multiple day returns based on continuous compounding 
are simple sums of one-day returns.

As an example of how 1-day returns are used to generate a multiple-day return, we use a 1-month 
period, defined by RiskMetrics as having 25 business days. Working with log price changes, the 
continuously compounded return over one month is given by 

[4.8]

That is, the 1-month return is the sum of the last 25 1-day returns.

 

4.1.3  Percent and continuous compounding in aggregating returns

 

When deciding whether to work with percent or continuously compounded returns it is important 
to understand how such returns aggregate both across time and across individual returns at any 
point in time.

In the preceding section we showed how multiple-day returns can be constructed from 1-day 
returns by aggregating the latter across time. This is known as temporal aggregation. However, 
there is another type of aggregation known as cross-section aggregation. In the latter approach, 
aggregation is across individual returns (each corresponding to a specific instrument) at a particu-
lar point in time. For example, consider a portfolio that consists of three instruments. Let  and 

   be the continuously compounded and percent returns, respectively and let  
represent the portfolio weights. (The parameter  represents the fraction of the total portfolio 
value allocated to the 

 

i

 

th instrument with the condition that—assuming no short positions—
). If the initial value of this portfolio is  the price of the portfolio one period 

later with continuously compounded returns is

[4.9]

Solving Eq. [4.9] for the portfolio return, , we get

[4.10]

The price of the portfolio one period later with discrete compounding, i.e., using percent returns, is

[4.11]

The percent portfolio return, , is given by

[4.12]
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Equation [4.12] is the expression often used to describe a portfolio return—as a weighted sum of 
individual returns.

Table 4.2 presents expressions for returns that are constructed from temporal and cross-section 
aggregation for percent and continuously compounded returns.

The table shows that when aggregation is done across time, it is more convenient to work with 
continuously compounded returns whereas when aggregation is across assets, percent returns offer 
a simpler expression.

As previously stated, log price changes (continuously compounded returns) are used in 
RiskMetrics as the basis for all computations. In practice, RiskMetrics assumes that a port-
folio return is a weighted average of continuously compounded returns. That is, a portfolio 
return is defined as follows 

[4.13]  

As will be discussed in detail in the next section, when 1-day returns are computed using , then 
a model describing the distribution of 1-day returns extends straightforwardly to returns greater 
than one day.3 

In the next two sections (4.2 and 4.3) we describe a class of time series models and investigate the 
empirical properties of financial returns. These sections serve as important background to under-
standing the assumptions RiskMetrics applies to financial returns.

4.2  Modeling financial prices and returns

A risk measurement model attempts to characterize the future change in a portfolio’s value. Often, 
it does so by making forecasts of each of a portfolio’s underlying instrument’s future price 
changes, using only past changes to construct these forecasts. This task of describing future price 
changes requires that we model the following; (1) the temporal dynamics of returns, i.e., model the 
evolution of returns over time, and (2) the distribution of returns at any point in time. 

A widely used class of models that describes the evolution of price returns is based on the notion 
that financial prices follow a random walk.

3 There are two other reasons for using log price changes. The first relates to “Siegel’s paradox,” Meese, R.A. and 
Rogoff, K. (1983). The second relates to preserving normality for FX cross rates. Simply put, when using log price 
changes, FX cross rates can be written as differences of base currency rates. (See Section 8.4 for details.)
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4.2.1  Random walk model for single-price assets

In this section we present a model for a security with a single price. Such a model applies naturally 
to assets such as foreign exchange rates, commodities, and equities where only one price exists per 
asset. The fundamental model of asset price dynamics is the random walk model, 

[4.14]

where IID stands for “identically and independently distributed”4, and N  stands for the nor-
mal distribution with mean 0 and variance 1. Eq. [4.14] posits the evolution of prices and their dis-
tribution by noting that at any point in time, the current price  depends on a fixed parameter µ, 
last period’s price , and a normally distributed random variable, . Simply put, µ and σ 
affect the mean and variance of ’s distribution, respectively.

The conditional distribution of , given , is normally distributed.5 An obvious drawback of 
this model is that there will always be a non-zero probability that prices are negative.6 One way to 
guarantee that prices will be non-negative is to model the log price  as a random walk with nor-
mally distributed changes.

[4.15]

Notice that since we are modeling log prices, Eq. [4.15] is a model for continuously compounded 
returns, i.e., . Now, we can derive an expression for prices,  given last period’s 
price  from Eq. [4.15]:

[4.16]

where  and e ≅ 2.718.

Since both  and  are non-negative, we are guaranteed that  will never be 
negative. Also, when  is normally distributed,  follows a lognormal distribution.7

Notice that both versions of the random walk model above assume that the change in (log) prices 
has a constant variance (i.e.,  does not change with time). We can relax this (unrealistic) assump-
tion, thus allowing the variance of price changes to vary with time. Further, the variance could be 
modeled as a function of past information such as past variances. By allowing the variance to vary 
over time we have the model

[4.17]

4 See Section 4.3 for the meaning of these assumptions.

5 The unconditional distribution of Pt is undefined in that its mean and variance are infinite. This can easily be seen 
by solving Eq. [4.14] for Pt as a function of past εt’s.

6 This is because the normal distribution places a positive probability on all points from negative to positive infinity. 
See Section 4.5.2 for a discussion of the normal distribution.

7 See Section 4.5.3 for a complete description of the lognormal distribution.
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This version of the random walk model is important since it will be shown below that 
RiskMetrics assumes that log prices evolve according to Eq. [4.17] with the parameter µ set 
to zero. 

4.2.2  Random walk model for fixed income instruments

With fixed income instruments we observe both prices and yields. When prices and yields exist, 
we must decide whether to model the log changes in the yields or in the prices. For example, for 
bonds, a well documented shortcoming of modeling price returns according to Eq. [4.15] is that 
the method ignores a bond’s price pull to par phenomenon. That is, a bond has the distinct fea-
ture that as it approaches maturity, its price converges to its face value. Consequently, the bond 
price volatility will converge to zero.

Therefore, when modeling the dynamic behavior of bonds (and other fixed income instruments), 
the bond yields rather than the bond prices are often modeled according to the lognormal distribu-
tion. That is, if  denotes the yield on a bond at period t, then  is modeled as

[4.18]

(Note that similar to Eq. [4.17] we can incorporate a time-varying variance into Eq. [4.18]). In 
addition to accounting for the pull to par phenomenon, another important reason for modeling the 
yield rather than the price according to Eq. [4.18] is that positive yields are guaranteed. In the con-
text of bond option pricing, a strong case can often be made for modeling yields as lognormal.8

4.2.3  Time-dependent properties of the random walk model

Each of the random walk models presented in Sections 4.2.1 and 4.2.2 imply a certain movement 
in financial prices over time. In this section we use Eq. [4.15]—the random walk model in log 
prices, —to explain some important properties of price dynamics implied by the random walk 
model. Specifically, we discuss the properties of stationary (mean-reverting) and nonstationary 
time series. 

A stationary process is one where the mean and variance are constant and finite over time.9 In 
order to introduce the properties of a stationary time series we must first generalize Eq. [4.15] to 
the following model.

[4.19]

where c is a parameter. Here, a stationary time series is generated when . For example, 
if we set c = 0.5, we can simulate a stationary time series using

[4.20]  

8 For a discussion on the potential advantages of modeling yield levels as lognormal, see Fabozzi (1989, Chapter 3).

9 Stationarity also requires that the (auto-)covariance of returns at different times is only a function of the time 
between the returns, and not the times at which they occur. This definition of stationarity is known as weak or 
covariance stationarity. 
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Chart 4.2 shows the simulated stationary time series based on 500 simulations.

Chart 4.2
Simulated stationary/mean-reverting time series

Chart 4.2 shows how a stationary series fluctuates around its mean, which in this model is 0.02. 
Hence, stationary series are mean-reverting since, regardless of the fluctuations’ amplitudes, the 
series reverts to its mean.

Unlike a mean-reverting time series, a nonstationary time series does not fluctuate around a fixed 
mean. For example, in Eq. [4.15] the mean and variance of the log price  conditional on some 
original observed price, say , are given by the following expressions

[4.21]

where E0[ ] and V0[ ] are the expectation and variance operators taken at time 0. Eq. [4.21] shows 
that both the mean and variance of the log price are a function of time such that, as time t 
increases, so does pt’s conditional mean and variance. The fact that its mean and variance change 
with time and “blow-up” as time increases is a characteristic of a nonstationary time series. 

To illustrate the properties of a nonstationary time series, we use the random walk model, 
Eq. [4.15], to simulate 500 data points. Specifically, we simulate a series based on the following 
model,

[4.22]
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The simulated series is shown in Chart 4.3.

Chart 4.3
Simulated nonstationary time series

Notice how this series has a positive drift that grows with time, representing the term µt in 
Eq. [4.21]. This is a typical feature of a nonstationary time series. 

In the preceding examples, notice that the difference between these stationary and nonstationary 
series is driven by the coefficient on last period’s log price . When this coefficient is 1, as in 
Eq. [4.22], the process generating log prices is known to have a “unit root”. As should be 
expected, given the differences between stationary and non-stationary times series and their impli-
cations for statistical analysis, there is a large body of literature devoted to testing for the presence 
of a unit root.10

Real world examples of stationary and nonstationary series are shown in Charts 4.4 and 4.5. For 
the same period, Chart 4.4 plots the USD 30-year rate, a stationary time series.

Chart 4.4
Observed stationary time series 
USD 30-year yield

10 A common statistical test for a unit root is known as the augmented Dickey-Fuller test. See Greene, (1993). 
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Notice how the 30-year rates fluctuate around the sample average of 7.30%, signifying that the 
time series for this period is mean-reverting.

Chart 4.5 plots the S&P 500 index for the period January 4, 1993 through June 28, 1996.

Chart 4.5
Observed nonstationary time series
S&P 500 index

Notice that the S&P 500 index does not fluctuate around the sample mean of 504, but rather has a 
distinct trend upwards. Comparing the S&P 500 series to the simulated nonstationary data in 
Chart 4.3, we see that it has all the markings of a nonstationary process.

4.3  Investigating the random-walk model

Thus far we have focused on a simple version of the random walk model (Eq. [4.15]) to demon-
strate some important time series properties of financial (log) prices. Recall that this model 
describes how the prices of financial assets evolve over time, assuming that logarithmic price 
changes are identically and independently distributed (IID). These assumptions imply:

1. At each point in time, t, log price changes are distributed with a mean 0 and variance  
(identically distributed). This implies that the mean and variance of the log price changes 
are homoskedastic, or unchanging over time.

2. Log price changes are statistically independent of each other over time (independently dis-
tributed). That is to say, the values of returns sampled at different points are completely 
unrelated 

In this section we investigate the validity of these assumptions by analyzing real-world data. We 
find evidence that the IID assumptions do not hold.11

11  Recent (nonparametric) tests to determine whether a time series is IID are presented in Campbell and Dufour 
(1995).
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4.3.1  Is the distribution of returns constant over time?

Visual inspection of real-world data can be a useful way to help understand whether the assump-
tions of IID returns hold. Using a time series of returns, we investigate whether the first assump-
tion of IID, identically distributed returns, is indeed valid. We find that it is violated and present 
the following data as evidence.

Charts 4.6 and 4.7 show time series plots of continuously compounded returns for the USD/DEM 
and USD/FRF exchange rates, respectively.12

Chart 4.6
USD/DEM returns

Chart 4.7
USD/FRF returns

These time series show clear evidence of volatility clustering. That is, periods of large returns are 
clustered and distinct from periods of small returns, which are also clustered. If we measure such 
volatility in terms of variance (or its square root, i.e., the standard deviation), then it is fair to think 
that variance changes with time, reflecting the clusters of large and small returns. In terms of the 
model in Eq. [4.15], this means that  is changing with time (t). In statistics, changing variances 
are often denoted by the term heteroscedasticity.

12 This notation (i.e., USD per DEM) is not necessarily market convention.
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In Charts 4.6 and 4.7 we also notice not only the individual volatility clustering, but the correlation 
of the clusters between return series. For example, note that periods of high volatility in 
USD/DEM returns coincide with high volatility in USD/FRF returns. Such correlation between 
returns series motivates the development of multivariate models, that is, models of returns that 
measure not only individual series variance (volatility), but also the correlation between return 
series. 

4.3.2  Are returns statistically independent over time?

Having established, albeit informally, the possibility of time-varying variances, and consequently, 
a violation of the identically distributed assumption, we now investigate the validity of the inde-
pendence assumption, i.e., the second assumption of IID. From our methods and the data that we 
present in the following sections (4.3.2.1 through 4.3.2.3), we conclude that returns in a given 
series are not independent of each other.

In Charts 4.6 and 4.7, the persistence displayed by the volatility clusters shows some evidence of 
autocorrelation in variances. That is, the variances of the series are correlated across time. If 
returns are statistically independent over time, then they are not autocorrelated. Therefore, a natu-
ral method for determining if returns are statistically independent is to test whether or not they are 
autocorrelated. In order to do so, we begin by defining correlation and a method of testing for 
autocorrelation.

4.3.2.1  Autocorrelation of daily log price changes
For a given time series of returns, the autocorrelation coefficient measures the correlation of 
returns across time. In general, the standard correlation coefficient between two random variables 
X and Y is given by the covariance between X and Y divided by their standard deviations:

[4.23]

where  represents the covariance between X and Y. A simple way to understand what covari-
ance measures is to begin with the definition of variance. The variance of a random variable X is a 
measure of the variation of X around its mean, . The mathematical expression for variance is 

[4.24]

where the term E[ ] is the mathematical expectation—or more simply, the average. Whereas the 
variance measures the magnitude of variation of one random variable (in this case X), covariance 
measures the covariation of two random variables (say, X and Y). It follows that if the variance of 
X is the expected value of times , then the covariance of X and Y is the 
expected value of  times , or 

[4.25]

Now, for a time series of observations , the kth order autocorrelation coefficient ρ(k) 
is defined as: 

[4.26]
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Notice that since ρ(k) operates on just one series the subscripts on the covariance and standard 
deviation refer to the time index on the return series. For a given sample of returns, , 
we can estimate Eq. [4.26] using the sample autocorrelation coefficient which is given by:

[4.27]

where k = number of lags (days), and , is the sample mean.

If a time series is not autocorrelated then estimates of  will not be significantly different from 

0. In fact, when there is a large amount of historical returns available, we can calculate a 95% con-

fidence band around 0 for each autocorrelation coefficient13 as .

Charts 4.8 and 4.9 show the sample autocorrelation coefficient plotted against different lags k 
(measured in days), along with the 95% confidence band around zero for USD/DEM foreign 
exchange and S&P 500 log price changes, respectively, for the period January 4, 1990 to June 24, 
1996. These charts are known as correlograms. The dashed lines represent the upper and lower 
95% confidence bands . If there is no autocorrelation, that is, if the series are purely ran-
dom, then we expect only one in twenty of the sample autocorrelation coefficients to lie outside 
the confidence bands. 

Chart 4.8
Sample autocorrelation coefficients for USD/DEM foreign exchange returns

13 This an asymptotic test statistic since it relies on a large value of T, say, T > 1000. See Harvey (p. 43, 1993).
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Chart 4.9
Sample autocorrelation coefficients for USD S&P 500 returns

Overall, both charts show very little evidence of autocorrelation in daily log price changes. Even 
in the cases where the autocorrelations are outside the confidence bands, the autocorrelation coef-
ficients are quite small (less than 10%). 

4.3.2.2  Box-Ljung statistic for daily log price changes
While the above charts are useful for getting a general idea about the level of autocorrelation of 
log price changes, there are more formal methods of testing for autocorrelation. An often cited 
method is the Box-Ljung (BL) test statistic,14 defined as

[4.28]  

Under the null hypothesis that a time series is not autocorrelated, BL ( p ), is distributed chi-
squared with p degrees of freedom. In Eq. [4.28], p denotes the number of autocorrelations used to 
estimate the statistic. We applied this test to the USD/DEM and S&P 500 returns for p = 15. In this 
case, the 5% chi-squared critical value is 25. Therefore, values of the BL(10) statistic greater than 
25 implies that there is statistical evidence of autocorrelation. The results are shown in Table 4.3. 

14 See West and Cho (1995) for modifications to this statistic.

Table 4.3
Box-Ljung test statistic
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We also applied this test to the daily log price changes of a selected series of commodity futures 
contracts because, when plotted against time, these series appear autocorrelated. In these tests we 
chose p = 10 which implies a critical value of 18.31 at the 95% confidence level. Table 4.4 pre-
sents the results along with the first order autocorrelation coefficient, .

The preceding tests show little evidence of autocorrelation for some daily log price change series. 
The fact that the autocorrelation is not strong agrees with previous research. It is often found that 
financial returns over the short-run (daily) are autocorrelated but the magnitudes of the autocorre-
lation are too small (close to zero) to be economically significant.15 For longer return horizons 
(i.e., beyond a year), however, there is evidence of significant negative autocorrelation (Fama and 
French, 1988). 

4.3.2.3  Autocorrelation of squared daily log price changes (returns)
As previously stated, although returns (log price changes) are uncorrelated, they may not be inde-
pendent. In the academic literature, such dependence is demonstrated by the autocorrelation of the 
variances of returns. Alternatively expressed, while the returns are not autocorrelated, their 
squares are autocorrelated. And since the expected value of the squared returns are variances16, 
autocorrelation in the squared returns implies autocorrelation in variances. The relationship 
between squared returns and variances is evident from the definition of variance, .

[4.29]  

Assuming that the mean of the returns is zero, i.e., , we get .

15 In other words, it would be very difficult to form profitable trading rules based on autocorrelation in daily log price 
changes (Tucker, 1992). Also, more recent work has shown that over short horizons, autocorrelation in daily 
returns may be the result of institutional factors rather than purely inefficient markets (Boudoukh, Richardson and 
Whitelaw, 1994).

16 This is true if the expected values of returns are zero.The plausibility of assuming a mean of zero for daily returns 
will be discussed in Section 5.3.1.1.

Table 4.4
Box-Ljung statistics

Contract*
Maturity
(mths.)

WTI 1 −0.0338 5.24

3 −0.0586 7.60

6 −0.0927 13.62

12 −0.1323 25.70

LME

Copper 3 −0.0275 8.48

15 −0.0900 19.04

27 −0.1512 16.11

* Note that the higher autocorrelation associated with con-
tracts with longer maturities may be due to the fact that such 
contracts are less liquid than contracts with short maturities.
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Charts 4.10 and 4.11 show time series of squared returns for the USD/DEM exchange rate and for 
the S&P 500 index. 

 

Chart 4.10

 

USD/DEM returns squared

 

Chart 4.11

 

S&P 500 returns squared

 

Notice the clusters of large and small spikes in both series. These clusters represent periods of high 
and low volatility recognized in Section 4.2.1. To analyze the autocorrelation structure of the 
squared returns, as in the case of log price changes, we compute sample autocorrelation coeffi-
cients and the Box-Ljung statistic. Charts 4.12 and 4.13 present correlograms for the squared 
return series of USD/DEM foreign exchange and S&P 500, respectively.
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Chart 4.12
Sample autocorrelation coefficients of USD/DEM squared returns

Chart 4.13
Sample autocorrelation coefficients of S&P 500 squared returns
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Comparing the correlograms (Charts 4.8 and 4.9) based on daily log price changes to those based 
on the squared daily log price changes (Charts 4.12 and 4.13), we find the autocorrelation coeffi-
cients of the squared log price changes are larger and more persistent than those for log price 
changes. In fact, much of the significant autocorrelation in the squared log price changes is posi-
tive and well above the asymptotic 95% confidence band of 4.7%.17 The Box-Ljung statistics for 
the squared log price change series are presented in Table 4.5.

This table shows the dramatic effect that the squared log price changes has on the BL test. For all 
three series we reject the null hypothesis that the variances of daily returns are not autocorre-
lated.18

4.3.3  Multivariate extensions

Thus far, we have focused our attention on the empirical properties of individual returns time 
series. It appears that the variances of returns that were analyzed vary with time and are autocorre-
lated. As stated in Section 4.3.1, returns appear correlated (through their variances, at least) not 
only across time but also across securities. The latter finding motivates a study of the empirical 
properties of correlation, or more precisely, covariance between two return series. 

We investigate whether covariances are autocorrelated by using the same logic applied to vari-
ances. Recall that we determined whether variances are autocorrelated by checking whether 
observed squared returns are autocorrelated. We used Eq. [4.29] to show the relation between vari-
ances and squared returns. Now, suppose we are interested in the covariance between two return 
series  and . We can derive a relationship between the covariance, , and observed 
returns as follows. We begin with a definition of covariance between  and . 

[4.30]

Assuming that the mean of the returns is zero for both return series, we get 

[4.31]

In words, Eq. [4.31] states that the covariance between  and  is the expectation of the 
cross-product of returns minus the product of the expectations. In models explaining variances, the 
focus is often on squared returns because of the presumption that for daily returns, squared 
expected returns are small. Focusing on cross-products of returns can be justified in the same way. 

17 Note that this confidence band may not be appropriate due to the fact that the underlying data are not returns, but 
squared returns.

18 For a discussion on tests of autocorrelation on squared returns (residuals) see McLeod and Li (1983) and Li and 
Mak (1994).

Table 4.5
Box-Ljung statistics on squared log price changes (cv = 25)

Series

USD/DEM 153

S&P 500 207

BL̂ 15( )

r1 t, r2 t, σ12 t,
2

r1 t, r2 t,

σ12 t,
2

E r1 t, E r1 t,( )–[ ] r2 t, E r2 t,( )–[ ]{ }=

= E r1 t, r
2 t,( ) E r1 t,( ) E r2 t,( )–

σ12 t,
2

E r1 t, r
2 t,( )=

r1 t, r2 t,



Sec. 4.3  Investigating the random-walk model 63

Part II:  Statistics of Financial Market Returns

Chart 4.14 presents a time series of the cross product (  times ) of the returns on USD/DEM 
and USD/FRF exchange rates. This series is a proxy for the covariance between the returns on the 
two exchange rates.

Chart 4.14
Cross product of USD/DEM and USD/FRF returns

Chart 4.14 shows that the covariance (correlation) between the returns on the two exchange rates 
is positive over a large segment of the sample period. Time series generated from the cross product 
of two return series not only offers insight into the temporal dynamics of correlation but also can 
be used in a regression context to determine the stability of correlations over time.

Similar to the correlogram of squared returns, the correlogram of the cross product of returns on 
the two exchange rates can be used to determine whether the covariance of these two series are 
autocorrelated. Chart 4.15 shows the autocorrelations of the cross-products of returns on USD/
DEM and USD/FRF exchange rates plotted against 50 daily lags.

Chart 4.15
Correlogram of the cross product of USD/DEM and USD/FRF returns

r1 t, r2 t,

1993 1994 1995 1996
-0.02

0

0.02

0.04

0.06

0.08

0.10

Cross product

2 13 24 35 46
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Autocorrelation

Lag (days)



64 Chapter 4.  Statistical and probability foundations

RiskMetrics  —Technical Document
Fourth Edition

The BL(10) test associated with the cross product of returns on the two exchange rate series is 37, 
which is statistically significant (i.e., there is evidence of autocorrelation) at the 95% confidence 
level. 

4.4  Summary of our findings

Up to this point, Chapter 4 focused on the dynamic features of daily continuously compounded 
returns, otherwise known as log price changes, and developed the topic as follows:

• We introduced three versions of the random walk model to describe how financial prices 
evolve over time. We used a particular version of this model (Eq. [4.15]) to highlight the dif-
ferences between stationary (mean-reverting) and nonstationary time series.

• We investigated the assumptions that log price changes are identically and independently dis-
tributed.

– To determine whether the distribution that generates returns is identical over time, we plot-
ted log price changes against time. From time series plots of returns and their squares we 
observed the well documented phenomenon of “volatility clustering” which implies that the 
variance of daily log price changes vary over time (i.e., they are heteroscedastic), thus vio-
lating the identical assumption.19

– To test independence, we analyzed the autocorrelation coefficients of both log price 
changes and squared log price changes. We found that while daily log price changes have 
small autocorrelations, their squares often have significant autocorrelations.

Much of this analysis has focused on short-horizon (daily) returns. In general, however, observed 
distributions of returns with longer horizons, such as a month or a quarter, are often different from 
distributions of daily returns.20

From this point, Chapter 4 reviews how returns are assumed to be distributed at each point in time. 
Specifically, we describe the normal distribution in detail. In RiskMetrics, it is assumed that 
returns are distributed according to the conditional normal distribution.

4.5  A review of historical observations of return distributions

As shown in Eq. [4.15] and Eq. [4.17], returns were assumed to follow, respectively, an uncondi-
tional and conditional normal distribution. The implications of the assumption that financial 
returns are normally distributed, at least unconditionally, has a long history in finance. Since the 
early work of Mandelbrot (1963) and Fama (1965), researchers have documented certain stylized 
facts about the statistical properties of financial returns. A large percentage of these studies focus 
on high frequency or daily log price changes. Their conclusions can be summarized in four basic 
observations:

• Financial return distributions have “fat tails.” This means that extreme price movements 
occur more frequently than implied by a normal distribution.

• The peak of the return distribution is higher and narrower than that predicted by the normal 
distribution. Note that this characteristic (often referred to as the “thin waist”) along with fat 
tails is a characteristic of a leptokurtotic distribution.

19 See for example, Engle and Bollerslev (1986).

20 See, for example, Richardson and Smith (1993)
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• Returns have small autocorrelations.

• Squared returns often have significant autocorrelations.

Chart 4.16 illustrates a leptokurtotic distribution of log price changes in USD/DEM exchange rates 
for the period 28-Mar-96 through 12-Apr-96 and compares it to a normal distribution. In this chart, 
the leptokurtotic distribution can be thought of as a smoothed histogram, since it is obtained 
through a smoothing process known as “kernel density estimation.”21 A kernel density estimate of 
the histogram, rather than the histogram itself, is often used since it produces a smooth line that is 
easier to compare to the true density function (normal, in this example).

Chart 4.16
Leptokurtotic vs. normal distribution

4.5.1  Modeling methods

Having documented the failure of the normal distribution to accurately model returns, researchers 
started looking for alternative modeling methods, which have since evolved into two classes:  
unconditional (time-independent) and conditional distributions (time-dependent) of returns.

Models in the class of unconditional distribution of returns assume that returns are independent of 
each other and that the return-generating process is linear with parameters that are independent of 
past realizations. An example of a model that falls into this class is the standard normal distribu-
tion with mean  and variance  (note there is no time subscript). Other examples of uncondi-
tional distribution models include infinite-variance symmetric and asymmetric stable Paretian 
distributions, and finite variance distributions including the t-distribution, mixed-diffusion-jump 
model, and the compound normal model.

21 See Silverman (1986).
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The second class of models, the conditional distribution of returns, arises from evidence that 
refutes the identically and independently distributed assumptions (as presented in Sections 4.3.1 
and 4.3.2). Models in this category, such as the GARCH and Stochastic Volatility, treat volatility 
as a time-dependent, persistent process. These models are important because they account for vol-
atility clustering, a frequently observed phenomenon among return series. 

The models for characterizing returns are presented in Table 4.6 along with supporting references. 

It is important to remember that while conditional and unconditional processes are based on differ-
ent assumptions, except for the unconditional normal model, models from both classes generate 
data that possess fat tails.22

4.5.2  Properties of the normal distribution

All of the models presented in Table 4.6 are parametric in that the underlying distributions depend 
on various parameters. One of the most widely applied parametric probability distribution is the 
normal distribution, represented by its “bell shaped” curve.

This section reviews the properties of the normal distribution as they apply to the RiskMetrics 
method of calculating VaR. Recall that the VaR of a single asset (at time t) can be written as 
follows:

[4.32]

or, using the common approximation

[4.33]

where  is the marked-to-market value of the instrument and  is the standard deviation 
of continuously compounded returns for time t made at time t−1.

22 For a specific comparison between time-dependent and time-independent processes, see Ghose and Kroner (1993). 

Table 4.6
Model classes

Distribution Model Reference

Unconditional 
(time independent)

Infinite variance: symmetric stable Paretian Mandelbrot (1963)

asymmetric stable Paretian Tucker (1992)

Finite variance: Normal Bachelier (1900)

Student t Blattberg & Gonedes (1974)

Mixed diffusion jump Jorion (1988)

Compound normal Kon (1988)

Conditional
(time dependent)

GARCH: Normal Bollerslev (1986)

Student t Bollerslev (1987)

Stochastic 
Volatility:

Normal Ruiz (1994)

Student t Harvey et. al (1994)

Generalized error distribution Ruiz (1994)

VaRt 1 exp 1.65σt t 1––( )–[ ] Vt 1–=

VaRt   1.65σt t 1– Vt 1–≅

Vt 1– σt t 1–
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4.5.2.1  Mean and variance
If it is assumed that returns are generated according to the normal distribution, then it is believed 
that the entire distribution of returns can be characterized by two parameters:  its mean and vari-
ance. Mathematically, the normal probability density function for a random variable  is23

[4.34]

where 

Note that the normal distribution as shown in Eq. [4.34] is an unconditional distribution since the 
mean and variance parameters are not time-dependent and, therefore, do not have time subscripts. 

Chart 4.17 shows how the mean and variance affect the shape of the normal distribution. 

Chart 4.17 
Normal distribution with different means and variances

Now that we have an understanding of the role of the mean and variance in the normal distribution 
we can present their formulae. The mathematical expression for the mean and variance of some 
random variable rt, are as follows:

[4.35]

23 Note that we are abusing notation since rt represents both a random variable and observed return. We hope that by 
the context in which rt is used it will be clear what we are referring to.

rt

f rt( ) 1

2πσ2
----------------- 1

2σ2
--------- 

 – rt µ–( ) 2
exp=

µ mean of the random variable, which affects the location of the distribution′ s peak=

σ2
variance of the random variable, which affects the distribution ′ s width=

π 3.1416≅

-5 -4 -3 -2 -1 0 1 2 3 4 6
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
(µ=0, σ=1)

(µ=0, σ=.5)

(µ=5, σ=.2)

Standard normal PDF

Standard deviation

µ E= rt[ ]   (mean)

σ2
E rt µ–( ) 2

 (variance)=



68 Chapter 4.  Statistical and probability foundations

RiskMetrics  —Technical Document
Fourth Edition

where E[ ] denotes the mathematical expectation. Two additional measures that we will make ref-
erence to within this document are known as skewness and kurtosis. Skewness characterizes the 
asymmetry of a distribution around its mean. The expression for skewness is given by 

[4.36]

For the normal distribution skewness is zero. In practice, it is more convenient to work with the 
skewness coefficient which is defined as

[4.37]

Kurtosis measures the relative peakedness or flatness of a given distribution. The expression for 
kurtosis is given by 

[4.38]

As in the case of skewness, in practice, researchers frequently work with the kurtosis coefficient 
defined as 

[4.39]  

For the normal distribution, kurtosis is 3. This fact leads to the definition of excess kurtosis which 
is defined as kurtosis minus 3. 

4.5.2.2  Using percentiles to measure market risk
Market risk is often measured in terms of a percentile (also referred to as quantile) of a portfo-
lio’s return distribution. The attractiveness of working with a percentile rather than say, the vari-
ance of a distribution, is that a percentile corresponds to both a magnitude (e.g., the dollar amount 
at risk) and an exact probability (e.g., the probability that the magnitude will not be exceeded). 

The pth percentile of a distribution of returns is defined as the value that exceeds p percent of the 
returns. Mathematically, the pth percentile (denoted by α) of a continuous probability distribution, 
is given by the following formula

[4.40]  

where f (r) represents the PDF (e.g., Eq. [4.34])

So for example, the 5th percentile is the value (point on the distribution curve) such that 95 per-
cent of the observations lie above it (see Chart 4.18).

When we speak of percentiles they are often of the percentiles of a standardized distribution, 
which is simply a distribution of mean-centered variables scaled by their standard deviation. For 
example, suppose the log price change rt is normally distributed with mean µt and variance . 
The standardized return  is defined as
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[4.41]  

Therefore, the distribution of  is normal with mean 0 and variance 1. An example of a standard-
ized distribution is presented above (µ = 0, σ = 1). Chart 4.18 illustrates the positions of some 
selected percentiles of the standard normal distribution.24 

Chart 4.18
Selected percentile of standard normal distribution

We can use the percentiles of the standard distribution along with Eq. [4.41] to derive the percen-
tiles of observed returns. For example, suppose that we want to find the 5th percentile of , under 
the assumption that returns are normally distributed. We know, by definition, that

[4.42a]

[4.42b]

From Eq. [4.42b], re-arranging terms yields

[4.43]

According to Eq. [4.43], there is a 5% probability that an observed return at time t is less than 
−1.65 times its standard deviation plus its mean. Notice that when , we are left with the 
standard result that is the basis for short-term horizon VaR calculation, i.e., 

[4.44]  

24 Note that the selected percentiles above (1%, 5%, and 10%) reside in the tails of the distribution. Roughly, the tails 
of a distribution are the areas where less then, say, 10% of the observations fall.
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4.5.2.3  One-tailed and two-tailed confidence intervals
Equation [4.44] is very important as the basis of VaR calculations in RiskMetrics. It should be rec-
ognized, however, that there are different ways of stating the confidence interval associated with 
the same risk tolerance. For example, since the normal distribution is symmetric, then

[4.45]

Therefore, since the entire area under the probability curve in Chart 4.18 is 100%, it follows that 

[4.46a]  

[4.46b]

Charts 4.19 and 4.20 show the relationship between a one-tailed 95% confidence interval and a 
two-tailed 90% confidence interval. Notice that the statements in Eqs. [4.46a] and [4.46b] are 
consistent with Eq. [4.45], a 5% probability that the return being less than −1.65 standard 
deviations.25

Chart 4.19
One-tailed confidence interval

25 The two statements are not equivalent in the context of formal hypothesis testing. See DeGroot (1989, chapter 8).
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Chart 4.20
Two-tailed confidence interval

Table 4.7 shows the confidence intervals that are prescribed by standard and BIS-compliant 
versions of RiskMetrics, and at which the one-tailed and two-tailed tests yield the same VaR 
figures.26

4.5.2.4   Aggregation in the normal model
An important property of the normal distribution is that the sum of normal random variables is 
itself normally distributed.27 This property is useful since portfolio returns are the weighted sum 
of individual security returns.

As previously stated (p. 49) RiskMetrics assumes that the return on a portfolio, , is the 
weighted sum of N underlying returns (see Eq. [4.12]). For practical purposes we require a model 
of returns that not only relates the underlying returns to one another but also relates the distribu-
tion of the weighted sum of the underlying returns to the portfolio return distribution. To take an 
example, consider the case when N = 3, that is, the portfolio return depends on three underlying 
returns. The portfolio return is given by 

[4.47]

26 For ease of exposition we ignore time subscripts.

27 These random variables must be drawn from a multivariate distribution.

Table 4.7
VaR statistics based on RiskMetrics and BIS/Basel requirements

Confidence interval
RiskMetrics method One-tailed Two-tailed

Standard 95%
(−1.65σ)

90%
(−/+1.65σ )

BIS/Basel Regulatory 99%
(−2.33σ)

98%
(−/+2.33σ)
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We can model each underlying return as a random walk that is similar to Eq. [4.17]. This yields

[4.48a]

[4.48b]

[4.48c]

Now, since we have three variables we must account for their movements relative to one another. 
These movements are captured by pairwise correlations. That is, we define measures that quantify 
the linear association between each pair of returns. Assuming that the εt’s are multivariate nor-
mally (MVN) distributed we have the model

[4.49] , or more succinctly, 

where parameter matrix  represents the correlation matrix of . Therefore, if we 
apply the assumptions behind Eq. [4.49] (that the sum of MVN random variables is normal) to the 
portfolio return Eq. [4.47], we know that rpt is normally distributed with mean µp,t and variance 

. The formulae for the mean and variance are

[4.50a]  

[4.50b]

where the terms  represent the covariance between returns i and j. In general, these results 
hold for ( ) underlying returns. Since the underlying returns are distributed conditionally 
multivariate normal, the portfolio return is univariate normal with a mean and variance that are 
simple functions of the underlying portfolio weights, variances and covariances.

4.5.3  The lognormal distribution

In Section 4.2.1 we claimed that if log price changes are normally distributed, then price, , con-
ditional on  is lognormally distributed. This statement implies that , given , is drawn 
from the probability density function

[4.51]

where  follows a lognormal distribution with a mean and variance given by 
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Chart 4.21 shows the probability density function for the lognormal random variable  when 
 and . 

Chart 4.21
Lognormal probability density function

Unlike the normal probability density function, the lognormal PDF has a lower bound greater than 
zero and is skewed to the right. 

4.6  RiskMetrics model of financial returns:  A modified random walk

We can now use the results of the last four sections to write down a model of how returns are gen-
erated over time. Our analysis has shown that:

• Return variances are heteroscedastic (change over time) and autocorrelated.

• Return covariances are autocorrelated and possess dynamic features.

• The assumption that returns are normally distributed is useful because of the following:

(i) only the mean and variance are required to describe the entire shape of the distribution28

(ii) the sum of multivariate normal returns is normally distributed. This fact facilitates the 
description of portfolio returns, which are the weighted sum of underlying returns. 

Given these points, we can now state the assumptions underlying the RiskMetrics variance/covari-
ance methodology. Consider a set of N securities, i = 1…, N. The RiskMetrics model assumes that 
returns are generated according to the following model

[4.54]

28 The covariances are also required when there is more than one return series.
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where  is an NxN time-dependent correlation matrix. The variance of each return,  and the 
correlation between returns, , are a function of time. The property that the distribution of 
returns is normal given a time dependent mean and correlation matrix assumes that returns follow 
a conditional normal distribution—conditional on time. Notice that in Eq. [4.54] we excluded term 

. As will be discussed in more detail in Section 5.3.1.1, the mean return represented by  is set 
to zero.

In Appendix A we propose a set of statistical tests to assess whether observed financial returns fol-
low a conditional normal distribution. In Appendix B we discuss alternative distributions that 
relax the normality assumption.

4.7  Summary

In this chapter, we presented the statistical and probability assumptions on the evolution and distri-
bution of financial returns in some simple models. This discussion served as background to the 
specification of the assumptions behind the RiskMetrics VaR methodology. 

In review, this chapter covered the following subjects. The chapter began by outlining a simple 
version of the VaR calculation. We then:

• Defined absolute price change, relative price change, log price change, and returns.

• Showed the importance of understanding the use of different price change definitions. 

• Established that RiskMetrics measures changes in portfolio value in terms of continuously-
compounded returns.

• Introduced temporal aggregation and cross-section aggregation to show the implications of 
working with relative and log returns.

• Introduced the random walk model for:29

– Single-price assets
– Fixed income instruments

• Found evidence that contradicts the assumption that returns are IID (identically and indepen-
dently) normal. In reality, continuously compounded returns are:

– Not identical over time. (The variance of the return distribution changes over time)

– Not statistically independent of each other over time. (Evidence of autocorrelation between 
return series and within a return series.)

• Explained the properties of the normal distribution, and, lastly,

• Presented the RiskMetrics model as a modified random walk that assumes that returns are 
conditionally normally distributed.

29 While the random walk model serves as the basis for many popular models of returns in finance, another class of 
models that has received considerable attention lately is based on the phenomenon of long-range dependence. 
Briefly, such models are built on the notion that observations recorded in the distant past are correlated to observa-
tions in the distant future. (See Campbell, et. al (1995) for a review of long-range dependence models.)

Rt σi t,
2

ρij t,

µi µi
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In this chapter we present a methodology for forecasting the parameters of the multivariate condi-
tional normal distribution, i.e., variances and covariances of returns whose empirical properties 
were examined in Chapter 4, “Statistical and probability foundations.” The reason for forecasting 
variances and covariances of returns is to use them to forecast a portfolio’s change in value over a 
given horizon, which can run over one day to several months. 

This chapter is organized as follows:

• Section 5.1 briefly explains why RiskMetrics forecasts of variances and covariances are gen-
erated from historical data rather than derived from option prices.

• Section 5.2 describes the RiskMetrics forecasting methodology, i.e., 

– Use of the exponentially weighted moving average (EWMA) model to produce forecasts of 
variances and covariances. This includes an explanation as to why the EWMA is preferred 
to the simple moving average model.

– How to compute forecasts over longer time horizons, such as one month. 

Section 5.2 also discusses alternative, more advanced methods for forecasting variances and 
covariances.

• Section 5.3 explains two important implementation issues involving the RiskMetrics fore-
casts:  (1) the reliability of the forecasts in relation to the number of historical data points used 
to produce them, and (2) the choice of the “decay factor” used in the EWMA model.

• Section 5.4 concludes the chapter with a review of the RiskMetrics forecasting model.

Finally, practitioners often refer to the term “volatility” when speaking of movements in financial 
prices and rates. In what follows we use the term volatility to mean the standard deviation of con-
tinuously compounded financial returns. 

 

5.1  Forecasts from implied versus historical information 

 

RiskMetrics forecasts are based on historical price data, although in theory, they may be derived 
from option prices.

From a practical point of view, implied forecasts introduce a number of problems. For example, an 
implied volatility (IV) is based entirely on expectations given a particular option pricing model. 
Therefore, as noted in Kroner, Kneafsey and Claessens (1995), since most option pricing models 
assume that the standard deviation is constant, the IV becomes difficult to interpret and will not 
lead to good forecasts if the option formula used to derive it is not correctly specified. Moreover, 
IV forecasts are associated with a fixed forecast horizon. For example, the implied volatility 
derived from a 3 month USD/DEM option is exclusively for a 3 month forecast horizon. However, 
a risk manager may be interested in the VaR of this option over the next day.

If RiskMetrics were to use implied statistics, it would require observable options prices on all 
instruments that compose a portfolio. Currently, the universe of consistently observable options 
prices is not large enough to provide a complete set of implied statistics; generally only exchange-
traded options are reliable sources of prices. In particular, the number of implied correlations that 
can be derived from traded option prices is insignificant compared to the number of correlations 
required to estimate risks in portfolios consisting of many types of assets.
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Academic research has compared the forecasting ability of implied and historical volatility mod-
els. The evidence of the superior forecasting ability of historical volatility over implied volatility 
is mixed, depending on the time series considered. For example, Xu and Taylor (1995, p. 804) note 
that, “prior research concludes that volatility predictors calculated from options prices are better 
predictors of future volatility than standard deviations calculated from historical asset price data.” 
Kroner, Kneafsey and Claessens (1995, p. 9), on the other hand, note that researchers are begin-
ning to conclude that GARCH (historical based) forecasts outperform implied volatility forecasts. 
Since implied standard deviation captures market expectations and pure time series models rely 
solely on past information, these models can be combined to forecast the standard deviation of 
returns.

 

5.2  RiskMetrics forecasting methodology

 

RiskMetrics uses the exponentially weighted moving average model (EWMA) to forecast vari-
ances and covariances (volatilities and correlations) of the multivariate normal distribution. This 
approach is just as simple, yet an improvement over the traditional volatility forecasting method 
that relies on moving averages with fixed, equal weights. This latter method is referred to as the 
simple moving average (SMA) model.

 

5.2.1  Volatility estimation and forecasting

 

1

 

One way to capture the dynamic features of volatility is to use an exponential moving average of 
historical observations where the latest observations carry the highest weight in the volatility esti-
mate. This approach has two important advantages over the equally weighted model. First, volatil-
ity reacts faster to shocks in the market as recent data carry more weight than data in the distant 
past. Second, following a shock (a large return), the volatility declines exponentially as the weight 
of the shock observation falls. In contrast, the use of a simple moving average leads to relatively 
abrupt changes in the standard deviation once the shock falls out of the measurement sample, 
which, in most cases, can be several months after it occurs. 

For a given set of 

 

T

 

 returns, Table 5.1 presents the formulae used to compute the equally and expo-
nentially weighted (standard deviation) volatility.

In comparing the two estimators (equal and exponential), notice that the exponentially weighted 
moving average model depends on the parameter 

 

λ 

 

(0 < 

 

λ 

 

<1) which is often referred to as the 

 

decay factor

 

. This parameter determines the relative weights that are applied to the observations 
(returns) and the effective amount of data used in estimating volatility. Ways of estimating 

 

λ

 

 are 
discussed in detail in Section 5.3.2.

 

1

 

In this section we refer loosely to the terms estimation and forecast. The reader should note, however, that these 
terms do have distinct meanings.

 

Table 5.1

 

Volatility estimators*

Equally weighted Exponentially weighted

 

* In writing the volatility estimators we intentionally do not use time 
subscripts.

σ 1
T
--- rt r–( ) 2

t 1=

T

∑= σ = 1 λ–( ) λ t 1–
rt r–( )

2

t 1=

T

∑
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We point out that in writing the EWMA estimator in Table 5.1 we applied the approximation

[5.1]

These two expressions are equivalent in the limit, i.e., as . Moreover, for purpose of com-
parison to the equally weighted factor 1/

 

T

 

, the more appropriate version of the EWMA is 

[5.2]

rather than . Also, notice that when , Eq. [5.2] collapses to 1/

 

T

 

. 

Charts 5.1 and 5.2 highlight an important difference between equally and exponentially weighted 
volatility forecasts using as an example the GBP/DEM exchange rate in the fall of 1992. In late 
August of that year, the foreign exchange markets went into a turmoil that led a number of 
Europe’s currencies to leave the ERM and be devalued. The standard deviation estimate using an 
exponential moving average rapidly reflected this state of events, but also incorporated the decline 
in volatility over subsequent months. The simple 6-month moving average estimate of volatility 
took longer to register the shock to the market and remained higher in spite of the fact that the for-
eign exchange markets calmed down over the rest of the year. 

 

Chart 5.1 

 

DEM/GBP exchange rate

λ j 1–

j 1=

T

∑ 1
1 λ–( )

-------------------≅
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λ t 1– λ j 1–
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1 λ–( ) λ t 1– λ 1=
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Chart 5.2

 

Log price changes in GBP/DEM and VaR estimates (1.65

 

σ

 

)

 

This example would suggest that EWMA is more satisfactory, given that when combined with fre-
quent updates, it incorporates external shocks better than equally weighted moving averages, thus 
providing a more realistic measure of current volatility.

Although the exponentially weighted moving average estimation ranks a level above simple mov-
ing averages in terms of sophistication, it is not complex to implement. To support this point, 
Table 5.2 presents an example of the computation required to estimate equally and exponentially 
weighted moving average volatilities. Volatility estimates are based on 20 daily returns on the 
USD/DEM exchange rate. We arbitrarily choose

 

 λ

 

 = 0.94 and keep matters simple by setting the 
sample mean, , to zero. 
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Notice that the difference between the two estimated standard deviations results from the different 
weighting schemes. Whereas the equally weighted approach weights each squared return by 5%, 
the exponentially weighted scheme applies a 6% weight to the most recent squared return and 
1.9% weight to the most distant observation.

An attractive feature of the exponentially weighted estimator is that it can be written in 

 

recursive

 

 
form which, in turn, will be used as a basis for making volatility forecasts. In order to derive the 
recursive form, it is assumed that an infinite amount of data are available. For example, assuming 
again that the sample mean is zero, we can derive the period 

 

t 

 

+

 

 1 variance forecast, given data 
available at time 

 

t

 

 (one day earlier) as

[5.3]

 

The 1-day RiskMetrics volatility forecast is given by the expression

 

[5.4]

 

Table 5.2

 

Calculating equally and exponentially weighted volatility

Date

A B C D Volatility

Return
USD/DEM 

(%)

Return 
squared

(%)
Equal weight

(

 

T

 

 = 20)
Exponential weight

(

 

λ

 

 = 0.94)

Equally 
weighted,

B 

 

× 

 

C

Exponentially 
weighted,

B 

 

× 

 

D

 

28-Mar-96 0.634 0.402 0.05 0.019 0.020 0.007

29-Mar-96 0.115 0.013 0.05 0.020 0.001 0.000

1-Apr-96 -0.460 0.211 0.05 0.021 0.011 0.004

2-Apr-96 0.094 0.009 0.05 0.022 0.000 0.000

3-Apr-96 0.176 0.031 0.05 0.024 0.002 0.001

4-Apr-96 -0.088 0.008 0.05 0.025 0.000 0.000

5-Apr-96 -0.142 0.020 0.05 0.027 0.001 0.001

8-Apr-96 0.324 0.105 0.05 0.029 0.005 0.003

9-Apr-96 -0.943 0.889 0.05 0.030 0.044 0.027

10-Apr-96 -0.528 0.279 0.05 0.032 0.014 0.009

11-Apr-96 -0.107 0.011 0.05 0.034 0.001 0.000

12-Apr-96 -0.160 0.026 0.05 0.037 0.001 0.001

15-Apr-96 -0.445 0.198 0.05 0.039 0.010 0.008

16-Apr-96 0.053 0.003 0.05 0.041 0.000 0.000

17-Apr-96 0.152 0.023 0.05 0.044 0.001 0.001

18-Apr-96 -0.318 0.101 0.05 0.047 0.005 0.005

19-Apr-96 0.424 0.180 0.05 0.050 0.009 0.009

22-Apr-96 -0.708 0.501 0.05 0.053 0.025 0.027

23-Apr-96 -0.105 0.011 0.05 0.056 0.001 0.001

24-Apr-96 -0.257 0.066 0.05 0.060 0.003 0.004

Standard deviation: Equally weighted 0.393

 Exponentially weighted 0.333

σ1 t, 1 t+
2 λσ1 t, t 1–

2
1 λ–( ) r1 t,

2
+=

σ1 t, 1 t+ λσ1 t, t 1–
2

1 λ–( ) r1 t,
2

+=
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The subscript “

 

t 

 

+

 

 1|

 

t

 

” is read “the time 

 

t 

 

+

 

 1 forecast given information up to and including time 

 

t.

 

” The subscript “

 

t

 

|

 

t

 

 

 

− 

 

1” is read in a similar fashion. This notation underscores the fact that we are 
treating the variance (volatility) as time-dependent. The fact that this period’s variance forecast 
depends on last period’s variance is consistent with the observed autocorrelation in squared returns 
discussed in Section 4.3. We derive Eq. [5.3] as follows.

[5.5]

Using daily returns, Table 5.3 presents an example of how Eq. [5.3] can be used in practice to 
produce a 1-day volatility forecast on USD/DEM returns for the period March 28 through 
April 24, 1996.

The volatility forecast made on April 24 for the following day is the square root of 0.224% (the 
variance) which is 0.473%. 

 

5.2.1.1  Covariance and correlation estimation and forecasts

 

We use the EWMA model to construct covariance and correlation forecasts in the same manner as 
we did volatility forecasts except that instead of working with the square of one series, we work 
with the product of two different series. Table 5.4 presents covariance estimators based on equally 
and exponentially weighted methods.

 

Table 5.3

 

Applying the recursive exponential weighting scheme to compute volatility

 

Daily returns on USD/DEM

 

Date

A B

Date

A B

Return
USD/DEM Recursive variance

Return
USD/DEM Recursive variance

 

28-Mar-96 0.633 0.401 11-Apr-96

 

−

 

0.107 0.296

29-Mar-96 0.115 0.378 12-Apr-96

 

−

 

0.159 0.280

1-Apr-96

 

−

 

0.459 0.368 15-Apr-96

 

−

 

0.445 0.275

2-Apr-96 0.093 0.346 16-Apr-96 0.053 0.258

3-Apr-96 0.176 0.327 17-Apr-96 0.152 0.244

4-Apr-96

 

−

 

0.087 0.308 18-Apr-96

 

−

 

0.318 0.236

5-Apr-96

 

−

 

0.142 0.291 19-Apr-96 0.424 0.232

8-Apr-96 0.324 0.280 22-Apr-96

 

−

 

0.708 0.248

9-Apr-96

 

−

 

0.943 0.316 23-Apr-96

 

−

 

0.105 0.234

10-Apr-96

 

−

 

0.528 0.314 24-Apr-96

 

−

 

0.257 0.224

 

*Initial variance forecast = initial return squared. Figures following this number are obtained by applying the recursive formula.
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Analogous to the expression for a variance forecast (Eq. [5.3]), the covariance forecast can also be 
written in recursive form. For example, the 1-day covariance forecast between any two return 
series, r1,t and r2,t made at time t is

[5.6]

We can derive Eq. [5.6] as follows.

[5.7]

In order to derive correlation forecasts we apply the corresponding covariance and volatility fore-
cast. Recall that correlation is the covariance between the two return series, say, r1,t and r2,t, 
divided by the product of their standard deviations. Mathematically, the one-day RiskMetrics 
prediction of correlation is given by the expression

[5.8]

Table 5.5 presents an example of how to compute recursive covariance and correlation forecasts 
applied to the USD/DEM exchange rate and S&P 500 return series. 

Table 5.4
Covariance estimators

Equally weighted Exponentially weighted

σ12
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T
--- r1t r1–( ) r1t r2–( )

t 1=

T

∑= σ12
2
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∞
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Note that the starting points for recursion for the covariance is 0.634 × 0.005. From Table 5.5 we 
can see that the correlation prediction for the period 24-Apr-96 through 25-Apr-96 is −12.4%.

5.2.2  Multiple day forecasts

Thus far, we have presented 1-day forecasts which were defined over the period t through t + 1, 
where each t represents one business day. Risk managers, however, are often interested in forecast 
horizons greater than one-day. We now demonstrate how to construct variance (standard devia-
tion) and covariance (correlation) forecasts using the EWMA model over longer time horizons. 
Generally speaking, the T-period (i.e., over T days) forecasts of the variance and covariance are, 
respectively, 

[5.9]

and

[5.10]

Equations [5.9] and [5.10] imply that the correlation forecasts remain unchanged regardless of the 
forecast horizon. That is,

Table 5.5
Recursive covariance and correlation predictor

Date

Returns
USD/DEM

(%)

Returns 
S&P 500

(%)

Recursive 
variance

USD/DEM

Recursive 
variance
S&P 500

Recursive 
covariance
(λ = 0.94)

Recursive 
correlation
(λ = 0.94)

28-Mar-96 0.634 0.005 0.402 0.000 0.003 1.000

29-Mar-96 0.115 −0.532 0.379 0.017 −0.001 −0.011

1-Apr-96 -0.460 1.267 0.369 0.112 −0.036 −0.176

2-Apr-96 0.094 0.234 0.347 0.109 −0.032 −0.166

3-Apr-96 0.176 0.095 0.328 0.103 −0.029 −0.160

4-Apr-96 -0.088 −0.003 0.309 0.097 −0.028 −0.160

5-Apr-96 -0.142 −0.144 0.291 0.092 −0.025 −0.151

8-Apr-96 0.324 −1.643 0.280 0.249 −0.055 −0.209

9-Apr-96 -0.943 −0.319 0.317 0.240 −0.034 −0.123

10-Apr-96 -0.528 −1.362 0.315 0.337 0.011 0.035

11-Apr-96 -0.107 −0.367 0.296 0.325 0.013 0.042

12-Apr-96 -0.160 0.872 0.280 0.351 0.004 0.012

15-Apr-96 -0.445 0.904 0.275 0.379 −0.020 −0.063

16-Apr-96 0.053 0.390 0.259 0.365 −0.018 −0.059

17-Apr-96 0.152 −0.527 0.245 0.360 −0.022 −0.073

18-Apr-96 -0.318 0.311 0.236 0.344 −0.026 −0.093

19-Apr-96 0.424 0.227 0.233 0.327 −0.019 −0.069

22-Apr-96 -0.708 0.436 0.249 0.318 −0.036 −0.129

23-Apr-96 -0.105 0.568 0.235 0.319 −0.038 −0.138

24-Apr-96 -0.257 −0.217 0.224 0.302 −0.032 −0.124

σ1 t, T t+
2

Tσ1 t, 1 t+
2

   or  σ1 t, T t+ Tσ1 t, 1 t+  ==

σ12 t, T t+
2

Tσ12 t, 1 t+
2

=
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[5.11]

Notice that multiple day forecasts are simple multiples of one-day forecasts. For example, if we 
define one month to be equivalent to 25 days, then the 1-month variance and covariance forecasts 
are 25 times the respective 1-day forecasts and the 1-month correlation is the same as the one-day 
correlation.2 We now show how we arrive at Eq. [5.9] and Eq. [5.10].

Recall that RiskMetrics assumes that log prices  are generated according to the model

[5.12]

Recursively solving Eq. [5.12] and writing the model in terms of returns, we get

[5.13]

Taking the variance of Eq. [5.13] as of time t implies the following expression for the forecast 
variance

[5.14]

Similar steps can be used to find the T days-ahead covariance forecast, i.e., 

[5.15]

Now, we need to evaluate the right-hand side of Eq. [5.14] and Eq. [5.15]. To do so, we work with 
the recursive form of the EWMA model for the variance and covariance. To make matters con-
crete, consider the case where we have two (correlated) return series, r1 ,t and r2,t. In vector form3, 
let’s write the 1-day forecast of the two variances and covariance as follows:

2 In RiskMetrics, 1-day and 1-month forecasts differ because we use different decay factors when making the fore-
casts.

3 We use the “vec representation” as presented in Engle and Kroner (1995).
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[5.16]

Using the expectation operator at time t, write the forecast over S days as 

[5.17]

Evaluating the expectations of the squared returns and their cross product yields

[5.18]

That is, the variance forecasts for two consecutive periods are the same. Consequently, the 
T-period forecast is defined as 

[5.19]

so that the T-period forecast of the variance/covariance vector is 

[5.20]

This leads to the “square root of time” relationship for the standard deviation forecast
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[5.21]

Having found that volatility and covariance forecasts scale with time, a few points are worth not-
ing about Eq. [5.21]. Typically, the “square root of time rule” results from the assumption that 
variances are constant. Obviously, in the above derivation, volatilities and covariances vary with 
time.   Implicitly, what we are assuming in modeling the variances and covariances as exponen-
tially weighted moving averages is that the variance process is nonstationary. Such a model has 
been studied extensively in the academic literature (Nelson 1990, Lumsdaine, 1995) and is 
referred to as the IGARCH model.4

In practice, scaling up volatility forecasts may sometimes lead to results that do not make much 
sense. Three instances when scaling up volatility estimates prove problematic are:

• When rates/prices are mean-reverting (see Section 4.2.3)

• When boundaries limit the potential movements in rates and prices 

• When estimates of volatilities optimized to forecast changes over a particular horizon are 
used for another horizon (jumping from daily to annual forecasts, for example).

Take the simple example of the Dutch guilder to Deutsche mark exchange rate. On March 22, 
1995, the cross rate as quoted at London close of business was 1.12048 NLG/DEM. The 
RiskMetrics daily volatility estimate was 0.1648%, which meant that over the next 24 hours, the 
rate was likely to move within a 1.1186 to 1.1223 range with 90% probability (the next day’s rate 
was 1.1213 NLG/DEM).

The Netherlands and Germany have maintained bilateral 2.25% bands within the ERM so scaling 
up a daily volatility estimate can quickly lead to exchange rate estimates which are extremely 
unlikely to occur in reality. An example of this is shown by Chart 5.3: 

Chart 5.3
NLG/DEM exchange rate and volatility

4 Note that whereas we essentially arrive at a model that reflects an IGARCH (without an intercept), our motivation 
behind its derivation was more “bottom up” in the sense that we wanted to derive a model that is generally consis-
tent with observed returns while being simple to implement in practice. The formal approach to IGARCH is more 
“top down” in that a formal statistical model is written down which then maximum likelihood estimation is used to 
estimate its parameters.
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Applying the square root of time rule with caution does not apply exclusively to exchange rates 
that are constrained by political arrangements. Suppose you had been trying to forecast the S&P 
500’s potential annual volatility on April 5, 1994. The index stood at 448.3 and its previous 
declines had increased the daily volatility estimate to 1.39%. Chart 5.4 extends this daily volatility 
estimate out to the end of the first quarter of 1995 using the square root of time rule. The chart 
shows how a short term increase in daily volatility would bias an estimate of volatility over any 
other time horizon, for example, a year. 

Chart 5.4
S&P 500 returns and VaR estimates (1.65σ)

The preceding two examples underscore the importance of understanding how volatility estimates 
for horizons longer than a day are calculated. When daily volatility forecasts are scaled, nonsensi-
cal results may occur because the scale factor does not account for real-world restrictions.

5.2.3  More recent techniques 

Research in finance and econometrics has devoted significant efforts in recent years to come up 
with more formal methods to estimate standard deviations and correlations. These are often 
referred to as volatility models. The methods range from extreme value techniques (Parkinson, 
1980) and two step regression analysis (Davidian and Carroll, 1987), to more complicated nonlin-
ear modelling such as GARCH (Bollerslev, 1986), stochastic volatility (Harvey et. al, 1994) and 
applications of chaotic dynamics (LeBaron, 1994). Among academics, and increasingly among 
practitioners, GARCH-type models have gained the most attention. This is due to the evidence that 
time series realizations of returns often exhibit time-dependent volatility. This idea was first for-
malized in Engle’s (1982) ARCH (Auto Regressive Conditional Heteroscedasticity) model which 
is based on the specification of conditional densities at successive periods of time with a time-
dependent volatility process.

Of the methods just mentioned, the least computationally demanding procedures for estimating 
volatility are the extreme value and regression methods. Extreme value estimators use various 
types of data such as high, low, opening and closing prices and transaction volume. While this 
approach is known for its relative efficiency (i.e., small variance), it is subject to bias. On the other 
hand, the two step regression method treats the underlying volatility model as a regression involv-
ing the absolute value of returns on lagged values. Applications of this method to monthly volatil-
ity can be found in Schwert (1989) and Pagan and Schwert (1990). 

Since the introduction of the basic ARCH model, extensions include generalized ARCH 
(GARCH), Integrated GARCH (IGARCH), Exponential GARCH (EGARCH) and Switching 
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Regime ARCH (SWARCH), just to name a few. Numerous tests of GARCH-type models to for-
eign exchange and stock markets have demonstrated that these relatively sophisticated approaches 
can provide somewhat better estimates of volatility than simple moving averages, particularly over 
short time horizons such as a day or a week.

More recent research on modeling volatility involves Stochastic Volatility (SV) models. In this 
approach, volatility may be treated as an unobserved variable, the logarithm of which is modeled 
as a linear stochastic process, such as an autoregression. Since these models are quite new, their 
empirical properties have yet to be established. However, from a practical point of view, an 
appealing feature of the SV models is that their estimation is less daunting than their counterpart 
EGARCH models.5

In a recent study, West and Cho (1995) found that GARCH models did not significantly outper-
form the equally weighted standard deviation estimates in out-of-sample forecasts, except for very 
short time horizons. In another study on foreign exchange rates and equity returns, Heynen and 
Kat (1993) showed that while GARCH models have better predictive ability for foreign exchange, 
the advantage over a simple random walk estimator disappears when the outlook period chosen is 
more than 20 days.

We have elected to calculate the volatilities and correlations in the RiskMetrics data set using 
exponential moving averages. This choice is viewed as an optimal balance given the constraints 
under which most risk management practitioners work.

Since the GARCH models are becoming more popular among practitioners, we demonstrate the 
behavior of the daily volatility estimator by comparing its forecasts to those produced by a 
GARCH(1,1) volatility model with normal disturbances. If  represents the time t daily return, 
then the return generating process for the GARCH(1,1) volatility model is given by

[5.22]

This model is parameterized according to the results produced in Ruiz (1993). They were esti-
mated from daily return data for the British pound. The following graph shows variance forecasts 
produced by this model and the exponential estimator with the decay factor set to 0.94. The fore-
casts from the EWMA are based on the following equation:

[5.23]

5 Bayesian SV models, on the other hand, are computationally intensive. 
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Chart 5.5
GARCH(1,1)-normal and EWMA estimators
GBP parameters

Notice from Chart 5.5, the dynamics of the exponential model's forecasts closely mimic those pro-
duced by the GARCH(1,1) model. This should not be surprising given our findings that the expo-
nential model is similar in form to the IGARCH model.

A natural extension of univariate GARCH and Stochastic Volatility models has been to model con-
ditional covariances and correlations. With the ability to estimate more parameters of the return 
generating process comes growing computational complexity.6 Often, to make models tractable, 
restrictions are placed on either the process describing the conditional covariance matrix or the 
factors that explain covariance dynamics. Recent discussion and applications of multivariate 
GARCH models include Engle and Kroner (1995), Karolyi (1995), King, Sentena and Wadhwani 
(1994). Harvey (1993) presents work on multivariate extensions to the stochastic volatility 
models.

5.3  Estimating the parameters of the RiskMetrics model

In this section we address two important issues that arise when we estimate RiskMetrics volatili-
ties and correlations. The first issue concerns the estimation of the sample mean. In practice, when 
we make volatility and correlation forecasts we set the sample mean to zero. The second issue 
involves the estimation of the exponential decay factor which is used in volatility and correlation 
forecasts.

5.3.1  Sample size and estimation issues

Whenever we must estimate and/or forecast means, standard deviations and correlations, we 
would like to be reasonably confident in the results. Here, confidence is measured by the standard 
error of the estimate or forecast; in general, the smaller the standard error, the more confident we 
are about its value. It is important, therefore, to use the largest samples available when computing 
these statistics. We illustrate the relationship between sample size and confidence intervals next. 
For ease of exposition we use equally weighted statistics. The results presented below carry over 
to the case of exponentially weighted statistics as well.

6 With respect to the required computation of the bivariate EGARCH model, Braun, Nelson and Sunier (1991) note 
that, “ease of computation is, alas, not a feature even of the bivariate model. For, example, the FORTRAN code for 
computing the analytic derivatives … ran to forty pages.”
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5.3.1.1  The sample mean
Table 5.6 shows that the mean estimates for USD/DEM foreign exchange returns and S&P 500 
returns are −0.114 and −0.010 percent, respectively. To show the variability of the sample mean, 
Chart 5.6 presents historical estimates of the sample mean for USD/DEM exchange rate returns. 
Each estimate of the mean is based on a 74-day rolling window, that is, every day in the sample 
period we estimate a mean based on returns over the last 74 days.

Table 5.6
Mean, standard deviation and correlation calculations
USD/DEM and S&P500 returns

Date

Returns

USD/DEM S&P 500

28-Mar-96 0.634 0.005

29-Mar-96 0.115 −0.532

1-Apr-96 −0.460 1.267

2-Apr-96 0.094 0.234

3-Apr-96 0.176 0.095

4-Apr-96 −0.088 −0.003

5-Apr-96 −0.142 −0.144

8-Apr-96 0.324 −1.643

9-Apr-96 −0.943 −0.319

10-Apr-96 −0.528 −1.362

11-Apr-96 −0.107 −0.367

12-Apr-96 −0.160 0.872

15-Apr-96 −0.445 0.904

16-Apr-96 0.053 0.390

17-Apr-96 0.152 −0.527

18-Apr-96 −0.318 0.311

19-Apr-96 0.424 0.227

22-Apr-96 −0.708 0.436

23-Apr-96 −0.105 0.568

24-Apr-96 −0.257 −0.217

Mean −0.114 0.010

Standard deviation 0.393 0.688

Correlation −0.180
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Chart 5.6
USD/DEM foreign exchange

Chart 5.6 shows how the estimates of the mean of returns on USD/DEM fluctuate around zero. An 
interesting feature of the equally weighted sample mean estimator is that the mean estimate does 
not depend directly on the number of observations used to construct it. For example, recall that the 
1-day log return is defined as . Now, the sample mean of returns 
for the period t = 1,…, T is 

[5.24]  

Hence, we see that the sample mean estimator depends only on the first and last observed prices; 
all other prices drop out of the calculation.   Since this estimator does not depend on the number of 
observed prices between t = 0 and t = T but rather on the length of the sample period, neither does 
its standard error. The implication of this effect can best be demonstrated with a simple example.7

Suppose a price return has a standard deviation of 10 percent and we have 4 years’ of historical 
price data. The standard deviation of the sample mean is  percent. So, if the average 
annual return were 20 percent over the 4-year sample (which consists of over 1000 data points), a 
95 percent confidence region for the true mean would range from 10 percent to 30 percent. 

In addition, recall that the variance of a returns series, , can be written as 

. Jorion (1995) notes that with daily data the “average term  

dominates the term  by a typical factor of 700 to one. Therefore, ignoring expected 

returns is unlikely to cause a perceptible bias in the volatility estimate.”

To reduce the uncertainty and imprecision of the estimated mean, it may be more accurate to set 
the mean to some value which is consistent with financial theory. In RiskMetrics, we assume 
that the mean value of daily returns is zero. That is, standard deviation estimates are cen-

7 This example is adapted from Figlewski, (1994).
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tered around zero, rather than the sample mean. Similarly, when computing the covariance, 
deviations of returns are taken around zero rather than the sample mean.

5.3.1.2  Volatility and correlation
Volatility and correlation forecasts based on the EWMA model requires that we choose an appro-
priate value of the decay factor λ. As a practical matter, it is important to determine the effective 
number of historical observations that are used in the volatility and correlation forecasts. 

We can compute the number of effective days used by the variance (volatility) and covariance 
(correlation) forecasts. To do so, we use the metric 

[5.25]

Setting  equal to a value —the tolerance level ( )— we can solve for K, the effective 
number of days of data used by the EWMA. The formula for determining K is

[5.26]  

Equation [5.26] is derived as follows

[5.27]

which implies

[5.28]

Solving Eq. [5.28] for K we get Eq. [5.26].

Table 5.7 shows the relationship between the tolerance level, the decay factor, and the effective 
amount of data required by the EWMA.
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For example, setting a tolerance level to 1% and the decay factor to 0.97, we see the EWMA uses 
approximately 151 days of historical data to forecast future volatility/correlation. Chart 5.7 depicts 
the relationship between the tolerance level and the amount of historical data implied by the decay 
factor

Chart 5.7
Tolerance level and decay factor

Table 5.7
The number of historical observations used by the EWMA model
daily returns

Decay factor

Days of historical data at tolerance level: 

0.001% 0.01% 0.1% 1 %
0.85 71 57 43 28

0.86 76 61 46 31

0.87 83 66 50 33

0.88 90 72 54 36

0.89 99 79 59 40

0.9 109 87 66 44

0.91 122 98 73 49

0.92 138 110 83 55

0.93 159 127 95 63

0.94 186 149 112 74

0.95 224 180 135 90

0.96 282 226 169 113

0.97 378 302 227 151

0.98 570 456 342 228

0.99 1146 916 687 458
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Chart 5.8 shows the relationship between the number of days of data required by EWMA and var-
ious values of the decay factor.

Chart 5.8
Relationship between historical observations and decay factor

For a different perspective on the relationship between the number of data points used and differ-
ent values of the decay factor, consider Chart 5.9. It shows the weights for different decay factors 
over a fixed window size of T = 100 (approximately 6 months’ of data).

Chart 5.9
Exponential weights for T = 100
decay factors = 1, .99, .97, .95, .93

Note that while the decay factor of 0.93 weighs the most recent data more than the factor 0.99, 
after 40 days, the weight associated with the decay factor of 0.93 is below the weight of 0.99.   
Hence, the closer the decay factor is to 1, the less responsive it is to the most recent data.
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Now we consider the effect of sample size on volatility and correlation forecasts. Chart 5.10 pre-
sents two historical time series of 1-day volatility forecasts on the returns series in USD/DEM 
exchange rate. One volatility series was constructed with a decay factor of 0.85, the other used 
0.98. (Refer to Table 5.7 for the relationship between the decay factor and the amount of data 
used).

Chart 5.10
One-day volatility forecasts on USD/DEM returns
λ = 0.85 (black line), λ = 0.98 (gray line)

As expected, the volatility forecasts based on more historical observations are smoother than those 
that rely on much less data. 

One-day forecasts of correlation between the returns on the USD/DEM foreign exchange rate and 
S&P 500 for two different decay factors are presented in Chart 5.11.

Chart 5.11
One-day correlation forecasts for returns on USD/DEM FX rate and on S&P500
λ = 0.85 (black line), λ = 0.98 (gray line) 

Again, the time series with the higher decay factor produces more stable (though not necessarily 
more accurate) forecasts.
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5.3.2  Choosing the decay factor

In this section we explain how we determine the decay factors (λ’s) that are used to produce the 
RiskMetrics volatility and correlation forecasts. We begin by describing the general problem of 
choosing ‘optimal’  λ’s for volatilities and correlations that are consistent with their respective 
covariance matrix. We then discuss how RiskMetrics chooses its two optimal decay factors; one 
for the daily data set (λ = 0.94), and the other for the monthly data set (λ = 0.97).

RiskMetrics produces volatility and correlation forecasts on over 480 time series. This requires 
480 variance forecasts and 114,960 covariance forecasts. Since these parameters comprise a cova-
riance matrix, the optimal decay factors for each variance and covariance forecast are not indepen-
dent of one another. We explain this concept with a simple example that consists of two return 
series,  and . The covariance matrix associated with these returns is given by

[5.29]  

We write each parameter explicitly as a function of its decay factor. As we can see from Eq. [5.29], 
the covariance matrix, , is a function of 3 decay factors, ,  and . Now, , to be properly 
defined must contain certain properties. For example,  must be such that the following three con-
ditions are met:

• The variances,  and , cannot be negative

• The covariances  and  must be equal (i.e.,  is symmetric)

• The correlation between  and  has the range . (Recall the definition of cor-
relation, , .

It follows then that decay factors must be chosen such that they not only produce good forecasts of 
future variances and covariances, but that the values of these decay factors are consistent with the 
properties of the covariance matrix to which they belong.

In theory, while it is possible to choose optimal decays factors that are consistent with their respec-
tive covariance matrix, in practice this task is exceedingly complex for large covariance matrices 
(such as the kind that RiskMetrics produces that has 140,000 elements). Therefore, it becomes 
necessary to put some structure (restrictions) on the optimal λ’s.

RiskMetrics applies one optimal decay factor to the entire covariance matrix. That is, we use one 
decay factor for the daily volatility and correlation matrix and one for the monthly volatility and 
correlation matrix. This decay factor is determined from individual variance forecasts across 450 
time series (this process will be discussed in Section 5.3.2.2).

Recently, Crnkovic and Drachman (1995)8 have shown that while it is possible to construct a 
covariance matrix with different decay factors that is positive semi-definite, this matrix is subject 
to substantial bias.9

We now describe a measure applied by RiskMetrics to determine the optimal decay factor, i.e., that 
decay factor that provides superior forecast accuracy.

8 From personal communication.

9 See Section 8.3 for an explanation of positive semi-definite and its relationship to covariance matrices.
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5.3.2.1  Root mean squared error (RMSE) criterion10

The definition of the time t + 1 forecast of the variance of the return, , made one period earlier 

is simply , i.e., the expected value of the squared return one-period earlier. 

Similarly, the definition of the time t + 1 forecast of the covariance between two return series, 

 and  made one period earlier is . In general, these 

results hold for any forecast made at time t + j, . 

Now, if we define the variance forecast error as  it then follows that the 

expected value of the forecast error is zero, i.e., . Based on 

this relation a natural requirement for choosing λ is to minimize average squared errors. When 

applied to daily forecasts of variance, this leads to the (daily) root mean squared prediction error 

which is given by 

[5.30]  (variance)

where the forecast value of the variance is written explicitly as a function of λ.

In practice we find the optimal decay factor λ* by searching for the smallest RMSE over different 
values of λ. That is, we search for the decay factor that produces the best forecasts (i.e., minimizes 
the forecast measures). 

Although RiskMetrics does not assess the accuracy of covariance forecasts, similar results to those 

for the variance can be derived for covariance forecasts, i.e., the covariance forecast error is 

 such that  

and 

[5.31]  (covariance)

The measures presented above are purely statistical in nature. For risk management purposes, this 
may not be optimal since other factors come into play that determine the best forecast. For exam-
ple, the decay factor should allow enough stability in the variance and covariance forecasts so that 
these forecasts are useful for risk managers who do not update their systems on a daily basis.11

Next, we explain how we determine the two RiskMetrics optimal decay factors, one for daily and 
one for monthly forecasts.

10 See Appendix C for alternative measures to assess forecast accuracy.

11 West, Edison and Cho (1993) suggested that an interesting alternative basis for comparing forecasts is to calculate 
the utility of an investor with a particular utility function investing on the basis of different variance forecasts. We 
plan to pursue this idea from a risk management perspective in future research.
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5.3.2.2  How RiskMetrics chooses its optimal decay factor
RiskMetrics currently processes 480 time series, and associated with each series is an optimal 
decay factor that minimizes the root mean squared error of the variance forecast (i.e., Eq. [5.30]). 
We choose RMSE as the forecast error measure criterion.12 Table 5.8 presents optimal decay fac-
tors for return series in five series.

For the daily and monthly data sets we compute one optimal decay factor from the 480+ time 
series. Denote the ith optimal decay factor by  and let N (i = 1, 2,…, N) denote the number of 
time series in the RiskMetrics database. Also, let  denote the ith RMSE associated with , i.e., 

 is the minimum RMSE for the ith time series. We derive the one optimal decay factor as fol-
lows:

1. Find , the sum of all N minimal RMSE’s, ’s:

[5.32]  .

2. Define the relative error measure:

12  We have chosen this criterion because it penalizes large forecast errors more severely, and provides more useful 
results than other common accuracy statistics.

Table 5.8 
Optimal decay factors based on volatility forecasts
based on RMSE criterion 

Country Foreign exchange 5-year swaps 10-year zero prices Equity indices 1-year money market rates

Austria 0.945 — — — —

Australia 0.980 0.955 0.975 0.975 0.970

Belgium 0.945 0.935 0.935 0.965 0.850

Canada 0.960 0.965 0.960 — 0.990

Switzerland 0.955 0.835 — 0.970 0.980

Germany 0.955 0.940 0.960 0.980 0.970

Denmark 0.950 0.905 0.920 0.985 0.850

Spain 0.920 0.925 0.935 0.980 0.945

France 0.955 0.945 0.945 0.985 —

Finland 0.995 — — — 0.960

Great Britain 0.960 0.950 0.960 0.975 0.990

Hong Kong 0.980 — — — —

Ireland 0.990 — 0.925 — —

Italy 0.940 0.960 0.935 0.970 0.990

Japan 0.965 0.965 0.950 0.955 0.985

Netherlands 0.960 0.945 0.950 0.975 0.970

Norway 0.975 — — — —

New Zealand 0.975 0.980 — — —

Portugal 0.940 — — — 0.895

Sweden 0.985 — 0.980 — 0.885

Singapore 0.950 0.935 — — —

United States — 0.970 0.980 0.980 0.965

ECU — 0.950 — — —

λ̂ i
τ i λ̂ i

τ i

Π τ i

Π τ i
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[5.33]  

3. Define the weight :

[5.34]

where 

4. The optimal decay factor  is defined as

[5.35]  

That is, the optimal decay factor applied by RiskMetrics is a weighted average of individual 
optimal decay factors where the weights are a measure of individual forecast accuracy.

Applying this methodology to both daily and monthly returns we find that the decay factor 
for the daily data set is 0.94, and the decay factor for the monthly data set is 0.97.

5.4  Summary and concluding remarks

In this chapter we explained the methodology and practical issues surrounding the estimation of 
the RiskMetrics volatilities and correlations. Table 5.9 summarizes the important results about the 
RiskMetrics volatility and correlation forecasts. 

Table 5.9
Summary of RiskMetrics volatility and correlation forecasts

Forecast Expression*
Decay 
factor

# of daily returns 
used in production

Effective # of daily returns 
used in estimation†

1-day volatility 0.94 550 75

1-day correlation 0.94 550 75

1-month volatility 0.97 550 150

1-month correlation 0.97 550 150

* Note that in all calculations the sample mean of daily returns is set to zero.

† This number is a dependent of the decay factor explained in Section 5.3.1.2.
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Lastly, recall from Chapter 4 that RiskMetrics assumes that returns are generated according to the 
model

[5.36]

Now, given the recursive form of the EWMA model, a more complete version of the RiskMetrics 
model for any individual time series is

[5.37]

Since Eq. [5.37] describes a process by which returns are generated, we can determine whether 
this model (evaluated at the optimal decay factor) can replicate the distinctive features of the 
observed data as presented in Chapter 4. We do so by generating a time series of daily returns from 
Eq. [5.37] for a given value of λ. A simulated time series from Eq. [5.37] with λ = 0.94 is shown in 
Chart 5.12. 

Chart 5.12
Simulated returns from RiskMetrics model

Chart 5.12 shows that the RiskMetrics model can replicate the volatility clustering feature noted in 
Chapter 4 (compare Chart 5.12 to Charts 4.6 and 4.7).
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This chapter explains the methodology RiskMetrics uses to calculate VaR for portfolios that 
include multiple instruments such as simple bonds, swaps, foreign exchange, equity and other 
positions.

The chapter is organized as follows:

• Section 6.1 describes how to decompose various positions into cash flows.

• Section 6.2 covers how to convert or map the actual cash flows onto the corresponding 
RiskMetrics vertices.

• Section 6.3 explains two analytical approaches to measuring VaR.

• Section 6.4 presents a number of examples to illustrate the application of the RiskMetrics 
methodology.

 

6.1  Step 1—Identifying exposures and cash flows

 

The RiskMetrics building block for describing any position is a cash flow. A cash flow is defined 
by an amount of a currency, a payment date and the credit standing of the payor. 

Once determined, these cash flows are marked-to-market. Marking-to-market a position’s cash 
flows means determining the present value of the cash flows given 

 

current

 

 market rates and 
prices. This procedure requires current market rates, including the current on-the-run yield curve 
for newly issued debt, and a zero-coupon yield curve on instruments that pay no cash flow until 
maturity.

 

1

 

 The zero coupon rate is the relevant rate for discounting cash flows received in a partic-
ular future period.

 

2

 

We now describe how to express positions in fixed income, foreign exchange, equity, and com-
modities in terms of cash flows. The general process of describing a position in terms of cash flows 
is known as mapping.

 

6.1.1  Fixed Income

 

Interest rate positions describe the distribution of cash flows over time. Practitioners have applied 
various methods to express, or map, the cash flows of interest rate positions, the most common 
three being (1) duration map, (2) principal map, and (3) cash flow map. In this book we use the 
cash flow map method, but for comparison, present the two other methods as viable alternatives.

• Duration map

The first and most common method to characterize a position’s cash flows is by its duration 
(the weighted average life of a position’s interest and principal payments). Macaulay duration 
is a measure of the weighted average maturity of an instrument’s cash flows. Modified dura-
tion is a measure of a bond’s price sensitivity to changes in interest rates. In general, duration 
provides risk managers with a simplified view of a portfolio’s market risk. Its main drawback 
is that it assumes a linear relationship between price changes and yield changes. Moreover, 

 

1

 

See 

 

The J. P. Morgan/Arthur Andersen Guide to Corporate Exposure Management

 

 (p. 54, 1994). 

 

2

 

It is often suggested that implied forward rates are required to estimate the floating rates to be paid in future peri-
ods. In this document, however, we will show why forward rates are not necessarily required.
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this approach works well when there are so-called parallel shifts in the yield curve but poorly 
when yield curves twist. Duration maps are used extensively in fixed income investment man-
agement. Many investment managers’ activities are constrained by risk limits expressed in 
terms of portfolio duration.

• Principal map

A second method, used extensively over the last two decades by commercial banks, is to 
describe a global position in terms of when principal payments occur. These “principal” maps 
form the basis for asset/liability management. ARBLs (Assets Repricing Before Liabilities) 
are used by banks to quantify interest rate risk in terms of cumulative assets maturing before 
liabilities. This method is employed most often when risks are expressed and earnings are 
accounted for on an accrual basis. The main problem with principal maps is that they assume 
that all interest payments occur at current market rates. This is often not a good assumption 
particularly when positions include fixed rate instruments with long maturities and when 
interest rates are volatile. Principal maps describe an instrument only as a function of the 
value and timing of redemption.

• Cash flow map

The third method, and the one RiskMetrics applies is known as cash flow mapping. Fixed 
income securities can be easily represented as cash flows given their standard future stream of 
payments. In practice, this is equivalent to decomposing a bond into a stream of zero-coupon 
instruments. Complications in applying this technique can arise, however, when some of these 
cash flows are uncertain, as with callable or puttable bonds. 

The following example shows how each of the mapping methodologies can be applied in practice. 
Chart 6.1 shows how a 10-year French OAT (FRF 100,000 francs nominal, 7.5% of April 2005) 
can be mapped under the approaches listed above:

• The duration map associates the market value of the instrument against the bond’s Macaulay 
duration of 6.88 years.

• The principal map allocates the market value of the bond to the 10-year maturity vertex.

• The cash flow map shows the distribution over time of the current market value of all future 
streams (coupons 

 

+ 

 

principals).

As shown in Chart 6.1, the cash flow map (present valued) treats all cash flows separately and 
does not group them together as do the duration and principal maps. Cash flow mapping is the 
preferred alternative because it treats cash flows as being distinct and separate, enabling us to 
model the risk of the fixed income position better than if the cash flows were simply repre-
sented by a grouped cash flow as in the duration and principal maps.
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Chart 6.1

 

French franc 10-year benchmark maps

 

amounts in thousands of market value

6.1.1.1  Simple bonds

 

Consider a hypothetical bond with a par value of 100, a maturity of 4 years and a coupon rate of 
5%. Assume that the bond is purchased at time 0 and that coupon payments are payed on an annual 
basis at the beginning of each year. Chart 6.2 shows the bond’s cash flows.

 

3

 

 

In general, arrows pointing upwards signify cash inflows and arrows pointing downwards repre-
sent outflows. Also, a cash flow’s magnitude is proportional to the length of the arrow; the taller 
(shorter) the arrow the greater (lower) the cash flow.

 

Chart 6.2

 

Cash flow representation of a simple bond

 

We can represent the cash flows of the simple bond in our example as cash flows from four zero-
coupon bonds with maturities of 1,2,3 and 4 years. This implies that on a risk basis, there is no dif-
ference between holding the simple bond or the corresponding four zero-coupon bonds. 

 

6.1.1.2  Floating rate notes (FRN)

 

A 

 

floating rate note (FRN)

 

 is an instrument that is based on a principal, P, that pays floating cou-
pons. A FRN’s coupon payment is defined as the product of the principal and a floating rate that is 
set some time in advance of the actual coupon payment. For example, if coupon payments are paid 
on a semiannual basis, the 6-month LIBOR rate would be used to determine the payment in 
6 month’s time. The coupon payments would adjust accordingly depending on the current 6-month 
LIBOR rate when the floating rate is reset. The principal is exchanged at both the beginning and 
end of the FRN’s life.

 

3

 

We ignore the payment for the bond. That is, we do not account for the initial (negative) cash flow at time 0.

Principal flowsDuration Cash flows
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Chart 6.3 shows the cash flows for a hypothetical FRN lasting 4 years. The floating payments are 
represented by the gray shaded arrows. The black arrows represent fixed payments. All payments 
are assumed to occur on a yearly basis.

 

Chart 6.3

 

Cash flow representation of a FRN

 

Notice that the first payment (at year 1) is known, and therefore, fixed. Also, the last payment rep-
resents the fact that the principal is known at the fourth year, but the final coupon payment is 
unknown. We now show how to evaluate the future floating payments. 

Suppose that at time t (between 0 and 1 year), a risk manager is interested in analyzing the floating 
payment that will be received in year 3. The rate that determines this value is set in the second year 
and lasts one year. Now, implied forward rates are often used to forecast floating rates. The funda-
mental arbitrage relationship between current and future rates implies that the 1-year rate, as of 
year 2 satisfies the expression

[6.1]

where 

 

r

 

i,j

 

 

 

is the 

 

i

 

-year rate set at time 

 

j

 

 and 

 

f

 

i,j

 

 is the 

 

i

 

 period forward rate set at time 

 

j

 

. So, for 
example, 

 

f

 

1,2 

 

is the 1-year rate, beginning at the second year. It follows that the cash flow implied 
by this rate occurs in year 3. Since we know at time 

 

t

 

 both 

 

r

 

2-

 

t,t

 

 (the 2-t year rate) and 

 

r

 

3-

 

t,t

 

 (the 
3-t year rate), we can solve for the implied forward rate as a function of observed rates. i.e.,

[6.2]

We can apply same technique to all other implied forward rates so that we can solve for 

 

f

 

1,1

 

, 

 

f

 

1,2

 

, 

 

f

 

1,3

 

 and determine the expected future payments. The forecast coupon payment, for example, at 
time 3 is . The present value of this payment at time 

 

t

 

, is simply . 
Substituting Eq. [6.2] into the expression for the discounted coupon payment yields,

[6.3]

Equation [6.3] shows that the expected coupon payment can be written in terms of known zero 
coupon rates. We can apply similar methods to the other coupon payments so that we can write the 
cash flows of the FRN as

[6.4]

The right-hand side of Eq. [6.4] is equal to

years
0          1          2          3          4t
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f 1 2,
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P f 1 2,⋅ P f 1 2,⋅( ) 1 r3 t– t,+( )⁄
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[6.5]

Equation [6.5] collapses to the present value 

[6.6]

Chart 6.4 shows that the cash flow of the FRN from the time t perspective, is . There-
fore, we would treat the FRN’s cash flows as a cash flow from a zero coupon bond with maturity 
1-

 

t

 

 period.

 

Chart 6.4 

 

Estimated cash flows of a FRN

 

Notice that if the cash flows in Chart 6.3 were computed relative to time zero (the start of the 
FRN), rather than to time 

 

t

 

, the cash flow would be simply 

 

P at t = 0, representing the par value of 
the FRN at its start.

6.1.1.3  Simple interest-rate swaps
Investors enter into interest-rate swaps to change their exposure to interest rate uncertainty by 
exchanging interest flows. In order to understand how to identify a simple interest-rate swap’s cash 
flows, a swap should be thought of as a portfolio consisting of one fixed and one floating rate 
instrument. Specifically, the fixed leg is represented by a simple bond without an exchange of prin-
cipal. The floating leg is a FRN with the caveat that the principal is used only to determine coupon 
payments, and is not exchanged. 

Chart 6.5 shows the cash flows of an interest-rate swap that receives fixed rate and pays the float-
ing rate.

Chart 6.5
Cash flow representation of simple interest rate swap
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We compute the cash flows relative to time t, (again, between 0 and 1 year) after the start of the 
swap. The cash flows on the fixed side are simply the fixed coupon payments over the next 4 years 
which, as already explained in Section 6.1.1.1, are treated as holding four zero-coupon bonds. The 
cash flows on the floating side are derived in the exact manner as the payments for the FRN 
(except now we are short the floating payments). The present value of the cash flow map of the 
floating side of the swap is given by Eq. [6.7] 

[6.7] ,

where P is the principal of the swap. Notice the similarity between this cash flow and that given by 
Eq. [6.6] for the FRN. Hence, we can represent the cash flows on the floating side of the swap as 
being short a zero coupon bond with maturity 1-t.

6.1.1.4  Forward starting swap
A forward starting swap is an instrument where one enters into an agreement to swap interest pay-
ments at some future date. Unlike a simple swap none of the floating rates are fixed in advance. 
Chart 6.6 shows the cash flows of a forward starting swap.   

Chart 6.6 
Cash flow representation of forward starting swap

Suppose that an investor enters into a forward starting swap with 5 years to maturity at some time t 
(the trade date), and the start date of the swap, (i.e., the date when the floating rates are fixed) is 
year 2. Starting in year 3, payments are made every year until year 5. The cash flows for this 
instrument are essentially the same as a simple interest-rate swap, but now the first floating pay-
ment is unknown.

The cash flows on the fixed side are simply the cash flows discounted back to time t. On the float-
ing side, the cash flows are, again, determined by the implied forward rates. The cash flow map for 
the (short) floating payments is represented by Eq. [6.8]. 

[6.8]
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Chart 6.7 depicts this cash flow.

Chart 6.7
Cash flows of the floating payments in a forward starting swap

Notice that this cash flow map is equivalent to being short a 2-t zero coupon bond.

6.1.1.5  Forward rate agreement (FRA)
A forward rate agreement (FRA) is an interest rate contract. It locks in an interest rate, either a 
borrowing rate (buying a FRA) or a lending rate (selling a FRA) for a specific period in the future. 
FRAs are similar to futures but are over-the-counter instruments and can be customized for any 
maturity. 

A FRA is a notional contract. Therefore, there is no exchange of principal at the expiry date (i.e., 
the fixing date). In effect, FRAs allow market participants to lock in a forward rate that equals the 
implied break even rate between money market and term deposits.4 To understand how to map the 
cash flows of a FRA, let’s consider a simple, hypothetical example of a purchase of a 3 vs. 6 FRA 
at r% on a notional amount P. This is equivalent to locking in a borrowing rate for 3 months start-
ing in 3 months. The notation 3 vs. 6 thus refers to the start date of the underlying versus the end 
date of the underlying, with the start date being the delivery date of the contract. 

Chart 6.8 depicts the cash flows of this FRA. 

Chart 6.8
Cash flow representation of FRA

i

We can replicate these cash flows by going long the current 3-month rate and short the 6-month 
rate as shown in Chart 6.9. 

4 For more details on FRAs, refer to Valuing and Using FRAs (Hakim Mamoni, October, 1994, JP Morgan 
publication).
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Chart 6.9
Replicating cash flows of 3-month vs. 6-month FRA

Note that the gray arrows no longer represent floating payments. The gray and black arrows repre-
sent the cash flows associated with going short a 6-month zero coupon bond and long a 3-month 
zero coupon bond, respectively. The benefit of working with the cash flows in Chart 6.9 rather than 
in Chart 6.8, is that the latter requires information on forward rates whereas the former does not.

6.1.1.6  Interest rate future
We now consider the cash flow map of a 3-month Eurodollar future contract that expires in 
3 months’. Taking time 0 to represent the current date, we represent the future’s cash flows by an 
outflow in 3 months and an inflow in 6 months, as shown in Chart 6.10.

Chart 6.10
Cash flow representation of 3-month Eurodollar future

To be more specific, if the current USD 3-month Eurodollar deposit rate is 7.20%, a purchaser of 
this futures contract would face a cash outflow of USD 981,800 in 3 months and a cash inflow of 
USD 1,000,000 in 6 months. We can then represent these cash flows as being short the current 3-
month rate and investing this money in the current 6-month rate. Hence, the cash flows of this 
Eurodollar futures contract can be replicated by a short 3-month position and a long 6-month posi-
tion as shown in Chart 6.11.

Chart 6.11
Replicating cash flows of a Eurodollar futures contract
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6.1.2  Foreign exchange

Financial positions are described in terms of a base or “home” currency. For example, American 
institutions report risks in U.S. dollars, while German institutions use Deutsche marks. A risk 
manager’s risk profile is not independent of the currency in which risk is reported. For example, 
consider two investors. One investor is based in US dollars, the other in Italian lira. Both investors 
purchase an Italian government bond. Whereas the USD based investor is exposed to both interest 
rate and exchange rate risk (by way of the ITL/USD exchange rate), the lira based investor is 
exposed only to interest rate risk. Therefore, an important step to measure foreign exchange risk is 
to understand how cash flows are generated by foreign exchange positions.

6.1.2.1  Spot positions
Describing cash flows of spot foreign exchange positions is trivial. Graphically, up and down 
arrows represent long and short positions in foreign exchange, respectively. 

6.1.2.2  Forward foreign exchange positions
A foreign exchange (FX) forward is an agreement to exchange at a future date, an amount of one 
currency for another at a specified forward rate. Mapping a forward foreign exchange position is 
facilitated by the ability to express the forward as a function of two interest rates and a spot for-
eign exchange rate.5 For example, Chart 6.12 shows the cash flows of an FX forward that allows 
an investor to buy Deutsche marks with US dollars in 6 months’ time at a prespecified forward 
rate. 

Chart 6.12
FX forward to buy Deutsche marks with US dollars in 6 months

We can replicate these cash flows by borrowing dollars at time 0 at the 6-month interest rate 
 and immediately investing these dollars in Germany at a rate , This scenario would 

generate the cash flows which, at the 6-month mark, are identical to those of the forward contract. 
These cash flows are shown in Chart 6.13.

Chart 6.13
Replicating cash flows of an FX forward

The ability to replicate future foreign exchange cash flows with interest rate positions results from 
what is known as interest rate parity (IRP). We now demonstrate this condition. Let the spot rate, 

, of the home currency expressed in units of foreign currency, (e.g., if the home currency is the 
US dollars and the foreign currency is Deutsche marks,  is expressed in US dollars per Deutsche 

5 For simplicity, we ignore other factors such as transaction costs and possible risk premia.
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marks (USD/DEM)). The forward rate, , is the exchange rate observed at time t, which guaran-
tees a spot rate at some future time T. Under interest rate parity the following condition holds

[6.9]

It follows from IRP that the ability to convert cash flows of an FX forward into equivalent borrow-
ing and lending positions implies that holding an FX forward involves cash flows that are exposed 
to both foreign exchange and interest risk.

6.1.2.3  Currency swaps
Currency swaps are swaps for which the two legs of the swap are each denominated in a different 
currency. For example, one party might receive fixed rate Deutsche marks, the other floating rate 
US dollars. Unlike an interest-rate swap, the notional principal in a currency swap is exchanged at 
the beginning and end of the swap.6

Chart 6.14 shows the cash flows for a hypothetical currency swap with a maturity of 4 years and 
paying fixed rate Deutsche marks and floating rate US dollars on an annual basis. For complete-
ness, we present the cash flows associated with the initial exchange of principal.

Chart 6.14
Actual cash flows of currency swap

From the perspective of holding the swap at time t between 0 and year 1, the fixed leg of the swap 
has the same cash flows as the simple bond presented in Section 6.1.1.1. The cash flows of the 
floating leg are the same as that as a short position in a FRN.

6.1.3  Equities 

The cash flows of equity are simple spot positions expressed in home currency equivalents. Equity 
positions held in foreign countries are subject to foreign exchange risk in addition to the risk from 
holding equity. 

6 There are currency swaps where one or both of the notional amounts are not exchanged.
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6.1.4  Commodities

Exposures to commodities can be explained using a framework similar to that of interest rates. 
Risks arise in both the spot market (you purchase a product today and store it over time) and from 
transactions that take place in the future (e.g., physical delivery of a product in one month’s time). 

6.1.4.1  Commodity futures contract
Commodity futures contracts enable investors to trade products for future delivery with relative 
ease and also serve as a price setting and risk transferring mechanisms for commodity producers. 
These contracts provide market participants with valuable information about the term structure of 
commodities prices. 

6.1.4.2  Commodity swap
Institutions do not have to limit themselves to futures contracts when they participate in the com-
modity markets. They can enter into swaps to change their exposure to interest rates, currency, 
and/or commodity risks. A typical commodity swap entails an institution to paying (receiving) 
fixed amounts in exchange for receiving (paying) variable amounts with respect to an index (e.g., 
an average of the daily price of the nearby natural gas futures contract). 

In many respects, commodity swaps are similar to interest-rate swaps. Unlike an interest-rate swap 
the underlying instrument of a commodity swap can be of variable quality thereby making the 
terms of the transaction more complex.

6.2  Step 2—Mapping cash flows onto RiskMetrics vertices

In the last section we described cash flows generated by particular classes of instruments. Finan-
cial instruments, in general, can generate numerous cash flows, each one occurring at a unique 
time. This gives rise to an unwieldy number of combinations of cash flow dates when many instru-
ments are considered. As a result, we are faced with the impractical task of having to compute an 
intractable number of volatilities and correlations for the VaR calculation. To more easily estimate 
the risks associated with instruments’ cash flows, we need to simplify the time structure of these 
cash flows. 

The RiskMetrics method of simplifying time structure involves cash flow mapping, i.e., redistrib-
uting (mapping) the observed cash flows onto so-called RiskMetrics vertices, to produce 
RiskMetrics cash flows.

6.2.1  RiskMetrics vertices

All RiskMetrics cash flows use one or more of the 14 RiskMetrics vertices shown below (and on 
page 107).

1m 3m 6m 12m 2yr 3yr 4yr 5yr 7yr 9yr 10yr 15yr 20yr 30yr

These vertices have two important properties: 

• They are fixed and hold at any time now and in the future for all instruments, linear and non-
linear. (J.P. Morgan can occasionally redefine these vertices to keep up with market trends.) 

• RiskMetrics data sets provide volatilities and correlations for each of these vertices (and only 
for these vertices).

Mapping an actual cash flow involves splitting it between the two closest RiskMetrics vertices 
(unless the cash flow happens to coincide with a RiskMetrics vertex). For example, a cash flow 
occurring in 6 years is represented as a combination of a 5-year and a 7-year cash flow. Chart 6.15 
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shows how the actual cash flow occurring at year 6 is split into the synthetic (RiskMetrics) cash 
flows occurring at the 5- and 7-year vertices.

Chart 6.15
RiskMetrics cash flow mapping

The two fractions of the cash flow are weighted such that the following three conditions hold:

1. Market value is preserved. The total market value of the two RiskMetrics cash flows must 
be equal to the market value of the original cash flow.

2. Market risk is preserved. The market risk of the portfolio of the RiskMetrics cash flows 
must also be equal to the market risk of the original cash flow.

3. Sign is preserved. The RiskMetrics cash flows have the same sign as the original cash flow.

In the trivial case that the actual vertex and RiskMetrics vertex coincide, 100% of the actual cash 
flow is allocated to the RiskMetrics vertex.

It is important to understand that RiskMetrics cash flow mapping differs from conventional map-
ping methods in the three conditions that it stipulates. A common practice used to date throughout 
the financial industry has been to follow two standard rules when allocating cash flows between 
vertices:

1. Maintain present value. For example, the sum of the cash flows maturing in 5 and 7 years 
must be equal to the original cash flow occurring in year 6.

2. Maintain duration. The duration of the combination of 5- and 7-year cash flows must also 
be equal to the duration of the 6-year cash flow.

Cash flow maps like these are similar to a barbell type trade, where an existing position is replaced 
by a combination of two instruments distributed along the yield curve under the condition that the 
trade remains duration neutral. Barbell trades are entered into by investors who are duration-con-
strained but have a view on a shift in the yield curve. What is a perfectly defensible investment 
strategy, however, cannot be simply applied to risk estimation.

6.2.2  Computing RiskMetrics cash flows

For allocating actual cash flows to RiskMetrics vertices, RiskMetrics proposes a methodology that 
is based on the variance (σ2) of financial returns. The advantage of working with the variance is 
that it is a risk measure closely associated with one of the ways RiskMetrics computes VaR, 
namely the simple VaR method as opposed to the delta-gamma or Monte Carlo methods.

         5          6          7

         5          6          7

years

years

Actual
Cashflows

RiskMetrics
Cashflows
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In order to facilitate the necessary mapping, the RiskMetrics data sets provide users with volatili-
ties on, and correlations across many instruments in 33 markets. For example, in the US govern-
ment bond market, RiskMetrics data sets provide volatilities and correlations on the 2-, 3-, 4-, 5-, 
7-, 9-, 10-, 15-, 20-, and 30-year zero coupon bonds.

We now demonstrate how to convert actual cash flows to RiskMetrics cash flows, continuing with 
the example of allocating a cash flow in year 6 to the 5- and 7-year vertices (Chart 6.15). We 
denote the allocations to the 5- and 7-year vertices by α and (1-α), respectively. The procedure 
presented below is not restricted to fixed income instruments, but applies to all future cash flows.

1. Calculate the actual cash flow’s interpolated yield:

We obtain the 6-year yield, y6, from a linear interpolation of the 5- and 7-year yields pro-
vided in the RiskMetrics data sets. Using the following equation, 

[6.10]

If an actual cash flow vertex is not equidistant between the two RiskMetrics vertices, then 
the greater of the two values,  is assigned to the closer RiskMetrics vertex. 

2. Determine the actual cash flow’s present value:

From the 6-year zero yield, , we determine the present value, , of the cash flow occur-
ring at the 6-year vertex. (In general,  denotes the present value of a cash flow occurring 
in i years.)

3. Calculate the standard deviation of the price return on the actual cash flow:

We obtain the standard deviation, σ6, of the return on the 6-year zero coupon bond, by a lin-
ear interpolation of the standard deviations of the 5- and 7-year price returns, i.e., 

, respectively.

Note that are provided in the RiskMetrics data sets as the VaR statistics 
, respectively. Hence, 1.65σ6 is the interpolated VaR. 

To obtain σ6, we use the following equation: 

[6.11]

where

from Eq. [6.10]

y6 ây5 1 â–( ) y7+           0 â 1≤≤=

where y6 interpolated 6-year zero yield=

â linear weighting coefficient,  â 0.5 in this example= =

y5 5-year zero yield=

y7 7-year zero yield=

â and (1 â ) ,–

y6 P6
Pi

σ5 and σ7

σ5 and σ7
1.65σ5 and 1.65σ7

σ6 âσ5 1 â–( ) σ7+           0 â 1≤≤=

 â linear weighting coefficient =

σ5 standard deviation of the 5-year return=

σ7 standard deviation of the 7-year return=
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4. Compute the allocation, α and (1-α), from the following equation:

[6.12]

where  ρ5,7, is the correlation between the 5- and 7- year returns. (Note that  is pro-
vided in the correlation matrix in RiskMetrics data sets). 

Equation  [6.12] can be written in the quadratic form

[6.13]

where

The solution to  is given by

[6.14]  

Notice that Eq. [6.14] yields two solutions (roots). We choose the solution that satisfies the 
three conditions listed on page 118. 

5. Distribute the actual cash flow onto the RiskMetrics vertices:

Split the actual cash flow at year 6 into two components, α and (1-α), where you allocate α 
to the 5-year RiskMetrics vertex and (1-α) to the 7-year RiskMetrics vertex.

Using the steps above, we compute a RiskMetrics cash flow map from the following real-world 
data. Suppose that on July 31, 1996, the cash flow occurring in 6 years is USD 100. The 
RiskMetrics daily data sets provide the statistics shown in Table 6.1, from which we calculate the 
data shown in Table 6.2.7

7 Recall that RiskMetrics provides VaR statistics—that is, 1.65 times the standard deviation.

Variance r6yr( ) Variance [αr5yr 1 α–( ) r7yr],  or the equivalent+=
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2 α2σ5

2
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ρ5 7,
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2
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To solve for α, we substitute the values in Tables 6.1 and 6.2 into Eq. [6.13] to find the following 
values:

which in Eq. [6.14], yields the solutions  and . We disqualify the first solu-
tion since (1−α) violates the sign preservation condition (page 118). 

From Step 2 on page 119, the present value of USD 100 in 6 years is USD 93.74, i.e., the 6-year 
cash flow. We allocate 49.66% (USD 46.55) of it to the 5-year vertex and 50.33% (USD 47.17) to 
the 7-year vertex. We thus obtain the RiskMetrics cash flow map shown in Chart 6.15.

The preceding example demonstrated how to map a single cash flow to RiskMetrics vertices. In 
practice portfolios often contain many cash flows, each of which has to be mapped to the 
RiskMetrics vertices. In such instances, cash flow mapping simply requires a repeated application 
of the methodology explained in this section. 

6.3  Step 3—Computing Value-at-Risk 

This section explains two analytical approaches to measuring Value-at-Risk:  simple VaR for lin-
ear instruments, and delta-gamma VaR for nonlinear instruments, where the terms “linear” and 
“nonlinear” describe the relationship of a position’s underlying returns to the position’s relative 
change in value. (For more information about simple VaR methodology, see Section 6.3.2. For 
more information about delta-gamma methodology, see Section 6.3.3.)

In the simple VaR approach, we assume that returns on securities follow a conditionally multivari-
ate normal distribution (see Chapter 4) and that the relative change in a position’s value is a linear 
function of the underlying return. Defining VaR as the 5th percentile of the distribution of a portfo-

Table 6.1
Data provided in the daily RiskMetrics data set

y5 5-year yield 6.605%

y7 7-year yield 6.745%

volatility on the 5-year bond price return 0.5770%

volatility on the 7-year bond price return 0.8095%

correlation between the 5- and 7-year bond returns 0.9975

Table 6.2
Data calculated from the daily RiskMetrics data set

y6 6-year yield
  (from Eq. [6.10], where )

6.675%

standard deviation on the 6-year bond price return 0.4202%

variance on the 6-year bond price return 
  (from Eq. [6.11])

1.765 × 10−3%

variance on the 5-year bond price return 1.223 × 10−3%

variance on the 7-year bond price return 2.406 × 10−3%

1.65σ5

1.65σ7

ρ5 7,

â 0.5=

σ6

σ6
2

σ5
2

σ7
2

a 2.14 10
6–×=

b 1.39 10
5–×–=

c 6.41 10
6–×=

α 5.999= α 0.489=
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lio’s relative changes, we compute VaR as 1.65 times the portfolio’s standard deviation, where the 
multiple 1.65 is derived from the normal distribution. This standard deviation depends on the vol-
atilities and correlations of the underlying returns and on the present value of cash flows.

In the delta-gamma approach, we continue to assume that returns on securities are normally dis-
tributed, but allow for a nonlinear relationship between the position’s value and the underlying 
returns. Specifically, we allow for a second-order or gamma effect, which implies that the distribu-
tion of the portfolio’s relative change is no longer normal. Therefore, we cannot define VaR as 
1.65 times the portfolio’s standard deviation. Instead, we compute VaR in two basic steps. First, 
we calculate the first four moments of the portfolio’s return distribution, i.e., the mean, standard 
deviation, skewness and kurtosis. Second, we find a distribution that has the same four moments 
and then calculate the fifth percentile of this distribution, from which we finally compute the VaR.

The choice of approach depends on the type of positions that are at risk, i.e., linear or non-linear 
positions, as defined above.

6.3.1  Relating changes in position values to underlying returns

This section explains the linearity and nonlinearity of instruments in the context of RiskMetrics 
methodology.

Value-at-Risk measures the market risk of a portfolio. We define a portfolio as a set of positions, 
each of which is composed of some underlying security. In order to calculate the risk of the portfo-
lio, we must be able to compute the risks of the positions that compose the portfolio. This requires 
an understanding of how a position’s value changes when the value on its underlying security 
changes. Thus, we classify positions into simple positions, which are linear, and into derivative 
positions, which can be further broken down into linear and nonlinear derivative positions. 

As an example of a simple position, the relative change in value of a USD 100 million dollar posi-
tion in DEM is a linear function of the relative change in value in the USD/DEM exchange rate 
(i.e., the return on the USD/DEM exchange rate).

The value of derivative positions depends on the value of some other security. For example, the 
value of a forward rate agreement, a linear derivative, depends on the value of some future interest 
rate. In contrast, other derivatives may have a nonlinear relationship between the relative change 
in value of the derivative position and the value of the underlying security. For example, the rela-
tive change in value of an option on the USD/FRF exchange rate is a nonlinear function of the 
return on that rate. 
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Chart 6.16 shows how the return on a position varies with the return on the underlying security. 

Chart 6.16
Linear and nonlinear payoff functions

The straight lines in Chart 6.16 signify a constant relationship between the position and underlying 
security. The black line represents a one-to-one relationship between the position value and the 
underlying security. Note that for a payoff to be linear, the movement between the position value 
and the underlying security’s value does not have to be one-to-one. For example, the change in 
value of a simple option can be expressed in terms of the “delta” (slope) of the underlying security, 
where the delta varies between −1 and +1. Chart 6.16 shows a payoff function where delta is 0.5 
(gray line).

When payoffs are nonlinear there is no longer a “straight line” relationship between the position 
value and the underlying security’s value. Chart 6.16 shows that the payoff line is curved such that 
the position value can change dramatically as the underlying security value increases. The convex-
ity of the line is quantified by the parameter “gamma”.

In summary, linear payoffs are characterized by a constant slope, delta. Their convexity, gamma, is 
always equal to zero. VaR for such instruments is calculated from the simple VaR methodology 
(Section 6.3.2). For nonlinear payoffs, delta can take on any value between −1 and +1, while 
gamma is always non-zero, accounting for the observed curvature of the payoff function. Nonlin-
ear instruments are thus treated by the delta-gamma methodology (although the same methodol-
ogy can also be used to handle linear instruments. See Section 6.3.3 on page 129).

Table 6.3 lists selected positions (instruments), their underlying returns, and the relationship 
between the two. 

Table 6.3 
Relationship between instrument and underlying price/rate

Type of position Instrument* Underlying price/rate†

Simple (linear): Bond Bond price§ 

Stock Local market index

Foreign exchange FX rate

Commodity Commodity price

IR swap Swap price

Linear derivative: Floating rate note Money market price

Position value

Underlying security
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6.3.1.1  Linear positions
Using the qualitative information in the preceding section, we now formally derive the relation-
ship between the relative change in the value of a position and an underlying return for linear 
instruments. 

We denote the relative change in value of the ith position, at time t, as . In the simple case 
where there is a linear one-to-one correspondence between the relative change in value of this 
position and some underlying return , we have .8 In general, we denote a position 
that is linearly related to an underlying return as , where δ is a scalar.

Notice that in the case of fixed income instruments, the underlying value is defined in terms of 
prices on zero equivalent bonds (Table 6.3). Alternatively, underlying returns could have been 
defined in terms of yields. For example, in the case of bonds, there is no longer a one-to-one corre-
spondence between a change in the underlying yield and the change in the price of the instrument. 
In fact, the relationship between the change in price of the bond and yield is nonlinear. Since we 
only deal with zero-coupon bonds we focus on these. Further, we work with continuous com-
pounding.

Assuming continuous compounding, the price of an N-period zero-coupon bond at time t, Pt, with 
yield yt is 

[6.15]  

A second order approximation to the relative change in Pt yields

[6.16]

Now, if we define the return rt in terms of relative yield changes, i.e., , then we 
have

[6.17]

8 Technically, this results from the fact that the derivative of the price of the security with respect to the underlying 
price is 1.

FX forward FX rate/money market price

Forward rate agreement Money market price

Currency swap Swap price/FX rate

Nonlinear derivative: Stock Option Stock price

Bond Option Bond price

FX Option FX rate

* Treated by . See the remainder of Section 6.3.

† Treated by . See the remainder of Section 6.3.

§ Note, however, the relationship between a bond price and its yield is nonlinear.

Table 6.3 (continued)
Relationship between instrument and underlying price/rate

Type of position Instrument* Underlying price/rate†
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Equation [6.17] reveals two properties:  (1) If we ignore the second term on the right-hand side we 
find that the relative price change is linearly, but not in one-to-one correspondence, related to the 
return on yield. (2) If we include the second term, then there is a nonlinear relationship between 
return, rt, and relative price change.

6.3.1.2  Nonlinear positions (options)
In options positions there is a nonlinear relationship between the change in value of the position 
and the underlying return. We explain this relationship with a simple stock option. For a given set 
of parameters denote the option’s price by  where  is the spot price on the 
underlying stock at time t,  is the option’s exercise price,  is the time to maturity of the option 
in terms of a year,  is the riskless rate of a security that matures when the option does, and  is 
the standard deviation of the log stock price change over the horizon of the option. 

In order to obtain an expression for the return on the option, , we approximate the future 
value of the option  with a second-order Taylor series expansion around the 
current values (spot rates), . This yields,

[6.18]

which can be rewritten in the more concise form

[6.19]  

Notice that dV, the change in value of the option, is in units of price P thus δ is unitless and Γ is in 
units of 1/P. Writing Eq. [6.19] in terms of relative changes, we get

[6.20]

where  measures the leverage effect of holding the option,  measures the relative change in the 
value of the option given a change in the value of the price ,  measures the relative change in 
the value of the option given a change in the value of .

As Eq. [6.20] shows, the relative change, , in the option is a nonlinear function of , the return 
on the underlying stock price, since it involves the term . 

6.3.2  Simple VaR calculation

In this section we provide the general formula to compute VaR for linear instruments. (These 
instruments include the first nine listed in Table 6.3.) The example provided below deals exclu-
sively with the VaR calculation at the 95% confidence interval using the data provided by Risk-
Metrics. 

Consider a portfolio that consists of N positions and that each of the positions consists of one cash 
flow on which we have volatility and correlation forecasts. Denote the relative change in value of 
the nth position by . We can write the change in value of the portfolio, , as

[6.21]
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where  is the total (nominal) amount invested in the nth position. For example, suppose that the 
total current market value of a portfolio is $100 and that $10 is allocated to the first position. It fol-
lows that  = $10. 

Now, suppose that the VaR forecast horizon is one day. In RiskMetrics, the VaR on a portfolio of 
simple linear instruments can be computed by 1.65 times the standard deviation of —the 
portfolio return, one day ahead.The expression of VaR is given as follows. 

[6.22]   (Value-at-Risk estimate)

where

[6.23]  

is the individual VaR vector (1xN) and

[6.24]  

is the NxN correlation matrix of the returns on the underlying cash flows.

The above computations are for portfolios whose returns can be reasonably approximated by the 
conditional normal distribution. In other words, it is assumed that the portfolio return follows a 
conditional normal distribution.

6.3.2.1  Fixed income instruments
In this section we address two important issues related to calculating the VaR on a portfolio of 
fixed income instruments. The first issue relates to what variable should be used to measure vola-
tility and correlation. In other words, should we compute volatilities and correlations on prices or 
on yields? The second issue deals with incorporating the “roll down” and “pull-to-par” effects of 
bonds into VaR calculations. 

We discussed in Section 6.3.1.1 that one may choose to model either the yield (interest rate) or the 
price of a fixed income instrument. RiskMetrics computes the price volatilities and correla-
tions on all fixed income instruments. This is done by first computing zero rates for all instru-
ments with a maturity of over one year, and then constructing prices from these series using the 
expression (continuous compounding).

[6.25]  

where yt is the current yield on the N-period zero-coupon bond.

For money market rates, i.e., instruments with a maturity of less than one-year, prices are con-
structed from the formula 

[6.26]
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Since practitioners often think of volatilities on fixed income instruments in terms of yield, we 
present the price volatility in terms of yield volatility. Starting with Eq. [6.25], we find the price 
return to be

[6.27]

Therefore, the standard deviation of price returns under continuous compounding is given by the 
expression

[6.28]

where  is the standard deviation of . What Eq. [6.28] states is that price 
return volatility is the maturity on the underlying instrument times the standard deviation of the 
absolute changes in yields.

Performing the same exercise on Eq. [6.26] we find the price return to be

[6.29]

In this case (discrete compounding) the standard deviation of price returns is 

[6.30]

where  is the standard deviation of .

We now explain how to incorporate the unique features of fixed income instruments in VaR calcu-
lations.9 Traditionally, RiskMetrics treats a cash flow as a zero coupon bond and subjects it to two 
assumptions:  (1) There is no expected change in the market value of such a bond, and (2) the vol-
atility of the bond’s market value scales up with the square root of the time horizon. In reality, the 
bond’s market value systematically increases toward its par value (the “pull to par” effect), and its 
daily volatility decreases as it moves closer to par (the “roll down” effect). The two assumptions 
imply that the cash flow is treated as a generic bond (a bond whose maturity is always the same) 
rather than as an instrument whose maturity decreases with time. While this leads to an accurate 
depiction of the risk of the future cash flow for short forecast horizons, for longer horizons, it can 
result in a significant overstatement of risk.

Suppose that as of today, a USD based investor currently holds a one-year USD money market 
deposit and is interested in computing a Value-at-Risk estimate of this instrument over a 3-month 
forecast horizon. That is, the investor would like to know the maximum loss on this deposit (at a 
95% confidence level) if he held the deposit for 3 months. To compute the risk of this position we 
compute the VaR of holding 9-month deposit with a forecast horizon 3-months. In other words, we 
are measuring the volatility on the 9-month deposit over a 3-month forecast horizon. To do this we 
use the current 9-month money market rates. This addresses the “roll down effect”. In addition, the 
expected value of holding a one-year deposit for 3 months is not zero. Instead, the mean return is 

9 This section is based on the article by Christopher C. Finger, “Accounting for the “pull to par” and “roll down” for 
RiskMetrics cash flows”, RiskMetrics Monitor, September 16, 1996.
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non-zero reflecting the pull-to-par phenomenon. Chart 6.17 presents a visual description of the 
situation.

Chart 6.17
VaR horizon and maturity of money market deposit

In general, the methodology to measure the VaR of a future cash flow(s) that occurs in T days over 
a forecast horizon of t days (t < T) is as follows. 

1. Use the T-t rate, , to discount the cash flow occurring in T days time. Denote the 
present value of this cash flow by 

2. Compute VaR as .

Note that in the preceding example, T = 360, t = 90,  is the 270-day rate and  is the stan-
dard deviation of the distribution of returns on the 270-day rate. 

6.3.2.2  Equity positions
The market risk of the stock, VaRt, is defined as the market value of the investment in that stock, 
Vt, multiplied by the price volatility estimate of that stock’s returns, .

[6.31]

Since RiskMetrics does not publish volatility estimates for individual stocks, equity positions are 
mapped to their respective local indices. This methodology is based upon the principles of single-
index models (the Capital Asset Pricing Model is one example) that relate the return of a stock to 
the return of a stock (market) index in order to attempt to forecast the correlation structure 
between securities. Let the return of a stock, , be defined as

[6.32]

where

As such, the returns of an asset are explained by market-specific components  and by 
stock-specific components . Similarly, the total variance of a stock is a function of the 
market- and firm-specific variances. 
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Since the firm-specific component can be diversified away by increasing the number of different 
equities that comprise a given portfolio, the market risk, VaRt, of the stock can be expressed as a 
function of the stock index

[6.33] .

Substituting Eq. [6.33] into Eq. [6.31] yields

[6.34] ,

where

.

As with individual stocks, Eq. [6.34] should also be used to calculate the VaR for positions that 
consist of issue that themselves are part of the EMBI+.

6.3.3  Delta-gamma VaR methodology (for portfolios containing options) 

In this section we describe a methodology known as delta-gamma that allows users to compute the 
Value-at-Risk of a portfolio that contains options. Specifically, we provide a methodology to incor-
porate the delta, gamma and theta of individual options in the VaR calculation. We explain this 
methodology by first showing how it applies to a single option and then to a portfolio that contains 
three options. To keep our examples simple, we assume that each option is a function of one cash 
flow. In other words, we can write the return on each option as 

[6.35]

For a complete derivation of Eq. [6.35], see Appendix D. Similarly, we can write the returns on the 
other two options as 

[6.36]  and 

Let’s begin by demonstrating the effect of incorporating gamma and theta components on the 
return distribution of the option. We do so by comparing the statistical features on the return on 
option 1, , and the return of its underlying cash flow, . Recall that RiskMetrics assumes 
that the returns on the underlying assets, , are normally distributed with mean 0 and variance 

σt
2 βt

2σm t,
2 σεt

2
+=

VaRt Vt βt 1.65σm t,⋅ ⋅=
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. Table 6.4 shows the first four moments10—the mean, variance, skewness, and kurtosis—for 
 and .

The results presented in Table 6.4 point to three interesting findings. 

• First, even though it is assumed that the return on the underlying has a zero mean return, this 
is not true for the option’s return unless both gamma and theta are zero. Also, the sign of the 
option’s mean will be determined by the relative magnitudes and signs of both gamma and 
theta and whether one is long or short the option. 

• Second, the variance of the return on the option differs from the variance of the return on the 
underlying instrument by the factor . 

• And third, depending on whether one is long or short the option determines whether the return 
on the option distribution is negatively or positively skewed. To see this, on a short option 
position,  and therefore . Consequently, the term  in the skewness expres-
sion will be negative. As an example of this point, Chart 6.18 shows the probability density 
functions for long and short options positions (along with the normal probability curve). 

10 See Section 4.5.2.1 for the definition of these moments.

Table 6.4
Statistical features of an option and its underlying return

Statistical 
parameter  Option Underlying

Return

Mean 0

Variance

Skewness 0

Kurtosis 3
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Chart 6.18
Long and short option positions
negative and positive skewness

Note that in variance and kurtosis, the sign of  is immaterial since in these expressions  is 
raised to an even power. 

Now, to determine the numerical values of the moments presented in Table 6.4 we need estimates 
of , ,  and . Estimates of the first three parameters are easily found by applying a 
Black-Scholes type valuation model. The variance, , is given in the RiskMetrics data sets. 

Having obtained the first four moments of ’s distribution, we find a distribution that has the 
same moments but whose distribution we know exactly. In other words, we match the moments of 

’s distribution to one of a set of possible distributions known as Johnson distributions. Here, 
“matching moments” simply means finding a distribution that has the same mean, standard devia-
tion, skewness and kurtosis as ’s. The name Johnson comes from the statistician Norman 
Johnson who described a process of matching a particular distribution to a given set of moments.   

Matching moments to a family of distributions requires that we specify a transformation from the 
option’s return  to a return, , that has a standard normal distribution. For example, 
Johnson (1949) suggested the general transformation

[6.37]

where f( ) is a monotonic function and , ,  and  are parameters whose values are determined 
by ’s first four moments. In addition to the normal distribution, the Johnson family of distri-
butions consists of three types of transformations.

[6.38]

[6.39]

and 
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[6.40]

with the restriction .

To find estimates of , ,  and , we apply a modified version of Hill, Hill and Holder’s (1976) 
algorithm.11 Given these estimates we can calculate any percentile of ’s distribution given 
the corresponding standard normal percentile (e.g., −1.65). This approximate percentile is then 
used in the VaR calculation. For example, suppose that we have estimates of , ,  and  
and that they result in the following moments:  mean = 0.2, variance = 1, skewness coefficient = 
0.75 and kurtosis coefficient = 7. Note that these numbers would be derived from the formulae pre-
sented in Table 6.3. Applying the Hill et. al. algorithm we find that the selected distribution is 
“Unbounded” with parameter estimates: a = −0.582, b = 1.768, c = −0.353, and d = 1.406. 

Therefore, the percentile of ’s distribution is based on the transformation

[6.41]

Setting = −1.65, the estimated 5th percentile of ’s distribution is −1.45. That is, the 
option’s fifth percentile is increased by 0.20. In this hypothetical example, the incorporation of 
gamma and theta reduces the risk relative to holding the underlying. 

We now show that it is straightforward to compute the VaR of a portfolio of options. In particular, 
we show this for the case of a portfolio that contains three options. We begin by writing the portfo-
lio return as 

[6.42]  

where 

To compute the moments of ’s distribution we need the RiskMetrics covariance matrix, Σ, of 
the underlying returns , and the delta, gamma and theta cash flow vectors that are 
defined as follows:

[6.43] ,  , and 

We find the 5th percentile ’s distribution the same way we found the 5th percentile of ’s 
distribution, as shown previously. The only difference is that now the expressions for the four 
moments are more complicated. For example, the mean and variance of the portfolio return are 

11 These original algorithms (numbers 99 and 100) are available in their entirety on the Web at the StatLib—Griffiths 
and Hill Archive. The URL is http://lib.stat.cmu.edu/griffiths-hill/. 
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[6.44]  and 

[6.45]

where “trace” is an operator that sums the diagonal elements of a matrix.

The delta-gamma methodology described in this section extends to options that have more than 
one underlying cash flow (e.g., bond option). We have presented a simple example purposely to 
facilitate our exposition of the methodology. See, Appendix D for an assessment of the 
methodology.

Finally, the methodologies presented in Section 6.3 do not require simulation. All that is necessary 
for computing VaR is a covariance matrix, financial parameters (such as delta, gamma and theta) 
and position values. In the next chapter we present a methodology known as structured Monte 
Carlo that computes VaR by first simulating future paths of financial prices and/or rates.
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6.4  Examples

In this section we present nine examples of VaR calculations for the various instruments discussed 
in this chapter. Note that the diskette symbol placed to the left of each example means that the 
example appears on the enclosed diskette at the back of the book.

Ex. 6.1 Government bond mapping of a single cash flow
Suppose that on March 27, 1995, an investor owns FRF 100,000 of the French OAT benchmark 
7.5% maturing in April 2005. This bond pays coupon flows of FRF 7,500 each over the next 10 
years and returns the principal investment at maturity. One of these flows occurs in 6.08 years, 
between the standard vertices of 5 and 7 years (for which volatilities and correlations are avail-
able). 

All the data required to compute the cash flow map is readily available in the RiskMetrics data sets 
except for the price volatility (1.65σ6.08) of the original cash flow’s present value. This must be 
interpolated from the price volatilities already determined for the RiskMetrics vertices. 

Applying the three conditions on page 118 and using Eqs. [6.10]–[6.14] with the RiskMetrics data 
in Table 6.5, we solve for the allocation α (and (1-α)), and obtain the values  α = 4.30 and 
α = 0.4073. Given the constraint that both of the allocated cash flows must have the same sign as 
the original cash flow, we reject the first solution, which would lead to a short position in the sec-
ond proxy cash flow. As a result, our original cash flow of FRF 7,500, whose present value is FRF 
4,774, must be mapped as a combination of a 5-year maturity cash flow of FRF 1,944 (40.73% of 
the original cash flow’s PV) and a 7-year maturity cash flow of FRF 2,829 (59.27% of the original 
cash flow’s PV).

The cash flow map is shown in Table 6.6. 

Table 6.5
RiskMetrics data for 27, March 1995

RiskMetrics
Vertex Yield,%

P. Vol,* 
(1.65σt) 

Yield Vol,† 
(1.65σt)

Correlation Matrix,
 ρij

5yr 7yr

5yr 7.628 0.533 1.50 1.000 0.963

7yr 7.794 0.696 1.37 0.963 1.000

*  P. Vol = price volatility, also called the VaR statistic.

†  While this data is provided in the data set, it is not used in this calculation. 

Table 6.6
RiskMetrics map of single cash flow

Step 1* Step 2*† Step 3* Step 4* Step 5*

Coupon 
Flow Term

Yield,%
(Actual)

Yield,% (y6.08) 
(Interpolated) (PV)6.08

‡
P. Vol, (1.65σt)

§

(RiskMetrics)
P. Vol, (1.65σ6.08)§

(Interpolated)
RiskMetrics 

Vertex Allocation
RiskMetrics 

Cash flow

7.628 0.533 5yr 0.4073 1,950

7,500 6.08yr 7.717 4,774 0.624

7.794 0.696 7yr 0.3927 2,824

* Step from the mapping procedure on pages 119–121. Also, data in this column is calculated from the data in Table 6.5. Note that in Step 3 the price volatility, 
1.65σ6.08, rather than the standard deviation alone, is computed.

† In this example .

‡ PV = present value.

§ P. Vol = price volatility, also called the VaR statistic.

â 0.46=
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Ex. 6.2  Government bond mapping of multiple cash flows
A full set of positions can easily be mapped in the same fashion as the single cash flow in the last 
example. 

The example below takes the instrument in Ex. 6.1, i.e., the 10-year French OAT benchmark on 
March 27, 1995, and decomposes all of the component cash flows according to the method 
described on pages 119–121, to create a detailed RiskMetrics cash flow map. Table 6.7 shows how 
the 100,000 French franc nominal position whose market value is FRF 97,400, is decomposed into 
nine representative present value cash flows. The table also shows the VaR for the cash flow at 
each RiskMetrics vertex and the diversified Value-at-Risk.

In this example, note that the first cash flow (on 25-Apr-95) occurs in less than one month’s time 
relative to March 27, but is allocated at 100% weight to the 1-month RiskMetrics vertex. The rea-
son for 100% allocation is that vertices shorter than one month are not defined in the RiskMetrics 
data sets.

Table 6.7
RiskMetrics map for multiple cash flows

Money market rate volatilities are used for vertices below 2 years. Government bond zero volatili-
ties are used for 2-year and other vertices.

Bond data RiskMetrics™ vertices 1m 1y 2y 3y 4y 5y 7y 10y 15y

Yield volatility 7.00 3.16 2.10 1.74 1.63 1.50 1.37 1.36 1.29

Settlement 30-Mar Current yield 8.25 7.04 7.28 7.39 7.54 7.63 7.79 7.92 8.15

Principal 100,000 Price volatility 0.04 0.21 0.29 0.36 0.46 0.53 0.70 1.00 1.46

Price 97.4 Correlation Matrix 1m 1.00 0.75 0.53 0.48 0.45 0.42 0.33 0.33 0.33

Coupon 7.50 1y 0.75 1.00 0.88 0.81 0.78 0.74 0.61 0.63 0.58

Basis 365 2y 0.53 0.88 1.00 0.99 0.96 0.92 0.80 0.82 0.76

3y 0.48 0.81 0.99 1.00 0.98 0.95 0.85 0.87 0.81

4y 0.45 0.78 0.96 0.98 1.00 0.99 0.91 0.93 0.88

5y 0.42 0.74 0.92 0.95 0.99 1.00 0.96 0.96 0.93

7y 0.33 0.61 0.80 0.85 0.91 0.96 1.00 1.00 0.99

10y 0.33 0.63 0.82 0.87 0.93 0.96 1.00 1.00 0.99

15y 0.33 0.58 0.76 0.81 0.88 0.93 0.99 0.99 1.00

Date Flow Term Yield PV Md. Dur P.Vol

25-Apr-95 7,500 0.071 8.204 7,456 0.066 0.032 7,456

25-Apr-96 7,500 1.074 7.056 6,970 1.003 0.218 5,594 1,376

25-Apr-97 7,500 2.074 7.284 6,482 1.933 0.292 5,780 703

25-Apr-98 7,500 3.074 7.402 6,022 2.862 0.366 5,505 517

25-Apr-99 7,500 4.074 7.543 5,577 3.788 0.463 5,105 472

25-Apr-00 7,500 5.077 7.635 5,162 4.717 0.539 4,923 240

25-Apr-01 7,500 6.077 7.720 4,773 5.641 0.624 1,944 2,829

25-Apr-02 7,500 7.077 7.798 4,408 6.565 0.703 4,302 107

25-Apr-03 7,500 8.077 7.855 4,072 7.488 0.805 2,589 1,483

25-Apr-04 7,500 9.079 7.895 3,762 8.415 0.905 1,131 2,631

25-Apr-05 107,500 10.079 7.919 49,863 9.340 1.004 49,019 844

RiskMetrics™ vertices 1m 1y 2y 3y 4y 5y 7y 10y 15y

Total Vertex Mapping 7,456 5,594 7,156 6,207 5,622 7,339 11,091 53,239 844

RiskMetrics™ Vertex VaR 3 12 20 22 26 39 77 530 12

Diversified Value at Risk 727 FRF over the next 24 hours

% of market value 0.7%
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Ex. 6.3 Forward rate agreement cash flow mapping and VaR 
A forward rate agreement is an interest-rate contract. It locks in an interest rate, either a borrowing 
rate (buying a FRA) or a lending rate (selling a FRA) for a specific period in the future. FRAs are 
similar to futures, but are over-the-counter instruments and can be customized for any maturity.

Because a FRA is a notional contract, there is no exchange of principal at the expiry date (i.e., the 
fixing date). If the rate is higher at settlement than the FRA rate agreed by the counterparties when 
they traded, then the seller of a FRA agrees to pay the buyer the present value of the interest rate 
differential applied to the nominal amount agreed upon at the time of the trade. The interest rate 
differential is between the FRA rate and the observed fixing rate for the period. In most cases this 
is the LIBOR rate for any given currency.

The general FRA pricing equation is given by

[6.46]

where

In effect, FRAs allow market participants to lock in a forward rate that equals the implied break-
even rate between money market term deposits. 

Given that a FRA is a linear combination of money market rates, it is simple to express its degree 
of risk as a function of the combination of these rates. 

Suppose that on January 6, 1995 you sold a 6x12 FRA on a notional 1 million French francs at 
7.24%. This is equivalent to locking in an investment rate for 6 months starting in 6 months’ time. 
The rate of 7.24% is calculated by combining the 6- and 12-month money market rates using the 
general pricing equation, Eq. [6.46], which can be rewritten as follows to reflect the no-arbitrage 
condition:

[6.47]

where

This FRA transaction is equivalent to borrowing FRF 1 million for 6 months on a discount basis 
(i.e., total liability of FRF 1 million in 6 months’ time) and investing the proceeds (FRF 969,121) 
for 12 months. This combination can be mapped easily into the RiskMetrics vertices as shown in 
Table 6.8. The current present value of these two positions is shown in column (6). The Value-at-
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Example 6.3 (continued)

Risk of each leg of the FRA over a 1-month horizon period, shown in column (9), is obtained by 
multiplying the absolute present value of the position by the monthly price volatility of the equiv-
alent maturity deposit. The portfolio VaR is obtained by applying the 6- to 12-month correlation to 
the VaR estimate from column (9).

One month into the trade, the mapping becomes somewhat more complex as the cash flows have 
now shorter maturities (the instrument is now in fact a 5x11 FRA). The 5-month cash flow must be 
mapped as a combination of 3-month and 6-month RiskMetrics vertices (Table 6.9), while the 
11-month cash flow must be split between the 6-month and 12-month vertices.

Table 6.8
Mapping a 6x12 short FRF FRA at inception

Observed data RiskMetrics data set Calculated values

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Cash flow
Term

(mths.) Yield,%

Volatilities Correlation matrix Present 
value

RiskMetrics 
vertex

RiskMetrics 
cash flow

VaR 
estimateYield Price 6m 12m

−1,000,000 6 6.39 6.94 0.21 1.00 0.70 -969,121 6m −969,121 2,081

1,036,317 12 6.93 7.42 0.48 0.70 1.00 969,121 12m 969,121 4,662

Total 0 0

Portfolio VaR 3,530

Table 6.9
Mapping a 6x12 short FRF FRA held for one month

Observed data RiskMetrics data set Calculated values

Cash flow
Term

(mths.)

Volatilities Correlation matrix

Yield,%
Present 
value

RiskMetrics 
vertex

RiskMetrics 
cash flow

VaR 
estimateYield Price 3m 6m 12m

6.77 0.1 1 0.81 0.67 3m −302,232 −296

−1,000,000 5 6.12 −975,302

7.91 0.19 0.81 1.00 0.68 −1,0486m −549,300

1,036,317 11 6.65 976,894

7.14 0.41 0.67 0.68 1.00 12m 853,124 3,533

Total 1,592 1,592

Portfolio VaR 2,777
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Example 6.3 (continued)

One month into the trade, the change in market value of the contract is a positive FRF 1,592. This 
is well within the range of possible gains or losses predicted (with a 95% probability) by the previ-
ous month’s Value-at-Risk estimate of FRF 3,530.

Unwinding a FRA, i.e., hedging out the interest rate risk between the FRA rate and the market 
rate, before maturity requires entering into a contract of opposite sign at dates that no longer qual-
ify as standard maturities. If you wanted to unwind the position in this example one month after 
the dealing date, you would have to ask a quote to buy a 5x11 FRA, a broken dated instrument that 
is less liquid and therefore is quoted at higher bid-offer spreads. The rates in column (1) above do 
not take this into account. They were derived by interpolating rates between standard maturities. 
Actual market quotes would have been slightly less favorable, reducing the profit on the transac-
tion. This risk is liquidity related and is not identified in the VaR calculations.
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Ex. 6.4 Structured note
The basic concepts used to estimate the market risk of simple derivatives can be extended to more 
complex instruments. Suppose that in early 1994, when the market consensus was that German 
rates were to continue to decline, you had purchased a “one year index note linked to two year 
rates”. This 1-year instrument leveraged a view that the DEM 2-year swap rate in 1-year’s time 
would be below the forward rate measured at the time the transaction was entered into.

The characteristics of the instrument are shown in Table 6.10.

While seemingly complex, this transaction is in fact little more (disregarding minor convexity 
issues) than a bond to which a leveraged long-dated FRA had been attached. As a holder of the 
note, you were long the 3-year swap rate and short the 1-year rate, with significant leverage 
attached to the difference. 

Table 6.11 shows how the leveraged note can be decomposed into the cash flows of the two under-
lying building blocks:

• The 1-year DEM 35 million bond with a 5.10% coupon.

• The forward swap (2-year swap starting in one year). The forward principal cash flows of the 
swap are equal to 20 times the notional amount of the note divided by the PVBP (price value 
of a basis point) of a 2-year instrument, or 1.86 in this case. The forward coupons are equal to 
the forward principal times the coupon rate of 5.10%.

Combining the bond and the swap creates three annual cash flows where the investor is short DEM 
340 million in the 1-year, and long DEM 19 and DEM 396 million in the 2- and 3-year maturities. 
At issue, the market value of these cash flows is equal to DEM 35 million, the instrument’s issue 
price.

Table 6.10
Structured note specification

Issuer Company A

Format Euro Medium Term Note

Issue date 9 February 94

Maturity date 9 February 95

Issue price 100%

Amount DEM 35,000,000

Coupon 5.10%

Strike 5.10%

Redemption value 100%+20*(Strike- 2-year DEM swap rate)

* Although these details are hypothetical, similar products were marketed in 1994.

Table 6.11
Actual cash flows of a structured note

Term
(years)

Bond Swap Total 
cash flowPrincipal Coupon Principal Coupon

1 35,000,000 1,785,000 −376,996,928 −340,211,928

2 19,226,843 19,226,843

3 376,996,928 19,226,843 396,223,771
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Example 6.4 (continued)

Each of the three cash flows is mapped to RiskMetrics vertices to produce the cash flow map 
shown in Table 6.12.

Using the appropriate volatilities and correlations as of February 9, 1994, the Value-at-Risk of 
such a position over a 1-month horizon was around DEM 2.15 million.

One month into the life of the instrument on March 9, the mapping and risk estimation could have 
been repeated using updated interest rates as well as updated RiskMetrics volatilities and correla-
tions. Table 6.13 shows the result. 

The movement in market rates led the market value of the note to fall by over DEM 4 million, 
twice the maximum amount expected to happen with a 95% probability using the previous 
month’s RiskMetrics volatilities and correlations. Why?

Table 6.12
VaR calculation of structured note
One month forecast horizon

Observed data RiskMetrics data set Calculated values

Cash flow
Term

(years) Yield,%
Price 

volatility

Correlation matrix Present 
value

RiskMetrics 
vertex

RiskMetrics 
cash flow

VaR 
estimate1y 2y 3y

−340,211,928 1 5.48 0.33 1.00 0.46 0.43 −322,536,906 1y 322,536,906 1,067,597

19,226,843 2 5.15 0.46 0.46 1.00 0.95 17,389,594 2y 17,389,594 79,644

396,223,772 3 5.22 0.68 0.43 0.95 1.00 340,147,312 3y 340,147,312 2,309,600

Total 35,000,000

Portfolio VaR 2,155,108

Table 6.13
VaR calculation on structured note
One-month into life of instrument

Observed data RiskMetrics data set Calculated values

Cash flow
Term

(years) Yield,%
Price 

volatility

Correlation matrix Present 
value

RiskMetrics 
vertex

RiskMetrics 
cash flow

VaR 
estimate6m 1y 2y 3y

0.16 1.00 0.83 0.58 0.54 6m −43,218,017 68,023
−340,211,928 0.9 5.53 −975,302

0.35 0.83 1.00 0.58 0.54 960,2501y −277,979,823

19,226,843 1.9 5.53 17,399,085

0.65 0.58 0.58 0.94 1.00 2y 39,059,679 252180

19,226,843 2.9 5.68 337,230,727

1.03 0.54 0.54 0.94 1.00 3y 312,934,965 3,218,971

Total 30,976,801 −4,203,199

Portfolio VaR 3,018,143
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Example 6.4 (continued)

Chart 6.19 shows the 3-year DEM swap rate moved 45+bp from 5.22% to slightly above 5.68% 
during the month—twice the maximum amount expected with a 95% probability (4.56% × 5.22%; 
i.e., 23 basis points). This was clearly a large rate move. The RiskMetrics volatility estimate 
increased from 4.56% to 6.37% as of March 9. This reflects the rapid adjustment to recent obser-
vations resulting from the use of an exponential moving average estimation method. Correspond-
ingly the VaR of the structured note increased 44% over the period to just over DEM 3 million.

Chart 6.19
DEM 3-year swaps in Q1-94

The message in these examples is that with proper cash flow mapping, the risks in complex deriv-
atives can be easily estimated using the RiskMetrics methodology and data sets.
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Ex. 6.5 Interest-rate swap
Investors enter into swaps to change their exposure to interest rate uncertainty by exchanging 
interest flows. In order to understand how to map its cash flows, a swap should be thought of as a 
portfolio of one fixed- and one floating-rate transaction. Specifically, the fixed leg of a swap is 
mapped as if it were a bond, while the floating leg is considered to be a FRN.

Market risk estimation is straightforward if the value of each leg is considered separately. The 
fixed leg exposes an investor to interest rate variability as would a bond. Since the floating leg is 
valued as if it were a FRN, if interest rates change, then forward rates used to value the leg change 
and it will revalue to par. Once a floating payment is set, the remaining portion of the floating leg 
will revalue to par, and we need only consider interest rate exposure with respect to that set cash 
flow. The details of this will be provided in a forthcoming edition of the RiskMetrics Monitor.

Consider the following example. A company that enters into a 5-year USD interest-rate swap pays 
9.379% fixed and receives floating cash flows indexed off of 1-year USD LIBOR flat on a notional 
amount of USD 1,000,000. For simplicity, the reset/payment dates are annual. Table 6.14 presents 
the data used to estimate the market risk of this transaction.

Table 6.14
Cash flow mapping and VaR of interest-rate swap

Observed data RiskMetrics data set Calculated values

Term Zero rate

Cash flow
Price 

volatility, %

Correlation matrix
Net present 
value, USDFixed Floating 1yr 2yr 3yr 4yr 5yr

1yr 8.75 −86,247 1,000,000 0.027 1.000 0.949 0.933 0.923 0.911 913,753

2yr 9.08 −85,986 0.067 0.949 1.000 0.982 0.978 0.964 −85,986

3yr 9.24 −85,860 0.112 0.933 0.982 1.0000 0.995 0.984 85,860

4yr 9.34 −85,782 0.149 0.923 0.978 0.995 1.000 0.986 85,782

5yr 9.42 −999,629 0.190 0.911 0.964 0.984 0.986 1.000 −999,629

Total −343,505

Portfolio VaR 1,958
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Ex. 6.6 Foreign exchange forward 
Below is an example of how to calculate the market risk of buying a 1-year 153,000,000 DEM/
USD foreign exchange forward. Note that buying a DEM/USD foreign exchange forward is equiv-
alent to borrowing US dollars for 1-year (short money market position) and using them to pur-
chase Deutsche marks in one year’s time (short foreign exchange position). We take the holding 
period to be one day. Based on a 1-day volatility forecast, the foreign exchange risk, in USD, is 
$904,922 (94,004,163 × 0.963%) as shown in Table 6.15. The interest rate risk is calculated by 
multiplying the current market value of each 12-month leg (the short in USD and the long in 
DEM) times its respective interest rate volatility. Therefore, the Value-at-Risk for a 1-day holding 
period is $912,880. 

Table 6.15
VaR on foreign exchange forward

Observed data RiskMetrics data set Calculated values

Instrument Cash flow
Term

(years) Yield,%
Price 

volatility

Correlation matrix Present 
value, USD

VaR 
estimateDEM FX DEM 1y USD 1y

DEM Spot FX — 0.963 1.0000 −0.0035 −0.0042 −94,004,163 −904,922

DEM 1y 153,000,000 1 6.12 0.074 −0.0035 1.0000 0.1240 94,004,163 45,855

USD 1y −99,820,670 1 6.65 0.116 −0.0042 0.1240 1.0000 −94,004,163 −108,624

Total 94,004,163

Portfolio VaR 3,530
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Ex. 6.7 Equity 
Consider a three-asset portfolio in which an investor holds stocks ABC and XYZ (both U.S. com-
panies) as well as a basket of stocks that replicate the S & P 500 index. The market risk of this 
portfolio, VaRp, is

[6.48]

Rewriting this equation in terms of Eq. [6.48] 

[6.49]

where

yields

[6.50]

Factoring the common term and solving for the portfolio VaR results in

[6.51]

The methodology for estimating the market risk of a multi-index portfolio is similar to the process 
above and takes into account correlation among indices as well as foreign exchange rates. Since all 
positions must be described in a base or “home” currency, you need to account for foreign 
exchange risk.

VaRp V ABC 1.65σRABC
⋅( ) V XYZ 1.65σRXYZ

⋅( )+=

+ VSP500 1.65σRSP500
⋅

VaRs Vs βs 1.65σRM
⋅ ⋅=

1.65σRM
the RiskMetrics volatility estimate for the appropriate stock index,=

VaRp V ABC βABC 1.65σRSP500
⋅ ⋅( ) V XYZ βXYZ 1.65σRSP500

⋅ ⋅( )+=

+ VSP500 1.65σRSP500
⋅( )

VaRp 1.65σRSP500
V ABC βABC⋅( ) V XYZ βXYZ⋅( ) VSP500+ +[ ]=

4.832% 1 000 000 0.5( ) 1 000 000, ,( ) 1.5( ) 1 000 000, ,+ +, ,[ ]=

4.832% 3 000 000, ,( )=

USD 144 960,=
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Ex. 6.8 Commodity futures contract
Suppose on July 1, 1994 you bought a 6-month WTI future on a notional USD 18.3 million (1 mil-
lion barrels multiplied by a price of USD 18.30 per barrel). The market and RiskMetrics data for 
that date are presented in Table 6.16.

The initial Value-at-Risk for a 1-month horizon is approximately USD 1.7 million. This represents 
the maximum amount, with 95% confidence, that one can expect to lose from this transaction over 
the next 25 business days. Since the flow occurs in 6 months, the entire position is mapped to the 
6-month WTI vertex, therefore calculating the Value-at-Risk of this transaction on the trade date is 
simply

[6.52]

One month into the trade, the cash flow mapping becomes slightly more complex. Table 6.17 
shows the new VaR of this transaction. 

Table 6.16
Market data and RiskMetrics estimates as of trade date July 1, 1994

WTI future Correlation matrix

Vertex LIBOR Term Price Volatility 3m 6m

3m 5.563 0.250 10.25 1.000

6m 5.813 0.500 18.30 9.47 0.992 1.000

Table 6.17
Cash flow mapping and VaR of commodity futures contract

Term Zero rate
Cash flow 

(PV) Price volatility, %

Correlation matrix RiskMetrics 
vertex

RiskMetrics 
cash flow3m 6m

4.810 6.212 1.00 0.992 3m 13,084,859

4m 5.068 17,924,465

5.190 5.739 0.992 1.00 6m 4,839,605

Portfolio VaR 1,417,343

VaR6m Future PV of cash flow RiskMetrics volatility estimate⋅=

18 300 000, ,

1
5.813%

100
------------------ 

  0.5⋅+
----------------------------------------------- 9.47%⋅=

USD 1.7 million=
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Ex. 6.9  Delta-gamma methodology
Consider the situation where a USD (US dollar) based investor currently holds a USD 1million 
equivalent position in a French government bond that matures in 6 years and a call option on 
Deutsche marks that expires in 3 months. Since market risk is measured in terms of a portfolio’s 
return distribution, the first step to computing VaR is to write down an expression for this portfolio’s 
return, , which consists of one French government bond and one foreign exchange option. Here, 
return is defined as the one-day relative price change in the portfolio’s value. The return on the port-
folio is given by the expression

[6.53]

where ro is the return on the option, and rB is the return on the French government bond.

We now provide a more detailed expression for the returns on the bond and option. Since the cash 
flow generated by the bond does not coincide with a specific RiskMetrics vertex, we must map it to 
the two nearest RiskMetrics vertices. Suppose we map 49% of the cash flow that arrives in 6 years’ 
time to the 5-year vertex and 51 percent of the cash flow to the 7-year vertex. If we denote the re-
turns on the 5 and 7-year bonds by  and , respectively, we can write the return on the French 
government bond as

[6.54]

Writing the return on the option is more involved. We write the return on the option as a function 
of its delta, gamma and theta components. The one-day return on the option is given by the expres-
sion12

[6.55]

where 

 is the one-day return on the DEM/USD exchange rate

 is the spot position in USD/DEM

V is the price of the option, or premium.

 is the ratio of  to V. The parameter  measures the leverage from holding 
the option.

 is the “delta” of the option. Delta measures the change in the value of the option given 
a change in the underlying exchange rate.

 is the “gamma” of the option. Gamma measures the change in  given a change in 
the underlying exchange rate.

 is the “theta” of the option. Theta measures the change in the value of the option for 
a given change in the option’s time to expiry.

n is the forecast horizon over which VaR is measured. In this example n is 1 for one day.

12 We derive this expression in Appendix D.

RP

r p r o rB+=) )

r5 r7

rB 0.49r5 0.51r7+=

r 0 αδrUSD/DEM 0.5αΓ PUSD/DEMrUSD/DEM
2

V
1– θn++=)

rUSD/DEM

PUSD/DEM

α PUSD/DEM α

δ

Γ δ

θ
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Example 6.9 (continued)

We can now write the return on the portfolio as 

[6.56]

In particular, we find the first four moments of ’s distribution that correspond to the mean, vari-
ance, skewness and kurtosis (a measure of tail thickness). These moments depend only on the price 
of the option, the current market prices of the underlying securities, the option’s “greeks” , , , 
and the RiskMetrics covariance matrix, . In this example,  is the covariance matrix of returns 

,  and .

Let’s take a simple hypothetical example to describe the delta-gamma methodology. Table 6.18 pre-
sents the necessary statistics on the bond and option positions to apply delta-gamma. 

To compute VaR we require the covariance matrix 

[6.57]

which, when using the information in Table 6.18 yields

[6.58]

Also, we need the cash flows corresponding to the delta components of the portfolio,

[6.59]

the cash flows corresponding to the gamma components of the portfolio,

Table 6.18
Portfolio specification

Bond Option

 

V = USD 3.7191

Portfolio PV = USD 103.719

r p 0.49r5 0.51R7 αδrUSD/DEM 0.5αΓ PUSD/DEMr
USD/DEM

2
V

1– θn+++ +=)

rp

δ Γ θ
Σ Σ

r5 r7 rUSD/DEM

σ5 0.95%= σUSD/DEM 1%=

σ7 1%= δ 0.9032=

ρ5 7, 0.85= Γ 0.0566=

PB USD 100= θ 0.9156–=

PUSd/DEM USD 346.3=

Σ
σ6y

2 σ6y USD/DEM,
2

σ6y USD/DEM,
2 σUSD/DEM

2
=

Σ 0.009025 0.008075

0.008075 0.01000
 (in percent)=

δ̃ = 100

81.352

  Delta cash flow on bond           

Delta cash flow on FX option
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Example 6.9 (continued)

[6.60]

and, the cash flows corresponding to the theta components of the portfolio.

[6.61]

The implied moments of this portfolio’s distribution are presented in Table 6.19.

Based on the information presented above, VaR estimates of this portfolio over a one-day forecast 
horizon are presented in Table 6.20 for three confidence levels. For comparison we also present VaR 
based on the normal model and VaR that excludes the theta effect.

Table 6.19
Portfolio statistics

Moments Including theta Excluding theta

mean −0.1608 0.0854

variance 2.8927 2.8927

skewness coefficient 0.2747 0.2747

kurtosis coefficient 3.0997 3.0997

Table 6.20
Value-at-Risk estimates (USD)
one-day forecast horizon: total portfolio value is 103.719

VaR percentile Normal
Delta-gamma

(excluding theta)
Delta-gamma

(including theta)

5.0% −2.799 −2.579 −2.826

2.5% −3.325 −3.018 −3.265

1.0% −3.953 −3.523 −3.953

Γ̃= 0

1708.47

Zero gamma cash flow on bond              

Gamma cash flow for FX option             

θ̃= 0

0.2462–

Zero theta cashflow on bond              

 Theta cashflow for FX option              
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In the previous chapter, we illustrated how to combine cash flows, volatilities, and correlations 
analytically to compute the Value-at-Risk for a portfolio. We have seen that this methodology is 
applicable to linear instruments, as well as to non-linear instruments whose values can be well 
approximated by a Taylor series expansion (that is, by its “greeks”). 

In this chapter, we outline a Monte Carlo framework under which it is possible to compute VaR for 
portfolios whose instruments may not be amenable to the analytic treatment. We will see that this 
methodology produces an estimate for the entire probability distribution of portfolio values, and 
not just one risk measure.

The Monte Carlo methodology consists of three major steps:

1.

 

Scenario generation

 

—Using the volatility and correlation estimates for the underlying 
assets in our portfolio, we produce a large number of future price scenarios in accordance 
with the lognormal models described previously.

2.

 

Portfolio valuation

 

—For each scenario, we compute a portfolio value.

3.

 

Summary

 

—We report the results of the simulation, either as a portfolio distribution or as a 
particular risk measure.

We devote one section of this chapter to each of the three steps above.

To better demonstrate the methodology, we will consider throughout this section a portfolio com-
prised of two assets: a future cash flow stream of DEM 1M to be received in one year’s time and 
an at the money put option with contract size of DEM 1M and expiration date one month in the 
future. Assume the implied volatility at which the option is priced is 14%. We see that our portfo-
lio value is dependent on the USD/DEM exchange rate and the one year DEM bond price. (Techni-
cally, the value of the option also changes with USD interest rates and the implied volatility, but 
we will not consider these effects.) Our risk horizon for the example will be five days.

 

7.1  Scenario generation

 

We first recall the lognormal model which we assume for all underlying instruments. Consider a 
forecast horizon of  days. If an instrument’s price today is , and our estimate for the one day 
volatility of this instrument is , then we model the price of the instrument in  days by

[7.1]

where  is a standard normal random variable. Thus, the procedure to generate scenarios is to 
generate standard normal variates and use Eq. [7.1] to produce future prices. The procedure for the 
multivariate case is similar, with the added complication that the ’s corresponding to each 
instrument must be correlated according to our correlation estimates.

In practice, it is straightforward to generate independent normal variates; generating arbitrarily 
correlated variates is more involved, however. Suppose we wish to generate  normal variates 
with unit variance and correlations given by the x  matrix . The general idea is to generate  
independent variates, and then combine these variates is such a way to achieve the desired correla-
tions. To be more precise, the procedure is as follows:

• Decompose  using the Cholesky factorization, yielding a lower triangular matrix  such 
that . We provide details on this factorization below and in Appendix E.

t P0
σ t

Pt P0e
σ tY

=

Y

Y

n
n n Λ n

Λ A
Λ AA ′=
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• Generate an x  vector  of independent standard normal variates.

• Let . The elements of  will each have unit variance and will be correlated accord-
ing to .

To illustrate the intuition behind using the Cholesky decomposition, consider the case where we 
wish to generate two variates with correlation matrix 

[7.2]

The Cholesky factorization of  is given by

[7.3]

(It is easy to check that .) Now say that  is a x  vector containing independent stan-
dard normal random variables  and . If we let , then the elements of  are given 
by

[7.4a]  and

[7.4b]  

Clearly,  has unit variance, and since  and  are independent, the variance of  is given 
by

[7.5]

Again using the fact that  and  are independent, we see that the expected value of  is 
just , and so the correlation is as desired.

Note that it is not necessary to use the Cholesky factorization, since any matrix  which satisfies 
 will serve in the procedure above. A singular value or eigenvalue decomposition would 

yield the same results. The Cholesky approach is advantageous since the lower triangular structure 
of  means that fewer operations are necessary in the  multiplication. Further, there exist 
recursive algorithms to compute the Cholesky factorization; we provide details on this in 
Appendix E. On the other hand, the Cholesky decomposition requires a positive-definite correla-
tion matrix; large matrices obtained from the RiskMetrics data do not always have this property.

Using the procedure above to generate random variates with arbitrary correlations, we may gener-
ate scenarios of asset prices. For example, suppose we wish to model the prices of two assets  
days into the future. Let  and  indicate the prices of the assets today, let  and  
indicate the daily volatilities of the assets, and let  indicate the correlation between the two 
assets. To generate a future price scenario, we generate correlated standard normal variates  
and  as outlined above and compute the future prices by

[7.6a]  and

n 1 Z

Z AY= Z
Λ

Λ 1 ρ
ρ 1

=

Λ

A
1 0

ρ 1 ρ2
–

=

AA ′ Λ= Y 2 1
Y1 Y2 Z AY= Z

Z1 Y1=

Z2 ρY1 1 ρ2
– Y2+=

Z1 Y1 Y2 Z2
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[7.6b]  

To generate a collection of scenarios, we simply repeat this procedure the required number of 
times.

For our example portfolio, the two underlying assets to be simulated are the USD/DEM exchange 
rate and the one year DEM bond price. Suppose that the current one year German interest rate is 
10% (meaning the present value of a one year 1M DEM notional bond is DEM 909,091) and that 
the current USD/DEM exchange rate is 0.65. We take as the daily volatilities of these two assets 

 and  and as the correlation between the two . 

To generate one thousand scenarios for values of the two underlying assets in five days, we first 
use the approach above to generate one thousand pairs of standard normal variates whose correla-
tion is . Label each pair  and . We present histograms for the results in Chart 7.1. Note 
that the distributions are essentially the same.

 

Chart 7.1

 

Frequency distributions for  and 

 

1000 trials

 

The next step is to apply Eq. [7.6a] and Eq. [7.6b]. This will create the actual scenarios for our 
assets. Thus, for each pair  and , we create future prices  and  by applying

[7.7a]  

and

[7.7b]

Of course, to express the bond price in USD (accounting for both the exchange rate and interest 
rate risk for the bond), it is necessary to multiply the bond price by the exchange rate in each sce-
nario. Charts 7.2 and 7.3 show the distributions of future prices,  and , respectively, 
obtained by one thousand simulations. Note that the distributions are no longer bell shaped, and 
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for the bond price, the distribution shows a marked asymmetry. This is due to the transformation 
we make from normal to lognormal variates by applying Eq. [7.7a] and Eq. [7.7b].

 

Chart 7.2

 

Frequency distribution for DEM bond price

 

1000 trials

Chart 7.3

 

Frequency distribution for USD/DEM exchange rate

 

1000 trials

 

In Table 7.1, we present the first ten scenarios that we generate.
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Portfolio valuation

In the previous section, we illustrated how to generate scenarios of future prices for the underlying 
instruments in a portfolio. Here, we take up the next step, how to value the portfolio for each of 
these scenarios. We will examine three alternatives: full valuation, linear approximation, and 
higher order approximation. Each of the alternatives is parametric, that is, an approach in which 
the value of all securities in the portfolio is obtained through the values of its underlying assets, 
and differ only in their methods for valuing non-linear instruments given underlying prices.

Recall that at the current time, the present value of our cash flow is DEM 909,091, or USD 
590,909.   The value of the option is USD 10,479.

 

7.1.1  Full valuation

 

This is the most straightforward and most accurate alternative, but also the most intense computa-
tionally. We assume some type of pricing formula, in our case the Black-Scholes option pricing 
formula, with which we may value our option in each of the scenarios which we have generated. 
Say  gives the premium (in USD) associated with the option of selling one DEM given 
spot USD/DEM rate of , strike rate of , and expiration date  years into the future. (Again, this 
function will also depend on interest rates and the implied volatility, but we will not model 
changes in these variables, and so will suppress them in the notation.) 

In our example, for a scenario in which the USD/DEM rate has moved to  after five days, our 

option’s value (in USD) moves from  to 

. The results of applying this method to our scenarios are dis-

 

Table 7.1

 

Monte Carlo scenarios

 

1000 trials

 

USD/DEM
PV of cash flow 

(DEM)
PV of cash flow 

(USD)

 

0.6500 906,663 589,350

0.6540 907,898 593,742

0.6606 911,214 601,935

0.6513 908,004 591,399

0.6707 910,074 610,430

0.6444 908,478 585,460

0.6569 908,860 597,053

0.6559 906,797 594,789

0.6530 906,931 592,267

0.6625 920,768 603,348

V S K τ, ,( )
S K τ

R

1 000 000 V 0.65 0.65
1
12
------, , 

 ×, ,

1 000 000 V R 0.65 1
12
------ 5

365
---------–, , 

 ×, ,
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played in Table 7.2. Note that scenarios with moderate changes in the bond price can display sig-

nificant changes in the value of the option.

7.1.2  Linear approximation

Because utilizing the Black-Scholes formula can be intensive computationally, particularly for a 
large number of scenarios, it is often desirable to use a simple approximation to the formula. The 
simplest such approximation is to estimate changes in the option value via a linear model, which is 
commonly known as the “delta approximation.” In this case, given an initial option value  and 
an initial exchange rate , we approximate a future option value  at a future exchange rate 

 by 

[7.8]

where 

[7.9]

is the first derivative of the option price with respect to the spot exchange rate.

For our example,  is USD/DEM 0.0105 and  is USD/DEM 0.65. (To compute the price of 
our particular option contract, we multiply  by DEM 1M, the notional amount of the contract.) 
The value of  for our option is −0.4919. Table 7.2 illustrates the results of the delta approxima-
tion for valuing the option’s price. Note that for the delta approximation, it is still possible to uti-
lize the standard RiskMetrics methodology without resorting to simulations.

7.1.3  Higher order approximations

It can be seen in Table 7.2 that the delta approximation is reasonably accurate for scenarios where 
the exchange rate does not change significantly, but less so in the more extreme cases. It is possi-
ble to improve this approximation by including the “gamma effect”, which accounts for second 

Table 7.2
Monte Carlo scenarios—valuation of option
1000 trials

Value of option (USD)

USD/DEM
PV of cash flow 

(USD) Full Delta Delta/Gamma
Delta/Gamma/

Theta

0.6500 589,350 9,558 10,458 10,458 9,597

0.6540 593,742 7,752 8,524 8,644 7,783

0.6606 601,935 5,273 5,272 6,122 5,261

0.6513 591,399 8,945 9,831 9,844 8,893

0.6707 610,430 2,680 273 3,541 2,680

0.6444 585,460 12,575 13,214 13,449 12,588

0.6569 597,053 6,562 7,073 7,437 6,576

0.6559 594,789 6,950 7,565 7,832 6,971

0.6530 592,267 8,156 8,981 9,052 8,190

0.6625 603,348 4,691 4,349 5,528 4,667
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order effects of changes in the spot rate, and the “theta effect”, which accounts for changes in the 
time to maturity of the option. The two formulas associated with these added effects are

[7.10]  and

[7.11]

where  is the length of the forecast horizon and  and  are defined by

[7.12a]  and

[7.12b]

Using the values = DEM/USD 15.14 and = USD/DEM 0.0629 per year, we value our portfolio 
for each of our scenarios. The results of these approximations are displayed in Table 7.2. A plot 
illustrating the differences between the various methods of valuation is displayed in Chart 7.4; the 
delta/gamma/theta approximation is not plotted since for the values considered, it almost perfectly 
duplicates the full valuation case. Note that even for these higher order approximations, analytical 
methods exist for computing percentiles of the portfolio distribution. See, for example, the method 
outlined in Chapter 6.

Chart 7.4
Value of put option on USD/DEM
strike = 0.65 USD/DEM; Value in USD/DEM

7.2  Summary

Finally, after generating a large number of scenarios and valuing the portfolio under each of them, 
it is necessary to make some conclusions based on the results. Clearly, one measure which we 
would like to report is the portfolio’s Value-at-Risk. This is done simply by ordering the portfolio 
return scenarios and picking out the result corresponding to the desired confidence level. 
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For example, to compute the 5% worst case loss using 1000 trials, we order the scenarios and 
choose the 50th (5% × 1000) lowest absolute return. The percentiles computed for our example 
under the various methods for portfolio valuation are reported in Table 7.3.

Thus, at the 5% confidence level and in the full valuation case, we obtain a Value-at-Risk of USD 
4,559, or about 0.75% of the current portfolio value. 

A particularly nice feature of the Monte Carlo approach is that we obtain an estimate for the entire 
distribution of portfolio returns. This allows us to compute other risk measures if we desire, and 
also to examine the shape of the distribution. Chart 7.5 illustrates the return distribution for our 
example. Note that the distribution is significantly more skewed than the distributions for the 
underlying assets (see Chart 7.5), which is a result of the non-linearity of the option position.

Chart 7.5
Distribution of portfolio returns
1000 trials

Table 7.3
Value-at-Risk for example portfolio
1000 trials

Portfolio return (USD)

Percentile, % Full Delta Delta/Gamma Delta/Gamma/Theta

1.0 (5,750) (5,949) (4,945) (5,806)

2.5 (5,079) (5,006) (4,245) (5,106)

5.0 (4,559) (4,392) (3,708) (4,569)

10.0 (3,662) (3,299) (2,825) (3,686)

25.0 (2,496) (1,808) (1,606) (2,467)

50.0 (840) (22) 50 (812)

75.0 915 1,689 1,813 951

90.0 2,801 3,215 3,666 2,805

95.0 4,311 4,331 5,165 4,304

97.5 5,509 5,317 6,350 5,489

99.0 6,652 6,224 7,489 6,628

594,469 599,621 604,772 609,923 615,074
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7.3  Comments

In our example, we treated the bond by assuming a lognormal process for its price. While this is 
convenient computationally, it can lead to unrealistic results since the model does not insure posi-
tive discount rates. In this case, it is possible to generate a scenario where the individual bond 
prices are realistic, but where the forward rate implied by the two simulated prices is negative.

We have examined a number of methods to rectify this problem, including decomposing yield 
curve moves into principal components. In the end, we have concluded that since regularly 
observed bond prices and volatilities make the problems above quite rare, and since the methods 
we have investigated only improve the situation slightly, it is not worth the effort to implement a 
more sophisticated method than what we have outlined in this chapter. We suggest a straight 
Monte Carlo simulation with our methodology coupled with a check for unrealistic discount or 
forward rates. Scenarios which yield these unrealistic rates should be rejected from consideration.
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This chapter covers the RiskMetrics underlying yields and prices that are used in the volatility and 
correlation calculations. It also discusses the relationship between the number of time series and 
the amount of historical data available on these series as it relates to the volatility and correlations.

This chapter is organized as follows:

• Section 8.1 explains the basis or construction of the underlying yields and prices for each 
instrument type.

• Section 8.2 describes the filling in of missing data points, i.e., expectation maximization.

• Section 8.3 investigates the properties of a generic correlation matrix since these determine 
whether a portfolio’s standard deviation is meaningful.

• Section 8.4 provides an algorithm for recomputing the volatilities and correlations when a 
portfolio is based in a currency other than USD.

• Section 8.5 presents a methodology to calculate correlations when the yields or prices are 
sampled at different times, i.e., data recording is nonsynchronous.

 

8.1  Constructing RiskMetrics rates and prices

 

In this section we explain the construction of the underlying rates and prices that are used in the 
RiskMetrics calculations. Since the data represent only a subset of the most liquid instruments 
available in the markets, proxies should be used for the others. Recommendations on how to apply 
RiskMetrics to specific instruments are outlined in the paragraphs below.

 

8.1.1  Foreign exchange

 

RiskMetrics provides estimates of VaR statistics for returns on 31 currencies as measured against 
the US dollar (e.g., USD/DEM, USD/FRF) as well as correlations between returns. The datasets 
provided are therefore suited for estimating foreign exchange risk from a US dollar perspective. 

The methodology for using the data to measure foreign exchange risk from a currency perspective 
other than the US dollar is identical to the one described (Section 6.1.2) above but requires the 
input of revised volatilities and correlations. These modified volatilities and correlations can easily 
be derived from the original RiskMetrics datasets as described in Section 8.4. Also refer to the 
examples diskette.

Finally, measuring market exposure to currencies currently not included in the RiskMetrics data 
set will involve accessing underlying foreign exchange data from other sources or using one of the 
31 currencies as a proxy.

 

8.1.2  Interest rates

 

In RiskMetrics we describe the fixed income markets in terms of the price dynamics of zero cou-
pon constant maturity instruments. In the interest rate swap market there are quotes for constant 
maturities (e.g., 10-year swap rate). In the bond markets, constant maturity rates do not exist there-
fore we must construct them with the aid of a term structure model.
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The current data set provides volatilities and correlations for returns on money market deposits, 
swaps, and zero coupon government bonds in 33 markets. These parameters allow direct calcula-
tion of the volatility of cash flows. Correlations are provided between all RiskMetrics vertices and 
markets. 

 

8.1.2.1  Money market deposits 

 

The volatilities of price returns on money market deposits are to be used to estimate the market 
risk of all short-term cash flows (from one month to one year). Though they only cover one instru-
ment type at the short end of the yield curve, money market price return volatilities can be applied 
to measure the market risk of instruments that are highly correlated with money market deposits, 
such as Treasury bills or instruments that reprice off of rates such as the prime rate in the US or 
commercial paper rates.

 

1

 

8.1.2.2  Swaps

 

The volatilities of price returns on zero coupon swaps are to be used to estimate the market risk of   
interest rate swaps. We construct zero coupon swap prices and rates because they are required for 
the cashflow mapping methodology described in Section 6.2. We now explain how RiskMetrics 
constructs zero coupon swap prices (rates) from observed swap prices and rates by the method 
known as bootstrapping.

Suppose one knows the zero-coupon term structure, i.e., the prices of zero-coupon swaps 
, where each  

 

i 

 

= 1, …, n and  is the zero-coupon rate for the swap 
with maturity 

 

i

 

. Then it is straightforward to find the price of a coupon swap as

[8.1]

where  denotes the current swap rate on the n period swap. Now, in practice we observe the 
coupon term structure,  maturing at each coupon payment date. Using the coupon 
swap prices we can apply Eq. [8.1] to solve for the implied zero coupon term structure, i.e., zero 
coupon swap prices and rates. Starting with a 1-period zero coupon swap,  so 
that  or . Proceeding in an iterative manner, given the 
discount prices , we can solve for  and using the formula

[8.2]

The current RiskMetrics datasets do not allow differentiation between interest rate risks of instru-
ments of different credit quality; all market risk due to credit of equal maturity and currency is 
treated the same.

 

8.1.2.3  Zero coupon government bonds

 

The volatilities of price returns on zero coupon government bonds are to be used to estimate the 
market risk in government bond positions. Zero coupon prices (rates) are used because they are 
consistent with the cash flow mapping methodology described in Section 6.2. Zero coupon gov-
ernment bond prices can also be used as proxies for estimating the volatility of other securities 
when the appropriate volatility measure does not exist (corporate issues with maturities longer 
than 10 years, for example).

 

1
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Zero coupon government bond yield curves cannot be directly observed, they can only be implied 
from prices of a collection of liquid bonds in the respective market. Consequently, a term structure 
model must be used to estimate a synthetic zero coupon yield curve which best fits the collection 
of observed prices. Such a model generates zero coupon yields for arbitrary points along the yield 
curve. 

 

8.1.2.4  EMBI+

 

The J. P. Morgan Emerging Markets Bond Index Plus tracks total returns for traded external debt 
instruments in the emerging markets. It is constructed as a “composite” of its four markets: Brady 
bonds, Eurobonds, U.S. dollar local markets, and loans. The EMBI+ provides investors with a def-
inition of the market for emerging markets external-currency debt, a list of the traded instruments, 
and a compilation of their terms. U.S dollar issues currently make up more than 95% of the index 
and sovereign issues make up 98%. A fuller description of the EMBI+ can be found in the 
J. P. Morgan publication

 

 Introducing the Emerging Markets Bond Index Plus (EMBI+) 

 

dated 
July 12, 1995.

 

8.1.3  Equities

 

According to the current RiskMetrics methodology, equities are mapped to their domestic market 
indices (for example, S&P500 for the US, DAX for Germany, and CAC40 for Canada). That is to 
say, individual stock betas, along with volatilities on price returns of local market indices are used 
to construct VaR estimates (see Section 6.3.2.2) of individual stocks. The reason for applying the 
beta coefficient is that it measures the covariation between the return on the individual stock and 
the return on the local market index whose volatility and correlation are provided by RiskMetrics. 

 

8.1.4  Commodities

 

A commodity futures contract is a standardized agreement to buy or sell a commodity. The price to 
a buyer of a commodity futures contract depends on three factors:

1. the current spot price of the commodity,

2. the carrying costs of the commodity. Money tied up by purchasing and carrying a commod-
ity could have been invested in some risk-free, interest bearing instrument. There may be 
costs associated with purchasing a product in the spot market (transaction costs) and hold-
ing it until or consuming it at some later date (storage costs), and

3. the expected supply and demand for the commodity. 

The future price of a commodity differs from its current spot price in a way that is analogous to the 
difference between 1-year and overnight interest rates for a particular currency. From this perspec-
tive we establish a term structure of commodity prices similar to that of interest rates. 

The most efficient and liquid markets for most commodities are the futures markets. These mar-
kets have the advantage of bringing together not only producers and consumers, but also investors 
who view commodities as they do any other asset class. Because of the superior liquidity and the 
transparency of the futures markets, we have decided to use futures prices as the foundation for 
modeling commodity risk. This applies to all commodities except bullion, as described below. 

 

8.1.4.1  The need for commodity term structures

 

Futures contracts represent standard terms and conditions for delivery of a product at future dates. 
Recorded over time, their prices represent instruments with decreasing maturities. That is to say, if 
the price series of a contract is a sequence of expected values of a single price at a specific date in 
the future, then each consecutive price implies that the instrument is one day close to expiring.
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RiskMetrics constructs constant maturity contracts in the same spirit that it constructs constant 
maturity instruments for the fixed income market. Compared to the fixed income markets, how-
ever, commodity markets are significantly less liquid. This is particularly true for very short and 
very long maturities. Frequently, volatility of the front month contract may decline when the con-
tract is very close to expiration as it becomes uninteresting to trade for a small absolute gain, diffi-
cult to trade (a thin market may exist due to this limited potential gain) and, dangerous to trade 
because of physical delivery concerns. At the long end of the curve, trading liquidity is limited. 

Whenever possible, we have selected the maturities of commodity contracts with the highest 
liquidity as the vertices for volatility and correlation estimates. These maturities are indicated in 
Table 9.6 in Section 9.6.

In order to construct constant maturity contracts, we have defined two algorithms to convert 
observed prices into prices from constant maturity contracts:

• Rolling nearby: we simply use the price of the futures contract that expires closest to a fixed 
maturity.

• Linear interpolation: we linearly interpolate between the prices of the two futures contracts 
that straddle the fixed maturity.

 

8.1.4.2  Rolling nearby futures contracts

 

Rolling nearby contracts are constructed by concatenating contracts that expire, approximately 1, 
6, and 12 months (for instance) in the future. An example of this method is shown in Table 8.1.

Note that the price of the front month contract changes from the price of the March to the April 
contract when the March contract expires. (To conserve space certain active contracts were omit-
ted).

The principal problem with the rolling nearby method is that it may create discontinuous price 
series when the underlying contract changes: for instance, from February 23 (the March contract) 
to February 24 (the April contract) in the example above. This discontinuity usually is the largest 
for very short term contracts and when the term structure of prices is steep.

 

Table 8.1

 

Construction of rolling nearby futures prices for Light Sweet Crude (WTI)

 

Rolling nearby Actual contracts

 

1st 6th 12th Mar-94 Apr-94 Aug-94 Sep-94 Feb-95 Mar-95

17-Feb-94 13.93 15.08 16.17 13.93 14.13 15.08 15.28 16.17 16.3

18-Feb-94 14.23 15.11 16.17 14.23 14.3 15.11 15.3 16.17 16.3

19-Feb-94 14.21 15.06 16.13 14.21 14.24 15.06 15.25 16.13 16.27

23-Feb-94

 

14.24

 

15.23 16.33

 

14.24

 

14.39 15.23 15.43 16.33 16.47

24-Feb-94

 

14.41

 

15.44 16.46

 

14.41

 

15.24 15.44 16.32 16.46
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8.1.4.3  Interpolated futures prices

 

To address the issue of discontinuous price series, we use the simple rule of linear interpolation to 
define constant maturity futures prices, , from quoted futures prices:

[8.3]

where

The following example illustrates this method using the data for the heating oil futures contract. 
On April 26, 1994 the 1-month constant maturity equivalent heating oil price is calculated as 
follows:

[8.4]

Table 8.2 illustrates the calculation over successive days. Note that the actual results may vary 
slightly from the data represented in the table because of numerical rounding.

 

Table 8.2

 

Price calculation for 1-month CMF NY Harbor #2 Heating Oil

 

Contract expiration Days to expiration Weights (%) Contract prices cmf†

 

Date 1 nb* 1m cmf† 2 nb* 1 nb* 1m cmf 2 nb* 1 nb* 2 nb* Apr May Jun

22-Apr-94 29-Apr 23-May 31-May 7 30 39 23.33 76.67 47.87 47.86 48.15 47.862

25-Apr-94 29-Apr 25-May 31-May 4 30 36 13.33 86.67 48.23 48.18 48.48 48.187

26-Apr-94 29-Apr 26-May 31-May 3 30 35 10.00 90.00 47.37 47.38 47.78 47.379

28-Apr-94 29-Apr 30-May 31-May 1 30 33 3.33 96.67 46.52 46.57 47.02 47.005

29-Apr-94 29-Apr 31-May 31-May 0 30 32 0.00 100.00 47.05 47.09 47.49 47.490

2-May-94 31-May 1-Jun 30-Jun 29 30 59 96.67 3.33 — 47.57 47.95 47.583

3-May-94 31-May 2-Jun 30-Jun 28 30 58 93.33 6.67 — 46.89 47.29 46.917

4-May-94 31-May 3-Jun 30-Jun 27 30 57 90.00 10.00 — 46.66 47.03 46.697

* 1 nb and 2 nb indicate first and second nearby contracts, respectively.

† cmf means constant maturity future.
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Chart 8.1 illustrates the linear interpolation rule graphically.

Chart 8.1
Constant maturity future: price calculation

8.2  Filling in missing data

The preceding section described the types of rates and prices that RiskMetrics uses in its calcula-
tions. Throughout the presentation it was implicitly assumed that there were no missing prices. In 
practice, however, this is often not the case. Because of market closings in a specific location, 
daily prices are occasionally unavailable for individual instruments and countries. Reasons for the 
missing data include the occurrence of significant political or social events and technical problems 
(e.g., machine down time). 

Very often, missing data are simply replaced by the preceding day’s value. This is frequently the 
case in the data obtained from specialized vendors. Another common practice has simply been to 
exclude an entire date from which data were missing from the sample. This results in valuable data 
being discarded. Simply because one market is closed on a given day should not imply that data 
from the other countries are not useful. A large number of nonconcurrent missing data points 
across markets may reduce the validity of a risk measurement process.

Accurately replacing missing data is paramount in obtaining reasonable estimates of volatility and 
correlation. In this section we describe how missing data points are “filled-in”—by a process 
known as the EM algorithm—so that we can undertake the analysis set forth in this document. In 
brief, RiskMetrics applies the following steps to fill in missing rates and prices:

• Assume at any point in time that a data set consisting of a cross-section of returns (that may 
contain missing data) are multivariate normally distributed with mean µ and covariance 
matrix Σ. 

• Estimate the mean and covariance matrix of this data set using the available, observed data.

• Replace the missing data points by their respective conditional expectations, i.e., use the 
missing data’s expected values given current estimates of µ, Σ and the observed data. 
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8.2.1  Nature of missing data

We assume throughout the analysis that the presence of missing data occur randomly. Suppose that 
at a particular point in time, we have K return series and for each of the series we have T historical 
observations. Let Z denote the matrix of raw, observed returns. Z has T rows and K columns. Each 
row of Z is a Kx1 vector of returns, observed at any point in time, spanning all K securities.   
Denote the tth row of Z by zt for t = 1,2,...T. The matrix Z may have missing data points.

Define a complete data matrix R that consists of all the data points Z plus the “filled-in” returns for 
the missing observations. The tth row of R is denoted rt. Note that if there are no missing observa-
tions then zt=rt for all t=1,...,T. In the case where we have two assets (K=2) and three historical 
observations (T=3) on each asset, R takes the form:

[8.5]

where “T” denotes transpose.

8.2.2  Maximum likelihood estimation

For the purpose of filling in missing data it is assumed that at any period t, the return vector rt 
(Kx1) follows a multivariate normal distribution with mean vector µ and covariance matrix . 
The probability density function of rt is

[8.6]

It is assumed that this density function holds for all time periods, t = 1,2,...,T. Next, under the 
assumption of statistical independence between time periods, we can write the joint probability 
density function of returns given the mean and covariance matrix as follows

[8.7]

The joint probability density function describes the probability density for the 
data given a set of parameter values (i.e., µ and Σ). Define the total parameter vector θ = (µ,Σ). 
Our task is to estimate θ given the data matrix that contains missing data. To do so, we must derive 
the likelihood function of θ given the data. The likelihood function |  is similar in 
all respects to  except that it considers the parameters as random variables and 
takes the data as given. Mathematically, the likelihood function is equivalent to the probability 
density function. Intuitively, the likelihood function embodies the entire set of parameter values 
for an observed data set.

Now, for a realized sample of, say, exchange rates, we would want to know what set of parameter 
values most likely generated the observed data set. The solution to this question lies in maximum 
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likelihood estimation. In essence, the maximum likelihood estimates (MLE) θMLE are the 
parameter values that most likely generated the observed data matrix. 

θMLE is found by maximizing the likelihood function . In practice it is often eas-
ier to maximize natural logarithm of the likelihood function which is given by

[8.8]

with respect to θ. This translates into finding solutions to the following first order conditions:

[8.9]

The maximum likelihood estimators for the mean vector,  and covariance matrix  are

[8.10]

[8.11]

where  represents the sample mean taken over T time periods.

8.2.3  Estimating the sample mean and covariance matrix for missing data

When some observations of rt are missing, the maximum likelihood estimates θMLE are not avail-
able. This is evident from the fact that the likelihood function is not defined (i.e., it has no value) 
when it is evaluated at the missing data points. To overcome this problem, we must implement 
what is known as the EM algorithm.

Since its formal exposition (Dempster, Laird and Rubin, 1977) the expectation maximization or 
EM algorithm (hereafter referred to as EM) has been on of the most successful methods of estima-
tion when the data under study are incomplete (e.g., when some of the observations are missing). 
Among its extensive applications, the EM algorithm has been used to resolve missing data prob-
lems involving financial time series (Warga, 1992). For a detailed exposition of the EM algorithm 
and its application in finance see Kempthorne and Vyas (1994). 

Intuitively, EM is an iterative algorithm that operates as follows. 

• For a given set of (initial) parameter values, instead of evaluating the log likelihood function, 
(which is impossible, anyway) EM evaluates the conditional expectation of the latent (under-
lying) log likelihood function. The mathematical conditional expectation of the log-likelihood 
is taken over the observed data points.

• The expected log likelihood is maximized to yield parameter estimates . (The superscript 
“0” stands for the initial parameter estimate). This value is then substituted into the log likeli-
hood function and expectations are taken again, and new parameter estimates  are found. 
This iterative process is continued until the algorithm converges at which time final parameter 
estimates have been generated. For example, if the algorithm is iterated N+1 times then the 
sequence of parameter estimates  is generated. The algorithm stops 
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when adjacent parameter estimates are sufficiently close to one another, i.e., when  is 
sufficiently close to .

The first step in EM is referred to as the expectation or E-Step. The second step is the maximiza-
tion or M-step. EM iterates between these two steps, updating the E-Step from the parameter esti-
mates generated in the M-Step. For example, at the ith iteration of the algorithm, the following 
equations are solved in the M-Step:

[8.12a]  (the sample mean)

[8.12b]  (the sample covariance matrix)

To evaluate the expectations in these expressions (  and ), we make use 
of standard properties for partitioning a multivariate normal random vector. 

[8.13]

Here, one can think of  as the sample data with missing values removed and R as the vector of 
the underlying complete set of observations. Assuming that returns are distributed multivariate 
normal, the distribution of R conditional on  is multivariate normal with mean

[8.14]

and covariance matrix

[8.15]

Using Eq. [8.14] and Eq. [8.15] we can evaluate the E- and M- steps. The E -Step is given by

[8.16]

where

[8.17]

Notice that the expressions in Eq. [8.17] are easily evaluated since they depend on parameters that 
describe the observed and missing data. 

Given the values computed in the E-Step, the M-Step yields updates of the mean vector and cova-
riance matrix.
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[8.18]

Notice that summing over t implies that we are adding “down” the columns of the data 
matrix R. For a practical, detailed example of the EM algorithm see Johnson and Wichern (1992, 
pp. 203–206).

A powerful result of EM is that when a global optimum exists, the parameter estimates from the 
EM algorithm converge to the ML estimates. That is, for a sufficiently large number of iterations, 
EM converges to . Thus, the EM algorithm provides a way to calculate the ML estimates of 
the unknown parameter even if all of the observations are not available. 

The assumption that the time series are generated from a multivariate normal distribution is innoc-
uous. Even if the true underlying distribution is not normal, it follows from the theory of pseudo-
maximum likelihood estimation that the parameter estimates are asymptotically consistent (White, 
1982) although not necessarily asymptotically efficient. That is, it has been shown that the pseudo-
MLE obtained by maximizing the unspecified log likelihood as if it were correct produces a con-
sistent estimator despite the misspecification. 

8.2.4  An illustrative example

A typical application of the EM algorithm is filling in missing values resulting from a holiday in a 
given market. We applied the algorithm outlined in the section above to the August 15 Assumption 
holiday in the Belgian government bond market. While most European bond markets were open 
on that date, including Germany and the Netherlands which show significant correlation with Bel-
gium, no data was available for Belgium. 

A missing data point in an underlying time series generates two missing points in the log change 
series as shown below (from t−1 to t as well as from t to t + 1). Even though it would be more 
straightforward to calculate the underlying missing value through the EM algorithm and then gen-
erate the two missing log changes, this would be statistically inconsistent with our basic assump-
tions on the distribution of data.

In order to maintain consistency between the underlying rate data and the return series, the adjust-
ment for missing data is performed in three steps. 

1. First the EM algorithm generates the first missing percentage change, or −0.419% in the 
example below. 

2. From that number, we can back out the missing underlying yield from the previous day’s 
level, which gives us the 8.445% in the example below. 

3. Finally, the second missing log change can be calculated from the revised underlying yield 
series. 
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Table 8.3 presents the underlying rates on the Belgian franc 10-year zero coupon bond, the corre-
sponding EM forecast, and the adjusted “filled-in” rates and returns.

Chart 8.2 presents a time series of the Belgian franc 10-year rate before and after the missing 
observation was filled in by the EM algorithm.

Chart 8.2
Graphical representation
10-year zero coupon rates; daily % change 

Table 8.3
Belgian franc 10-year zero coupon rate
application of the EM algorithm to the 1994 Assumption holiday in Belgium

Observed

EM forecast

Adjusted

Collection date 10-year rate Return (%) 10-year rate Return (%)

11-Aug-94 8.400 2.411 8.410 2.411

12-Aug-94 8.481 0.844 8.481 0.844

15-Aug-94 missing missing −0.419 8.445* −0.419†

16-Aug-94 8.424 missing 8.424 −0.254‡

17-Aug-94 8.444 0.237 8.444 0.237

18-Aug-94 8.541 1.149 8.541 1.149

* Filled-in rate based on EM forecast.

† From EM.
‡ Return now available because prior rate (*) has been filled in.

• ♦

1-Aug 3-Aug 5-Aug 9-aug 11-Aug 15-Aug 17-Aug
-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Germany

Belgium

•

1-Aug 3-Aug 5-Aug 9-aug 11-Aug 15-Aug 17-Aug
6.5

7.0

7.5

8.0

8.5

9.0

Belgium

Germany

Daily percent change

Yield



176 Chapter 8.  Data and related statistical issues

RiskMetrics  —Technical Document
Fourth Edition

8.2.5  Practical considerations

A major part of implementing the EM algorithm is to devise the appropriate input data matrices 
for the EM. From both a statistical and practical perspective we do not run EM on our entire time 
series data set simultaneously. Instead we must partition the original data series into non-overlap-
ping sub-matrices. Our reasons for doing so are highlighted in the following example. 

Consider a TxK data matrix where T is the number of observations and K is the number of price 
vectors. Given this data matrix, the EM must estimate K+K(K+1)/2 parameters. Consequently, to 
keep the estimation practical K cannot be too large. To get a better understanding of this issue con-
sider Chart 8.3, which plots the number of parameters estimated by EM (K +K(K+1)/2) against the 
number of variables. As shown, the number of estimated parameters grows rapidly with the num-
ber of variables. 

Chart 8.3
Number of variables used in EM and parameters required
number of parameters (Y-axis) versus number of variables (X-axis)

The submatrices must be chosen so that vectors within a particular submatrix are highly correlated 
while those vectors between submatrices are not significantly correlated. If we are allowed to 
choose the submatrices in this way then EM will perform as if it had the entire original data 
matrix. This follows from the fact that the accuracy of parameter estimates are not improved by 
adding uncorrelated vectors. 

In order to achieve a logical choice of submatrices, we classify returns into the following catego-
ries:  (1) foreign exchange, (2) money market, (3) swap, (4) government bond, (5) equity, and
(6) commodity.

We further decompose categories 2, 3, 4, and 6 as follows. Each input data matrix corresponds to a 
particular country or commodity market. The rows of this matrix correspond to time while the col-
umns identify the maturity of the asset. Foreign exchange, equity indices, and bullion are the 
exceptions:  all exchange rates, equity indices, and bullion are grouped into three separate 
matrices.

8.3  The properties of correlation (covariance) matrices and VaR

In Section 6.3.2 it was shown how RiskMetrics applies a correlation matrix to compute the VaR of 
an arbitrary portfolio. In particular, the correlation matrix was used to compute the portfolio’s 
standard deviation. VaR was then computed as a multiple of that standard deviation. In this section 
we investigate the properties of a generic correlation matrix since it is these properties that will 
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determine whether the portfolio’s standard deviation forecast is meaningful.2 Specifically, we will 
establish conditions3 that guarantee the non-negativity of the portfolio’s variance, i.e., .

At first glance it may not seem obvious why it is necessary to understand the conditions under 
which the variance is non-negative. However, the potential sign of the variance, and consequently 
the VaR number, is directly related to the relationship between (1) the number of individual price 
return series (i.e., cashflows) per portfolio and (2) the number of historical observations on each of 
these return series. In practice there is often a trade-off between the two since, on the one hand, 
large portfolios require the use of many time series, while on the other hand, large amounts of his-
torical data are not available for many time series.

Below, we establish conditions that ensure the non-negativity of a variance that is constructed 
from correlation matrices based on equally and exponentially weighted schemes. We begin with 
some basic definitions of covariance and correlation matrices.

8.3.1  Covariance and correlation calculations

In this section we briefly review the covariance and correlation calculations based on equal and 
exponential moving averages. We do so in order to establish a relationship between the underlying 
return data matrix and the properties of the corresponding covariance (correlation) matrix.

8.3.1.1  Equal weighting scheme
Let X denote a T x K data matrix, i.e., matrix of returns. X has T rows and K columns. 

[8.19]

Each column of X is a return series corresponding to a particular price/rate (e.g., USD/DEM FX 
return) while each row corresponds to the time (t = 1,...,T) at which the return was recorded. If we 
compute standard deviations and covariances around a zero mean, and weigh each observation 
with probability 1/T, we can define the covariance matrix simply by

[8.20]

where  is the transpose of X.

Consider an example when T = 4 and K = 2.

2 By properties, we mean specifically whether the correlation matrix is positive definite, positive semidefinite or 
otherwise (these terms will be defined explicitly below)

3 All linear algebra propositions stated below can be found in Johnston, J. (1984).
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[8.21]

An estimate of the covariance matrix is given by 

[8.22]

Next, we show how to compute the correlation matrix R. Suppose we divide each element of the 
matrix X by the standard deviation of the series to which it belongs; i.e., we normalize each series 
of X to have a standard deviation of 1. Call this new matrix with the standardized values Y. 

The correlation matrix is

[8.23]

where

[8.24]

As in the previous example, if we set T = 4 and K = 2, the correlation matrix is

[8.25]

X

r11 r12

r21 r22

r31 r32

r41 r42

  X
T r11 r21 r31 r41

r12 r22 r32 r42

  ==

Σ X
T

X
T

-----------

1
4
--- ri1

2

i 1=

4

∑ 1
4
--- ri1r

i2
i 1=

4

∑
1
4
--- ri1r

i2
i 1=

4

∑ 1
4
--- ri2

2

i 1=

4

∑

σ1
2 σ12

2

σ21
2 σ2

2
== =

Y

r11

σ1
------- … … …

r1K

σK
--------

… … … … …

… …
rJJ

σJ
------- … …

… … … … …
rT1

σ1
------- … … …

rTK

σK
--------

=

 σ j
1
T
---= r

2
ij

i 1=

T

∑ j 1 2 …k, ,=

R
Y

T
Y

T
----------=

R
Y

T
Y

T
----------

1
4
---

ri1
2

σ1
------

i 1=

4

∑ 1
4
---

ri1r
i2

σ1σ2
-------------

i 1=

4

∑
1
4
---

ri1r
i2

σ1σ2
-------------

i 1=

4

∑ 1
4
---

ri2
2

σ2
------

i 1=

4

∑

1 ρ12

ρ21 1
== =



Sec. 8.3  The properties of correlation (covariance) matrices and VaR 179

Part IV:  RiskMetrics Data Sets

8.3.1.2  Exponential weighting scheme
We now show how similar results are obtained by using exponential weighting rather than equal 
weighting. When computing the covariance and correlation matrices, use, instead of the data 
matrix X, the augmented data matrix  shown in Eq. [8.26].

[8.26]

Now, we can define the covariance matrix simply as

[8.27]

To see this, consider the example when T = 4 and K = 2.

[8.28]

The exponentially weighted correlation matrix is computed just like the simple correlation matrix. 
The standardized data matrix and the correlation matrix are given by the following expressions.

[8.29]
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where 

 

and the correlation matrix is

[8.30]

which is the exact analogue to Eq. [8.25]. Therefore, all results for the simple correlation matrix 
carry over to the exponential weighted matrix. 

Having shown how to compute the covariance and correlation matrices, the next step is to show 
how the properties of these matrices relate to the VaR calculations.

We begin with the definition of positive definite and positive semidefinite matrices. 

[8.31] If  0 for all nonzero vectors , then C is said to be positive (negative) 
definite. 

[8.32] If  0 for all nonzero vectors , then C is said to be positive semidefinite 
(nonpositive definite).

Now, referring back to the VaR calculation presented in Section 6.3.2, if we replace the vector  
by the weight vector  and C by the correlation matrix, , then it should be obvious 
why we seek to determine whether the correlation matrix is positive definite or not. Specifically, 

• If the correlation matrix R is positive definite, then VaR will always be positive. 

• If R is positive semidefinite, then VaR could be zero or positive. 

• If R is negative definite,4 then VaR will be negative.

8.3.2  Useful linear algebra results as applied to the VaR calculation

In order to define a relationship between the dimensions of the data matrix X (or ) (i.e., the num-
ber of rows and columns of the data matrix) and the potential values of the VaR estimates, we must 
define the rank of X. 

The rank of a matrix X, denoted r(X), is the maximum number of linearly independent rows (and 
columns) of that matrix. The rank of a matrix can be no greater than the minimum number of rows 
or columns. Therefore, if X is T x K with T > K (i.e., more rows than columns) then r(X) K. In 
general, for an T x K matrix X, r(X) min(T,K). 

4 We will show below that this is not possible.
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A useful result which equates the ranks of different matrices is:

[8.33]  

As applied to the VaR calculation, the rank of the covariance matrix Σ = XTX is the same as the 
rank of X.

We now refer to two linear algebra results which establish a relationship between the rank of the 
data matrix and the range of VaR values. 

[8.34] If X is T x K with rank K < T, then XTX is positive definite and XXT is positive semidef-
inite.

[8.35]  If X is T x K with rank J < min(T,K) then XTX and XXT is positive semidefinite.

Therefore, whether Σ is positive definite or not will depend on the rank of the data matrix X. 

Based on the previous discussion, we can provide the following results for RiskMetrics VaR calcu-
lations. 

• Following from Eq. [8.33], we can deduce the rank of R simply by knowing the rank of Y, the 
standardized data matrix. 

• The rank of the correlation matrix R can be no greater than the number of historical data 
points used to compute the correlation matrix, and

• Following from Eq. [8.34], if the data matrix of returns has more rows than columns and the 
columns are independent, then R is positive definite and VaR > 0. If not, then Eq. [8.35] 
applies, and R is positive semidefinite and .

In summary, a covariance matrix, by definition, is at least positive semidefinite. Simply put, posi-
tive semidefinite is the multi-dimensional analogue to the definition, .

8.3.3  How to determine if a covariance matrix is positive semi-definite5

Finally, we explain a technique to determine whether a correlation matrix is positive (semi) defi-
nite. We would like to note at the beginning that due to a variety of technical issues that are beyond 
the scope of this document, the suggested approach described below known as the singular value 
decomposition (SVD) is to serve as a general guideline rather than a strict set of rules for deter-
mining the “definiteness” of a correlation matrix.

The singular value decomposition (SVD)

The T x K standardized data matrix Y ( ) may be decomposed as6  where 
 and D is diagonal with non-negative diagonal elements , 

called the singular values of Y. All of the singular values are . 

5 This section is based on Belsley (1981), Chapter 3.

6 In this section we work with the mean centered and standardized matrix Y instead of X since Y is the data matrix 
on which an SVD should be applied.
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A useful result is that the number of non-zero singular values is a function by the rank of Y. Spe-
cifically, if Y is full rank, then all K singular values will be non zero. If the rank of Y is J=K-2, 
then there will be J positive singular values and two zero singular values.

In practice, it is difficult to determine the number of zero singular values. This is due to that fact 
that computers deal with finite, not exact arithmetic. In other words, it is difficult for a computer to 
know when a singular value is really zero. To avoid having to determine the number of zero singu-
lar values, it is recommended that practitioners should focus on the condition number of Y which 
is the ratio of the largest to smallest singular values, i.e., 

[8.36]  (condition number)

Large condition numbers point toward ‘ill-condition’ matrices, i.e., matrices that are nearly not 
full rank. In other words, a large  implies that there is a strong degree of collinearity between the 
columns of Y. More elaborate tests of collinearity can be found in Belsley (1981). 

We now apply the SVD to two data matrices. The first data matrix consists of time series of price 
returns on 10 USD government bonds for the period January 4, 1993–October 14, 1996 (986 
observations). The columns of the data matrix correspond to the price returns on the 2yr, 3yr, 4yr, 
5yr, 7yr, 9yr, 10yr, 15yr, 20yr, and 30yr USD government bonds. The singular values for this data 
matrix are given in Table 8.4. 

The condition number, , is 497.4. We conduct a similar experiment on a data matrix that consists 
of 14 equity indices.7 The singular values are shown in Table 8.5. The data set consists of a total 
number of 790 observations for the period October 5, 1996 through October 14, 1996. 

For this data matrix, the condition number, , is 4.28. Notice how much lower the condition num-
ber is for equities than it is for the US yield curve. This result should not be surprising since we 
expect the returns on different bonds along the yield curve to move in a similar fashion to one 
another relative to equity returns. Alternatively expressed, the relatively large condition number 
for the USD yield curve is indicative of the near collinearity that exists among returns on US gov-
ernment bonds. 

7 For the countries Austria, Australia, Belgium, Canada, Switzerland, Spain, France, Finland, Great Britain, Hong 
Kong, Ireland, Italy, Japan and the Netherlands.

Table 8.4
Singular values for USD yield curve data matrix

3.045 0.051
0.785 0.043
0.271 0.020
0.131 0.017
0.117 0.006

Table 8.5
Singular values for equity indices returns

2.329 0.873 0.696
1.149 0.855 0.639
0.948 0.789 0.553
0.936 0.743 0.554
0.894 0.712
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The purpose of the preceding exercise was to demonstrate how the interrelatedness of individual 
time series affects the condition of the resulting correlation matrix. As we have shown with a sim-
ple example, highly correlated data (USD yield curve data) leads to high condition numbers rela-
tive to less correlated data (equity indices). 

In concluding, due to numerical rounding errors it is not unlikely for the theoretical properties of a 
matrix to differ from its estimated counterpart. For example, covariance matrices are real, sym-
metric and non-positive definite. However, when estimating a covariance matrix we may find that 
the positive definite property is violated. More specifically, the matrix may not invert. Singularity 
may arise because certain prices included in a covariance matrix form linear combinations of other 
prices. Therefore, if covariance matrices fail to invert they should be checked to determine 
whether certain prices are linear functions of others. Also, the scale of the matrix elements may be 
such that it will not invert. While poor scaling may be a source of problems, it should rarely be the 
case. 

8.4  Rebasing RiskMetrics volatilities and correlations

A user’s base currency will dictate how RiskMetrics standard deviations and correlations will be 
used. For example, a DEM-based investor with US dollar exposure is interested in fluctuations in 
the currency USD/DEM whereas the same investor with an exposure in Belgium francs is inter-
ested in fluctuations in BEF/DEM. Currently, RiskMetrics volatility forecasts are expressed in US 
dollars per foreign currency such as USD/DEM for all currencies. To compute volatilities on cross 
rates such as BEF/DEM, users must make use of the RiskMetrics provided USD/DEM and USD/
BEF volatilities as well as correlations between the two. We now show how to derive the variance 
(standard deviation) of the BEF/DEM position. Let r1,t and r2,t represent the time t returns on 
USD/DEM and USD/BEF, respectively, i.e., 

[8.37]  and 

The cross rate BEF/DEM is defined as 

[8.38]

 The variance of the cross rate r3t is given by 

[8.39]

Equation [8.39] holds for any cross rate that can be defined as the arithmetic difference in two 
other rates.

We can find the correlation between two cross rates as follows. Suppose we want to find the corre-
lation between the currencies BEF/DEM and FRF/DEM. It follows from Eq. [8.38] that we first 
need to define these cross rates in terms of the returns used in RiskMetrics. 

[8.40a] ,                       , 

[8.40b] ,       

r1t

USD DEM⁄( ) t

USD DEM⁄( ) t 1–
---------------------------------------------ln= r2t

USD BEF⁄( ) t

USD BEF⁄( ) t 1–
-------------------------------------------ln=

r3t

BEF DEM⁄( ) t

BEF DEM⁄( ) t 1–
-------------------------------------------- r1t r2t–=ln=

σ3 t,
2 σ1 t,

2 σ2 t,
2

2σ12 t,
2

–+=

r1 t,
USD DEM⁄( ) t

USD DEM⁄( ) t 1–
---------------------------------------------ln= r2 t,

USD BEF⁄( ) t

USD BEF⁄( ) t 1–
-------------------------------------------ln=

r3 t,
BEF DEM⁄( ) t

BEF DEM⁄( ) t 1–
-------------------------------------------- r1 t, r2 t,–=ln= r4 t,

USD FRF⁄( ) t

USD FRF⁄( ) t 1–
-------------------------------------------ln=



184 Chapter 8.  Data and related statistical issues

RiskMetrics  —Technical Document
Fourth Edition

and

[8.40c]                

The correlation between BEF/DEM and USD/FRF (r3,t and r4,t) is the covariance of r3,t and r4,t 
divided by their respective standard deviations, mathematically,

[8.41]

Analogously, the correlation between USD/DEM and FRF/DEM is 

[8.42]

8.5  Nonsynchronous data collection

Estimating how financial instruments move in relation to each other requires data that are collated, 
as much as possible, consistently across markets. The point in time when data are recorded is a 
material issue, particularly when estimating correlations. When data are observed (recorded) at 
different times they are known to be nonsynchronous.

Table 8.7 (pages 186–187) outlines how the data underlying the time series used by RiskMetrics 
are recorded during the day. It shows that most of the data are taken around 16:00 GMT. From the 
asset class perspective, we see that potential problems will most likely lie in statistics relating to 
the government bond and equity markets.

To demonstrate the effect of nonsynchronous data on correlation forecasts, we estimated the 
1-year correlation of daily movements between USD 10-year zero yields collected every day at the 
close of business in N.Y. with two series of 3-month money market rates, one collected by the 
British Bankers Association at 11:00 a.m. in London and the other collected by J.P. Morgan at the 
close of business in London (4:00 p.m.). This data is presented in Table 8.6. 

Table 8.6
Correlations of daily percentage changes with USD 10-year
August 1993 to June 1994 – 10-year USD rates collated at N.Y. close

LIBOR

Correlation at London time:

11 a.m. 4 p.m.

1-month −0.012 0.153

3-month 0.123 0.396

6-month 0.119 0.386

12-month 0.118 0.622
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None of the data series are synchronous, but the results show that the money market rates collected 
at the London close have higher correlation to the USD 10-year rates than those collected in the 
morning.

Getting a consistent view of how a particular yield curve behaves depends on addressing the tim-
ing issue correctly. While this is an important factor in measuring correlations, the effect of timing 
diminishes as the time horizon becomes longer. Correlating monthly percentage changes may not 
be dependent on the condition that rates be collected at the same time of day. Chart 8.4 shows how 
the correlation estimates against USD 10-year zeros evolve for the two money market series men-
tioned above when the horizon moves from daily changes to monthly changes. Once past the 10-
day time interval, the effect of timing differences between the two series becomes negligible.

Chart 8.4
Correlation forecasts vs. return interval
3-month USD LIBOR vs. 10-year USD government bond zero rates

In a perfect world, all rates would be collected simultaneously as all markets would trade at the 
same time. One may be able to adapt to nonsynchronously recorded data by adjusting either the 
underlying return series or the forecasts that were computed from the nonsynchronous returns. In 
this context, data adjustment involves extensive research. The remaining sections of this document 
present an algorithm to adjust correlations when the data are nonsynchronous.
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Table 8.7
Schedule of data collection

London time,
a.m.

Country
Instrument 
summary 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00

Australia FX/Eq/LI/Sw/Gv Eq Gv
Hong Kong FX/Eq/LI/Sw LI Eq Sw
Indonesia FX/Eq/LI/Sw Eq LI/Sw
Japan FX/Eq/LI/Sw/Gv Gv Eq
Korea FX/Eq Eq
Malaysia FX/Eq/LI/Sw Eq LI/Sw
New Zealand FX/Eq/LI/Sw/Gv Eq LI/Gv Sw
Philippines FX/Eq Eq
Singapore FX/Eq/LI/Sw/Gv LI/Eq
Taiwan FX/Eq/
Thailand FX/Eq/LI/Sw Eq LI/Sw

Austria FX/Eq/LI Eq
Belgium FX/Eq/LI/Sw/Gv
Denmark FX/Eq/LI/Sw/Gv
Finland FX/Eq/LI/Sw/Gv
France FX/Eq/LI/Sw/Gv
Germany FX/Eq/LI/Sw/Gv
Ireland FX/Eq/LI/Sw/Gv
Italy FX/Eq/LI/Sw/Gv
Netherlands FX/Eq/LI/Sw/Gv
Norway FX/Eq/LI/Sw/Gv
Portugal FX/Eq/LI/Sw/Gv
South Africa FX/Eq/LI//Gv
Spain FX/Eq/LI/Sw/Gv
Sweden FX/Eq/LI/Sw/Gv
Switzerland FX/Eq/LI/Sw/Gv
U.K. FX/Eq/LI/Sw/Gv
ECU FX/ /LI/Sw/Gv

Argentina FX/Eq
Canada FX/Eq/LI/Sw/Gv
Mexico FX/Eq/LI
U.S. FX/Eq/LI/Sw/Gv

FX = Foreign Exchange, Eq = Equity Index, LI = LIBOR, Sw = Swap, Gv = Government
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Table 8.7 (continued)
Schedule of data collection

London time,
p.m.

1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00
Instrument 
summary Country

FX/LI/Sw FX/Eq/LI/Sw/Gv Australia
FX FX/Eq/LI/Sw Hong Kong
FX FX/Eq/LI/Sw Indonesia

FX/LI/Sw FX/Eq/LI/Sw/Gv Japan
FX FX/Eq Korea
FX FX/Eq/LI/Sw Malaysia
FX FX/Eq/LI/Sw/Gv New Zealand
FX FX/Eq Philippines
FX FX/Eq/LI/Sw/Gv Singapore
FX FX/Eq Taiwan
FX FX/Eq/LI/Sw Thailand

FX/LI FX/Eq/LI Austria
Eq FX/LI/Sw/Gv FX/Eq/LI/Sw/Gv Belgium

Eq Gv FX/LI/Sw FX/Eq/LI/Sw/Gv Denmark
Eq FX/LI FX/Eq/LI/Sw/Gv Finland
Gv FX/LI/Sw/Eq FX/Eq/LI/Sw/Gv France

FX/LI/Sw/Gv/Eq FX/Eq/LI/Sw/Gv Germany
FX/LI/Sw/Gv Eq FX/Eq/LI/Sw/Gv Ireland

FX/LI/Sw/Gv/Eq FX/Eq/LI/Sw/Gv Italy
FX/LI/Sw/Gv/Eq FX/Eq/LI/Sw/Gv Netherlands

Eq FX/LI FX/Eq/LI/Sw/Gv Norway
FX/LI/Eq FX/Eq/LI/Sw/Gv Portugal

Eq Gv FX/LI FX/Eq/LI//Gv South Africa
FX/LI/Sw Gv/Eq FX/Eq/LI/Sw/Gv Spain

Gv FX/LI/Sw/Eq FX/Eq/LI/Sw/Gv Sweden
FX/LI/Sw/Eq FX/Eq/LI/Sw/Gv Switzerland
FX/LI/Sw/Eq Gv FX/Eq/LI/Sw/Gv U.K.

FX/LI/Sw Gv FX/ /LI/Sw/Gv ECU

FX Eq FX/Eq Argentina
FX/LI/Sw Gv Eq FX/Eq/LI/Sw/Gv Canada

FX/LI Eq FX/Eq/LI Mexico
FX/LI/Sw Gv Eq FX/Eq/LI/Sw/Gv U.S.

FX = Foreign Exchange, Eq = Equity Index, LI = LIBOR, Sw = Swap, Gv = Government
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8.5.1  Estimating correlations when the data are nonsynchronous

The expansion of the RiskMetrics data set has increased the amount of underlying prices and rates 
collected in different time zones. The fundamental problem with nonsynchronous data collection 
is that correlation estimates based on these prices will be underestimated. And estimating correla-
tions accurately is an important part of the RiskMetrics VaR calculation because standard devia-
tion forecasts used in the VaR calculation depends on correlation estimates. 

Internationally diversified portfolios are often composed of assets that trade in different calendar 
times in different markets. Consider a simple example of a two stock portfolio. Stock 1 trades only 
on the New York Stock Exchange (NYSE 9:30 am to 4:00 pm EST) while stock 2 trades exclu-
sively on the Tokyo stock exchange (TSE 7:00 pm to 1:00 am EST). Because these two markets 
are never open at the same time, stocks 1 and 2 cannot trade concurrently. Consequently, their 
respective daily closing prices are recorded at different times and the return series for assets 1 and 
2, which are calculated from daily close-to-close prices, are also nonsynchronous.8

Chart 8.5 illustrates the nonsynchronous trading hours of the NYSE and TSE. 

Chart 8.5
Time chart
NY and Tokyo stock markets

8 This terminology began in the nonsynchronous trading literature. See, Fisher, L. (1966) and Sholes, M. and Will-
iams (1977). Nonsynchronous trading is often associated with the situation when some assets trade more fre-
quently than others [see, Perry, P. (1985)]. Lo and MacKinlay (1990) note that “the nonsynchronicity problem 
results from the assumption that multiple time series are sampled simultaneously when in fact the sampling is non-
synchronous.” For a recent discussion of the nonsynchronous trading issue see Boudoukh, et. al (1994).
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We see that the Tokyo exchange opens three hours after the New York close and the New York 
exchange reopens 81/2 hours after the Tokyo close. Because a new calendar day arrives in Tokyo 
before New York, the Tokyo time is said to precede New York time by 14 hours (EST). 

RiskMetrics computes returns from New York and Tokyo stock markets using daily close-to-close 
prices. The black orbs in Chart 8.5 mark times when these prices are recorded. Note that the orbs 
would line up with each other if returns in both markets were recorded at the same time.

The following sections will:

1. Identify the problem and verify whether RiskMetrics really does underestimate certain cor-
relations.

2. Present an algorithm to adjust the correlation estimates.

3. Test the results against actual data.

8.5.1.1  Identifying the problem: correlation and nonsynchronous returns
Whether different return series are recorded at the same time or not becomes an issue when these 
data are used to estimate correlations because the absolute magnitude of correlation (covariance) 
estimates may be underestimated when calculated from nonsynchronous rather than synchronous 
data. Therefore, when computing correlations using nonsynchronous data, we would expect the 
value of observed correlation to be below the true correlation estimate. In the following analysis 
we first establish the effect that nonsynchronous returns have on correlation estimates and then 
offer a method for adjusting correlation estimates to account for the nonsynchronicity problem.

The first step in checking for downward bias is estimating what the “true” correlation should be. 
This is not trivial since these assets do not trade in the same time zone and it is often not possible 
to obtain synchronous data. For certain instruments, however, it is possible to find limited datasets 
which can provide a glimpse of the true level of correlation; this data would then become the 
benchmark against which the methodology for adjusting nonsynchronous returns would be tested. 

One of these instruments is the US Treasury which has the advantage of being traded 24 hours a 
day. While we generally use nonsynchronous close-to-close prices to estimate RiskMetrics corre-
lations, we obtained price data for both the US and Australian markets quoted in the Asian time 
zone (August 1994 to June 1995). We compared the correlation based on synchronous data with 
correlation estimates that are produced under the standard RiskMetrics data (using the nonsyn-
chronous US and Australian market close). Plots of the two correlation series are shown in 
Chart 8.6. 
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Chart 8.6
10-year Australia/US government bond zero correlation
based on daily RiskMetrics close/close data and 0:00 GMT data

While the changes in correlation estimates follow similar patterns over time (already an interesting 
result in itself), the correlation estimates obtained from price data taken at the opening of the mar-
kets in Asia are substantially higher. One thing worth noting however, is that while the synchro-
nous estimate appears to be a better representation of the “true” level of correlation, it is not 
necessarily equal to the true correlation. While we have adjusted for the timing issue, we may have 
introduced other problems in the process, such as the fact that while US Treasuries trade in the 
Asian time zone, the market is not as liquid as during North American trading hours and the prices 
may therefore be less representative of “normal trading” volumes. Market segmentation may also 
affect the results. Most investors, even those based in Asia put on positions in the US market dur-
ing North American trading hours. U.S. Treasury trading in Asia is often the result of hedging.

Nevertheless, from a risk management perspective, this is an important result. Market participants 
holding positions in various markets including Australia (and possibly other Asian markets) would 
be distorting their risk estimates by using correlation estimates generated from close of business 
prices.

8.5.1.2  An algorithm for adjusting correlations 
Correlation is simply the covariance divided by the product of two standard errors. Since the stan-
dard deviations are unaffected by nonsynchronous data, correlation is adversely affected by non-
synchronous data through its covariance. This fact simplifies the analysis because under the 
current RiskMetrics assumptions, long horizon covariance forecasts are simply the 1-day covari-
ance forecasts multiplied by the forecast horizon.

Let us now investigate the effect that nonsynchronous trading has on correlation estimates for his-
torical rate series from the United States (USD), Australian (AUD) and Canadian (CAD) govern-
ment bond markets. In particular, we focus on 10-year government bond zero rates. Table 8.8 
presents the time that RiskMetrics records these rates (closing prices). 

February March April May June
-0.2

0

0.2

0.4

0.6

0.8

1.0

Synchronous

RiskMetrics

Correlation

1995



Sec. 8.5  Nonsynchronous data collection 191

Part IV:  RiskMetrics Data Sets

Note that the USD and CAD rates are synchronous while the USD and AUD, and CAD and AUD 
rates are nonsynchronous. We chose to analyze rates in these three markets to gain insight as to 
how covariances (correlations) computed from synchronous and nonsynchronous return series 
compare with each other. For example, at any time t, the observed return series,  and 

 are nonsynchronous, whereas  and  are synchronous. We are interested in 
measuring the covariance and autocovariance of these return series.

Table 8.9 provides summary statistics on 1-day covariance and autocovariance forecasts for the 
period May 1993 to May 1995. The numbers in the table are interpreted as follows: over the sam-
ple period, the average covariance between USD and AUD 10-year zero returns, 

 is 0.16335 while the average covariance between current USD 10-year zero 
returns and lagged CAD 10-year zero returns (autocovariance) is −0.0039. 

The results show that when returns are recorded nonsynchronously, the covariation between 
lagged 1-day USD returns and current AUD returns (0.5685) is larger, on average, than the covari-
ance (0.1633) that would typically be reported. Conversely, for the USD and CAD returns, the 
autocovariance estimates are negligible relative to the covariance estimates. This evidence points 
to a typical finding: first order autocovariances of returns for assets that trade at different times are 
larger than autocovariances for returns on assets that trade synchronously.9

9 One possible explanation for the large autocovariances has to do with information flows between markets. The lit-
erature on information flows between markets include studies analyzing Japanese and US equity markets (Jaffe 
and Westerfield (1985), Becker, et.al, (1992), Lau and Diltz, (1994)). Papers that focus on many markets include 
Eun and Shim, (1989).

Table 8.8
RiskMetrics closing prices
10-year zero bonds

Country EST London

USD 3:30 p.m. 8:00 p.m.

CAD 3:30 p.m. 8:00 p.m.

AUD 2:00 a.m. 7:00 a.m.

Table 8.9
Sample statistics on RiskMetrics daily covariance forecasts
10-year zero rates; May 1993 – May 1995

Daily forecasts Mean Median Std. dev. Max Min

0.1633* 0.0995 0.1973 0.8194 −0.3396

0.5685 0.4635 0.3559 1.7053 0.1065

0.0085 −0.0014 0.1806 0.5667 −0.6056

0.6082 0.4912 0.3764 1.9534 0.1356

0.0424 0.0259 0.1474 0.9768 −0.2374

−0.0039 −0.0003 0.1814 0.3333 −0.7290

* All numbers are multiplied by 10,000.
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As a check of the results above and to understand how RiskMetrics correlation forecasts are 
affected by nonsynchronous returns, we now focus on covariance forecasts for a specific day. We 
continue to use USD, CAD and AUD 10-year zero rates. Consider the 1-day forecast period 
May 12 to May 13, 1995. In RiskMetrics, these 1-day forecasts are available at 10 a.m. EST on 
May 12. The most recent USD (CAD) return is calculated over the period 3:30 pm EST on 5/10 to 
3:30 pm EST on 5/11 whereas the most recent AUD return is calculated over the period 1:00 am 
EST on 5/10 to 1:00 am EST on 5/11. Table 8.10 presents covariance forecasts for May 12 along 
with their standard errors. 

In agreement with previous results, we find that while there is strong covariation between lagged 
USD returns  and current AUD returns (as shown by large t-statistics), the 
covariation between lagged USD and CAD returns is not nearly as strong. The results also show 
evidence of covariation between lagged AUD returns and current USD returns. 

The preceding analysis describes a situation where the standard covariances calculated from non-
synchronous data do not capture all the covariation between returns. By estimating autocovari-
ances, it is possible to measure the 1-day lead and lag effects across return series. With 
nonsynchronous data, these lead and lag effects appear quite large. In other words, current and 
past information in one return series is correlated with current and past information in another 
series. If we represent information by returns, then following Cohen, Hawawini, Maier, Schwartz 
and Whitcomb, (CHMSW 1983) we can write observed returns as a function of weighted unob-
served current and lag true returns. The weights simply represent how much information in a spe-
cific true return appears in the return that is observed. Given this, we can write observed 
(nonsynchronous) returns for the USD and AUD 10-year zero returns as follows:

[8.43]

The ’s are random variables that represent the proportion of the true return of asset j gener-
ated in period t-i that is actually incorporated in observed returns in period t. In other words, the 

’s are weights that capture how the true return generated in one period impacts on the observed 
returns in the same period and the next. It is also assumed that:

Table 8.10
RiskMetrics daily covariance forecasts
10-year zero rates; May 12, 1995

Return series Covariance T-statistic†

0.305 -

0.629 (0.074)* 8.5

0.440 (0.074) 5.9

0.530 -

0.106 (0.058) 1.8

0.126 (0.059) 2.13

* Asymptotic standard errors are reported in parentheses.

† For a discussion on the use of the t-statistic for the autocovariances see Shanken (1987).
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[8.44]

Table 8.11 shows, for the example given in the preceding section, the relationship between the 
date when the true return is calculated and the weight assigned to the true return. 

Earlier we computed the covariance based on observed returns,  However, 
we can use Eq. [8.43] to compute the covariance of the true returns , i.e., 

[8.45]

We refer to this estimator as the “adjusted” covariance. Having established the form of the 
adjusted covariance estimator, the adjusted correlation estimator for any two return series j 
and k is:

[8.46]

Table 8.12 shows the original and adjusted correlation estimates for USD-AUD and USD-CAD 
10-year zero rate returns.

Note that the USD-AUD adjusted covariance increases the original covariance estimate by 84%. 
Earlier (see Table 8.10) we found the lead-lag covariation for the USD-AUD series to be statisti-
cally significant. Applying the adjusted covariance estimator to the synchronous series USD-CAD, 
we find only an 8% increase over the original covariance estimate. However, the evidence from 
Table 8.10 would suggest that this increase is negligible.

Table 8.11
Relationship between lagged returns and applied weights
observed USD and AUD returns for May 12, 1995

Date 5/9–5/10 5/9–5/10 5/10–5/11 5/10–5/11

Weight

Table 8.12
Original and adjusted correlation forecasts
USD-AUD 10-year zero rates; May 12, 1995

Daily forecasts Original Adjusted % change

0.305 0.560  84%

0.530 0.573  8%

θAUD t,  and θUSD τ,  are independent for all t and τ

θAUD t,  and θUSD τ,  are independent of RAUD t,  and RUSD τ,
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8.5.1.3  Checking the results 
How does the adjustment algorithm perform in practice? Chart 8.7 compares three daily correla-
tion estimates for 10-year zero coupon rates in Australia and the United States:  (1) Standard 
RiskMetrics using nonsynchronous data, (2) estimate correlation using synchronous data collected 
in Asian trading hours and, (3) RiskMetrics Adjusted using the estimator in Eq. [8.46].

Chart 8.7
Adjusting 10-year USD/AUD bond zero correlation
using daily RiskMetrics close/close data and 0:00 GMT data

The results show that the adjustment factor captures the effects of the timing differences that affect 
the standard RiskMetrics estimates which use nonsynchronous data. A potential drawback of using 
this estimator, however, is that the adjusted series displays more volatility than either the unad-
justed or the synchronous series. This means that in practice, choices may have to be made as to 
when to apply the methodology. In the Australian/US case, it is clear that the benefits of the adjust-
ment in terms of increasing the correlation to a level consistent with the one obtained when using 
synchronous data outweighs the increased volatility. The choice, however, may not always be that 
clear cut as shown by Chart 8.8 which compares adjusted and unadjusted correlations for the US 
and Japanese 10-year zero rates. In periods when the underlying correlation between the two mar-
kets is significant (Jan-Feb 1995, the algorithm correctly adjusts the estimate). In periods of lower 
correlation, the algorithm only increases the volatility of the estimate.
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Chart 8.8
10-year Japan/US government bond zero correlation
using daily RiskMetrics close/close data and 0:00 GMT data

Also, in practice, estimation of the adjusted correlation is not necessarily straightforward because 
we must take into account the chance of getting adjusted correlation estimates above 1. This 
potential problem arises because the numerator in Eq. [8.46] is being adjusted without due consid-
eration of the denominator. An algorithm that allows us to estimate the adjusted correlation with-
out obtaining correlations greater than 1 in absolute value is given in Section 8.5.2. 

Table 8.13 on page 196 reports sample statistics for 1-day correlation forecasts estimated over var-
ious sample periods for both the original RiskMetrics and adjusted correlation estimators. Correla-
tions between United States and Asia-Pacific are based on non-synchronous data.

8.5.2  Using the algorithm in a multivariate framework

Finally, we explain how to compute the adjusted correlation matrix.

1. Calculate the unadjusted (standard) RiskMetrics covariance matrix, Σ. (Σ is an N x N, posi-
tive semi-definite matrix).

2. Compute the nonsynchronous data adjustment matrix K where the elements of K are

[8.47]

3. The adjusted covariance matrix M, is given by  where . The param-
eter f that is used in practice is the largest possible f such that M is positive semi-definite.
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Table 8.13
Correlations between US and foreign instruments

Correlations between USD 10-year zero rates and JPY, AUD, and NZD 10-year zero rates.*
Sample period:  May 1991–May 1995.

Original Adjusted

JPY AUD NZD JPY AUD NZD

mean 0.026 0.166 0.047 0.193 0.458 0.319

median 0.040 0.155 0.036 0.221 0.469 0.367

std dev 0.151 0.151 0.171 0.308 0.221 0.241

max 0.517 0.526 0.613 0.987 0.937 0.921

min −0.491 −0.172 −0.389 −0.762 −0.164 −0.405

Correlations between USD 2-year swap rates and JPY, AUD, NZD, HKD 2-year swap rates.* 
Sample period:  May 1993–May 1995.

Original Adjusted

JPY AUD NZD HKD JPY AUD NZD HKD

mean 0.018 0.233 0.042 0.139 0.054 0.493 0.249 0.572

median 0.025 0.200 0.020 0.103 0.065 0.502 0.247 0.598

std dev 0.147 0.183 0.179 0.217 0.196 0.181 0.203 0.233

max 0.319 0.647 0.559 0.696 0.558 0.920 0.745 0.945

min −0.358 −0.148 −0.350 −0.504 −0.456 −0.096 −0.356 −0.411

Correlations between USD equity index and JPY, AUD, NZD, HKD, SGD equity indices.* 
Sample period:  May 1993–May 1995.

Original Adjusted

JPY AUD NZD HKD SGD JPY AUD NZD HKD SGD

mean 0.051 0.099 -0.023 0.006 0.038 0.124 0.330 −0.055 −0.013 0.014

median 0.067 0.119 -0.021 -0.001 0.028 0.140 0.348 −0.053 0.056 −0.024

std dev 0.166 0.176 0.128 0.119 0.145 0.199 0.206 0.187 0.226 0.237

max 0.444 0.504 0.283 0.271 0.484 0.653 0.810 0.349 0.645 0.641

min −0.335 −0.345 −0.455 −0.298 −0.384 −0.395 −0.213 −0.524 −0.527 −0.589

* JPY = Japanese yen, AUD = Australian dollar, NZD = New Zealand dollar, HKD = Hong Kong dollar, SGD = Singapore dollar 
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Data is one of the cornerstones of any risk management methodology. We examined a number of 
data providers and decided that the sources detailed in this chapter were the most appropriate for 
our purposes.

 

9.1  Foreign exchange

 

Foreign exchange prices are sourced from WM Company and Reuters. They are mid-spot 
exchange prices recorded at 4:00 p.m. London time (11:00 a.m. EST). All foreign exchange data 
used for RiskMetrics is identical to the data used by the J.P. Morgan family of government bond 
indices. (See Table 9.1.)

 

9.2  Money market rates 

 

Most 1-, 2-, 3-, 6-, and 12-month money market rates (offered side) are recorded on a daily basis 
by J.P. Morgan in London at 4:00 p.m. (11:00 a.m. EST). Those obtained from external sources are 
also shown in Table 9.2.

 

Table 9.1

 

Foreign exchange

 

Currency Codes

 Americas Asia Pacific Europe and Africa

 

ARS Argentine peso AUD Australian dollar ATS Austrian shilling

CAD Canadian dollar HKD Hong Kong dollar BEF Belgian franc

MXN Mexican peso IDR Indonesian rupiah CHF Swiss franc

USD U.S. dollar JPY Japanese yen DEM Deutsche mark

EMB EMBI+

 

*

 

KRW Korean won DKK Danish kroner

MYR Malaysian ringgit ESP Spanish peseta

NZD New Zealand dollar FIM Finnish mark

PHP Philippine peso FRF French franc

SGD Singapore dollar GBP Sterling

THB Thailand baht IEP Irish pound

TWD Taiwan dollar ITL Italian lira

NLG Dutch guilder

NOK Norwegian kroner

PTE Portuguese escudo

SEK Swedish krona

XEU ECU

ZAR South African rand

* EMBI+ stands for the J.P. Morgan Emerging Markets Bond Index Plus.
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9.3  Government bond zero rates

 

Zero coupon rates ranging in maturity from 2 to 30 years for the government bond markets 
included in the J.P. Morgan Government Bond Index as well as the Irish, ECU, and New Zealand 
markets. (See Table 9.3.)

 

Table 9.2 

 

Money market rates:  sources and term structures

 

Source Time Term Structure

Market

 

J.P. Morgan Third Party

 

*

 

U.S. EST 1m 3m 6m 12m

Australia • 11:00 a.m. • • • •

Hong Kong • 10:00 p.m. • • • •

Indonesia

 

†

 

• 5:00 a.m. • • • •

Japan • 11:00 a.m. • • • •

Malaysia

 

†

 

•  5:00 a.m. • • • •

New Zealand • 12:00 a.m. • • •

Singapore • 4:30 a.m. • • • •

Thailand

 

†

 

• 5:00 a.m. • • • •

Austria • 11:00 a.m. • • • •

Belgium • 11:00 a.m. • • • •

Denmark • 11:00 a.m. • • • •

Finland • 11:00 a.m. • • • •

France • 11:00 a.m. • • • •

Ireland • 11:00 a.m. • • • •

Italy • 11:00 a.m. • • • •

Netherlands • 11:00 a.m. • • • •

Norway • 11:00 a.m. • • • •

Portugal • 11:00 a.m. • • • •

South Africa 11:00 a.m. • • • •

Spain • 11:00 a.m. • • • •

Sweden • 11:00 a.m. • • • •

Switzerland • 11:00 a.m. • • • •

U.K. • 11:00 a.m. • • • •

ECU • 11:00 a.m. • • • •

Canada • 11:00 a.m. • • • •

Mexico

 

‡

 

• 12:00 p.m. • • • •

U.S. • 11:00 a.m. • • • •

* Third party source data from Reuters Generic except for Hong Kong (Reuters HIBO), Singapore (Reuters 
MASX), and New Zealand (National Bank of New Zealand).

† Money market rates for Indonesia, Malaysia, and Thailand are calculated using foreign exchange forward-
points.

‡ Mexican rates represent secondary trading in Cetes.
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If the objective is to measure the volatility of individual cash flows, then one could ask whether it 
is appropriate to use a term structure model instead of the underlying zero rates which can be 
directly observed from instruments such as Strips. The selection of a modeled term structure as the 
basis for calculating market volatilities was motivated by the fact that there are few markets which 
have observable zero rates in the form of government bond Strips from which to estimate volatili-
ties. In fact, only the U.S. and French markets have reasonably liquid Strips which could form the 
basis for a statistically solid volatility analysis. Most other markets in the OECD have either no 
Strip market or a relatively illiquid one.

The one possible problem of the term structure approach is that it would not be unreasonable to 
assume the volatility of points along the term structure may be lower than the market’s real volatil-
ity because of the smoothing impact of passing a curve through a universe of real data points. 

To see whether there was support for this assumption, we compared the volatility estimates 
obtained from term structure derived zero rates and actual Strip yields for the U.S. market across 
four maturities (3, 5, 7, and 10 years). The results of the comparison are shown in Chart 9.1.

 

Table 9.3 

 

Government bond zero rates:  sources and term structures

 

Source Time Term structure

Market

 

J.P. Morgan Third Party U.S. EST 2y 3y 4y 5y 7y 9y 10y 15y 20y 30y

Australia • 1:30 a.m. • • • • • • • •

Japan • 1:00 a.m. • • • • • • •

New Zealand • 12:00 a.m. • • • • • • • •

Belgium • 11:00 a.m. • • • • • • • • •

Denmark • 10:30 a.m. • • • • • • • • • •

France • 10:30 a.m. • • • • • • • • • •

Germany • 11:30 a.m. • • • • • • • • • •

Ireland • 10:30 a.m. • • • • • • • • •

Italy • 10:45 a.m. • • • • • • • • • •

Netherlands • 11:00 a.m. • • • • • • • • • •

South Africa • 11:00 a.m. • • • • • • • • •

Spain • 11:00 a.m. • • • • • • • •

Sweden • 10:00 a.m. • • • • • • • •

U.K. • 11:45 a.m. • • • • • • • • • •

ECU • 11:45 a.m. • • • • • • •

Canada • 3:30 p.m. • • • • • • • • • •

U.S. • 3:30 a.m. • • • • • • • • • •

Emerging Mkt.

 

†

 

• 3:00 p.m.

* Third party data sourced from Den Danske Bank (Denmark), NCB Stockbrokers (Ireland), National Bank of New Zealand (New 
Zealand), and SE Banken (Sweden).

† J. P. Morgan Emerging Markets Bond Index Plus (EMBI+).
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Chart 9.1

 

Volatility estimates: daily horizon

 

1.65 standard deviation—6-month moving average

 

The results show that there is no clear bias from using the term structure versus underlying Strips 
data. The differences between the two measures decline as maturity increases and are partially the 
result of the lack of liquidity of the short end of the U.S. Strip market. Market movements specific 
to Strips can also be caused by investor behavior in certain hedging strategies that cause prices to 
sometimes behave erratically in comparison to the coupon curve from which the term structure is 
derived.

 

9.4  Swap rates

 

Swap par rates from 2 to 10 years are recorded on a daily basis by J.P. Morgan, except for Ireland 
(provided by NCB Stockbrokers), Hong Kong (Reuters TFHK) and Indonesia, Malaysia and Thai-
land (Reuters EXOT). (See Table 9.4.) The par rates are then converted to zero coupon equivalents 
rates for the purpose of inclusion within the RiskMetrics data set. (Refer to Section 8.1 for details).
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9.5  Equity indices

 

The following list of equity indices (Table 9.5) have been selected as benchmarks for measuring 
the market risk inherent in holding equity positions in their respective markets. The factors that 
determined the selection of these indices include the existence of index futures that can be used as 
hedging instruments, sufficient market capitalization in relation to the total market, and low track-
ing error versus a representation of the total capitalization. All the indices listed below measure 
principal return except for the DAX which is a total return index.

 

Table 9.4

 

Swap zero rates:  sources and term structures

 

Source Time Term structure

Market

 

J.P. Morgan Third Party

 

*

 

US EST 2y 3y 4y 5y 7y 10y

Australia • 1:30 a.m. • • • • • •

Hong Kong • 4:30 a.m. • • • • • •

Indonesia • 4:00 a.m. • • • •

Japan • 1:00 a.m. • • • • • •

Malaysia • 4:00 a.m. • • • •

New Zealand • 3:00 p.m. • • • • •

Thailand • 4:00 a.m. • • • •

Belgium • 10:00 a.m. • • • • • •

Denmark • 10:00 a.m. • • • • • •

Finland • 10:00 a.m • • • •

France • 10:00 a.m. • • • • • •

Germany • 10:00 p.m. • • • • • •

Ireland • 11:00 a.m. • • • •

Italy • 10:00 a.m. • • • • • •

Netherlands • 10:00 a.m. • • • • • •

Spain • 10:00 a.m. • • • • • •

Sweden • 10:00 a.m. • • • • • •

Switzerland • 10:00 a.m. • • • • • •

U.K. • 10:00 a.m. • • • • • •

ECU • 10:00 a.m. • • • • • •

Canada • 3:30 p.m. • • • • • •

U.S. • 3:30 a.m. • • • • • •

* Third party source data from Reuters Generic except for Ireland (NCBI), Hong Kong (TFHK), and Indonesia, 
Malaysia, Thailand (EXOT).
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Table 9.5 

 

Equity indices:  sources*

 

Market Exchange Index Name Weighting
% Mkt. 

cap.
Time,

U.S. EST

 

Australia Australian Stock Exchange All Ordinaries MC 96 1:10 a.m.

Hong Kong Hong Kong Stock Exchange Hang Seng MC 77 12:30 a.m.

Indonesia Jakarta Stock Exchange JSE MC 4:00 a.m.

Korea Seoul Stock Exchange KOPSI MC 3:30 a.m.

Japan Tokyo Stock Exchange Nikei 225 MC 46 1:00 a.m.

Malaysia Kuala Lumpur Stock Exchange KLSE MC 6:00 a.m.

New Zealand New Zealand Stock Exchange Capital 40 MC — 10:30 p.m.

Philippines Manila Stock Exchange MSE Com’l &Inustil Price MC 1:00 a.m.

Singapore Stock Exchange of Singapore Sing. All Share MC — 4:30 a.m.

Taiwan Taipei Stock Exchange TSE MC 1:00 a.m.

Thailand Bangkok Stock Exchange SET MC 5:00 a.m.

Austria Vienna Stock Exchange Creditanstalt MC — 7:30 a.m.

Belgium Brussels Stock Exchange BEL 20 MC 78 10:00 a.m.

Denmark Copenhagen Stock Exchange KFX MC 44 9:30 a.m.

Finland Helsinki Stock Exchange Hex General MC — 10:00 a.m.

France Paris Bourse CAC 40 MC 55 11:00 a.m.

Germany Frankfurt Stock Exchange DAX MC 57 10:00 a.m.

Ireland Irish Stock Exchange Irish SE ISEQ — — 12:30 p.m.

Italy Milan Stock Exchange MIB 30 MC 65 10:30 a.m.

Japan Tokyo Stock Exchange Nikei 225 MC 46 1:00 a.m.

Netherlands Amsterdam Stock Exchange AEX MC 80 10:30 a.m.

Norway Oslo Stock Exchange Oslo SE General — — 9:00 a.m.

Portugal Lisbon Stock Exchange Banco Totta SI — — 11:00 a.m.

South Africa Johannesburg Stock Exchange JSE MC 10:00 a.m.

Spain Madrid Stock Exchange IBEX 35 MC 80 11:00 a.m.

Sweden Stockholm Stock Exchange OMX MC 61 10:00 a.m.

Switzerland Zurich Stock Exchange SMI MC 56 10:00 a.m.

U.K. London Stock Exchange FTSE 100 MC 69 10:00 a.m.

Argentina Buenos Aires Stock Exchange Merval Vol. 5:00 p.m.

Canada Toronto Stock Exchange TSE 100 MC 63 4:15 p.m.

Mexico Mexico Stock Exchange IPC MC 3:00 p.m.

U.S. New York Stock Exchange Standard and Poor’s 100 MC 60 4:15 a.m.

*  Data sourced from DRI.
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9.6  Commodities

 

The commodity markets that have been included in RiskMetrics are the same markets as the 
J.P. Morgan Commodity Index (JPMCI). The data for these markets are shown in Table 9.6.

The choice between either the rolling nearby or interpolation (constant maturity) approach is influ-
enced by the characteristics of each contract. We use the interpolation methodology wherever pos-
sible, but in certain cases this approach cannot or should not be implemented.

We use interpolation (I) for all energy contracts. (See Table 9.7.)

The term structures for base metals are based upon rolling nearby contracts with the exception of 
the spot (S) and 3-month contracts. Data availability is the issue here. Price data for contracts 
traded on the London Metals Exchange is available for constant maturity 3-month (A) contracts 
(prices are quoted on a daily basis for 3 months forward) and rolling 15- and 27- month (N) con-
tracts. Nickel extends out to only 15 months. (See Table 9.8.)

 

Table 9.6

 

Commodities:  sources and term structures

 

Time,
U.S. EST

Term structure

Commodity Source

 

Spot 1m 3m 6m 12m 15m 27m

WTI Light Sweet Crude NYMEX

 

*

 

3:10 p.m. • • • •

Heating Oil NYMEX 3:10 p.m. • • • •

NY Harbor #2 unleaded gas NYMEX 3:10 p.m. • • •

Natural gas NYMEX 3:10 p.m. • • • •

Aluminum LME

 

†

 

11:20 a.m. • • • •

Copper LME 11:15 a.m. • • • •

Nickel LME 11:10 a.m. • • •

Zinc LME 11:30 a.m. • • • •

Gold LME 11:00 a.m. •

Silver LFOE

 

‡

 

11:00 a.m. •

Platinum LPPA

 

§

 

11:00 a.m. •

* NYMEX (New York Mercantile Exchange)

† LME (London Metals Exchange)

‡ LFOE (London futures and Options Metal Exchange)

§ LPPA (London Platinum & Palladium Association)

 

Table 9.7

 

Energy maturities

 

Maturities

Energy

 

1m 3m 6m 12m 15m 27m

Light sweet crude I* I I I

Heating Oil I I I I

Unleaded Gas I I I

Natural Gas I I I I

* I = Interpolated methodology.
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Spot prices are the driving factor in the precious metals markets. Volatility curves in the gold, sil-
ver, and platinum markets are relatively flat (compared to the energy curves) and spot prices are 
the main determinant of the future value of instruments: storage costs are negligible and conve-
nience yields such as those associated with the energy markets are not a consideration.

 

Table 9.8

 

Base metal maturities

 

Maturities

Commodity

 

Spot 3m 6m 12m 15m 27m

Aluminum S* A

 

†

 

N

 

‡

 

N

Copper S A N N

Nickel S A N

Zinc S A N N

* S = Spot contract.

† A = Constant maturity contract.

‡ N = Rolling contract.
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This section serves as a guide to understanding the information contained in the RiskMetrics daily 
and monthly volatility and correlation files. It defines the naming standards we have adopted for 
the RiskMetrics files and time series, the file formats, and the order in which the data is presented 
in these files.

 

10.1  Availability

 

Volatility and correlation files are updated each U.S. business day and posted on the Internet by 
10:30 a.m. EST. They cover data through close-of-business for the previous U.S. business day. 
Instructions on downloading these files are available in Appendix H. 

 

10.2  File names

 

To ensure compatibility with MS-DOS, file names use the “8.3” format:  8-character name and 
3-character extension (see Table 10.1). 

The first two characters designate whether the file is daily (D) or monthly (M), and whether it con-
tains volatility (V) or correlation (C) data. The next six characters identify the collection date of 
the market data for which the volatilities and correlations are computed. The extension identifies 
the version of the data set. 

 

10.3  Data series naming standards

 

In both volatility and correlation files, all series names follow the same naming convention. They 
start with a three-letter code followed by a period and a suffix, for example, USD.R180.

The three-letter code is either a SWIFT

 

1

 

 currency code or, in the case of commodities, a commod-
ity code, as shown in Table 10.2. The suffix identifies the asset class (and the maturity for 
interest-rate and commodity series). Table 10.3 lists instrument suffix codes, followed by an exam-
ple of how currency, commodity, and suffix codes are used.

 

1

 

The exception is EMB. This represents J. P. Morgan’s Emerging Markets Bond Index Plus.

 

Table 10.1

 

RiskMetrics file names

 

“ddmmyy” indicates the date on which the market data was collected

 

File name format

Volatility Correlation

 

File description

 

DVddmmyy.RM3 DCddmmyy.RM3 1-day estimates
MVddmmyy.RM3 MCddmmyy.RM3 25-day estimates

BVddmmyy.RM3 BCddmmyy.RM3 Regulatory data sets

DVddmmyy.vol DCddmmyy.cor Add-In 1-day estimates
MVddmmyy.vol MCddmmyy.cor Add-In 25-day estimates
BVddmmyy.vol BCddmmyy.cor Add-In regulatory 



 

210 Chapter 10.  RiskMetrics volatility and correlation files

RiskMetrics

 



 

 —Technical Document
Fourth Edition

 

Table 10.2

 

Currency and commodity identifiers

 

Currency Codes

 Americas Asia Pacific Europe and Africa Commodity Codes

 

ARS Argentine peso AUD Australian dollar ATS Austrian shilling ALU Aluminum

CAD Canadian dollar HKD Hong Kong dollar BEF Belgian franc COP Copper

MXN Mexican peso IDR Indonesian rupiah CHF Swiss franc GAS Natural gas

USD U.S. dollar JPY Japanese yen DEM Deutsche mark GLD Gold

EMB EMBI+

 

*

 

KRW Korean won DKK Danish kroner HTO NY Harbor #2 heating oil

MYR Malaysian ringgit ESP Spanish peseta NIC Nickel

NZD New Zealand dollar FIM Finnish mark PLA Platinum

PHP Philippine peso FRF French franc SLV Silver

SGD Singapore dollar GBP Sterling UNL Unleaded gas

THB Thailand baht IEP Irish pound WTI Light Sweet Crude

TWD Taiwan dollar ITL Italian lira ZNC Zinc

NLG Dutch guilder

NOK Norwegian kroner

PTE Portuguese escudo

SEK Swedish krona

XEU ECU

ZAR South African rand

* EMBI+ stands for the J.P. Morgan Emerging Markets Bond Index Plus. 

 

Table 10.3 

 

Maturity and asset class identifiers

 

Maturity

Instrument Suffix Codes

Foreign
exchange

Equity 
indices

Money 
market Swaps Gov’t bonds Commodities

 

Spot XS SE – – – C00
1m – – R030 – – –

3m – – R090 – – C03

6m – – R180 – – C06

12m – – R360 – – C12

15m – – – – – C15

18m – – – – – C18

24m (2y) – – – S02 Z02 C24

27m – – – – – C27

36m (3y) – – – S03 Z03 C36

4y – – – S04 Z04 –

5y – – – S05 Z05 –

7y – – – S07 Z07 –

9y – – – – Z09 –

10y – – – S10 Z10 –

15y – – – – Z15 –

20y – – – – Z20 –

30y – – – – Z30 –
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For example, we identify the Singapore dollar foreign exchange rate by SGD.XS, the U.S. dollar 
6-month money market rate by USD.R180, the CAC 40 index by FRF.SE, the 2-year sterling swap 
rate by GBP.S02, the 10-year Japanese government bond (JGB) by JPY.Z10, and the 3-month nat-
ural gas future by GAS.C03.

 

10.4  Format of volatility files

 

Each daily and monthly volatility file starts with a set of header lines that begin with an asterisk (*) 
and describe the contents of the file. Following the header lines are a set of record lines (without 
an asterisk) containing the daily or monthly data.

 Table 10.4 shows a portion of a daily volatility file.

In this table, each line is interpreted as follows:

• Line 1 identifies whether the file is a daily or monthly file.

• Line 2 lists file characteristics in the following order:  the number of data columns, the num-
ber of record lines, the file creation date, and the version number of the file format.

• Lines 3–10 are a disclaimer.

• Line 11 contains comma-separated column titles under which the volatility data is listed.

• Lines 12 through the last line at the end of file (not shown) represent the record lines, which 
contain the comma-separated volatility data formatted as shown in Table 10.5.

 

Table 10.4

 

Sample volatility file

Line # Volatility file 

 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

*Estimate of volatilities for a one day horizon
*COLUMNS=2, LINES=418, DATE=11/14/96, VERSION 2.0
*RiskMetrics is based on but differs significantly from the market risk management systems
*developed by J.P. Morgan for its own use. J.P. Morgan does not warranty any results obtained 
*from use of the RiskMetrics methodology, documentation or any information derived from
*the data (collectively the “Data”) and does not guarantee its sequence, timeliness, accuracy or
*completeness. J.P. Morgan may discontinue generating the Data at any time without any prior 
*notice. The Data is calculated on the basis of the historical observations and should not be relied 
*upon to predict future market movements. The Data is meant to be used with systems developed
*by third parties. J.P. Morgan does not guarantee the accuracy or quality of such systems.
*SERIES, PRICE/YIELD,DECAYFCTR,PRICEVOL,YIELDVOL
ATS.XS.VOLD,0.094150,0.940,0.554647,ND
AUD.XS.VOLD, 0.791600,0.940,0.643127,ND
BEF.XS.VOLD, 0.032152,0.940,0.546484,ND
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For example, in Table 10.4, the first value ATS.XS.VOLD in Line 12 corresponds to the 
SERIES column title, and identifies the series to be a USD/ATS daily volatility series. Simi-
larly, the remaining values are interpreted as follows:  The value 0.094150 was used as the 
price/yield level in the volatility calculation. The value 0.940 was used as the exponential 
moving average decay factor. The value 0.554647% is the price volatility estimate. The value 
“ND” indicates that the series has no yield volatility.

 

10.5  Format of correlation files

 

Daily and monthly correlation files are formatted similar to the volatility files (see Section 10.4), 
and contain analogous header and record lines (see Table 10.6). Each file comprises the lower half 
of the correlation matrix for the series being correlated, including the diagonal, which has a value 
of “1.000.” (The upper half is not shown since the daily and monthly correlation matrices are sym-
metrical around the diagonal. For example, 3-month USD LIBOR to 3-month DEM LIBOR has 
the same correlation as 3-month DEM LIBOR to 3-month USD LIBOR.)

 

Table 10.5

 

Data columns and format in volatility files 

 

Column title
(header line)

Data
(record lines) Format of volatility data

 

SERIES Series name See Section 10.3 for series naming conventions.

In addition, each series name is given an extension, either 
“.VOLD” (for daily volatility estimate), or “.VOLM” (for 
monthly volatility estimate).

PRICE/YIELD Price/Yield level #.###### or “NM” if the data cannot be published.

DECAYFCTR Exponential moving
average decay factor

#.###

PRICEVOL Price volatility estimate #.###### (% units)

YIELDVOL Yield volatility estimate #.###### (% units) or “ND” if the series has no yield vola-
tility (e.g., FX rates).
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In Table 10.6, each line is interpreted as follows:

• Line 1 identifies whether the file is a daily or monthly file.

• Line 2 lists file characteristics in the following order:  the number of data columns, the num-
ber of record lines, the file creation date, and the version number of the file format.

• Lines 3–10 are a disclaimer.

• Line 11 contains comma-separated column titles under which the correlation data is listed.

• Lines 12 through the last line at the end of the file (not shown) represent the record lines, 
which contain the comma-separated correlation data formatted as shown in Table 10.7. 

For example, Line 13 in Table 10.6 represents a USD/ATS to USD/AUD daily correlation 
estimate of 

 

−

 

0.251566 measured using an exponential moving average decay factor of 0.940 
(the default value for the 1-day horizon).

 

Table 10.6

 

Sample correlation file

Line # Correlation file 

 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

*Estimate of correlations for a one day horizon
*COLUMNS=2, LINES=087571, DATE=11/14/96, VERSION 2.0
*RiskMetrics is based on but differs significantly from the market risk management systems
*developed by J.P. Morgan for its own use. J.P. Morgan does not warranty any results obtained 
*from use of the RiskMetrics methodology, documentation or any information derived from
*the data (collectively the “Data”) and does not guarantee its sequence, timeliness, accuracy or
*completeness. J.P. Morgan may discontinue generating the Data at any time without any prior 
*notice. The Data is calculated on the basis of the historical observations and should not be relied 
*upon to predict future market movements. The Data is meant to be used with systems developed
*by third parties. J.P. Morgan does not guarantee the accuracy or quality of such systems.
*SERIES, CORRELATION
ATS.XS.ATS.XS.CORD,1.000000
ATS.XS.AUD.XS.CORD, -0.251566
ATS.XS.BEF.XS.CORD, 0.985189

 

Table 10.7

 

Data columns and format in correlation files

 

Column title
(header line)

Correlation data
(record lines) Format of correlation data

 

SERIES Series name See Section 10.3 for series naming conventions.

In addition, each series name is given an extension, either “.CORD” 
(for daily correlation), or “.CORM” (for monthly correlation).

 

CORRELATION Correlation 
coefficient

#.######

Correlation coefficients are computed by using the same expo-
nential moving average method as in the volatility files (i.e., 
decay factor of 0.940 for a 1-day horizon, and 0.970 for a 
1-month horizon.)
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10.6  Data series order

 

Data series in the volatility and correlation files are sorted first alphabetically by SWIFT code and 
commodity class indicator, and then by maturity within the following asset class hierarchy:  for-
eign exchange, money markets, swaps, government bonds, equity indices, and commodities.

 

10.7  Underlying price/rate availability

 

Due to legal considerations, not all prices or yields are published in the volatility files. What is 
published are energy future contract prices and the yields on foreign exchange, swaps, and govern-
ment bonds. The current level of money market yields can be approximated from Eq. [10.1] by 
using the published price volatilities and yield volatilities as well as the instruments’ modified 
durations.

[10.1] Current yield σPrice σYield Modified  Duration⋅( )⁄=
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Chapter 11. Performance assessment

 

Peter Zangari
Morgan Guaranty Trust Company
Risk Management Research
(1-212) 648-8641

 

zangari_peter@jpmorgan.com

 

In this chapter we present a process for assessing the accuracy of the RiskMetrics model. We 
would like to make clear that the purpose of this section is not to offer a review of the quantitative 
measures for VaR model comparison. There is a growing literature on such measures and we refer 
the reader to Crnkovic and Drachman (1996) for the latest developments in that area. Instead, we 
present simple calculations that may prove useful for determining the appropriateness of the 
RiskMetrics model. 

 

11.1  Sample portfolio

 

We describe an approach for assessing the RiskMetrics model by analyzing a portfolio consisting 
of 215 cashflows that include foreign exchange (22), money market deposits (22), zero coupon 
government bonds (121), equities (12) and commodities (33). Using daily prices for the period 
April 4, 1990 through March 26, 1996 (a total of 1001 observations), we construct 1-day VaR fore-
casts over the most recent 801 days of the sample period. We then compare these forecasts to their 
respective realized profit/loss (P/L) which are represented by 1-day returns.

Chart 11.1 shows the typical presentation of 1-day RiskMetrics VaR forecasts (90% two-tail confi-
dence interval) along with the daily P/L of the portfolio.

 

Chart 11.1

 

One-day Profit/Loss and VaR estimates

 

VaR bands are given by 

 

+/−

 

 1.65

 

In Chart 11.1 the black line represents the portfolio return constructed from the 215 individual 
returns at time 

 

t

 

. The time 

 

t

 

 portfolio return is defined as follows:

[11.1]

where  represents the log return of the 

 

i

 

th underlying cashflow. The Value-at-Risk bands are 
based on the portfolio’s standard deviation. The formula for the portfolio’s standard deviation, 

 is:

σ

100 200 300 400 500 600 700 800
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Observations

rp t,
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215
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  ri t,
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[11.2]

where  is the variance of the 

 

i

 

th return series made for time 

 

t

 

 and  is the correla-
tion between the 

 

i

 

th and 

 

j

 

th returns for time 

 

t

 

.

 

11.2  Assessing the RiskMetrics model

 

The first measure of model performance is a simple count the number of times that the VaR esti-
mates “underpredict” future losses (gains). Recall that in RiskMetrics each day it is assumed that 
there is a 5% chance that the observed loss exceeds the VaR forecast.

 

1

 

 For the sake of generality, 
let’s define a random variable 

 

X

 

(

 

t

 

) on any day 

 

t

 

 such that 

 

X

 

(

 

t

 

) = 1 if a particular day’s observed loss 
is greater than its corresponding VaR forecast and 

 

X

 

(

 

t

 

)=0 otherwise. We can write the distribution 
of 

 

X

 

(

 

t

 

) as follows

[11.3]

Now, suppose we observe 

 

X

 

(

 

t

 

) for a total of 

 

T

 

 days, 

 

t 

 

= 1,2,...,

 

T

 

, and we assume that the 

 

X

 

(

 

t

 

)’s are 
independent over time. In other words, whether a VaR forecast is violated on a particular day is 
independent of what happened on other days. The random variable 

 

X

 

(

 

t

 

) is said to follow a Ber-
noulli distribution whose expected value is 0.05.The total number of VaR violations over the time 
period 

 

T

 

 is given by

[11.4]

The expected value of , i.e., the expected number of VaR violations over 

 

T

 

 days, is 

 

T

 

 times 
0.05. For example, if we observe 

 

T 

 

= 20 days of VaR forecasts, then the expected number of VaR 
violations is 20 x 0.05 = 1; hence one would expect to observe one VaR violation every 20 days. 
What is convenient about modelling VaR violations according to Eq. [11.3] is that the probability 
of observing a VaR violation over 

 

T

 

 days is same as the probability of observing a VaR violation at 
any point in time, 

 

t

 

. Therefore, we are able to use VaR forecasts constructed over time to assess the 
appropriateness of the RiskMetrics model for this portfolio of 215 cashflows. 

Table 11.1 reports the observed percent of VaR violations for the upper and lower tails of our sam-
ple portfolio. For each day the lower and upper VaR limits are defined as  and 

 

,

 

 respectively.

 

 

 

A more straightforward approach to derive the preceding results is to apply the maintained 
assumptions of the RiskMetrics model. Recall that it is assumed that the return distribution of sim-
ple portfolios (i.e., those without nonlinear risk) is conditionally normal. In other words, the real-

 

1

 

The focus of this section is on losses. However, the following methodology can also apply to gains.

 

Table 11.1

 

Realized percentages of VaR violations

 

True probability of VaR violations = 5%

 

Prob (Loss < 

 

−

 

1.65

 

)

 

Prob (Profit > 1.65

 

)

 

5.74% 5.87%
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215
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ized return (P/L) divided by the standard deviation forecast used to construct the VaR estimate is 
assumed to be normally distributed with mean 0 and variance 1. Chart 11.2 presents a histogram of 
standardized portfolio returns. We place arrow bars to signify the area where we expect to observe 
5% of the observations.

 

Chart 11.2

 

Histogram of standardized returns 

 

Probability that  < (>)

 

−

 

1.65 (1.65) = 5%

 

 A priori, the RiskMetrics model predicts that 5% of the standardized returns fall below (above)

 

−

 

1.65 (1.65). In addition to this prediction, it is possible to derive the expected value (average) of 
a return 

 

given

 

 that return violates a VaR forecast. For the lower tail, this expected value is defined 
as follows:

[11.5]

where 

It follows from the symmetry of the normal density function that the expected value for upper-tail 
returns is .

Table 11.2 reports these realized expected values for our sample portfolio.  

 

Table 11.2

 

Realized “tail return” averages

 

Conditional mean tail forecasts of standardized returns

 

−

 

1.741 1.828

rt σt t 1–⁄( )
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φ 1.65–( ) the standard normal density function evaluated at -1.65=

Φ 1.65–( ) the standard normal distribution function evaluated at -1.65=
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To get a better understanding of the size of the returns that violate the VaR forecasts, Charts 11.3 
and 11.4 plot the observed standardized returns (black circles) that fall in the lower (< −1.65) and 
upper (> 1.65) tails of the standard normal distribution. The horizontal line in each chart represents 
the average value predicted by the conditional normal distribution. 

Chart 11.3
Standardized lower-tail returns

Chart 11.4
Standardized upper-tail returns

Both charts show that the returns that violate the VaR forecasts rarely exceed the expected value 
predicted by the normal distribution. In fact, we observe about 3 violations out of (approximately) 
46/47 tail returns for the upper/lower tails. This is approximately 6.5% of the observations that fall 
in a particular tail. Note that the normal probability model prediction is 8.5%.2

2 We derive this number from Prob (X < −2.63 | X < −1.65) = Prob (X < −2.63) / Prob ( X < −1.65).
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11.3  Summary

In this chapter we presented a brief process by which risk managers may assess the performance of 
the RiskMetrics model. We applied these statistics to a sample portfolio that consists of 215 cash-
flows covering foreign exchange, fixed income, commodities and equities. Specifically, 1-day VaR 
forecasts were constructed for an 801-day sample period and for each day the forecast was mea-
sured against the portfolio’s realized P/L. It was found that overall the RiskMetrics model per-
forms reasonably well.
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zangari_peter@jpmorgan.com

 

A fundamental assumption in RiskMetrics is that the underlying returns on financial prices are dis-
tributed according to the conditional normal distribution. The main implication of this assumption 
is that while the return distribution at each point in time is normally distributed, the return distribu-
tion taken over the entire sample period is 

 

not necessarily

 

 normal. Alternatively expressed, the 
standardized distribution rather than the observed return is assumed to be normal. 

Chart A.1 shows the nontrivial consequence of the conditional normality assumption. The uncon-
ditional distribution represents an estimate of the histogram of USD/DEM log price changes that 
are standardized by the standard deviation taken over the entire sample (i.e., they are standardized 
by the unconditional standard deviation). As mentioned above, relative to the normal distribution 
with a constant mean and variance, this series has the typical thin waist, fat tail features. The 
unconditional distribution represents the distribution of standardized returns which are constructed 
by dividing each historical return by its corresponding standard deviation forecast

 

1

 

, i.e., divide 
every return, , by its standard deviation forecast,  (i.e., conditional standard deviation).

 

Chart A.1

 

Standard normal distribution and histogram of returns on USD/DEM 

 

The difference between these two lines underscores the importance of distinguishing between con-
ditional and unconditional normality.

 

1

 

The exact construction of this forecast is presented in Chapter 5.
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A.1  Numerical methods

 

We now present some computational tools used to test for normality. We begin by showing how to 
obtain sample estimates of the two parameters that describe the normal distribution. For a set of 
returns, , where 

 

t 

 

= 1,2…,

 

T

 

, we obtain estimates of the unconditional mean, , and standard 
deviation, , via the following estimators:

[A.1]

[A.2]

Table A.1 presents sample estimates of the mean and standard deviation for the change series pre-
sented in Table 4.1.

Several popular tests for normality focus on measuring 

 

skewness

 

 and 

 

kurtosis

 

.

 

 Skewness charac-
terizes the asymmetry of a distribution around its mean. Positive skewness indicates an asymmet-
ric tail extending toward positive values (right skewed). Negative skewness implies asymmetry 
toward negative values (left skewed). A simple measure of skewness, the coefficient of skewness, 

 

, 

 

is given by 

[A.3]

Computed values of skewness away from 0 point towards non-normality. Kurtosis characterizes 
the relative peakedness or flatness of a given distribution compared to a normal distribution. The 
standardized measure of kurtosis, the coefficient of kurtosis, , is given by

[A.4]

The kurtosis for the normal distribution is 3. Often, instead of kurtosis, researchers talk about 
excess kurtosis which is defined as kurtosis minus 3 so that in a normal distribution excess kurtosis 
is zero. Distributions with an excess kurtosis value greater than 0 are frequently referred to as hav-
ing fat tails. 

One popular test for normality that is based on skewness and kurtosis is presented in Kiefer and 
Salmon (1983). Shapiro and Wilk (1965) and Bera and Jarcque (1980) offer more computationally 
intensive tests. To give some idea about the values of the mean, standard deviation, skewness and 
kurtosis coefficients that are observed in practice, Table A.2 on page 230 presents estimates of 
these statistics as well as two other measures—tail probability and tail values, to 48 foreign 

 

Table A.1

 

Sample mean and standard deviation estimates for USD/DEM FX

 

Parameter estimates
Absolute price 

change
 Relative price 

change
Log price 

change 

 

, mean (%)

 

−
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−
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−

 

0.090
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exchange series. For each of the 48 time series we used 86 historical weekly prices for the period 
July 1, 1994 through March 1, 1996. (Note that many of the time series presented in Table A.2 are 
not part of the RiskMetrics data set). Each return used in the analysis is standardized by its corre-
sponding 1-week standard deviation forecast. Interpretations of each of the estimated statistics are 
provided in the table footnotes.

When large data samples are available, specific statistics can be constructed to test whether a given 
sample is skewed or has excess kurtosis. This allows for formal hypothesis testing. The large sam-
ple skewness and kurtosis measures and their distributions are given below:

[A.5]

[A.6]
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Table A.2 

 

Testing for univariate conditional normality

 

1

 

normalized return series; 85 total observations

 

Tail Probability (%)

 

8

 

Tail value

 

9

 

Skewness

 

2

 

Kurtosis

 

3

 

Mean

 

4

 

Std. Dev.

 

5

 

< 

 

−

 

1.65 > 1.65 < 

 

−

 

1.65 > 1.65

Normal

 

             

 

 0.000

 

           

 

0.000

 

  -           

 

1.000

 

           

 

5.000

 

          

 

 5.000

 

        

 

−

 

2.067

 

          

 

2.067

 

 

 

OECD

 

Australia           0.314          3.397           0.120           0.943           2.900           5.700        

 

−

 

2.586           2.306

Austria           0.369           0.673        

 

−

 

0.085           1.037           8.600           5.700        

 

−

 

1.975           2.499

Belgium           0.157           2.961        

 

−

 

0.089           0.866           8.600           2.900        

 

−

 

1.859           2.493

Denmark           0.650           4.399        

 

−

 

0.077           0.903         11.400           2.900        

 

−

 

1.915           2.576

France           0.068           3.557        

 

−

 

0.063           0.969           8.600           2.900        

 

−

 

2.140           2.852

Germany           0.096           4.453        

 

−

 

0.085           0.872           5.700           2.900        

 

−

 

1.821           2.703

Greece           0.098           2.259        

 

−

 

0.154           0.943         11.400           2.900        

 

−

 

1.971           2.658

Holland           0.067           4.567        

 

−

 

0.086           0.865           5.700           2.900        

 

−

 

1.834           2.671

Italy           0.480           0.019           0.101           0.763                 0           2.900                 0           1.853

New Zealand           1.746           7.829           0.068           1.075           2.900           2.900        

 

−

 

2.739           3.633

Portugal           1.747           0.533        

 

−

 

0.062           0.889         11.400           2.900        

 

−

 

1.909           2.188

Spain           6.995           1.680        

 

−

 

0.044           0.957           8.600           2.900        

 

−2.293           1.845

Turkey         30.566      118.749        −0.761           1.162         11.400                 0        −2.944                 0

UK           7.035           2.762        −0.137           0.955           8.600           2.900        −2.516           1.811

Switzerland           0.009           0.001        −0.001           0.995           2.900           5.700        −2.415           2.110

Latin Amer. Econ. System

Brazil           0.880           1.549        −0.224           0.282                 0                   0                   0                   0   

Chile           1.049           0.512        −0.291           0.904           8.600                 0          −2.057                 0   

Colombia           2.010           4.231        −0.536           1.289         11.400           2.900        −3.305           2.958 

Costa Rica           0.093         33.360        −0.865           0.425           5.700                 0          −2.011                 0   

Dominican Rep           0.026         41.011           0.050           1.183           5.700           5.700        −3.053           3.013 

El Salvador           2.708         49.717           0.014           0.504                 0             2.900                 0             1.776 

Equador           0.002         50.097           0.085           1.162           5.700           5.700        −3.053           3.013 

Guatemala           0.026           1.946        −0.280           1.036           8.600           5.700        −2.365           2.237 

Honduras         42.420         77.277        −0.575           1.415         14.300                 0          −3.529                 0   

Jamaica         81.596      451.212        −0.301           1.137           2.900           2.900        −6.163           1.869 

Mexico         13.71         30.237        −0.158           0.597           2.900                 0          −2.500                 0   

Nicaragua           0.051           2.847        −0.508           0.117                 0                   0                   0                   0   

Peru      122.807      672.453        −0.278           1.365           5.700                 0          −5.069                 0   

Trinidad           0.813           0.339           0.146           1.063           8.600         11.400        −2.171           1.915 

Uruguay           0.724           0.106        −0.625           0.371                 0                   0                   0                   0   
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1 Countries are grouped by major economic groupings as defined in Political Handbook of the World:  1995–1996. New York:  CSA 
Publishing, State University of New York, 1996. Countries not formally part of an economic group are listed in their respective geo-
graphic areas.

2 If returns are conditionally normal, the skewness value is zero.
3 If returns are conditionally normal, the excess kurtosis value is zero.
4 Sample mean of the return series.
5 Sample standard deviation of the normalized return series.
8 Tail probabilities give the observed probabilities of normalized returns falling below −1.65 and above +1.65. Under conditional nor-

mality, these values are 5%.
9 Tail values give the observed average value of normalized returns falling below −1.65 and above +1.65. Under conditional normality, 

these values are −2.067 and +2.067, respectively.

ASEAN

Malaysia           1.495           0.265        −0.318           0.926           8.600                 0          −2.366                0   

Philippines           1.654           0.494        −0.082           0.393               0                 0                  0                  0   

Thailand           0.077           0.069        −0.269           0.936           8.600           2.900        −2.184           1.955 

Fiji           4.073           6.471       −0.129           0.868           2.900           2.900        −3.102           1.737 

Hong Kong           5.360         29.084           0.032           1.001           5.700           5.700        −2.233           2.726 

Reunion Island           0.068           3.558        −0.063           0.969           8.600           2.900        −2.140           2.853 

Southern African Dev. Comm. 

Malawi           0.157           9.454        −0.001           0.250                 0                   0                   0                   0   

South Africa         34.464         58.844        −0.333           1.555           8.600                 0          −4.480                 0   

Zambia         22.686         39.073        −0.007           0.011                 0                   0                   0                   0   

Zimbabwe         20.831         29.234       −0.487           0.762           5.700                 0          −2.682                 0   

Ivory Coast           0.068           3.564       −0.064           0.970           8.600           2.900        −2.144           2.857 

Uganda         40.815         80.115        −0.203           1.399           8.600           2.900        −4.092           1.953 

Others

China         80.314      567.012           0.107           1.521           2.900           2.900        −3.616           8.092 

Czech Repub           0.167         12.516        −0.108           0.824           5.700           2.900        −2.088           2.619 

Hungary           1.961           0.006        −0.342           0.741           5.700                 0          −2.135                 0   

India           5.633           3.622       −0.462           1.336         17.100           5.700        −2.715           1.980 

Romania         89.973      452.501        −1.249           1.721         14.300                 0          −4.078                 0   

Russia           0.248           2.819        −0.120           0.369                 0                   0                   0                   0   

Table A.2 (continued)
Testing for univariate conditional normality1

normalized return series; 85 total observations

Tail Probability (%)8 Tail value9

Skewness2 Kurtosis3 Mean4 Std. Dev.5 < −1.65 > 1.65 < −1.65 > 1.65
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A.2  Graphical methods

Q-Q (quantile-quantile) charts offer a visual assessment of the deviations from normality. Recall 
that the qth quantile is the number that exceeds q percent of the observations. A Q-Q chart plots 
the quantiles of the standardized distribution of observed returns (observed quantiles) against the 
quantiles of the standard normal distribution (normal quantiles). Consider the sample of observed 
returns, . Denote the jth observed quantile by  so that for all T observed quan-
tiles we have

[A.7]

where 

Denote the jth standard normal quantile by zj for j = 1…,T. For example, if T = 100, then 
z5 = −1.645. In practice, the five steps to compute the Q-Q plot are given below:2

1. Standardize the daily returns by their corresponding standard deviation forecast, i.e., com-
pute  for t = 1,…,T. 

2. Order  and compute their percentiles qj, j = 1,…,T. 

3. Calculate the probabilities pj corresponding to each qj. 

4. Calculate the standard normal quantiles, zj that correspond to each pj.

5. Plot the pairs . 

Chart A.2 shows an example of a Q-Q plot for USD/DEM daily standardized returns for the period 
January 1988 through September 1996. 

Chart A.2
Quantile-quantile plot of USD/DEM
standardized returns

2 For a complete description of this test see Johnson and Wichern (1992, pp. 153-158).
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The straighter the plot, the closer the distribution of returns is to a normal distribution. If all points 
were to lie on a straight line, then the distribution of returns would be normal. As the chart above 
shows, there is some deviation from normality in the distribution of daily returns of USD/DEM 
over the last 7 years. 

A good way to measure how much deviation from normality occurs is to calculate the correlation 
coefficient of the Q-Q plot,

[A.8]  

For large sample sizes as in the USD/DEM example,  needs to be at least 0.999 to pass a test of 
normality at the 5% significant.3 In this example, = 0.987. The returns are not normal accord-
ing to this test.

Used across asset classes,  can provide useful information as to how good the univariate nor-
mality assumption approximates reality. In the example above, while the returns on the USD/DEM 
exchange rate are not normal, their deviation is slight. 

Deviations from normality can be much more significant among other time series, especially 
money market rates. This is intuitively easy to understand. Short-term interest rates move in a dis-
cretionary fashion as a result of actions by central banks. Countries with exchange rate policies 
that have deviated significantly from economic fundamentals for some period often show money 
market rate distributions that are clearly not normal. As a result they either change very little when 
monetary policy remains unchanged (most of the time), or more significantly when central banks 
change policy, or the markets force them to do so. Therefore, the shape of the distribution results 
from discrete “jumps” in the underlying returns. 

A typical example of this phenomenon can be seen from the Q-Q chart of standardized price 
returns on the 3-month sterling over the period 3-Jan-91 to 1-Sep-94. The  calculated for that 
particular series is 0.907. 

3 See Johnson and Wichern (1992, p 158) for a table of critical values required to perform this test.
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Chart A.3
Quantile-quantile plot of 3-month sterling
standardized returns

The Q-Q charts are useful because they allow the researcher a visual depiction of departures from 
normality. However, as stated before, there are several other tests for normality. It is important to 
remember that when applied directly to financial returns, conventional tests of normality should be 
used with caution. A reason is that the assumptions that underlie these tests (e.g., constant vari-
ance, nonautocorrelated returns) are often violated. For example, if a test for normality assumes 
that the data is not autocorrelated over the sample period when, in fact, the data are autocorrelated, 
then the test may incorrectly lead one to reject normality (Heuts and Rens, 1986). 

The tests presented above are tests for univariate normality and not multivariate normality. In 
finance, tests of multivariate normality are often most relevant since the focus is on the return dis-
tribution of a portfolio that consists of a number of underlying securities. If each return series in a 
portfolio is found to be univariate normal, then the set of returns taken as a whole are still not nec-
essarily multivariate normal. Conversely, if any one return series is found not to be univariate nor-
mal then multivariate normality can be ruled out. Recently, Richardson and Smith (1993) propose 
a direct test for multivariate normality in stock returns. Also, Looney (1995) describes test for 
univariate normality that can be used to determine to whether a data sample is multivariate nor-
mality.
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Since its release in October 1994, RiskMetrics has inspired an important discussion on VaR meth-
odologies. A focal point of this discussion has been the assumption that returns follow a conditional 
normal distribution. Since the distributions of many observed financial return series have tails that 
are “fatter” than those implied by conditional normality, risk managers may underestimate the risk 
of their positions if they assume returns follow a conditional normal distribution. In other words, 
large financial returns are observed to occur more frequently than predicted by the conditional nor-
mal distribution. Therefore, it is important to be able to modify the current RiskMetrics model to 
account for the possibility of such large returns.

The purpose of this appendix is to describe two probability distributions that allow for a more real-
istic model of financial return tail distributions. It is organized as follows: 

• Section B.1 reviews the fundamental assumptions behind the current RiskMetrics calcula-
tions, in particular, the assumption that returns follow a conditional normal distribution. 

• Section B.2 presents the RiskMetrics model of returns under the assumption that the returns 
are conditionally normally distributed and two alternative models (distributions) where the 
probability of observing a return far away from the mean is relatively larger than the probabil-
ity implied by the conditional normal distribution. 

• Section B.3 explains how we estimate each of the three models and then presents results on 
forecasting the 1st and 99th percentiles of 15 return series representing 9 emerging markets.

 

B.1  A review of the implications of the conditional normality assumption

 

In a normal market environment RiskMetrics VaR forecasts are given by the bands of a confidence 
interval that is symmetric around zero. These bands represent the maximum change in the value of 
a portfolio with a specified level of probability. For example, the VaR bands associated with a 90% 
confidence interval are given by where 

 

−

 

/

 

+

 

1.65 are the 5th/95th percentiles of 
the standardized normal distribution, and  is the portfolio standard deviation which may depend 
on correlations between returns on individual instruments. The scale factors 

 

−

 

/

 

+

 

 1.65 result from 
the assumption that standardized returns (i.e., a mean centered return divided by its standard devi-
ation) are normally distributed. When this assumption is true we expect 5% of the (standardized) 
realized returns to lie below 

 

−

 

1.65 and 5% to lie above 

 

+

 

1.65. 

Often, whether complying with regulatory requirements or internal policy, risk managers compute 
VaR at different probability levels such as 95% and 98%. Under the assumption that returns are con-
ditionally normal, the scale factors associated with these confidence intervals are 

 

−

 

/

 

+

 

1.96 and 

 

−

 

/

 

+

 

2.33, respectively. It is our experience that while RiskMetrics VaR estimates provide reasonable 
results for the 90% confidence interval, the methodology does not do as well at the 95% and 98% 
confidence levels.

 

1

 

 Therefore, our goal is to extend the RiskMetrics model to provide better VaR 
estimates at these larger confidence levels.

Before we can build on the current RiskMetrics methodology, it is important to understand exactly 
what RiskMetrics assumes about the distribution of financial returns. RiskMetrics assumes that re-
turns follow a conditional normal distribution.   This means that while returns themselves are not 
normal, returns divided by their respective forecasted standard deviations are normally distributed 
with mean 0 and variance 1. For example, let , denote the time t return, i.e., the return on an asset 
over a one-day period. Further, let  denote the forecast of the standard deviation of returns for 

 

1

 

See Darryl Hendricks, “Evaluation of Value-at-Risk Models Using Historical Data,” 

 

FRBNY Economic Policy 
Review,

 

 April, 1996.
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time t based on historical data. It then follows from our assumptions that while  is not necessarily 
normal, the standardized return, , is normally distributed.

To summarize, RiskMetrics assumes that financial returns divided by their respective volatility 
forecasts are normally distributed with mean 0 and variance 1. This assumption is crucial because 
it recognizes that volatility changes over time.

 

B.2  Three models to produce daily VaR forecasts

 

In this section we present three models to forecast the distribution of one-day returns from which a 
VaR estimate will be derived.

• The first model that is discussed is referred to as standard RiskMetrics. This model is the basis 
for VaR calculations that are presented in the current 

 

RiskMetrics—Technical Document

 

.

• The second model that we analyze was introduced in the 2nd quarter 1996 

 

RiskMetrics 
Monitor

 

. It is referred to in this appendix as the normal mixture model. The name “normal 
mixture” refers to the idea that returns are assumed to be generated from a mixture of two dif-
ferent normal distributions. Each day’s return is assumed to be a draw from one of the two 
normal distributions with a particular probability. 

• The third, and most sophisticated model that we present is known as RiskMetrics-GED. This 
model is the same as standard RiskMetrics except the returns in this model are assumed to fol-
low a conditional generalized error distribution (GED). The GED is a very flexible distribu-
tion in that it can take on various shapes, including the normal distribution. 

 

B.2.1  Standard RiskMetrics

 

The standard RiskMetrics model assumes that returns are generated as follows

[B.1]

where 

  is a normally distributed random variable with mean 0 and variance 1

, respectively, are the time 

 

t

 

 standard deviation and variance of 

returns ( )

 is a parameter (decay factor) that regulates the weighting on past variances. For one-

day variance forecasts, RiskMetrics sets =0.94.

In summary, the standard RiskMetrics model assumes that returns follow a conditional normal dis-
tribution—conditional on the standard deviation—where the variance of returns is a function of the 
previous day’s variance forecast and squared return.
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B.2.2  Normal mixture

 

In the second quarter 1996 

 

RiskMetrics Monitor

 

 we introduced the normal mixture model of returns 
that was found to more effectively measure the tails of selected return distributions. In essence, this 
model allows for a larger probability of observing very large returns (positive or negative) than the 
conditional normal distribution. 

The normal mixture model assumes that returns are generated as follows

[B.2]

where 

 is the time t continuously compounded return

 is a normally distributed random variable with mean 0 and variance 1

 is a normally distributed random variable with mean  and variance 

 is a 0/1 variable that takes the value 1 with probability 

 

p

 

 and 0 with probability 1

 

−

 

p

 

 is the standard deviation given in the RiskMetrics model

Alternatively stated, the normal mixture model assumes that daily returns standardized by the 
RiskMetrics volatility forecasts, , are generated according to the model

[B.3]

Intuitively, we can think of Eq. [B.3] as representing a model where each day’s standardized return 
is generated from one of two distributions:

1. If  then the standardized return is generated from a standard normal distribution, 
that is, a normal distribution with mean 0 and variance 1.

2. If  then the return is generated from a normal distribution with mean  and vari-
ance . 

We can think of  as a variable that signifies whether a return that is inconsistent with the standard 
normal distribution has occurred. The parameter p is the probability of observing such a return. It 
is important to remember that although the assumed mixture distribution is composed of normal 
distributions, the mixture distribution itself is not normal. Also, note that when constructing a VaR 
forecast, the normal mixture model applies the standard RiskMetrics volatility.

Chart B.1 shows the tails of two normal mixture models (and the standard normal distribution) for 
different values of , and . Mixture(1) is the normal mixture model with parameter values 
set at 

 

=-4,

 

 

 

=1, 

 

p

 

=2%, 

 

=0 =1. Mixture(2) is the normal mixture model with the 
same parameter values as mixture(1) except now 

 

=0,
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Chart B.1

 

Tails of normal mixture densities

 

Mixture(1)

 

 

 

=-4,
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1

 

, p=2%, 

 

=0 =1;

 

Mixture(2) =0, =

 

10

 

, p=2%, =0 =

 

1

Chart B.1 shows that when there is a large negative mean for one of the normal distributions as in 
mixture(1), this translates into a larger probability of observing a large negative return relative to 
the standard normal distribution. Also, as in the case of mixture (2) we can construct a probability 
distribution with thicker tails than the standard normal distribution by mixing the standard normal 
with a normal distribution with a large standard deviation.

 

B.2.3  RiskMetrics-GED

 

According to this model, returns are generated as follows

[B.4]

where 

 is the time t continuously compounded return

 is a random variable distributed according to the GED (generalized error distribu-

tion) with parameter 

 

ν

 

. As will be shown below, 

 

ν

 

 regulates the shape of the GED dis-
tribution.

 is the time t variance of returns ( )

The random variable ( ) in Eq. [B.4] is assumed to follow a generalized error distribution (GED). 
This distribution is quite popular among researchers in finance because of the variety of shapes the 
GED can take. The probability density function for the GED is 
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[B.5]

where  Γ is the gamma function and

[B.6]  

When  this produces a normal density while >(<)2 is more thin (flat) tailed than a normal. 
Chart B.2 shows the shape of the GED distribution for values of  = 1, 1.5 and 2.

Chart B.2
GED distribution

=1, 1.5 and 2

Notice that when the parameter of the GED distribution is below 2 (normal), the result is a distri-
bution with greater likelihood of very small returns (around 0) and a relatively large probability of 
returns far away from the mean. To better understand the effect that the parameter  has on the 
tails of the GED distribution, Chart B.3 plots the left (lower) tail of the GED distribution when 

=1, 1.5 and 2.
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Chart B.3
Left tail of GED (ν) distribution
ν = 1, 1.5, and 2

Chart B.3 shows that as  becomes smaller, away from 2 (normal), there is more probability 
placed on relatively large negative returns.

B.3  Applying the models to emerging market currencies and equity indices

We applied the three models described above to 15 time series representing 9 emerging market 
countries to determine how well each model performs at estimating the 1st and 99th percentiles of 
the return distributions. The time series cover foreign exchange and equity indices. In order to fa-
cilitate our exposition of the process by which we fit each of the models and tabulate the results on 
forecasting the percentiles, we focus on one specific time series, the South African rand.

B.3.1  Model estimation and assessment

We first fit each model to 1152 returns on each of the 15 time series for the period May 25, 1992 
through October 23, 1996. Table B.1 shows the parameter estimates from each of the three models 
for the South African rand.

Table B.1 points to some interesting results:

• In the RiskMetrics-GED model, the estimate of  implies that the distribution of returns 
on the rand are much thicker than the normal distribution (recall that =2 is a normal dis-

Table B.1
Parameter estimates for the South African rand

Normal Mixture Standard RiskMetrics RiskMetrics-GED

Parameter Estimate Parameter Estimate Parameter Estimate

−5.086 0.94 0.927

9.087

p 0.010

1.288
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0.10%
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tribution). In other words, we are much more likely to observe a return that is far away 
from the mean return than is implied by the normal distribution.

• In the normal mixture model there is a 1% chance of observing a normally distributed 
return with a mean −5 and standard deviation 9 and a 99% chance of observing a normally 
distributed return with mean 0 and standard deviation 1.288.

• The RiskMetrics optimal decay factor for the South African rand is 0.940. This decay fac-
tor was found by minimizing the root mean squared error of volatility forecasts. Coinci-
dentally, this happens to be the same decay factor applied to all times series in RiskMetrics 
when estimating one-day volatility. 

If a volatility model such as RiskMetrics fits the data well its standardized returns (i.e., the returns 
divided by their volatility forecast) should have a volatility of 1. Table B.2 presents four sample sta-
tistics—mean, standard deviation, skewness and kurtosis—for the standard RiskMetrics model and 
estimates of ν for the RiskMetrics-GED model. Recall that skewness is a measure of a distribution’s 
symmetry. A value of 0 implies that the distribution is symmetric. Kurtosis measures a distribution’s 
“tail thickness”. For example, since the kurtosis for a normal distribution is 3, values of kurtosis 
greater than 3 indicate that there is a greater likelihood of observing returns that are far away from 
the mean return than implied by the normal distribution. 

Under the maintained assumption of the RiskMetrics model the statistics of the standardized returns 
should be as follows;   mean = 0, standard deviation = 1, skewness = 0, kurtosis = 3. Table B.2 
shows that except for Mexico, Philippines and Taiwan foreign exchange, standard RiskMetrics does 
a good job at recovering the standard deviation. The fact that kurtosis for many of the time series 
are well above three signifies that the tails of these return distributions are much larger than the nor-
mal distribution. 

Also, note the estimates of  produced from RiskMetrics-GED. Remember that if the distribution 
of the standardized returns is normal, = 2 and values of < 2 signify that the distribution has 
thicker tails than that implied by the normal distribution. The fact that all of the estimates of  are 
well below 2 indicate that these series contain a relatively large number of returns (negative and 
positive).

Table B.2
Sample statistics on standardized returns
Standard RiskMetrics model

Instrument type Source Mean Std dev Skewness Kurtosis
GED 

parameter, 

Foreign exchange Mexico 0.033 3.520 −21.744 553.035 0.749

Philippines −0.061 1.725 −13.865 327.377 0.368

Taiwan 0.069 1.720 8.200 162.234 0.492

Argentina 0.028 1.177 5.672 112.230 0.219

Indonesia −0.013 1.081 −1.410 12.314 0.460

Korea −0.013 1.106 −1.142 10.188 0.778

Malaysia 0.029 1.210 −0.589 12.488 0.908

South Africa 0.040 1.291 −6.514 116.452 0.927

Thailand −0.004 1.003 0.168 4.865 1.101

Equity Argentina 0.043 1.007 −0.376 3.817 1.221

Indonesia 0.020 1.085 1.069 12.436 0.868

Malaysia 0.002 1.130 0.346 5.966 1.023

Mexico 0.007 1.046 0.042 4.389 0.798

South Africa 0.027 1.023 0.081 5.412 1.136

Thailand −0.019 1.056 −0.008 5.014 0.999

ν

ν
ν ν

ν
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B.3.2  VaR analysis

In this section we report the results of an experiment to determine how well each of the models de-
scribed above can predict the 1st and 99th percentiles of the 15 return distribution. These results are 
provided in Table B.3. 

Our analysis consisted of the following steps:

• First, we estimate the parameters in each of the three models using price data from May, 25, 
1992 through October 23, 1996. This sample consists of 1152 historical returns on each of the 
15 time series. 

• Second, we construct one-day volatility estimates for each of the three models using the most 
recent 952 returns.

• Third, we use the 952 volatility estimates and the three probability distributions (normal, mix-
ture normal and GED) evaluated at the parameter estimates to construct VaR forecasts at the 
1st and 99th percentiles.

• Fourth, we count the number of times the next day realized return exceeds each of the VaR 
forecasts. This number is then converted to a percentage by dividing it by the total number of 
trials—952 in this experiment. The “ideal” model would yield percentages of 1%.

Table B.3 presents these percentages for the three models.

Table B.3 shows that for the RiskMetrics-GED model the VaR forecasts at the 1st percentile are ex-
ceeded 1.315 percent of the time whereas the VaR forecasts at the 99th percentile are exceeded 
1.286% of the time. Similarly, the VaR forecasts produced from the mixture model are exceeded at 
the 1st and 99th percentiles by 1.396% and 1.270% of the realized returns, respectively. Both mod-
els are marked improvements over the standard RiskMetrics model that assumes conditional 
normality.

Table B.3
VaR statistics (in %) for the 1st and 99th percentiles
RGD = RiskMetrics-GED; RM = RiskMetrics; MX = Normal mixture

Instrument type Source

 1st percentile (1%)  99th percentile (99%)

RGD RM MX RGD RM MX

Foreign exchange Mexico 1.477 2.346 0.434 1.043 1.998 0.434

Philippines 1.390 2.520 1.043 1.216 1.998 1.043

Taiwan 0.956 1.651 0.782 1.043 1.911 0.782

Argentina 1.998 1.998 1.303 2.172 2.172 1.39

Indonesia 1.651 3.562 1.651 1.129 1.998 1.411

Korea 1.216 2.433 1.303 0.521 1.303 0.956

Malaysia 1.564 2.433 1.477 1.911 3.215 1.911

South Africa 1.390 1.998 1.216 1.129 1.998 1.303

Thailand 0.695 1.129 1.043 1.651 2.172 1.072

Equity Argentina 1.825 2.520 1.646 0.869 1.129 1.129

Indonesia 0.608 1.998 1.564 1.564 2.520 1.564

Malaysia 1.651 2.433 1.698 1.651 2.693 1.738

Mexico 0.956 2.259 1.738 1.043 1.651 1.303

South Africa 1.216 2.172 1.651 1.477 2.085 1.738

Thailand 1.129 1.564 1.190 0.869 2.346 1.611

Column average 1.315 2.201 1.396 1.286 2.060 1.270
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In this appendix we present alternative measures to assess forecast accuracy of volatility and cor-
relation forecasts.

 

C.1  Normal likelihood (LKHD) criterion

 

Under the assumption that returns are conditionally normal, the objective here is to specify the 
joint probability density of returns given a value of the decay factor. For the return on day 

 

t

 

 this 
can be written as:

[C.1]

Combining the conditional distributions from all the days in history for which we have data, we 
get: 

[C.2]

Equation [C.2] is known as the normal likelihood function. Its value depends on 

 

λ

 

. In practice, it is 
often easier to work with the log-likelihood function which is simply the natural logarithm of the 
likelihood function.

The maximum likelihood (ML) principle stipulates that the optimal value of the decay factor 

 

λ 

 

is 
one which maximizes the likelihood function Eq. [C.2]. With some algebra, it can be shown that 
this is equivalent to finding the value of 

 

λ

 

 that minimizes the following function:

[C.3]

Notice that the criterion Eq. [C.3] imposes the assumption that returns are distributed condition-
ally normal when determining the optimal value of 

 

λ. 

 

The RMSE criterion, on the other hand, does 
not impose any probability assumptions in the determination of the optimal value of 

 

λ

 

.

 

C.2  Other measures

 

In addition to the RMSE and Normal likelihood measures alternative measures could also be 
applied such as the mean absolute error measure for the variance

[C.4]

For individual cashflows, RiskMetrics VaR forecasts are based on standard deviations. Therefore, 
we may wish to measure the error in the standard deviation forecast rather than the variance fore-
cast. If we take as a proxy for the one period ahead standard deviation, , then we can define the 
RMSE of the standard deviation forecast as 
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[C.5]

Notice in Eq. [C.5] that . In fact for the normal distribution, the following equa-

tion holds:  .

Other ways of choosing optimal 

 

λ

 

 include the Q-statistic described by Crnkovic and Drachman 
(RISK, September, 1996) and, under the assumption that returns are normally distributed, a likeli-
hood ratio test that is based on the normal probability density likelihood function.   

 

C.3  Measures for choosing an optimal decay factor for multiple time series.

 

In Chapter 5, we explained how an optimal decay factor for the 480 RiskMetrics time series was 
chosen. This method involved finding optimal decay factors for each series, and then taking a 
weighted average of these factors, with those factors which provided superior performance in fore-
casting volatility receiving the greatest weight. In this section, we briefly describe some alternative 
methods which account for the performance of the correlation forecasts as well.

The first such method is an extension of the likelihood criterion to a multivariate setting. If we 
consider a collection of 

 

n

 

 assets whose returns on day 

 

t 

 

are represented by the vector , then the 
joint probability density for these returns is

[C.6] ,

where  is the matrix representing the forecasted covariance of returns on day 

 

t 

 

using 
decay factor . The likelihood for the returns for all of the days in our data set may be constructed 
analogously to Eq. [C.2]. Using the same reasoning as above, it can be shown that the value of   
which maximizes this likelihood is the one which also maximizes 

[C.7] .

As noted before, choosing the decay factor according to this criterion imposes the assumption of 
conditional normality. In addition, to evaluate the likelihood function in Eq. [C.7], it is necessary 
at each time to invert the estimated covariance matrix . In theory, this matrix will 
always be invertible, although in practice, due to limited precision calculations, there will likely be 
cases where the inversion is impossible, and the likelihood function cannot be computed.

A second approach is a generalization of the RMSE criterion for the covariance forecasts. Recall 
from Chapter 5 that the covariance forecast error on day 

 

t

 

 for the 

 

i

 

th and 

 

j

 

th returns is

[C.8] .

(Recall also that under the RiskMetrics assumptions, .) The total squared 
error for day 

 

t

 

 is then obtained by summing the above over all pairs , and the mean total 
squared error (MTSE) for the entire data set is then
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1 
T
---- rt 1+ σ̂t 1 t+–( ) 2

t 1=

T

∑=

Et rt 1+ σt 1+≠

Et rt 1+ 2 π⁄( ) 1 2⁄– σt 1+=

rt

f rt λ( ) 1

2π( )
n
2
---

Σt t 1– λ( )
1
2
---

-----------------------------------------------

 
 
 
 
 

1
2
--- r

T
tΣt t 1– λ( ) 1– rt 

 –exp=

Σt t 1– λ( )
λ

λ

LKLHDv Σt t 1– λ( )[ ] r
T

tΣt t 1– λ( ) 1– rt+ln{ }
t 1=

T

∑=

Σt t 1– λ( )

εij t t 1–, λ( ) ri t, r j t, Σij t, t 1– λ( )–=

Et 1– εij t t 1–,[ ] 0=
i j,( )



Appendix C.  Methods for determining the optimal decay factor 245

Appendices

[C.9] .

The value of  which minimizes the MTSE above can be thought of as the decay factor which his-
torically has given the best covariance forecasts across all of the data series.

The above description presents a myriad of choices faced by the researcher when determining 
“optimal λ”. The simple answer is that there is no clear-cut, simple way of choosing the optimal 
prediction criterion. There has been an extensive discussion among academics and practitioners on 
what error measure to use when assessing post-sample prediction.1 Ultimately, the forecasting cri-
terion should be motivated by the modeler’s objective. For example, West, Edison and Cho (1993) 
note “an appropriate measure of performance depends on the use to which one puts the estimates 
of volatility….” Recently, Diebold and Mariano (1995) remind us, “of great importance and 
almost always ignored, is the fact that the economic loss associated with a forecast may be poorly 
assessed by the usual statistical measures. That is, forecasts are used to guide decisions, and the 
loss associated with a forecast error of a particular sign and size induced directly by the nature of 
the decision problem at hand.” In fact, Leitch and Tanner (1991) use profitability rather than size 
of the forecast error or its squared value as a test of forecast accuracy.

1 For a comprehensive discussion on various statistical error measures (including the RMSE) to assess forecasting 
methods, see the following:

Ahlburg, D.
Armstrong, J. S., and Collopy, F.
Fildes, R.

in the International Journal of Forecasting, 8, 1992, pp. 69–111.
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f

 

In this appendix we compare the VaR forecasts of the delta-gamma approach to those produced by 
full simulation. Before doing so, however, we investigate briefly when the delta-gamma approach 
is expected to perform poorly in relation to full simulation.

The accuracy of the delta-gamma approach depends on the accuracy of the approximation used to 
derive the return on the option. The expression for the option’s return is derived using what is 
known as a “Taylor series expansion.” We now present the derivation.

[D.1]

This expression can be rewritten as follows:

[D.2]

We now express the changes in the value of the option and the underlying in relative terms:

[D.3]

Dividing Eq. [D.3] by , we get

[D.4]

and define the following terms:

, , 

 

n 

 

= , and 

We can now write the return on the option as follows:

[D.5]

This expansion is a reasonable approximation when the “greeks”  and are stable as the under-
lying price changes. In our example, the underlying price is the US dollar/deutschemark exchange 
rate. If changes in the underlying price causes large changes in these parameters then we should not 
expect the delta-gamma approach to perform well.

Chart D.1 shows the changes in the value of delta  when the underlying price and the time to 
the option’s expiry both change. This example assumes that the option has a strike price of 5. 
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Chart D.1
Delta vs. time to expiration and underlying price

Notice that large changes in delta occur when the current price in the underlying instrument is near 
the strike. In other words, we should expect to see large changes in delta for small changes in the 
underlying price when the option is exactly, or close to being, an at-the-money option. 

Since the delta and gamma components of an option are closely related, we should expect a similar 
relationship between the current underlying price and the gamma of the option. For the same option, 
Chart D.2 presents values of gamma as the underlying price and the time to expiry both change.

The chart shows that gamma changes abruptly when the option is near to being an at-the-money 
option and the time to expiry is close to zero. 
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Chart D.2
Gamma vs. time to expiration and underlying price

Together, Charts D.1 and D.2 demonstrate that we should expect the delta-gamma method to do 
most poorly when portfolios contain options that are close to being at-the-money and the time to 
expiry is short (about one week or less).

D.1  Comparing full simulation and delta-gamma: A Monte Carlo study

In this section we describe an experiment undertaken to determine the difference in VaR forecasts 
produced by the full simulation and delta-gamma methodologies. The study focuses on one call op-
tion. (For more complete results, see the third quarter 1996 RiskMetrics Monitor.) VaR forecasts, 
defined as the 5th percentile of the distribution of future changes in the value of the option, were 
made over horizons of one day. The Black-Scholes formula was used to both revalue the option and 
to derive the “greeks.”

We set the parameters used to value the option, determine the “greeks”, and generate future prices 
(for full simulation) as shown in Table D.1.

Given these parameter settings we generate a series of underlying spot prices, , with values 4.5, 
4.6, 4.7,..., 5.6. Here the time t subscript denotes the time the VaR forecast is made. These spot pric-
es imply a set of ratios of spot-to-strike price, , that define the “moneyness” of the option. 
The values of  are 0.90, 0.92,0.94,...,1.12. In addition, we generate a set of time to expira-
tions, , (expressed in years) for the option. Values of  range from 1 day (0.004) to 1 year (1.0).

Table D.1
Parameters used in option valuation

Parameter Value

Strike price (K) 5.0
Standard deviation (annualized)  23.0%
Risk-free interest rate  8.0%

0.060.160.260.360.460.560.660.760.860.96

2.0
4.0

6.0
8.0

10.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

Gamma (Γ)

Time to expiration Underlying price
(strike = 5)

Pt

Pt K⁄
Pt K⁄

τ τ



250 Appendix D.  Assessing the accuracy of the delta-gamma approach

RiskMetrics  —Technical Document
Fourth Edition

In full simulation, we are required to simulate future prices of the underlying instrument. Denote 
the future price of the underlying instrument by  where n denotes the VaR forecast horizon
(i.e., n = 1 day, 1 week, 1 month and 3 months). We simulate underlying prices at time t+n, , 
according to the density for a lognormal random variable

[D.6]

where z is a standard unit normal random variable.

In full simulation, VaR is defined as the difference between the value of the option at time t + n (the 
forecast horizon) and today, time t. This means that all instruments are revalued. 

[D.7] Exact = , 

where BS() stands for the Black-Scholes formula.

We use the term “Exact” to represent the fact that the option is being revalued using its exact option 
pricing formula. In the delta-gamma approach, VaR is approximated in terms of the Taylor series 
expansion discussed earlier:

[D.8] Approx = 

Here, the term “Approx” denotes the approximation involved in using only the delta, gamma and 
theta components of the option. To compare VaR forecasts we define the statistics  and  
as follows:

 = the 5th percentile of the Exact distribution which represents full simulation.

 = the 5th percentile of the Approx distribution which represents delta-gamma.

For a given spot price, , time to expiration, τ, and VaR forecast horizon, n, we generate 5,000 
future prices, , and calculate and . This experiment is then repeated 50 times to 
produce 50 ’s and ’s. We then measure the difference in these VaR forecasts by com-
puting two metrics:

[D.9]

[D.10]

Tables D.2 and D.3 report the results of this experiment. Specifically, Tables D.2 and D.3 show, re-
spectively, the mean absolute percentage error (MAPE) and the mean error (ME) for a call option 
for a one-day forecast horizon. Each row of a table corresponds to a different time to expiration (ma-
turity). Time to expiration is measured as a fraction of a year (e.g., 1 day = 1/250 or 0.004) and can-
not be less than the VaR forecast horizon which is one day. Each column represents a ratio of the 
price of the underlying when the VaR forecast was made (spot) to the option’s strike price, . 
This ratio represents the option’s “moneyness” at the time VaR was computed. All entries greater 
than or equal to 10 percent are reported without decimal places.
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D.2  Conclusions

The results reported in this appendix show that the relative error between delta-gamma and full sim-
ulation is reasonably low, but becomes large as the option nears expiration and is at-the-money. 
Note that the extremely large errors in the case where the option is out-of-the-money reflects the 
fact that the option is valueless. Refer to Tables C.10 and C.19 in the RiskMetrics Monitor (third 
quarter, 1996) to see the value of the option at various spot prices and time to expirations. Therefore, 

Table D.2
MAPE (%) for call, 1-day forecast horizon

Time to maturity, 
(years)

Spot/Strike
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0.004 3838 2455 1350 633 187 28 21 1.7463 0.004 0.004 0.004 0.0036
0.054 11 7.12 3.960 1.561 0.042 0.762 0.946 0.733 0.372 0.082 0.052 0.069
0.104 3.226 2.061 1.180 0.486 0.021 0.271 0.395 0.399 0.330 0.229 0.133 0.061
0.154 1.592 1.039 0.615 0.272 0.028 0.130 0.216 0.245 0.232 0.195 0.148 0.102
0.204 0.983 0.655 0.400 0.190 0.036 0.069 0.133 0.163 0.168 0.155 0.131 0.104
0.254 0.685 0.465 0.293 0.148 0.040 0.037 0.087 0.115 0.125 0.122 0.111 0.095
0.304 0.515 0.355 0.230 0.123 0.041 0.018 0.059 0.084 0.096 0.098 0.093 0.084
0.354 0.407 0.285 0.189 0.106 0.042 0.007 0.041 0.063 0.075 0.079 0.078 0.073
0.404 0.333 0.237 0.160 0.094 0.041 0.003 0.028 0.047 0.059 0.065 0.066 0.063
0.454 0.28 0.202 0.139 0.084 0.041 0.007 0.019 0.036 0.048 0.054 0.056 0.055
0.504 0.241 0.175 0.123 0.077 0.040 0.010 0.012 0.028 0.038 0.045 0.048 0.048
0.554 0.211 0.155 0.111 0.071 0.039 0.013 0.007 0.021 0.031 0.038 0.041 0.042
0.604 0.187 0.139 0.101 0.066 0.038 0.015 0.003 0.016 0.025 0.032 0.035 0.037
0.654 0.167 0.125 0.092 0.062 0.037 0.016 0.001 0.012 0.021 0.027 0.031 0.033
0.704 0.151 0.114 0.085 0.058 0.035 0.017 0.003 0.008 0.017 0.023 0.026 0.029
0.754 0.138 0.105 0.079 0.055 0.034 0.018 0.005 0.006 0.013 0.019 0.023 0.025
0.804 0.126 0.097 0.074 0.052 0.033 0.018 0.006 0.003 0.011 0.016 0.020 0.022
0.854 0.117 0.09 0.069 0.049 0.033 0.019 0.007 0.002 0.008 0.014 0.017 0.020
0.904 0.108 0.084 0.065 0.047 0.032 0.019 0.008 0.001 0.006 0.011 0.015 0.018

Table D.3 
ME (%) for call, 1-day forecast horizons

Time to maturity, 
(years)

Spot/Strike
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0.004 0.000 0.000 0.000 −0.003 −0.186 0.569 −0.180 −0.010 0.000 0.000 0.000 0.000
0.054 −0.004 −0.006 −0.008 −0.005 0.000 0.005 0.007 0.005 0.003 0.001 0.000 0.000
0.104 −0.003 −0.004 −0.003 −0.002 0.000 0.001 0.002 0.003 0.002 0.002 0.001 0.000
0.154 −0.002 −0.002 −0.002 −0.001 0.000 0.001 0.001 0.002 0.002 0.001 0.001 0.001
0.204 −0.002 −0.002 −0.001 −0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001
0.254 −0.001 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001
0.304 −0.001 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
0.354 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
0.404 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.454 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.504 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.554 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.604 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.654 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.704 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.754 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.804 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.854 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.904 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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aside from the case where the option is near expiration and at-the-money, the delta-gamma meth-
odology seems to perform well in comparison to full simulation.

Overall, the usefulness of the delta-gamma method depends on how users view the trade-off be-
tween computational speed and accuracy. For risk managers seeking a quick, efficient means of 
computing VaR that measures gamma risk, delta-gamma offers an attractive method for doing so.
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In Section E.1 of this appendix we briefly introduce three algorithms for simulating correlated nor-
mal random variables from a specified covariance matrix 

 

Σ

 

 (

 

Σ

 

 is square and symmetric). In 
Section E.2 we present the details of the Cholesky decomposition.

 

E.1  Three algorithms to simulate correlated normal random variables

 

This section describes the Cholesky decomposition (CD), eigenvalue decomposition (ED) and the 
singular value decomposition (SVD). CD is efficient when  

 

Σ

 

 is positive definite. However, CD is 
not applicable for positive semi-definite matrices. ED and SVD, while computationally more 
intensive, are useful when 

 

Σ

 

 is positive semi-definite.

• Cholesky decomposition

We begin by decomposing the covariance matrix as follows:

[E.1]

where P is an upper triangular matrix. To simulate random variables from a multivariate nor-
mal distribution with covariance matrix 

 

Σ

 

 we would perform the following steps:

1. Find the upper triangular matrix P.

2. Compute a vector of standard normal random variables denoted . In other words,  
has a covariance matrix 

 

I

 

 (identity matrix).

3. Compute the vector . The random vector y has a multivariate normal distri-
bution with a covariance matrix 

 

Σ

 

.

Step 3 follows from the fact that 

[E.2]

where 

 

V

 

( ) and 

 

E

 

( ) represent the variance and mathematical expectation, respectively.

• Eigenvalue decomposition

Applying spectral decomposition to 

 

Σ

 

 yields

[E.3]

where 

 

C

 

 is an 

 

N

 

x

 

N

 

 orthogonal matrix of eigenvectors, i.e., 

 is an 

 

N

 

x

 

N

 

 matrix with the 

 

N

 

-eigenvalues of 

 

X

 

 along its diagonal and zeros elsewhere

[E.4]
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To simulate random variables from a multivariate normal distribution with covariance matrix 

 

Σ

 

 we would perform the following steps:

1. Find the eigenvectors and eigenvalues of 

 

Σ

 

.

2. Compute a vector of standard normal random variables denoted . In other words,  
has a covariance matrix I (identity matrix).

3. Compute the vector . The random vector y has a multivariate normal distri-
bution with a covariance matrix 

 

Σ

 

.

Step 3 follows from the fact that 

[E.5]

The final algorithm that is proposed is known as the singular value decomposition.

• Singular Value decomposition 

We begin with the following representation of the covariance matrix

[E.6]

where 

 

U

 

 and 

 

V

 

 are 

 

N

 

x

 

N

 

 orthogonal matrices, i.e., , and 

 

D

 

 is an 

 

N

 

x

 

N

 

 matrix 
with the 

 

N

 

 singular values of 

 

Σ

 

 along its diagonal and zeros elsewhere.

It follows directly from Takagi’s decomposition that for any square, symmetric matrix,   
. Therefore, to simulate random variables from a multivariate normal distribution 

with covariance matrix 

 

Σ

 

 we would perform the following steps:

1. Apply the singular value decomposition to 

 

Σ 

 

to get 

 

V

 

 and 

 

D

 

.

2. Compute a vector of standard normal random variables denoted . In other words,  
has a covariance matrix 

 

I

 

 (identity matrix).

3. Compute the vector  where . The random vector y has a multi-
variate normal distribution with a covariance matrix 

 

Σ

 

.

Step 3 follows from the fact that

[E.7]

 

E.2  Applying the Cholesky decomposition

 

In this section we explain exactly how to create the A matrix which is necessary for simulating 
multivariate normal random variables from the covariance matrix 

 

Σ

 

. In particular, 

 

Σ

 

 can be decom-
posed as:

[E.8]

If we simulate a vector of independent normal random variables X then we can create a vector of 
normal random variables with covariance matrix 

 

Σ

 

 by using the transformation Y=A’X. To show 
how to obtain the elements of the matrix A, we describe the Cholesky decomposition when the 
dimension of the covariance matrix is 3 x 3. After, we give the general recursive equations used to 
derive the elements of A from 

 

Σ

 

.
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Consider the following definitions:

[E.9]

Then we have

[E.10]

 equivalent to 

[E.11]

Now we can use the elements of 

 

Σ

 

 to solve for the ’s – the elements of A. This is done recur-
sively as follows:

[E.12]

Having shown how to solve recursively for the elements in A we now give a more general result. 
Let 

 

i

 

 and 

 

j

 

 index the row and column of an 

 

N

 

 x 

 

N

 

 matrix. Then the elements of A can be solved for 
using

[E.13]

and

[E.14]
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The Basel Committee on Banking Supervision under the auspices of BIS issued in January 1996 a 
final Amendment to the 1988 Capital Accord that requires capital charges to cover market risks in 
addition to the existing framework covering credit risk. The framework covers risks of losses in 
on- and off- balance sheet positions arising from movements in market prices.

Banks' minimum capital charges will be calculated as the sum of credit risk requirements under the 
1988 Capital Accord, excluding debt and equity securities in the trading book and all positions in 
commodities, but including the credit counterparty risk on all OTC derivatives, and capital charges 
for market risks. The proposal sets forth guidelines for the measurement of market risks and the 
calculation of a capital charge for market risks.

 

I. Measurement of market risk

 

Market risk may be measured using banks' internal models (subject to approval by the national 
supervisor) and incorporates the following:

1. Market risk in the trading account (i.e., debt and equity securities and derivatives):

 

Standardized method 

 

— uses a “building block” approach where charges for general risk 
and issuer specific risk for debt and equities risks are calculated separately.

 

Internal model

 

 — must include a set of risk factors corresponding to interest rates in each 
currency in which the bank has interest sensitive on- and off-balance sheet positions and 
corresponding to each of the equity markets in which the bank holds significant positions.

2. Foreign exchange risk across the firm (including gold:

 

Standardized method

 

 — uses the shorthand method of calculating the capital requirement.

 

Internal model

 

 — must include FX risk factors of the bank’s exposures.

3. Commodities risk across the firm (including precious metals but excluding gold)

 

Standardized method 

 

— risk can be measured using the standardized approach or the sim-
plified approach.

 

Internal model

 

 — must include commodity risk factors of the bank’s exposures.

4. Options risk across the firm:

 

Standardized method

 

 — banks using only purchased options should use a simplified 
approach and banks using written options should, at a minimum, use one of the intermedi-
ate approaches (“delta plus” or simulation method).

 

Internal model

 

 — must include risk factors (interest rate, equity, FX, commodity) of the 
bank’s exposures.
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II. Capital charge for market risk

Standardized method 

 

—simple sum of measured risk for all factors (i.e., debt/equity/FX/com-
modities/options)

 

Internal model —

 

 

• Higher of the previous day's VaR (calculated in accordance with specific quantitative stan-
dards) or average of daily VaR on each of the preceding 60 days times a multiplication factor, 
subject to a minimum of 3.

• A separate capital charge to cover the specific risk of traded debt and equity securities if not 
incorporated in model.

• A “plus” will be added that is directly related to the ex-post performance of the model 
(derived from “back-testing” outcome)

• Among other qualitative factors, stress testing should be in place as a supplement to the risk-
analysis based on the day-to-day output of the model.

 

III. Methods of measuring market risks

 

A choice between a Standardized Methodology and an Alternative Methodology (i.e., use of 
banks' internal models) will be permitted for the measurement of market risks subject to the 
approval of the national supervisor.

 

1. The standardized methodology

 

This method uses a “building block” approach for debt and equity positions, where issuer-specific 
risk and general risk are calculated separately. The capital charge under the standardized method 
will be the arithmetic sum of the measures of each market risk (i.e., debt/equity/foreign exchange/
commodities/options).

 

Debt securities

 

Instruments covered include:  debt securities (and instruments that behave like them including 
non-convertible preferred shares) and interest rate derivatives in the trading account. Matched 
positions in identical issues (e.g., same issuer, coupon rates, liquidity, call features) as well as 
closely matched swaps, forwards, futures and FRAs which meet additional conditions are permit-
ted to be offset. The capital charge for debt securities is the sum of the specific risk charge and 
general risk charge.

• Specific risk

The specific risk charge is designed to protect against an adverse movement in the price of an 
individual security owing to factors related to the individual issuer. Debt securities and deriv-
atives are classified into broad categories (government, qualified, and other) with a varying 
capital charge applied to gross long positions in each category. Capital charges range from 0% 
for the government category to 8% for the Other category.

• General market risk

The general risk charge is designed to capture the risk of loss arising from changes in market 
interest rates. A general risk charge would be calculated separately for each currency in which 
the bank has a significant position. There are two principal methods to choose from:
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1.

 

Maturity method

 

 — long and short positions in debt securities and derivatives are slot-
ted into a maturity ladder with 13 time bands (15 for deep discount securities). The net 
position in each time band is risk weighted by a factor designed to reflect the price sensi-
tivity of the positions to changes in interest rates.

2.

 

Duration method 

 

— achieves a more accurate measure of general market risk by calcu-
lating the price sensitivity of each position separately.

The general risk charge is the sum of the risk-weighted net short or long position in the whole 
trading book, a small proportion of the matched positions in each time-band (vertical disal-
lowance 10% for maturity method; 5% for duration method), and a larger proportion of the 
matched positions across different time bands (horizontal disallowance).

 

Equities

 

Instruments covered include:  common stocks, convertible securities that behave like equities, 
commitments to buy or sell equities, and equity derivatives. Matched positions in each identical 
equity in each market may be fully offset, resulting in a single net short or long position to which 
the specific and general market risk charges apply. The capital charge for equities is the sum of the 
specific risk charge and general risk charge.

• Specific risk

Specific risk is the risk of holding a long or short position in an individual equity, i.e., the 
bank's absolute equity positions (the sum of all long and short equity positions). The specific 
risk charge is 8% (or 4% if the portfolio is liquid and diversified). A specific risk charge of 2% 
will apply to the net long or net short position in an index comprising a diversified portfolio of 
equities.

• General market risk

General market risk is the risk of holding a long or short position in the market as a whole, 
i.e., the difference between the sum of the longs and the sum of the shorts (the overall net 
position in an equity market). The general market risk charge is 8% and is calculated on a 
market by market basis.

 

Foreign exchange risk (including gold)

 

The shorthand method of calculating the capital requirement for foreign exchange risk is per-
formed by measuring the net position in each foreign currency and gold at the spot rate and apply-
ing an 8% capital charge to the net open position (i.e., the higher of net long or net short positions 
in foreign currency and 8% of the net position in gold).

 

Commodities risk

 

Commodities risk including precious metals, but excluding gold, can be measured using the stan-
dardized approach or the simplified approach for banks which conduct only a limited amount of 
commodities business. Under the standardized approach, net long and short spot and forward posi-
tions in each commodity will be entered into a maturity ladder. The capital charge will be calcu-
lated by applying a 1.5% spread rate to matched positions (to capture maturity mismatches) and a 
capital charge applied to the net position in each bucket. Under the simplified method, a 15% cap-
ital charge will be applied to the net position in each commodity. 

 

Treatment of options

 

Banks that solely use purchased options are permitted to use a simplified approach; however, 
banks that also write options will be expected to use one of the intermediate approaches or a com-
prehensive risk management model. Under the standardized approach, options should be “carved 
out” and become subject to separately calculated capital charges on particular trades to be added to 
other capital charges assessed. Intermediate approaches are the “delta plus approach” and scenario 
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analysis. Under the delta plus approach, delta-weighted options would be included in the standard-
ized methodology for each risk type.

 

2. Alternative methodology: internal models

 

This method allows banks to use risk measures derived from their own internal risk management 
models, subject to a general set of standards and conditions. Approval by the supervisory authority 
will only be granted if there are sufficient numbers of staff (including trading, risk control, audit 
and back office areas) skilled in using the models, the model has a proven track record of accuracy 
in predicting losses, and the bank regularly conducts stress tests.

• Calculation of capital charge under the internal model approach

– Each bank must meet on a daily basis a capital requirement expressed as the higher of its 
previous day's value at risk number measured according to the parameters specified or an 
average of the daily value at risk measures on each of the preceding sixty business days, 
multiplied by a multiplication factor.

– The multiplication factor will be set by supervisors on the basis of their assessment of the 
quality of the bank's risk management system, subject to a minimum of 3. The plus factor 
will range from 0 to 1 based on backtesting results and that banks that meet all of the quali-
tative standards with satisfactory backtesting results will have a plus factor of zero.The 
extent to which banks meet the qualitative criteria may influence the level at which supervi-
sors will set the multiplication factor.

– Banks using models will be subject to a separate capital charge to cover the specific risk of 
traded debt and equity securities to the extent that this risk is not incorporated into their 
models. However, for banks using models, the specific risk charge applied to debt securities 
or equities should not be less than half the specific risk charge calculated under the stan-
dardized methodology.

– Any elements of market risk not captured by the internal model will remain subject to the 
standardized measurement framework.

– Capital charges assessed under the standardized approach and the internal model approach 
will be aggregated according to the simple sum method.

• Requirements for the use of internal models:

 

Qualitative standards

 

• Existence of an independent risk control unit with active involvement of senior management

• Model must be closely integrated into day-to-day risk management and should be used in 
conjunction with internal trading and exposure limits

• Routine and rigorous programs of stress testing and back-testing should be in place

• A routine for ensuring compliance and an independent review of both risk management and 
risk measurement should be carried out at regular intervals

• Procedures are prescribed for internal and external validation of the risk measurement process
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Specification of market risk factors

 

The risk factors contained in a risk measurement system should be sufficient to capture the risk 
inherent in the bank's portfolio, i.e., interest rates, exchange rates, equity prices, commodity 
prices. 

 

Quantitative standards

 

• Value at risk should be computed daily using a 99th percentile, one-tailed confidence interval 
and a minimum holding period of 10 trading days. Banks are allowed to scale up their 1-day 
VaR measure for options by the square root of 10 for a certain period of time after the internal 
models approach takes effect at the end of 1997.

• Historical observation period will be subject to a minimum length of one year. For banks that 
use a weighting scheme or other methods for the historical observation period, the “effective” 
observation period must be at least one year.

• Banks will have discretion to recognize empirical correlations within broad risk categories. 
Use of correlation estimates across broad risk categories is subject to regulatory approval of 
the estimation methodology used.

• Banks should update their data sets no less frequently than once every three months and 
should reassess them whenever market prices are subject to material change

• Models must accurately capture the unique risks associated with options within the broad risk 
categories (using delta/gamma factors if analytical approach is chosen) 

 

IV. Calculation of the capital ratio

 

• The minimum capital ratio representing capital available to meet credit and market 
risks is 8%. 

• The denominator of the ratio is calculated by multiplying the measure of market risk by 12.5 
(reciprocal of the 8% ratio) and adding the results to credit risk-weighted assets. The numera-
tor is eligible capital, i.e., sum of the bank's Tier 1 capital, Tier 2 capital under the limits per-
mitted by the 1988 Accord, and Tier 3 capital, consisting of short-term subordinated debt. Tier 
3 capital is permitted to be used for the sole purpose of meeting capital requirements for mar-
ket risks and is subject to certain quantitative limitations.

• Although regular reporting will in principle take place only at intervals (in most countries 
quarterly), banks are expected to manage the market risk in their trading portfolios in such a 
way that the capital requirements are being met on a continuous basis, i.e., at the close of each 
business day.
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V. Supervisory framework for the use of backtesting

 

Backtesting represents the comparison of daily profits and losses with model-generated risk mea-
sures to gauge the quality and accuracy of banks’ risk measurement systems. The backtests to be 
applied compare whether the observed percentage of outcomes covered by the risk measure is con-
sistent with a 99% level of confidence. The backtesting framework should use risk measures cali-
brated to a 1-day holding period. The Committee urges banks to develop the capability to perform 
backtests using both hypothetical (based on the changes in portfolio value that would occur were 
end-of-day positions to remain unchanged) and actual trading outcomes.

The framework adopted by the Committee calculates the number of times that the trading out-
comes are not covered by the risk measures (exceptions) on a quarterly basis using the most recent 
12 months of data. The framework encompasses a range of possible responses which are classified 
into 3 zones. The boundaries are based on a sample of 250 observations.

•

 

Green zone

 

 — the backtesting results do not suggest a problem with the quality or accuracy 
of a bank’s model (only four exceptions are allowed here).

•

 

Yellow zone

 

 — the backtesting results do raise questions, but such a conclusion is not defini-
tive (only 9 exceptions are allowed here). Outcomes in this range are plausible for both accu-
rate and inaccurate models. The number of exceptions will guide the size of potential 
supervisory increases in a firm’s capital requirement. The purpose of the increase in the multi-
plication factor is to return the model to a 99th percentile standard. Backtesting results in the 
yellow zone will generally be presumed to imply an increase in the multiplication factor 
unless the bank can demonstrate that such an increase is not warranted. The burden of proof in 
these situations should not be on the supervisor to prove that a problem exists, but rather 
should be on the bank to prove that their model is fundamentally sound.

•

 

Red zone

 

 — the backtesting results almost certainly indicate a problem with a bank’s risk 
model (10 or more exceptions). If a bank’s model falls here, the supervisor will automatically 
increase the multiplication factor by one and begin investigation.
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A number of the examples in this 

 

Technical Document

 

, are included on the enclosed examples dis-
kette. This diskette contains a Microsoft Excel workbook file containing six spreadsheets and one 
macro file. The workbook can be used under Excel Version 4.0 or higher.

Some of the spreadsheets allow the user to modify inputs in order to investigate different scenar-
ios. Other spreadsheets are non-interactive. In the latter case, the objective is to provide the user 
with a detailed illustration of the calculations. This workbook and user guide is presented to the 
experienced user of Microsoft Excel, although we hope the material is meaningful to less experi-
enced users. Please make a duplicate of the Examples.XLW workbook and save at least one copy 
on your hard drive and at least one copy on a floppy disk. This will allow you to manipulate the 
enclosed spreadsheets without sacrificing their original format.

Opening the Examples.XLW workbook will show the following file structure:

The files listed above are described as follows:

 

CFMapTD.xls & CFMap.xls

 

These two spreadsheets are similar, although CFMap.xls allows the user to change more of the 
inputs in order to investigate different scenarios, or to perform sensitivity analysis. CFMap.xls 
allows provides more vertices to which to map the cash flows. Note that only data in red is change-
able on all spreadsheets.

 

File Section, page Description

 

CFMapTD.xls Section 6.4, page 134 Decomposition of the 10-year benchmark OAT into RiskMetrics vertices

CFMap.xls Section 6.4, page 135 Generic Excel cash flow mapping spreadsheet (users are given flexibility to map 
standard bullet bonds)

FRA.xls Section 6.4, page 136 Mapping and VaR calculation of a 6x12 French franc FRA

FX_Fwd.xls Section 6.4, page 143 Mapping and VaR calculation of a DEM/USD 1-year forward

Str_note.xls Section 6.4, page 139 Mapping and VaR calculation of a 1-year Note indexed to 2-year DEM swap rates

FXBase.xls Section 8.4, page 183 Generic calculator to convert U.S. dollar based volatilities and correlations to an-
other base currency

Examples.XLM Macro sheet that links to buttons on the various spreadsheets
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In CFMapTD.xls, Example Part 1 illustrates the mapping of a single cash flow, while Example 
Part II illustrates the mapping of the entire bond.

To begin mapping on either spreadsheet, enter your chosen data in all cells that display red font. 
Then click the “Create cash flows” button. Wait for the macro to execute, then click the “Map the 
cash flows to vertices” button to initiate the second macro, which executes for the final output of 
Diversified Value at Risk, Market Value, and Percentage of market value. If you wish to print the 
cash flow mapping output, simply click the “Print Mapping” macro button. 

 

FRA.xls

 

This Forward Rate Agreement example is for illustrative purposes only. We encourage the user, 
however, to manipulate the spreadsheet is such a way as to increase it’s functionality. Changing 
any spreadsheet, of course, should be done after creating a duplicate workbook. 

In this spreadsheet, cells are named so that formulae show the inputs to their respective calcula-
tions. This naming convention, we hope, increases user friendliness. For example, looking at cell 
C21 shows the calculation for the FRA rate utilizing the data in 1. Basic Contract Data and data 
under the Maturity column under 2. FRA Mapping and VaR on 6-Jan-95.

Cells are named according to the heading under which they fall, or the cell to their left that best 
describes the data. For example, cell B30 is named Maturity_1, while cell K32 is named 
Divers_VaR_1. Also note that the RiskMetrics Correlations are named in two-dimensional arrays: 
cells L30:M31 are named Corr_Matrx_1, while cells L40:N42 are named Corr_Matrx_2.

If you have any confusion about the naming convention, simply go to the 

 

Formula Define name…

 

 
command. The 

 

Define Name

 

 dialogue box will appear, where the cell names are listed in alphabet-
ical order along with their respective cell references.

The cells containing the individual VaR calculations (K30, K31, K40, K41, K42) contain the abso-
lute value of the value at risk. In order to calculate the Diversified VaR, however, in cells K32 and 
K43, we have placed the actual VaR values to the right of the correlation matrices. If you go to cell 
K32, you will see that the formula makes use of VaR_Array_1, which refers to cells O31:O32. 
This VaR array contains the actual values of VaR_1 and VaR_2, which are essential to calculating 
the Divers_VaR_1. Cells O31 and O32 are formatted in white font in order to maintain the clarity 
of the spreadsheet. Similarly, the calculation in cell K43 utilizes VaR_Array_2, found in cells 
O40:O42.

 

FX_Fwd.xls

 

This spreadsheet offers some interaction whereby the user can enter data in all red cells.

Before examining this spreadsheet, please review the names of the cells in the 1. Basic contract 
data section in order to better understand the essential calculations. If you have any confusion 
about the naming convention, simply go to the 

 

Formula Define name…

 

 command. The 

 

Define 
Name

 

 dialogue box will appear, where the cell names are listed in alphabetical order along with 
their respective cell references.

Please note that the Diversified Value at Risk calculation utilizes the var_array input, which refers 
to cells I33:I35. These cells are formatted in white font in order to maintain the clarity of the 
worksheet.
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Str_note.xls

 

This spreadsheet is for illustrative purposes only. Again, we encourage the user to format the 
spreadsheet for custom use.

Please notice that the Diversified VaR calculations make use of VaR_Array1 and VaR_Array2. 
VaR_Array1 references cells N26:N28, while VaR_Array2 references cells O37:O40. These two 
arrays are formatted in white font in order to maintain the clarity of the worksheet.

If you have any confusion about the naming convention, simply go to the 

 

Formula Define name…

 

 
command. The 

 

Define Name

 

 dialogue box will appear, where the cell names are listed in alphabet-
ical order along with their respective cell references.
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Appendix H. RiskMetrics on the Internet 

 

Scott Howard
Morgan Guaranty Trust Company
Risk Management Advisory
(1-212) 648-4317

 

howard_james_s@jpmorgan.com

 

RiskMetrics home pages on the Internet are currently located at

 

http://www.jpmorgan.com/RiskManagement/RiskMetrics/RiskMetrics.html

 

and 

 

http://www.riskmetrics.reuters.com

 

The RiskMetrics home page on the Reuters Web is located at:

 

http://riskmetrics.session.rservices.com

 

The Internet can be accessed through such services as CompuServe

 



 

, Prodigy

 



 

, or America

 



 

 
Online, or through service providers by using browsers such as Netscape

 



 

 Navigator, Microsoft

 



 

 
Internet Explorer, Mosaic or their equivalents. The Reuters Web is available with the Reuters 3000 
series.

RiskMetrics data sets can be downloaded from the Internet and from the Reuters Web. 
RiskMetrics documentation and a listing of third parties, both consultants and software developers 
who incorporate RiskMetrics methodology and/or data sets, are also freely available from these 
sites or from local Reuters offices. Users can receive e-mail notification of new publications or 
other information relevant to RiskMetrics by registering at the following address:

 

http://www.jpmorgan.com/RiskManagement/RiskMetrics/rmform.html

 

Note that URL addresses are subject to change.

 

H.1  Data sets

 

RiskMetrics data sets are updated daily on the Internet at 

 

http://www.riskmetrics.reuters.com 

 

and 
on the Reuters Web at 

 

http://riskmetrics.session.rservices.com.

 

The data sets are available by 10:30 a.m. U. S. Eastern Standard Time. They are based on the pre-
vious day’s data through close of business, and provide the latest estimates of volatilities and cor-
relations for daily and monthly horizons, as well as for regulatory requirements.

The data sets are not updated on official U.S. holidays. For these holidays, foreign market data is 
included in the following business day’s data sets; U.S. market data is adjusted according to the 
Expectation Maximization (EM) algorithm described in Section 8.25. EM is also used in a consis-
tent fashion for filling in missing data in other markets.

The data sets are supplied in compressed file format for DOS, Macintosh, and UNIX platforms. 
The DOS and Macintosh files are auto-extracting, i.e., the decompression software is enclosed in 
the file.
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On the same page as the data sets is the Excel add-in, which enables users to perform DEaR/VaR 
calculations on other than a US dollar currency basis. The add-in allows users full access to the 
data sets when building customized spreadsheets. Current rate, price volatility, and correlation of 
specified pairs can be returned. The add-in was compiled in 16 bit and runs under Excel 4.0 and 
5.0. It does not run under Windows NT. The name of the add-in is JPMVAR for the Mac and 
JPMVAR.XLL for the PC. It has an expiration date of November 1, 1997.

 

H.2  Publications

 

http://www.jpmorgan.com/RiskManagement/riskMetrics/pubs.html

 

The annual 

 

RiskMetrics—Technical Document

 

, the quarterly 

 

Monitor

 

 and all other RiskMetrics 
documents are available for downloading in Adobe Acrobat pdf file format. Adobe Acrobat Reader 
is required to view these files. It can be downloaded from 

 

http://www.adobe.com

 

. 

RiskMetrics documents are also available from your local Reuters office.

 

H.3  Third parties

 

http://www.jpmorgan.com/RiskManagement/RiskMetrics/Third_party_directory.html

 

Setting up a risk management framework within an organization requires more than a quantitative 
methodology. A listing of several consulting firms who have capital advisory practices to help 
ensure the implementation of effective risk management and system developers who have inte-
grated RiskMetrics methodology and/or data sets is available for viewing or saving as a file.

Users should be able to choose from a number of applications that will achieve different goals, 
offer various levels of performance, and run on a number of different platforms. Clients should 
review the capabilities of these systems thoroughly before committing to their implementation. 

 

J. P. Morgan and Reuters do not endorse the products of these third parties nor do they war-
rant their accuracy in the application of the RiskMetrics methodology 

 

and in the use of the 
underlying data accompanying it.
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Glossary of terms

 

absolute market risk.  

 

Risk associated with the change in value of a position or a portfolio result-
ing from changes in market conditions i.e., yield levels or prices.

 

adverse move X.  

 

Defined in RiskMetrics as 1.65 times the standard error of returns. It is a mea-
sure of the most the return will move over a specified time period.

 

ARCH.  

 

 Autoregressive Conditional Heteroskedascticity. A time series process which models 
volatility as dependent on past returns. GARCH—Generalized ARCH, models volatility as a func-
tion of past returns and past values of volatility. EGARCH—Exponential GARCH, IGARCH— 
Integrated GARCH. SWARCH—Switching Regime ARCH.

 

autocorrelation (serial correlation).   

 

When observations are correlated over time. In other 
words, the covariance between data recorded on the same series sequentially in time is non-zero.

 

beta.  

 

A volatility measure relating the rate of return on a security with that of its market over 
time. It is defined as the covariance between a security’s return and the return on the market port-
folio divided by the variance of the return of the market portfolio.

 

bootstrapping.  

 

 A method to generate random samples from the observed data’s underlying, pos-
sibly unknown, distribution by randomly resampling the observed data. The generated samples 
can be used to compute summary statistics such as the median. In this document, bootstrapping is 
used to show monthly returns can be generated from data which are sampled daily. 

 

CAPM.  

 

Capital Asset Pricing Model. A model which relates the expected return on an asset to the 
expected return on the market portfolio.

 

Cholesky factorization/decomposition.  

 

A method to simulation of multivariate normal returns 
based on the assumption that the covariance matrix is symmetric and positive-definite. 

 

constant maturity.  

 

The process of inducing fixed maturities on a time series of bonds. This is 
done to account for bonds “rolling down” the yield curve.

 

decision horizon.  

 

The time period between entering and unwinding or revaluing a position. Cur-
rently, RiskMetrics offers statistics for 1-day and 1-month horizons.

 

decay factor.   

 

See lambda.

 

delta equivalent cash flow.  

 

In situations when the underlying cash flows are uncertain (e.g. 
option), the delta equivalent cash flow is defined as the change in an instrument's fair market value 
when its respective discount factor changes. These cash flows are used to find the net present value 
of an instrument. 

 

delta neutral cash flows.  

 

These are cash flows that exactly replicate a callable bond’s sensitivity 
to shifts in the yield curve. A single delta neutral cash flow is the change in the price of the callable 
bond divided by the change in the value of the discount factor.

 

duration (Macaulay).  

 

The weighted average term of a security’s cash flow.

 

EM algorithm.  

 

A statistical algorithm that can estimate parameters of a function in the presence 
of incomplete data (e.g. missing data). EM stands for Expectation Maximization. Simply put, the 
missing values are replaced by their expected values given the observed data.
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exponential moving average.  

 

Applying weights to a set of data points with the weights declining 
exponentially over time. In a time series context, this results in weighing recent data more than the 
distant past.

 

GAAP.  

 

Generally Accepted Accounting Principles.

 

historical simulation.  

 

A non-parametric method of using past data to make inferences about the 
future. One application of this technique is to take today’s portfolio and revalue it using past his-
torical price and rates data.

 

kurtosis.  

 

Characterizes relative peakedness or flatness of a given distribution compared to a nor-
mal distribution.

 

1

 

Since the unconditional normal distribution has a kurtosis of 3, excess kurtosis is defined as 

 

K

 

x

 

-3.

 

λ

 

 lambda (decay factor).  

 

The weight applied in the exponential moving average. It takes a value 
between 0 and 1. In the RiskMetrics lambda is 0.94 in the calculation of volatilities and correla-
tions for a 1-day horizons and 0.97 for 1-month horizon.

 

leptokurtosis (fat tails).  

 

The situation where there are more occurrences far away from the mean 
than predicted by a standard normal distribution.

 

linear risk (nonlinear).  

 

 For a given portfolio, when the underlying prices/rates change, the 
incremental change in the payoff of the portfolio remains constant for all values of the underlying 
prices/rates. When this does not occur, the risk is said to be nonlinear.

 

log vs. change returns.  

 

For any price or rate 

 

P

 

t

 

, log return is defined as ln (

 

P

 

t

 

/

 

P

 

t

 

 

 

− 

 

1

 

) whereas the 
change return is defined by (
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. For small values of (

 

P
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P

 

t

 

 

 

−

 

1

 

), these two types of 
returns give very similar results. Also, both expressions can be converted to percentage 
returns/changes by simply multiplying them by 100.

 

mapping.  

 

The process of translating the cash flow of actual positions into standardized position 
(vertices). Duration, Principal, and cash flow.

 

mean.  

 

A Measure of central tendency. Sum of daily rate changes divided by count

 

mean reversion.  

 

When short rates will tend over time return to a long-run value.

 

modified duration.  

 

An indication of price sensitivity. It is equal to a security’s Macaulay dura-
tion divided by one plus the yield.

 

outliers.  

 

Sudden, unexpectedly large rate or price returns.

 

1

 

We would like to thank Steven Hellinger of the New York State Banking Department for pointing this formula out 
for us.
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overlapping data.  

 

Consecutive returns that share common data points. An example would be 
monthly returns (25-day horizon) computed on a daily basis. In this instance adjacent returns share 
24 data points.

 

nonparametric.  

 

Potential market movements are described by assumed scenarios, not statistical 
parameters.

 

parametric.  

 

When a functional form for the distribution a set of data points is assumed. For 
example, when the normal distribution is used to characterize a set of returns.

 

principle of expected return.  

 

The expected total change in market value of the portfolio over the 
evaluation period.

 

relative market risk.  

 

Risk measured relative to an index or benchmark

 

residual risk.  

 

The risk in a position that is issue specific.

 

skewness.  

 

Characterizes the degree of asymmetry of the distribution around its mean. Positive 
skews indicate asymmetric tail extending toward positive values (right-hand side). Negative skew-
ness implies asymmetry toward negative values (left-hand side).

 

speed of adjustment.  

 

A parameter used in modelling forward rates. It is estimated from past data 
on short rates. A fast speed of adjustment will result in a forward curve that approaches the long-
run rate at a relatively short maturity.

 

stochastic volatility.  

 

Applied in time series models that take volatility as an unobservable random 
process. Volatility is often modeled as a first order autoregressive process.

 

standard deviation

 

. Indication of the width of the distribution of changes around the mean. 

 

Structured Monte Carlo.  

 

Using the RiskMetrics covariance matrix to generate random normal 
variates to simulate future price scenarios.

 

total variance.  

 

The variance of the market portfolio plus the variance of the return on an individ-
ual asset.

 

zero mean.  

 

When computing sample statistics such as a variance or covariance, setting the mean 
to a prior value of zero. This is often done because it is difficult to get a good estimate of the true 
mean.
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