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The derivation conclusion of Maxwell’s equations is given from the first principles of  
nonequilibrium thermodynamics. It is shown, that these equations represent the modified 
form of its phenomenological laws and should contain the full derivatives on time from  

vectors of electric and magnetic induction 
 

Let us consider, for generality, a stationary system being in the external electric E and 
magnetic H fields and adequately possessing the electric and magnetic degrees of freedom. The 
unit volume energy Еv for such a system is a function of the electric D and magnetic B induction 
vectors which in their turn depend on the intensities E and H of these fields. The thermodynamic 
relationship between them is [1.2] 
 

 dЕv = E⋅dD + H⋅dB .        (1) 
 
 The terms on the right side of the equation characterize, respectively, the elementary 
polarization đWеv = E⋅dD magnetization đWмv = H⋅dB works of the system.  
 Let us assume that in such a system the reciprocal conversions of electric and magnetic 
field energies run, which powers are 
 

 Nе = E⋅dD/dt;  Nм = H⋅dB/dt.     (2) 
 
 Providing these processes do not change the system energy and entropy (i.e. the energy of 
the system entirely converts from a one ordered form into the other), the power balance Nе = –Nм 
is evident. This directly leads to the following relationship: 
 

      E⋅(dD/dt) = – H⋅(dB/dt).     (3) 
 
 These simple relationships may be given the form offered by Maxwell. For this let us 
consider a system consisting of a closed electric circuit with an arbitrary length ℓe and variable 
(in general case) cross section fe, which comprises an as well closed magnetic circuit with a 
length ℓm and cross section fm variable thru the length [3]. Taking this variability into 
consideration, (2) should be changed to the integral form: 
 

                       Nе = ∫E⋅(dD/dt)dVe;  Nм = ∫H⋅(dB/dt)dVм ,    (4) 
 
 The bulk elements may be represented in the form dVe = dℓe·dfe and dVм = dℓм·dfм, where 
dℓe, dℓм and dfe, dfм – orthogonal vector elements of length and cross section, respectively, of the 
electric circuit and dielectric. The expressions (4) may be rewritten in terms of energodynamics 
as follows: 
 

                Nе = ∫E⋅dℓe ∫(dD/dt)dfe = XeJe
D ;              (5) 

  
                                   Nм = ∫H⋅dℓм ∫ (dB/dt)dfм = XмJмD,                                 (6) 

 
where Je

D = ∫(dD/dt)dfe, JмD = ∫(dB/dt)dfм – total fluxes of electric and magnetic displacements, 
respectively, sometimes named the “linkage fluxes” and traditionally represented by the number 
of the lines of force linking the cross section of the electric and magnetic circuits, respectively 
[4]; Xe = ∫E⋅dℓe, Xм= ∫H⋅dℓм – the so-called electromotive and magnetomotive forces (emf and 



mmf) defined by the circulation of the vectors E and H, respectively, along the closed electric 
and magnetic circuits.  
 Now the electromagnetic field equations may be given the form of Onsager’s 
phenomenological laws [1…3]: 
 

 Je
D = Lee Xe + LeмXм;     (7) 

 
 JмD = LмeXe + LммXм .     (8) 

 
 Here the terms LeeXe and LммXм characterize the relaxation part of the displacement 
fluxes, which relates to the conduction current Ie = Lee Xe and its magnetic analog Iм = Lмм Xм and 
is caused by, respectively, electric and magnetic energy dissipation; the terms LeмXм и LмeXe, on 
the contrary, relate to overcoming the “extraneous” forces by the flow, i.e. to conversion of the 
electric energy into magnetic one and vice versa. Since Nе = – Nм relationships (5) – (6) may take 
a more simple form: 
 

 Je
D/Xм = – JмD/Xe  .     (9) 

 
 Comparing this equation with phenomenological laws (7) and (8) one can find that the 
left-side part of (9) defines the coefficient Leм, while the right-side part – Lмe. From this the 
Cazimir’s anti-symmetry conditions follow [1…3]: 
 

Leм = – Lмe .         (10) 
 

The value and dimensionality of these coefficients depend on the system of units chosen. 
In the international system of units (SI) Lem =–Lme =1, therefore it may be written instead of (10): 
 

Xe =  – ∫(dB/dt)dfм ,  (11) 
 

  Xм =  ∫(dD/dt)dfe .                                      (12) 
 
 The first of these relationships represents Faraday’s law (flux rule) reading that emf is 
equal in value, but opposite in sign to the variation rate of the electric circuit-linking flux. Let us 
now change, based on the Stokes theorem, in the force equation Xe= ∫E⋅dℓe from the curvilinear 
integral taken over the closed electric circuit with a length of ℓe to the integral ∫rotЕ⋅dfм over the 
magnetic circuit cross section fм. In the similar way one can change in the force equation Xм=      
∫H⋅dℓм from the curvilinear integral over the closed magnetic circuit with a length of ℓм to the 
integral ∫rotH⋅dfe over the surface fе covering the electric circuit. Then (11) and (12) become: 
 

∫rotЕ⋅dfм  = – ∫(dB/dt)dfм .  (13) 
   

∫rotH⋅dfe = ∫(dD/dt)dfe ;              (14) 
 

Or in the differential form 
 

rot E = – dB/dt,  (15) 
 

 rot H = dD/dt .                           (16) 
___________________________________________ 
1) Availability of such relationships once again confirms that electricity and magnetism are two independent 
phenomena with interrelation between them seen only in dynamics. 



 These equations differ from the corresponding Maxwell’s equations in that they contain 
the total time derivatives of electric and magnetic induction vectors. This is not a surprise since 
the primary equations of energodynamics (1) as well contain the exact differentials of 
polarization and magnetization vectors. It is significant that Maxwell himself initially defined 
emf as well thru the total derivative dФ/dt of magnetic flux Ф (K. Polivanov, 1982).  

 To form equations (15) and (16) into a more common shape, let us expand the derivatives 
dB/dt and dD/dt on the assumption that polarization and magnetization processes are absent in a 
system under consideration (Р, М = 0). Since (∂Е/∂r) = ρе, whereas magnetic analogs to the free 
charge ρе do not exist, we have: 
 

dB/dt = (∂B/∂t);  dD/dt = (∂D/∂t) + jе.   (17) 
 

Here jе = (vе·∇)D = ρеvе – conduction current caused by the free charge transfer.  
 Thus finally: 

rot E = – (∂B/∂t),                          (18) 
 

rot H = jе + (∂D/∂t) .    (19) 
 
 As for another couple of Maxwell’s equations: 
 

 div D = ρе , div B = 0 ,                              (20) 
 

the first of them is a direct consequence from expression (1) written in the differential form since 
the electric displacement vector D is identical by implication to the vector ZеV. Second term of 
the relationship (20) just states the fact of the absence of magnetic “monopolies” analogous to 
the electric charge ρе.  
 The thermodynamic derivation of electromagnetic field equations set herein forth rebuts 
the popular opinion that the Maxwell’s equations are non-derivable from whatever primary laws. 
At the same time this derivation discloses a number of assumptions laid into their foundation. 
First of all, electromotive and magnetomotive forces have been defined in (11) and (12) for 
closed electric and magnetic circuits. Hence the Maxwell’s equations are inapplicable to non-
closed electric currents and their elements. This is what Maxwell himself stressed. Secondly, 
such processes as the re-polarization in semiconductors and the magnetic circuit re-
magnetization were excluded from consideration. As a result, the losses from irreversibility of 
the electric-to-magnetic (and vice versa) field conversion were allowed for only the electric form 
of energy (due to conduction currents). The magnetic loss (re-magnetization, eddy currents, etc.) 
which lead to a magnetic analog of the conduction current was not taken into consideration in 
that case. It was assumed further that the electric and magnetic fluxes in equations (11) and (12) 
were homogeneous so that the power balance Nе = Nм was observed for each of the local zones of 
a system under investigation (otherwise changing to the differential form (15)-(16) of the above 
equations becomes incorrect). These circumstances cause some incompleteness of the Maxwell’s 
equations and disable interpreting on their basis a number of effects hardly prone to analysis [3].  
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