HW: Aim 62 Worksheet; Quiz Tuesday, 3/6 on Aims 61-66
Aim \#62: How do we find the area of a triangle given the lengths of two adjacent sides and the included angle?
Kickoff:
Find the area of triangle $A B C$. Hint: There is extra information!

$=\frac{1}{2}(22)(6)$
$=66$ sq. unit

Sep 4-8:29 PM

Feb 26-2:39 PM

What if we were only given this much information about the triangle?

Try: In $\triangle A B C, b=10, c=8$ and angle $A=\pi / 3$. Determine the exact value for the area of the triangle.

$$
\begin{aligned}
K= & \frac{1}{2} b c \operatorname{Sin} A \\
= & \frac{1}{2}(10)(8) \operatorname{Sin} \frac{\pi}{3} \\
& \frac{\sqrt{3}}{2}=20 \sqrt{3}
\end{aligned}
$$

Try: In $\triangle A B C, a=8, b=12$ and angle $C=140^{\circ}$. Determine the area of the triangle to the nearest square unit.

$$
\begin{aligned}
K & =\frac{1}{2} a b \sin C \\
K & =\frac{1}{2}(8)(12) \sin 140 \\
& =31 \text { Sq. units }
\end{aligned}
$$

What is the maximum possible area of a triangle that has side lengths of $\sqrt{10}$ and $2 \sqrt{5}$?

$$
\begin{aligned}
K= & \frac{1}{2}(\sqrt{10})(2 \sqrt{5}) \underbrace{\frac{1}{7}(\sqrt{10})(2 \sqrt{5})} \begin{array}{l}
1 \\
\\
\\
\\
\\
\\
\sqrt{50}
\end{array} \quad \downarrow
\end{aligned}
$$

The lengths of two sides of a parallelogram are 24 and 36 centimeters. Their included angle measures 50°. Find the area of the parallelogram to the nearest ${ }^{5}$ centimeter.

$K=a b \sin C$ $=(24)(36) \sin 50$

In triangle $A B C$, the ratio of side $A B$ to side $A C$ is $1: 2$ and angle $A=$ 30°. If the area of triangle $A B C$ is 200 square feet, find the length of side $A C$ to the nearest foot.

