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Geometry of Linear

Programming

The intent of this chapter is to provide a geometric interpretation of linear programming.
Once the underlying geometry is understood. we can follow intuitions to manipulate
algebraic expressions in validating known results and developing new insights into linear
programming. We shall stick 1o linear programs in standard form in this chapter. Some
terminalogy and basic concepts will be defined before the fundamental theorem of linear
programming is introduced. Motivations of the classic simplex method and the newly
developed interior-point approach will then be discussed.

2.1 BASIC TERMINOLOGY OF LINEAR PROGRAMMING

Consider a linear programming problem in its standard form:
Minimize ¢’ x

subject to Ax=h
x>0 (2.0

where ¢ and x are n-dimensional column vectors, A an m x n matrix, and b an m-
dimensional column vector. Usually, A is called the constraint matrix, b the right-hand-
side vector, and ¢ the cost vector. Note that we can always assume that b > 0, since for
any component b; < 0, multiplying a factor —1 on both sides of the ith constraint results
in a new positive right-hand-side coefficient. Now we define P = [x € R"|Ax = b.
x > 0} to be the feasible domain or feasible region of the linear program. When P is not
void, the linear program is said to be consistent. For a consistent linear program with a
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feasible solution x* € P, if ¢/ x* attains the minimum value of the objective function ¢ x
over the feasible domain P, then we say x* is an oprimal solution to the linear program.
We also denote P* = [x* € P [x" is an optimal solution) as the optimal solution set.
Moreover, we say a linear program has a hounded feasible domain, if there exists
a positive constant M such that for every feasible solution x in P, its Euclidean norm,

)

[IX]] = (af 4 27 + -+ 4+ 1), is less than or equal to M. On the other hand, if there
exists a constant C such that ¢/ x > € for each x € P, then we say the linear program is
bounded. In this context, we know a linear program with bounded feasible domain must
be bounded. but the converse statement needs not to be true.

Our immediate objective is to examine the geometry of the feasible domain P and
the linear objective function ¢"x of a linear program.

2.2 HYPERPLANES, HALFSPACES, AND POLYHEDRAL SETS

A fundamental geometric entity occurring in linear optimization is the hyperplane
H={xeR"|a'x=p8) (2.2)

whose description involves a nonzero n-dimensional column vector a and a scalar f. A
hyperplane separates the whole space into two closed halfspaces

Hy =[x R"|a"x < p) (2.3)
and
Hy=[xeR"|a'x = p) (2.4)
that intersect at the hyperplane /. Removing # results in two disjoint open halfspaces
Hi ={xe R"|a"x < §) (2.5)
and
H =IxeR"|a' x> B) (2.6)
We further define H to be the bounding hyperplane of H; and H; .
The defining vector a of hyperplane H is called the normal of H. Since, for any
two vectors y and z € H,
alty-n=a'y-az=8-p8=0
we know the normal vector a is orthogonal to all vectors that are parallel to the hyperplane
H. Moreover, for each vector z in H and w in H;,
a'w-n=a'w-alz<pf-p=0

This shows that the normal vector a makes an obtuse angle with any vector that points
from the hyperplane toward the interior of H;. In other words. a is directed toward the
exterior of H,. Figure 2.1 illustrates this geomelry.
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H={xcRlalx=)]

Hy

Figure 2.1

For a linear program in its standard form, the hyperplanes
H={xeR"|c'x=p), for BeRr

depict the contours of the linear objective function, and the cost vector ¢ becomes the
normal of its contour hyperplanes.

We further define a polyhedral set or polyhedron to be a set formed by the intersec-
tion of a finite number of closed halfspaces. If the intersection is nonvoid and bounded,
it is called a polytope. For a lincar program in its standard form, if we denote a; to be
the ith row of the constraint matrix A and b; the ith element of the right-hand vector b,
then we have m-hyperplanes

H=(xeRalx=hk), i=1..m

and the feasible domain P becomes the intersection of these hyperplanes and the first
orthant of R". Notice that each hyperplane H is an intersection of two closed halfspaces
H; and Hy and the first orthant of R" is the intersection of n closed halfspaces [x €
Rlxe = b i= 1320 n). Hence the feasible domain P is a polyhedral set. An
optimal solution of the linear program can be easily identified if we see how the contour
hyperplanes formed by the cost vector e intersect with the polyhedron formed by the
constraints.
Consider the following linear programming problem:

Example 2.1
Minimize —x; — 2x2

subject to X +x2+x3 =40
2x) +x2 4 x4 =60
xp, X304 20

Although it has four variables. the feasible domain can be represented as a two-
dimensional graph defined by

Xy +x3 <40, 2x) 4 x2 <60, =0 x>0

Hence we see a graphical representation in Figure 2.2.
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(20, 20

0.0 \
A (30.0) (40.0) Figure 2.2

2.3 AFFINE SETS, CONVEX SETS, AND CONES

A more detailed study of polyhedral sets and polytopes requires the following definition:

Given p points, X', x%, ..., x” € R", and p scalars Ay, Aa..... A, € R. the
expression Ax' 4 Aax% + -+ + A,x" is called a linear combination. The linear combi-
nation becomes an affine combination when ) +ia+-- -+, = 11 a convex combination
when by + A + -+ Ap =Tand 0 < Ay 00, ..., Ly < 1uand a convex conieal
combination when 0 < Xy, ka. ..., Ap.

To understand the geometrical meaning of the affine and convex combinations, we
consider the case of two points x' and x* and its linear combination. Since we can
always let ) = | —s and X = 5, for a scalar s to replace the equation ; + 2> = 1, we
see that

ux' =0 - ax' a8 =x s —xh)

Consequently. we know the set of all affine combinations of distinct points x'. x* € R" is
the whole line determined by these two points, while the set of all convex combinations
is the line segment jointing x' and x*. Obviously each convex combination is an affine
combination. but the converse statement holds only when x' = x*.

Following the previous definition, for a nonempty subset § C R". we say § is
affine if S contains every affine combination of any two points x', x* € §; § is convex if
S contains every convex combination of any two points x', X’ es.

It is clear that affine sets are convex, but convex sets need not be affine. Moreover,
the intersection of a collection (either finite or infinite) of affine sets is either empty or
affine and the intersection of a collection (either finite or infinite) of convex sets is either
empty or convex.

We may notice that hyperplanes are affine (and hence convex), but closed halfspaces
are convex only (not affine). Hence the linear manifold (the solution set of a finite system
of linear equations) {x € R"|Ax = b] is affine (and hence convex) but the feasible
domain P of our linear program is convex only.




18 Geometry of Linear Programming ~ Chap. 2

Given a set § C R" and x € §, we say x is an interior point of §, if there exists
a scalar € > 0 such that the open ball B = {y € R"|||x — y|| < €] is contained in §.
Otherwise x is a boundary point of §.

For a convex set § C R", a key geometric property is due to the following sepa-
ration theorem:

Separation Theorem. Let § be a convex subset of R" and x be a boundary point
of S. Then there is a hyperplane H containing x with S contained in either Hy or Hy.

Based on this theorem, we can define a supporting hyperplane H to be a hyperplane
such that (i) the intersection of / and § is not empty, and (ii) H;, contains 5. A picture
of a supporting hyperplane to a convex set is given by Figure 2.3.

y AN
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Figure 2.3

One very important fact to point out here is that the intersection set of the polyhedral
set P and the supporting hyperplane with the negative cost vector —c as its normal
provides optimal solutions to our linear programming problem. This fact will be proved
in Exercise 1.6, and this is the key idea of solving linear programming problems by
“graphic method.” Figure 2.4 illustrates this situation of Example 1.

—-c=(12)7

2y +x,=60

/ /H: (X RY|—x, - 2r, = —80)

aa ”u

-~

(20,20) =~
Hy SR

s/

(30,0) (40, 0) Figure 2.4

X+ =40

Xy
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In general, for a convex polyhedral set P and a supporting hyperplane H. the
intersection set /' = P N H is called a face of P. If F is a zero-dimensional set, we
have a vertex; one-dimensional, an edge; and one dimension less than set P, a facet.
To define the dimensionality of a subset of R", we start with an affine subspace. For a
subspace § € R" and a vector a € R", the set

S.=[y=x+alxes§) 2.7

is called an affine subspace of R". Basically, translating a subspace by a vector results
in an affine subspace. The dimension of 5, is equal to the maximum number of linearly
independent vectors in S. The dimension of a subset C C R” is then defined to be the
smallest dimension of any affine subspace which contains C.

One more important structure to define is the conical set. A nonempty set C C R”
is a cone if Ax € C for each x € C and X > 0. It is obvious that each cone contains the
zero vector. Moreover, a cone that contains at least one nonzero vector X must contain
the “ray” of x, namely {Ax |4 > 0}. Such cones can clearly be viewed as the union of
rays. A cone needs not to be convex, but given an m x n matrix M, a convex cone can
be generated by the columns of M, namely

M. =[yeR"|y=Mw,we R".w=>10) (2.8)

This particular cone will be used in later chapters.

Affine sets, convex sets, and convex cones have certain important properties in
common. Given a nonempty set § C R”, the set of all affine (convex, convex conical)
combinations of points in § is an affine (convex, convex conical) set which is identical
to the intersection of all affine (convex, convex conical) sets containing S. We called
this set an affine (convex, convex conical correspondingly) hull.

2.4 EXTREME POINTS AND BASIC FEASIBLE SOLUTIONS

Extreme points of a polyhedral set are geometric entities, while the basic feasible solutions
of a system of linear equations and inequalities are defined algebraically. When these
two basic concepts are linked together, we have algebraic tools, guided by geometric
intuition, to solve linear programming problems,

The definition of extreme points is stated here: A point x in a convex set C is said
to be an extreme point of C if x is not a convex combination of any other two distinct
points in C. In other words, an extreme point is a point that does not lie strictly within
the line segment connecting two other points of the convex set. From the pictures of
convex polyhedral sets, especially in lower-dimensional spaces, it is clear to see that the
extreme points are those “vertices” of a convex polyhedron. A formal proof is left as an
exercise,

To characterize those extreme points of the feasible domain P = {x € R"|Ax =
b.x > 0) of a given linear program in its standard form, we may assume that A is an
m xn matrix with m < n. We also denote the jth column of A by A;, for j = 1,2, ....n.
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Then for each point X = (x), %2, ....x,)" € P, we have
A F0A+ -+ A, =h (2.9)

Therefore we call column A; the corresponding column of the jth component x; of x,
for j = 1.....n. Moreover, we have the following theorem.

Theorem 2.1. A point x of the polyhedral set P = [x € R"[Ax = b,x = 0}
is an extreme point of P if and only if the columns of A corresponding to the positive
components of x are linearly independent.

Proof. Without loss of generality, we may assume that the components of x are
zero except for the first p components, namely

X= (3) where i:(.\',_.....r,,)r>0

We also denote the first p columns of matrix A by A. Hence Ax = AX=h.

(= side): Suppose that the columns of A are not linearly independent, then there
exists a nonzero vector W such that AW = 0. We define §' = X+ 6W and ¥ = X — § W.
For a small enough § > 0, we see ¥, 7 > 0, and Ay' = A¥ = AX = b. We further

define
<! <2
i_ (YY) , 2 (Y
y_(") and y_(ﬂ)

Then we know y'.¥? € P and x = 1/2y' 4 1/2y*. In other words, X is not an extreme
point of P.

(< side): Suppose that X is not an extreme point, then x = Ay' + (I — L)y’ for
some distinct y',y? € Pand 0 < 2 < 1. Since y',y> 2 0and 0 < % < |, the last n — p
components of y' must be zero. Consequently, we have a nonzero vector w = X — ¥y
such that Aw = Aw = Ax — Ay’ = b — b = 0. This shows that the columns of A are
linearly dependent.

For an m x n matrix A (assuming m < n), if there exist m linearly independent
columns of A. we say A has full row rank, or full rank in short. In this case, we can
group those m lincarly independent columns together to form a busis B and leave the
remaining n —m columns as nonbasis N. In other words, we can rearrange A = [B|N].
We also rearrange the components of any solution vector X in the corresponding order,

namely
(xﬂ)
x=|—
XN

For a component in X, its corresponding columns is in the basis B, we call it a basic
variable. Similarly, those components in xy are called nonbasic variables. Since B is
a nonsingular m % m matrix, we can always set all nonbasic variables to be zero, i.e.,
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xy = 0, and solve the system of equations Bxy = b for basic variables. Then vector

[z

becomes a hasic solution. Furthermore, if X3 = B~'b > 0. then we say X is a basic
feasible solution to the linear program.

If matrix A does not have full row rank, then either the system of equations Ax = b
has no solution (hence P = ¢) or some constraints are redundant. After removing
redundant constraints from A, the remaining matrix has full row rank. Therefore, we
assume that the constraint matrix A of a given linear programming problem always have
full row rank unless specified otherwise. Under this assumption, since there are at most

c ) n!
mm)=——
m!(n —m)!
different ways of choosing m linearly independent columns from n columns of A, we
know there are at most C(n, m) basic solutions.
The following corollary is a direct consequence of Theorem 2.1.

Corollary 2.1.1. A point x € P = [x|AX = b.x > 0] is an extreme point of P
if and only if x is a basic feasible solution corresponding to some basis B.

By noticing that every basic feasible solution is a basic solution. we have the next
corollary.

Corollary 2.1.2.  For a given linear program in its standard form, there are at
most C(n,m) extreme points in its feasible domain P.

2.5 NONDEGENERACY AND ADJACENCY

A very important fact to mention is that the correspondence between basic feasible
solutions and extreme points of P, as described in Corollary 2.2, in general is not one-
to-one. Corresponding to each basic feasible solution there is a unique extreme point
in P, but corresponding to each extreme point in P there may be more than one basic
feasible solution.

Consider the a polytope P define by

P=(xeR |y +x+x=10x +x3= 10,553, % > 0) (2.10)
or, equivalently for its graph in Figure 2.5, we have
P=(xeR|x;4+x<10.x, <10, 1,5 >0} (2.11)
Note that P has three extreme points in Figure 2.5, namely,

A=1(0,0). B = (0,10), and C=(10.0)
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B=(0.10

A=(0,0) C=(10,0)

—-— N4n=10

Figure 2.5

Their four-dimensional coordinates corresponding to (2.10) are
A=(0,0.10,10), B=(0.10,0,10), and C =(10.0,0.0)

We can check that extreme point A corresponds to one basic feasible solution
taking x3 and x; as basic variables, and extreme point B corresponds to the basic feasible
solution taking x and x; as basic variables. However, extreme point C corresponds to
three basic feasible solutions: one takes x; and x> as basic variables, one takes x; and
x3, and the remaining one takes x; and xy. The reason for C getting more than one
corresponding basic feasible solution is that all the three corresponding basic feasible
solutions have one basic variable with zero in value, which makes them indistinguishable
from one another. Based on this observation, we define a basic feasible solution to be
nondegenerate, if it has exactly m positive basic variables. Otherwise, the basic feasible
solution has at least # — m + | zero elements in it, and we call it a degenerare case.

A linear programming problem is nondegenerate if all basic feasible solutions are
nondegenerate. In this case, there is a one-to-one correspondence between the extreme
points and basic feasible solutions. This nondegeneracy assumption of a given linear
programming problem will greatly simplify our situations in solving linear programming
problems. We shall discuss it further in the next chapter.

Two basic feasible solutions of P are adjacent, if they use m — | basic variables
in common to form basis. For example, in Figure 2.2, it is easy to verify that extreme
point (0, 40) is adjacent to (0. 0) but not adjacent to (30, 0) since (0, 40) takes x; and x4
as basic variables, while (0. 0) takes x3 and x4 and (30, 0) takes x; and x;. Under the
“nondegeneracy assumption.” since each of the n — m nonbasic variables could replace
one current basic variable in a given basic feasible solution, we know that every basic
feasible solution (hence its corresponding extreme point) has exactly n — m adjacent
neighbors. Actually, each adjacent basic feasible solution can be reached by increasing
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the value of one nonbasic variable from zero to positive and decreasing the value of
one basic variable from positive to zero. This is the basic concept of pivering in the
simplex method to be studied in the next chapter. Geometrically, adjacent extreme points
of P are linked together by an edge of P, and pivoting leads one to move from one
extreme point to its adjacent neighbor along the edge direction. This can be clearly scen
in Figure 2.2.

2.6 RESOLUTION THEOREM FOR CONVEX POLYHEDRONS

Suppose the feasible domain P is bounded—in other words, P is a polytope. From
Figure 2.6 it is easy to observe that each point of P can be represented as a convex
combination of the finite number of extreme points of P.

x!

x5

x? xb x* Figure 2.6

This idea of “convex resolution” can be verified for a general polyhedral set with
the help of the following definition: An extremal direction of a polyhedral set P is a
nonzero veetor d € R such that for each x” € P the ray {x € R" [x =x" + Ad, & > 0)
is contained in P. Note that, in the convex analysis literature, it is usually called the
direction of recession.

From the definition of the feasible domain P, we see that a nonzero vector d € R”
is an extremal direction of P if and only if Ad = 0 and d > 0. Also, P is unbounded if
and only if P has an extremal direction. Using extreme points and extremal directions,
every point in P can be well represented by the following thearem.

Theorem 2.2 (Resolution Theorem). Let V = {v' € R"|i € 1] be the set of all
extreme points of P with a finite index set /. Then for each x € P. we have

x= Zl,-v' +d (2.9)

iel
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where ZA,- = 1,4 =0 fori €I, and d is either the zero vector or an extremal

iel
direction of P.
A proof using the mathematical induction method on the number of positive com-
ponents of the given vector X € P is included at the end of this chapter as an exercise.
A direct consequence of the resolution theorem confirms our observation made at
the beginning of this section, namely,

Corollary 2.2.1. If P is bounded (a polytope), then each poirft x € P is a convex
combination of the extreme points of P.

Another direct implication is as follows.

Corollary 2.2.2. If P is nonempty, then it has at least one extreme point.

2.7 FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING

The resolution theorem reveals one fundamental property of linear programming for
algorithm design.

Theorem 2.3 (Fundamental Theorem of Linear Programming). For a con-
sistent linear program in its standard form with a feasible domain P, the minimum
objective value of z = ¢’ x over P is either unbounded below or is achievable at least at
one extreme point of P.

Proof. Let V = [v' € P|i € I} be the set of all extreme points of P with a finite
index set /. Since the problem is consistent, / is nonempty and there is at least one
v! € V. By the resolution theorem, P either has an external direction d with ¢/d < 0
or does not have such a direction.

In the first case, P is unbounded, and z goes to minus infinity at v! +Ad as A goes
to positive infinity.

For the latter, for each x € P, either

x=) M with Y n=1, 4=0 or

iel el
x=3 av+d  with ZA,-:I. 4, >0, and d>0
iel iel

In both situations, assuming ¢’ v™™ is the minimum among {c¢"v' |i € /), we have

’x > Zli(chr') > chm'm le‘ - cT‘,min

iel iel

Hence the minimum value of z is attained at the extreme point v™".
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It is important to point out that Theorem 2.3 does not rule out the possibility of
having an optimal solution at a nonextreme point. It simply says that among all the
optimal solutions to a given linear programming problem, at least one of them is an
extreme point.

2.8 CONCLUDING REMARKS: MOTIVATIONS OF DIFFERENT
APPROACHES

The fundamental theorem of linear programming shows that one of the extreme points of
the feasible domain P is an optimal solution to a consistent linear programming problem
unless the problem is unbounded. This fundamental property has guided the design of
algorithms for linear programming.

One of the most intuitive ways of solving a linear programming problem is the
graphical method, as we discussed before. We draw a graph of the feasible domain P first.
Then at each extreme point v of P, using the negative cost vector —c as the normal vector,
we draw a hyperplane H. If P is contained in the halfspace H,. then H is a desired
supporting hyperplane and v is an optimal solution to the given linear programming
problem. This method provides us a clear picture, but it is limited to those problems
whose feasible domains can be drawn in the three-dimensional, or lower. spaces only.

Another straightforward method is the enumeration method. Since an extreme point
corresponds to a basic feasible solution, it must be a basic solution. We can generate
all basic solutions by choosing m linearly independent columns from the columns of
constraint matrix A and solving the corresponding system of linear equations. Among
all basic solutions, we identify feasible ones and take the optimal one as our solution.
The deficiency of this method is due to the laborious computation. It becomes impractical
when the number C(n, m) becomes large.

The rest of this book is devoted to designing efficient iterative algorithms for linear
programming. There are two basic approaches. One is the well-known simplex method,
the other is the newly developed interior-point approach. Focusing on finding an optimal
extreme point, the simplex approach starts with one extreme point, hops to a better
neighboring extreme point along the boundary, and finally stops at an optimal extreme
point. Because the method is well designed, rarely do we have to visit too many extreme
points before an optimal one is found. But, in the worst case, this method may still visit
all nonoptimal extreme points.

Unlike the simplex method, the interior-point method stays in the interior of P
and tries o position a current solution as the “center of universe™ in finding a better
direction for the next move. By properly choosing step lengths, an optimal solution is
finally achieved after a number of iterations. This approach takes more effort, hence
more computational time, in finding a moving direction than the simplex method. but
better moving directions result in fewer iterations, Therefore the interior-point approach
has become a rival of the simplex method and gathered much attention.

Figure 2.7 shows the fundamental difference between these two approaches.
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Simplex method

Interior-point method

- x!

Figure 2.7
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Prove that a linear program with bounded, feasible domain must be bounded. and give a
counterexample to show that the converse statement need not be true.

Let § be a subset of R". For each of the following assertions, either prove it or provide a
counterexample in £ 1o disprove it:

(a) If § is convex, then § is (i) affine: (i) a cone; (iii) a polyhedron: (iv) a polytope.

(b) If 5 is affine. then § is (i) convex: (i) a cone: (iii) a polyhedron: (iv) a polytope.

(c) If S is a cone, then § is (i) convex: (ii) affine: (iii) a polyhedron: (iv) a polytope.

(d) If' § is a polyhedron, then § is (i) convex: (ii) affine; (iii) a cone; (iv) a polytope.
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2.1

—

(e) If § is a polytope, then § is (i) convex: (ii) affine: (iii) a cone: (iv) a polyhedron.

Let H = {x € R" [a’x = #) be a hyperplane. Show that H is affine and convex.
Suppose Cy. Ca. ..., Cp are p(> 0) convex subsets of R". Prove or disprove the following
assertions:

P
(a) ﬂC.— is convex.

i=l

r
(h) UC,‘ is convex.

i=1
Use the results of Exercises 2.3 and 2.4 to show that P = [x € R"|[Ax =b.x > 0] isa
convex polyhedron,

To make the graphic method work, prove that the intersection set of the feasible domain

P and the supporting hyperplane whose normal is given by the negative cost vector —¢

provides the optimal solutions to a given lincar programming problem.

Let P = [(xj.x2) € R¥|x) +x2 < 40.2x) +x2 < 60,3 < 20.x;.x2 = 0. Do the

following:

(a) Draw the graph of P.

(h) Convert P to the standard equality form.

(c) Generate all basic solutions.

(d) Find all basic feasible solutions.

(e) For cach basic feasible solution. point out its corresponding extreme points in the graph
of P.

(N Which extreme points correspond to degenerate basic feasible solutions?

For P as defined in Exercise 2.7. use the graphic method to solve lincar programming
problems with the following objective functions:

(@) c=—x

h z=—x;—xn

(€) z==2x) —x2;

d) z=-x

(e) 2 =—x; + 12

What conclusion can be reached on the optimal solution set '*7

Show that the set of all optimal solutions to a linear programming problem is a convex
set. Now, can you construct a linear programming problem which has exactly two different
optimal solutions? Why?

Prove that for a degenerate basic feasible solution with p < m positive elements, its
corresponding extreme point P may correspond to C(n — p. n — m) different basic feasible
solutions at the same time.

. Let M be the 2 x 2 identity matrix. Show that

(a) M., the convex cone generated by M, is the first orthant of RE.
{h) M, is the smallest convex cone that which contains the column vectors (1,0)7 and
..

. Given a nonemply set § C R". show that the set of all affine (convex, convex conical)

combinations of paints in § is an affine (convex, convex conical) set which is identical to
the intersection of all affine (convex, convex conical) sets containing S.




