
Math and Numbers in Figure Text

The following matplotlib commands place text on a figure. (The tutorial on plotting
shows where they appear.)

xlabel label to the horizontal axis
ylabel label to the vertical axis
title add a title just above the axes
suptitle add a title farther above the axes
text add text at an arbitrary location in data coordinates
figtext add text at an arbitrary location in relative coordinates
annotate add an annotation, with optional arrow

It is often useful to include mathematical expressions and formatted numbers in the text.

Math in Figure Text
Mathematical expressions can be included in the text that any of the figure text
commands produce by using TeX typesetting. In TeX, each symbol is represented by a
string starting with a backslash (\). For example, “\theta” stands for the Greek letter
theta (θ). In ordinary strings, backslashes get interpreted in ways that would interfere
with TeX typesetting. For example, “\t” and “\n” are ordinarily interpreted as a tab and
a linefeed, respectively. The first example would cause problems when trying to typeset a
theta symbol. To get around this difficulty, a string can be preceded by an “r” so that it is
treated as a raw string. Compare the output of the following print statements.

print 'This is \t an \n ordinary string'
print r'This is \t a \n raw string'

In a string sent to one of the matplotlib commands, text in between a pair of dollar
signs ($) is interpreted as a mathematical expression typeset in TeX. For example, the
following command would place the label “ ” on the horizontal axis.

xlabel(r'θ')

Suppose that you want to indicate that the angle is in radians. The following command
would result in “ ”, which doesn’t look very good. Since everything between
the dollar signs is treated as a math, the text is italicized and the space is ignored.

xlabel(r'$\theta (radains)$')

Regular text and math text can be combined within the same string as shown below. This
command would label the horizontal axis “ (radians)”, which looks much better. The
text “radians” is not italicized and the space is included.

xlabel(r'θ (radians)')

Alternatively, the TeX command “\rm” can be used to make the font Roman for the
plain text. Curly brackets must surround the text that you want to be affected, including
the space. This method tends to produce the best results because all of the text has a
consistent size.

xlabel(r'$\theta \rm{ (radians)}$')

 2

Typesetting simple mathematical expressions in the TeX format is straightforward. The
lower case and upper case Greek letters have fairly obvious names (for example,
“\delta” is δ and “\Delta” is Δ). You can look up other common symbols (such as
“\inf” is ∞) at the website given at the end of this tutorial. Subscripts and superscripts
are made with “_” and “^” as shown below.

r'$\alpha_i = \beta^2$'

If you want multiple characters to appear in a subscript or superscript, they can be
grouped in curly brackets. Notice that a symbol can have both a subscript and a
superscript. The subscript of B is plain text because it is preceded by “\rm”, which
changes the font to Roman.

r'$A_{ij}^3 < B_{\rm{max}}$'

Common functions such as “sin” have shortcuts (“\sin” in this case) that typeset them
in a Roman font. The result of the second command below is better than that of the first.

r'$sin\theta$' sinθ
r'$\sin\theta$' sinθ

The following example shows how to make a fraction.

r'$C = \frac{3}{4}$'

Preceding brackets with “\left” and “\right” automatically makes them the right
size for what’s inside. The following examples show how this can be useful.

r'$(\frac{5}{3})$' ()

r'$\left(\frac{5}{3}\right)$'

Another frequently used TeX command is “\sqrt” for a square root symbol.

r'$\sqrt{xy} = 3$'

�

xy = 3

You can look up other symbols at the website given below. This brief introduction should
be enough to get you started, but is not intended to be complete.

Numbers in Figure Text

It is also useful to include numbers that are calculated by a program in figure text.
Suppose that a program fits data to find a time (t) is 5.43 and its uncertainty (sigmat)
is 0.21. If you’re plotting the data, you might want to put the text “ ” on the
figure. You could use either of the following lines (the location might need to be
adjusted), but you’d have to change the numbers by hand if the data changed. The second
example with TeX formatting would look better.

figtext(0.5,0.5, 't = 5.4 +/- 0.2 s')
figtext(0.5,0.5, r'$t = 5.4 \pm 0.2 \rm{ s}$')

 3

It would be better to use the variables t and sigmat in the command as shown below.
In this example, each copy of “%3.1f” in the string is a format. The string is followed
by a percent symbol (%) and a list of variables to be formatted. The number of formats
and variables must match.

figtext(0.5,0.5, 't = %3.1f +/- %3.1f s' % (t,sigmat))

The form of the formatting in a string is “%(width).(precision)(specifier)”,
where width specifies the maximum number of digits, precision specifies the
number of digits after the decimal point, and the possibilities for specifier are shown
below. For integer formatting, the precision argument is ignored if you give it. For
scientific notation and floating point formatting, the width argument is optional.

Specifier Meaning Example Format Output for −34.5678
 i signed integer %5i −34
 e scientific notation %5.4e −3.4568e+001
 f floating point %5.2f −34.57

The formatting of the numerical output and TeX formatting can be combined (this is a
single command that wraps onto a second line).

figtext(0.5,0.5, r'$t = %3.1f \pm %3.1f \rm{ s}$' %
 (t, sigmat))

Additional documentation is available at:
 http://matplotlib.sourceforge.net/users/mathtext.html

