

Game Development with Swift

Embrace the mobile gaming revolution and bring your
iPhone game ideas to life with Swift

Stephen Haney

BIRMINGHAM - MUMBAI

Game Development with Swift

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1170715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-053-1

www.packtpub.com

www.packtpub.com

Credits

Author
Stephen Haney

Reviewers
Antonio Bello

Vladimir Pouzanov

Kevin Smith

Anil Varghese

Commissioning Editor
Edward Bowkett

Acquisition Editor
Reshma Raman

Content Development Editors
Prachi Bisht

Mamata Walkar

Technical Editor
Saurabh Malhotra

Copy Editors
Janbal Dharmaraj

Kevin McGowan

Rashmi Sawant

Project Coordinator
Sanjeet Rao

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Stephen Haney began his programming journey at the age of 8 on a dusty, ancient
laptop using BASIC. He has been fascinated with building software and games ever
since. Now well versed in multiple languages, he most enjoys programming as a
creative outlet. He believes that indie game development is an art form: an amazing
combination of visual, auditory, and psychological challenges, rewarding to both the
player and the creator.

He enjoyed writing this book and sincerely hopes that it directly furthers your
career or hobby.

Thank you to my beautiful girlfriend, Kayla, for her patience
and advice.

About the Reviewers

Antonio Bello is a veteran software developer, who started writing code
when memory was measured in bytes instead of gigabytes and storage was an
optional add-on. Over his professional career, he has worked with several languages
and technologies, in many cases, following a "learning by using" approach.

Today, he loves developing iOS Apps and their respective backends, favoring
Swift over Objective C but loving both languages.

Vladimir Pouzanov is a systems engineer and an embedded enthusiast. He has
spent countless hours hacking different mobile hardware, porting Linux to various
devices on which it was not supposed to be run, and toying outside the iOS sandbox.
He has been a professional iOS consultant and has been developing applications
based on iOS since the first Apple iPhones were available. Later on, he switched his
professional interest to systems engineering and cloud computing, but he still keeps
a close eye on the mobile and embedded world.

I'd like to thank my wife for her amazing support while I was
working on the review, sharing my attention between her, our
daughter, and the book.

Kevin Smith is a founder and mobile developer. He released his first iPhone App
in 2009. After the success of his first few apps, he founded App Press to help others
build mobile apps. Through App Press, he has worked on and released countless
award-winning iOS and Android apps.

Anil Varghese is a software engineer from Kerala, India, with extensive
experience in iOS application development. He constantly strives to learn new
technologies and better and faster ways of solving problems. He always finds time
to help his fellow programmers and is an active member of developer communities,
such as Stack Overflow.

You can reach him at anilvarghese@icloud.com and http://anilvarghese.
strikingly.com.

http://anilvarghese.strikingly.com
http://anilvarghese.strikingly.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version at
www.PacktPub.com and as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and readPackt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: Designing Games with Swift 	 1

Why you will love Swift	 2
Beautiful syntax	 2
Interoperability	 2
Strong typing	 2
Smart type inference	 2
Automatic memory management	 3
An even playing field	 3

Are there any downsides to Swift?	 3
Less resources	 3
Operating system compatibility	 3

Prerequisites	 3
What you will learn in this book	 4

Embracing SpriteKit	 4
Reacting to player input	 4
Structuring your game code	 4
Building UI/menus/levels	 5
Integrating with Game Center	 5
Maximizing fun	 5
Crossing the finish line	 5

Further research	 5
Marketing and monetizing your game	 5
Making games specifically for the desktop on OSX	 6

Setting up your development environment	 6
Introducing Xcode	 6

Table of Contents

[ii]

Creating our first Swift game	 7
Navigating our project	 9
Exploring the SpriteKit Demo	 9
Examining the demo code	 12
Cleaning up	 12

Summary	 13
Chapter 2: Sprites, Camera, Actions!	 15

Sharpening our pencils	 16
Checkpoint 2- A	 18
Drawing your first sprite	 18

Building a SKSpriteNode class	 18
Adding animation to your Toolkit	 20

Sequencing multiple animations	 21
Recapping your first sprite	 22

The story on positioning	 22
Alignment with anchor points	 23

Adding textures and game art	 24
Downloading the free assets	 24

More exceptional art	 24
Drawing your first textured sprite	 24

Adding the bee image to your project	 25
Loading images with SKSpriteNode	 26
Designing for retina	 27

Organizing your assets	 29
Exploring Images.xcassets	 29
Collecting art into texture atlases	 30

Updating our bee node to use the texture atlas	 30
Iterating through texture atlas frames	 31

Putting it all together	 32
Centering the camera on a sprite	 33

Creating a new world	 33
Checkpoint 2-B	 37
Summary	 37

Chapter 3: Mix in the Physics	 39
Laying the foundation	 39

Following protocol	 40
Reinventing the bee	 40
The icy tundra	 42

Another way to add assets	 42
Adding the Ground class	 44
Tiling a texture	 45
Running wire to the ground	 45

Table of Contents

[iii]

A wild penguin appears!	 47
Renovating the GameScene class	 49

Exploring the physics system 	 51
Dropping like flies	 51
Solidifying the ground	 51

Checkpoint 3-A	 52
Exploring physics simulation mechanics	 52
Bee meets bee	 54

Impulse or force?	 55
Checkpoint 3-B	 56
Summary	 56

Chapter 4: Adding Controls	 57
Retrofitting the Player class for flight	 58

The Beekeeper	 58
Updating the Player class	 58
Moving the ground	 58
Assigning a physics body to the player	 59

Creating a physics body shape from a texture	 59
Polling for device movement with Core Motion	 60

Implementing the Core Motion code	 60
Checkpoint 4-A	 62
Wiring up the sprite onTap events	 62

Implementing touchesBegan in the GameScene	 63
Larger than life	 63

Teaching our penguin to fly	 64
Listening for touches in GameScene	 66
Fine-tuning gravity	 67
Spreading your wings	 67

Improving the camera	 68
Pushing Pierre forward	 70

Tracking the player's progress	 71
Looping the ground	 71

Checkpoint 4-B	 73
Summary	 73

Chapter 5: Spawning Enemies, Coins, and Power-ups	 75
Introducing the cast	 76

Adding the power-up star	 76
Locating the art assets	 76
Adding the Star class	 76

Table of Contents

[iv]

Adding a new enemy – the mad fly	 78
Locating the enemy assets	 78
Adding the MadFly class	 78

Another terror – bats!	 79
Adding the Bat class	 79

The spooky ghost	 80
Adding the Ghost class	 81

Guarding the ground – adding the blade	 82
Adding the Blade class	 82

Adding the coins	 84
Creating the coin classes	 84

Organizing the project navigator	 85
Testing the new game objects	 86
Checkpoint 5-A	 87

Preparing for endless flight	 87
Summary	 89

Chapter 6: Generating a Never-Ending World	 91
Designing levels with the SpriteKit scene editor	 91

Separating level data from game logic	 93
Using empty nodes as placeholders	 93

Encounters in endless flying	 93
Creating our first encounter	 94

Integrating scenes into the game	 98
Checkpoint 6-A	 101
Spawning endless encounters	 101

Building more encounters	 102
Updating the EncounterManager class	 103

Storing metadata in SKSpriteNode userData property	 104
Wiring up EncounterManager in the GameScene class	 106

Spawning the star power-up at random	 107
Checkpoint 6-B	 109
Summary	 109

Chapter 7: Implementing Collision Events	 111
Learning the SpriteKit collision vocabulary	 111

Collision versus contact	 112
Physics category masks	 112
Using category masks in Swift	 113

Adding contact events to our game	 114
Setting up the physics categories	 114
Assigning categories to game objects	 115

The player	 115
The ground	 115

Table of Contents

[v]

The star power-up	 116
Enemies	 116
Coins	 116

Preparing GameScene for contact events	 116
Viewing console output	 118
Testing our contact code	 119

Checkpoint 7-A	 119
Player health and damage	 119

Animations for damage and game over	 122
The damage animation	 122
The game over animation	 124

Collecting coins	 125
The power-up star logic	 127
Checkpoint 7-B	 129
Summary	 129

Chapter 8: Polishing to a Shine – HUD, Parallax Backgrounds,
Particles, and More	 131

Adding a heads-up display	 131
Parallax background layers	 136

Adding the background assets	 137
Implementing a background class	 137
Wiring up backgrounds in the GameScene class	 139

Checkpoint 8-A	 141
Harnessing SpriteKit's particle system	 141

Adding the circle particle asset	 142
Creating a SpriteKit Particle File	 142
Configuring the path particle settings	 144
Adding the particle emitter to the game	 145

Granting safety as the game starts	 146
Checkpoint 8-B	 146
Summary	 146

Chapter 9: Adding Menus and Sounds	 147
Building the main menu	 147

Creating the menu scene and menu nodes	 148
Launching the main menu when the game starts	 150
Wiring up the START GAME button	 151

Adding the restart game menu	 152
Extending the HUD	 153
Wiring up GameScene for game over	 154
Informing the GameScene class when the player dies	 154
Implementing touch events for the restart menu	 155

Table of Contents

[vi]

Checkpoint 9-A	 157
Adding music and sound	 157

Adding the sound assets to the game	 157
Playing background music	 157
Playing sound effects	 158

Adding the coin sound effect to the Coin class	 158
Adding the power-up and hurt sound effects to the Player class	 159
Playing a sound when the game starts	 159

Checkpoint 9-B	 160
Summary	 160

Chapter 10: Integrating with Game Center	 161
Registering an app with iTunes Connect	 162

Configuring Game Center	 165
Creating a test user	 166

Authenticating the player's Game Center account	 167
Opening Game Center in our game	 170
Checkpoint 10-A	 173
Adding a leaderboard of high scores	 173

Creating a new leaderboard in iTunes Connect	 173
Updating the leaderboard from the code	 175

Adding an achievement	 176
Creating a new achievement in iTunes Connect	 177
Updating achievements from the code	 178

Checkpoint 10-B	 180
Summary	 180

Chapter 11: Ship It! Preparing for the App Store and Publication	 181
Finalizing assets	 182

Adding app icons	 182
Designing the launch screen	 183
Taking screenshots for each supported device	 185

Finalizing iTunes Connect information	 186
Configuring pricing	 188

Uploading our project from Xcode	 189
Submitting for review in iTunes Connect	 192
Summary	 194

Index	 195

[vii]

Preface
There has never been a better time to be a game developer. The App Store provides
a unique opportunity to distribute your ideas to a massive audience. Now, Swift has
arrived to bolster our toolkit and provide a smoother development experience. Swift
is new, but is already hailed as an excellent, well-designed language. Whether you
are new to game development or looking to add to your expertise, I think you will
enjoy making games with Swift.

My goal in writing this book is to share a fundamental knowledge of Swift and
SpriteKit. We will work through a complete example game so that you learn
every step of the Swift development process. Once you finish this text, you will be
comfortable designing and publishing your own game ideas to the App Store, from
start to finish.

Please reach out with any questions and share your game creations:

E-mail: stephen@thinkingswiftly.com

Twitter: @sdothaney

The first chapter explores some of Swift's best features. Let's get started!

What this book covers
Chapter 1, Designing Games with Swift, introduces you to best features on Swift, helps
you set up your development environment, and launches your first SpriteKit project.

Chapter 2, Sprites, Camera, Actions!, teaches you the basics of drawing and animating
with Swift. You will draw sprites, import textures into your project, and center the
camera on the main character.

Preface

[viii]

Chapter 3, Mix in the Physics, covers the physics simulation fundamentals: physics
bodies, impulses, forces, gravity, collisions, and more.

Chapter 4, Adding Controls, explores various methods of mobile game controls: device
tilt and touch input. We will also improve the camera and core gameplay of our
example game.

Chapter 5, Spawning Enemies, Coins, and Power-ups, introduces the cast of characters
we will use in our example game and shows you how to create custom classes for
each NPC type.

Chapter 6, Generating a Never-Ending World, explores the SpriteKit scene editor, builds
encounters for the example game, and creates a system to loop encounters endlessly.

Chapter 7, Implementing Collision Events, delves into advanced physics simulation
topics and adds custom events when sprites collide.

Chapter 8, Polishing to a Shine – HUD, Parallax Backgrounds, Particles, and More,
adds the extra features that make every great game shine. Create parallax
backgrounds, learn about SpriteKit's particle emitters, and add a heads-up
display overlay to your games.

Chapter 9, Adding Menus and Sounds, builds a basic menu system and illustrates
two methods of playing sounds in your games.

Chapter 10, Integrating with Game Center, links our example game to the Apple
Game Center for leaderboards, achievements, and friendly challenges.

Chapter 11, Ship It! Preparing for the App Store and Publication, covers the essentials
of packaging your game and submitting it to the App Store.

What you need for this book
This book uses the Xcode IDE Version 6.3.2 (Swift 1.2). If you use a different
version of Xcode, you will likely encounter syntax differences; Apple is constantly
upgrading Swift's syntax.

Visit https://developer.apple.com/xcode/ to download Xcode.

You will need an Apple developer account to integrate your apps with the
Game Center and to submit your games to the App Store.

https://developer.apple.com/xcode/

Preface

[ix]

Who this book is for
If you wish to create and publish fun iOS games using Swift, then this book is for
you. You should be familiar with basic programming concepts such as classes, types,
and functions. However, no prior game development or Apple ecosystem experience
is required. Additionally, experienced game programmers will find this book useful
as they transition into game development with Swift.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The game invokes the didMoveToView function whenever it switches to this scene."

A block of code is set as follows:

let mySprite = SKSpriteNode(color: UIColor.blueColor(), size:
 CGSize(width: 50, height: 50))
mySprite.position = CGPoint(x: 300, y: 300)
self.addChild(mySprite)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 // Find the width of one-third of the children nodes
 jumpWidth = tileSize.width * floor(tileCount / 3)
}

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Select iOS | Application in the left pane, and Game in the right pane."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Additionally, each chapter provides checkpoint links you can use to download the
example project to that point.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/0531OT_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/0531OT_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/0531OT_ColorImages.pdf

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across
all media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on the
Internet, please provide us with the location address or website name immediately
so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Designing Games with Swift
Apple's new language has arrived at the perfect time for game developers.
Swift has the unique chance to be something special; a revolutionary tool for app
creators. Swift is the gateway for developers to create the next big game on the
Apple ecosystem. We have only started to explore the wonderful potential of mobile
gaming and Swift is the modernization we need for our toolset. Swift is fast, safe,
current, and attractive to developers coming from other languages. Whether you are
new to the Apple world, or a seasoned veteran of Objective-C, I think you will enjoy
making games with Swift.

Apple's website states, "Swift is a successor to the C and
Objective-C languages."

My goal in this book is to guide you step-by-step through the creation of a 2D game
for iPhones and iPads. We will start with installing the necessary software, work
through each layer of game development, and ultimately publish our new game to
the App Store.

We will also have some fun along the way! We aim to create an endless flyer game
featuring a magnificent flying penguin named Pierre. What is an endless flyer?
Picture hit games like iCopter, Flappy Bird, Whale Trail, Jetpack Joyride, and many
more – the list is quite long.

Endless flyer games are popular on the App Store and the genre necessitates that we
cover many reusable components of 2D game design; I will show you how to modify
our mechanics to create many different game styles. My hope is that our demo
project will serve as a template for your own creative works. Before you know it, you
will be publishing your own game ideas using the techniques we explore together.

Designing Games with Swift

[2]

The topics in this chapter include:

•	 Why you will love Swift
•	 What you will learn in this book
•	 Setting up your development environment
•	 Creating your first Swift game

Why you will love Swift
Swift, as a modern programming language, benefits from the collective experience
of the programming community; it combines the best parts of other languages and
avoids poor design decisions. Here are a few of my favorite Swift features.

Beautiful syntax
Swift's syntax is modern and approachable, regardless of your existing
programming experience. Apple balanced syntax with structure to make Swift
concise and readable.

Interoperability
Swift can plug directly into your existing projects and run side-by-side with your
Objective-C code.

Strong typing
Swift is a strongly typed language. This means the compiler will catch more bugs at
compile time – instead of when your users are playing your game! The compiler will
expect your variables to be of a certain type (int, string, and so on) and will throw
a compile-time error if you try to assign a value of a different type. While this may
seem rigid if you are coming from a weakly typed language, the added structure
results in safer, more reliable code.

Smart type inference
To make things easier, type inference will automatically detect the types of your
variables and constants based upon their initial value. You do not need to explicitly
declare a type for your variables. Swift is smart enough to infer variable types in
most expressions.

Chapter 1

[3]

Automatic memory management
As the Apple Swift developer guide states, "memory management just works in
Swift." Swift uses a method called Automatic Reference Counting (you will see it
referred to as ARC) to manage your game's memory usage. Besides a few edge cases,
you can rely on Swift to safely clean up and turn off the lights.

An even playing field
One of my favorite things about Swift is how quickly the language is gaining
mainstream adoption. We are all learning and growing together and there is a
tremendous opportunity to break new ground.

Are there any downsides to Swift?
Swift is a very enjoyable language, but we should consider these two issues when
starting a new project.

Less resources
Given Swift's age, it is certainly more difficult to find answers to common questions
through Internet searches. Objective-C has many years' worth of discussion and
answers on helpful forums like Stack Overflow. This issue improves every day as the
Swift community continues to develop.

Operating system compatibility
Swift projects will run on iOS7 and higher, and OSX 10.9 and higher. Swift is
the wrong choice if, in a rare case, you need to target a device running an older
operating system.

Prerequisites
I will strive to make this text easy to comprehend for all skill levels:

•	 I will assume you are brand new to Swift as a language
•	 This book requires no prior game development experience,

though it will help
•	 I will assume you have a fundamental understanding of

common programming concepts

Designing Games with Swift

[4]

What you will learn in this book
By the end of this book, you will be capable of creating and publishing your own iOS
games. You will know how to combine the techniques we learn to create your own
style of game and you will be well prepared to dive into more advanced topics with
a solid foundation in 2D game design.

Embracing SpriteKit
SpriteKit is Apple's 2D game development framework and your main tool for iOS
game design. SpriteKit will handle the mechanics of our graphics rendering, physics,
and sound playback. As far as game development frameworks go, SpriteKit is a
terrific choice. It is built and supported by Apple and thus integrates perfectly with
Xcode and iOS. You will learn to be highly proficient with SpriteKit – we will use it
exclusively in our demo game.

We will learn to use SpriteKit to power the mechanics of our game:

•	 Animate our player, enemies, and power-ups
•	 Paint and move side scrolling environments
•	 Play sounds and music
•	 Apply physics-like gravity and impulses for movement
•	 Handle collisions between game objects

Reacting to player input
The control schemes in mobile games must be inventive. Mobile hardware
forces us to simulate traditional controller inputs, such as directional pads and
multiple buttons on the screen. This takes up valuable visible area and provides
less precision and feedback than with physical devices. Many games operate with
only a single input method; a single tap anywhere on the screen. We will learn how
to make the best of mobile input and explore new forms of control by sensing device
motion and tilt.

Structuring your game code
It is important to write well-structured code that is easy to re-use and modify as your
game design inevitably changes. You will often find mechanical improvements as
you develop and test your games and you will thank yourself for a clean working
environment. Though there are many ways to approach this topic, we will explore
some best practices to build an organized system.

Chapter 1

[5]

Building UI/menus/levels
We will learn to switch between scenes in our game with a menu screen.
We will cover the basics of user experience design and menu layout as we
build our demo game.

Integrating with Game Center
Game Center is Apple's built in social gaming network. Your game can tie into
Game Center to store and share high scores and achievements. We will learn how to
register for Game Center, tie it into our code, and create a fun achievement system.

Maximizing fun
If you are like me, you will have dozens of ideas for games floating around your
head. Ideas come easily but designing fun gameplay is difficult! It is common to find
your ideas need gameplay enhancements once you see your design in action. We will
look at how to avoid dead-ends and see your project through to the finish line. Plus, I
will share my tips and tricks to ensure your game will bring joy to your players.

Crossing the finish line
Creating a game is a memory you will treasure. Sharing your hard work will
only sweeten the satisfaction. Once our game is polished and ready for public
consumption, we will navigate the App Store submission process together. You will
finish feeling confident in your ability to create games with Swift and bring them to
market in the App Store.

Further research
I will focus on the mechanics and programming involved in great game design for
iOS. A few secondary topics are outside the scope of this book.

Marketing and monetizing your game
Successfully promoting and marketing your game is an important job, but this text
focuses on game development mechanics and Swift code. If you are interested in
making money from your games, I strongly advise you to research the best ways to
promote yourself within the indie gaming community and to start marketing your
game well before launch.

Designing Games with Swift

[6]

Making games specifically for the desktop
on OSX
We are going to concentrate on iOS. You can use the techniques in this book for
game development on OSX too, but you may need to research publishing and
environmental differences.

Setting up your development
environment
Learning a new development environment can be a roadblock. Luckily, Apple
provides some excellent tools for iOS developers. We will start our journey by
installing Xcode.

Introducing Xcode
Xcode is Apple's Integrated Development Environment (IDE). You will need Xcode
to create your game projects, write and debug your code, and build your project for
the App Store. Xcode also comes bundled with an iOS simulator to test your game on
virtualized iPhones and iPads on your computer.

Apple praises Xcode as "an incredibly productive environment for
building amazing apps for Mac, iPhone, and iPad."

To install Xcode, search for xcode in the App Store or visit http://developer.
apple.com and click on the Xcode icon. Please note the version of Xcode you are
installing. At the time of writing, the current version of Xcode is 6.3.2. Swift is
continually evolving and each new Xcode release brings syntax changes to Swift.
For the best experience with the code in this book, use Xcode 6.3.x (with Swift
version 1.2).

Apple announced Xcode 7 and Swift 2 at WWDC 2015, but it
is still in Beta at the time of writing. It looks like there will be
some minor syntax changes. The knowledge and techniques
in this book will still apply.

http://developer.apple.com
http://developer.apple.com

Chapter 1

[7]

Xcode performs common IDE features to help you write better, faster code. If you
have used IDEs in the past, then you are probably familiar with auto-completion, live
error highlighting, running and debugging a project, and using a project manager
pane to create and organize your files. However, any new program can seem
overwhelming at first. We will walk through some common interface functions over
the next few pages. I have also found tutorial videos on YouTube to be particularly
helpful if you are stuck.

Creating our first Swift game
Do you have Xcode installed? Let's cut to the chase and see some game code in action
in the simulator!

1.	 We will need to create a new project. Launch Xcode and navigate to File |
New | Project. You will see a screen asking you to select a template for your
new project. Select iOS | Application in the left pane, and Game in the right
pane. It should look like this:

Designing Games with Swift

[8]

2.	 Once you select Game, click Next. The following screen asks us to enter
some basic information about our project. Do not worry; we are almost at
the fun bit. For our demo game, we will create a side-scrolling endless flyer
featuring an astonishing flying penguin named Pierre. I am going to name
this game Pierre Penguin Escapes the Antarctic, but feel free to name
your project whatever you like. For now, the names are not important. You
will want to pick a meaningful Product Name and Organization Identifier
when you create your own game for publication. By convention, your
Organization Identifier should follow a reverse domain name style. I will
use com.ThinkingSwiftly, as shown in the following screenshot.

3.	 After you fill out the name fields, make sure to select Swift for the
Language, SpriteKit for Game Technology, and Universal for Devices.
Here are my settings:

4.	 Click Next and you will see the final dialog box. Save your new project.
Pick a location on your computer and click Next. And we are in! Xcode has
prepopulated our project with a basic SpriteKit template.

Chapter 1

[9]

Navigating our project
Now that we have created our project, you will see the project navigator on the
left-hand side of Xcode. You will use the project navigator to add, remove, and
rename files and generally organize your project. You might notice that Xcode has
created quite a few files in our new project. We will take it slow; do not feel pressure
to know what each file does yet, but feel free to explore them if you are curious:

Exploring the SpriteKit Demo
Use the project navigator to open up the file named GameScene.swift. Xcode
created GameScene.swift to store the default scene of our new game.

What is a scene? SpriteKit uses the concept of scenes to encapsulate each unique area
of a game. Think of the scenes in a movie; we will create a scene for the main menu,
a scene for the game over screen, a scene for each level in our game, and so on. If you
are on the main menu of a game and you tap "play", you move from the menu scene
to the level 1 scene.

Designing Games with Swift

[10]

SpriteKit prepends its class names with the letters "SK";
consequently, the scene class is SKScene.

You will see there is already some code in this scene. The SpriteKit project template
comes with a very small demo. Let's take a quick look at this demo code and use it to
test the iOS simulator.

Please do not be concerned with understanding the demo
code at this point. Your focus should be on learning the
development environment.

Look for the run toolbar at the top of the Xcode window. It should look something
like this:

Select the iOS device of your preference to simulate using the dropdown on the
far right. Which iOS device should you simulate? You are free to use the device of
your choice. I will be using an iPhone 6 for the screenshots in this book, so choose
iPhone 6 if you want your results to match my images perfectly.

Unfortunately, expect your game to play poorly in the simulator.
SpriteKit suffers poor FPS in the iOS simulator. Once our game
becomes relatively complex, we will see our FPS drop, even on
high-end computers. The simulator will get you through, but it is
best if you can plug in a physical device to test.

It is time for our first glimpse of SpriteKit in action! Press the gray play arrow
(handy run keyboard shortcut: command + r). Xcode will build the project and
launch the simulator. The simulator starts in a new window, so make sure you
bring it to the front. You should see a gray background with chalky white text:
Hello, World. Click around on the gray background.

Chapter 1

[11]

You will see spinning fighter jets spawning wherever you click:

I may have gone slightly overboard with the jets . . .

If you have made it this far, congratulations! You have successfully installed and
configured everything you need to make your first Swift game.

Once you have spawned a sufficient number of jets, you can close the simulator
down and return to Xcode. Note: you can use the keyboard command command + q
to exit the simulator or press the stop button inside Xcode. If you use the stop button,
the simulator will remain open and launch your next build faster.

Designing Games with Swift

[12]

Examining the demo code
Let's quickly explore the demo code. Do not worry about understanding everything
just yet; we will cover each element in depth later. At this point, I am hoping you
will acclimatize to the development environment and pick up a few things along
the way. If you are stuck, keep going! Things will actually get simpler in the next
chapter, after we clear away the SpriteKit demo and start on our own game.

Make sure you have GameScene.swift open in Xcode.

The GameScene class implements three functions. Let's examine these functions.
Feel free to read the code inside each function, but I do not expect you to understand
the specific code just yet.

1.	 The game invokes the didMoveToView function whenever it switches
to the GameScene. You can think of it a bit like an initialize, or main, function
for the scene. The SpriteKit demo uses it to draw the Hello World text to
the screen.

2.	 The touchesBegan function handles the user's touch input to the iOS device
screen. The SpriteKit demo uses this function to spawn the fighter jet graphic
and set it spinning wherever we touch the screen.

3.	 The update function runs once for every frame drawn to the screen. The
SpriteKit demo does not use this function, but we may have reason to
implement it later.

Cleaning up
I hope that you have absorbed some Swift syntax and gained an overview of Swift
and SpriteKit. It is time to make room for our own game; let us clear all of that demo
code out! We want to keep a little bit of the boilerplate, but we can delete most of
what is inside the functions. To be clear, I do not expect you to understand this code
yet. This is simply a necessary step towards the start of our journey! Please remove
lines from your GameScene.swift file until it looks like the following code:

import SpriteKit

class GameScene: SKScene {
 override func didMoveToView(view: SKView) {
 }
}

Once your GameScene.swift looks like the preceding code, you are ready to move
on to Chapter 2, Sprites, Camera, Actions! Now the real fun begins!

Chapter 1

[13]

Summary
You have already accomplished a lot. You gained your first experience with Swift,
installed and configured your development environment, launched code successfully
into the iOS simulator, and prepared your project for the first steps towards your
own game. Great work!

We have seen enough of the "Hello World" demo – are you ready to draw your
own graphics to the game screen? We will make use of sprites, textures, colors,
and animation in Chapter 2, Sprites, Camera, Actions!

[15]

Sprites, Camera, Actions!
Drawing with SpriteKit is a breeze. We are free to focus on building great
gameplay experiences while SpriteKit performs the mechanical work of the game
loop. To draw an item to the screen, we create a new instance of a SpriteKit node.
These nodes are simple; we attach a child node to our scene, or to existing nodes,
for each item we want to draw. Sprites, particle emitters, and text labels are all
considered nodes in SpriteKit.

The game loop is a common game design pattern used to constantly
update the game many times per second, and to maintain the same
gameplay speed on fast or slow hardware.
SpriteKit wires new nodes into the game loop automatically. As you
gain expertise with SpriteKit, you may wish to explore the game loop
further to understand what is going on "under the hood".

The topics in this chapter include:

•	 Preparing your project
•	 Drawing your first sprite
•	 Animation: movement, scaling, and rotation
•	 Working with textures
•	 Organizing art into texture atlases
•	 Centering the camera on a sprite

Sprites, Camera, Actions!

[16]

Sharpening our pencils
There are four quick items to take care of before we start drawing:

1.	 Since we will design our game to use landscape screen orientations,
we will disable the portrait view altogether:

1.	 With your game project open in Xcode, select the overall project
folder in the project navigator (the top-most item).

2.	 You will see your project settings in the main frame of Xcode.
Under Deployment Info, find the Device Orientation section.

3.	 Uncheck the Portrait option, as shown in the following screenshot:

2.	 The SpriteKit template generates a visual layout file for arranging sprites in
our scene. We will not need it; we will use the SpriteKit visual editor later
when we explore level design. To delete this extra file:

1.	 Right-click on GameScene.sks in the project navigator and
choose delete.

2.	 Choose Move to Trash in the dialog window.

3.	 We need to resize our scene to fit the new landscape view. Follow these steps
to resize the scene:

Chapter 2

[17]

1.	 Open GameViewController.swift from the project navigator and
locate the viewDidLoad function inside the GameViewController
class. The viewDidLoad function is going to fire before the game
realizes it is in landscape view, so we need to use a function that
fires later in the startup process. Delete viewDidLoad completely,
removing all of its code.

2.	 Replace viewDidLoad with a new function named
viewWillLayoutSubviews. Do not worry about understanding every
line right now; we are just configuring our project. Use this code for
viewWillLayoutSubviews:
override func viewWillLayoutSubviews() {
 super.viewWillLayoutSubviews()
 // Create our scene:
 let scene = GameScene()
 // Configure the view:
 let skView = self.view as! SKView
 skView.showsFPS = true
 skView.showsNodeCount = true
 skView.ignoresSiblingOrder = true
 scene.scaleMode = .AspectFill
 // size our scene to fit the view exactly:
 scene.size = view.bounds.size
 // Show the new scene:
 skView.presentScene(scene)
}

3.	 Lastly, in GameViewController.swift, find the
supportedInterfaceOrientations function and reduce
it to this code:
override func supportedInterfaceOrientations() -> Int {
 return Int(
 UIInterfaceOrientationMask.Landscape.rawValue);
}

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.
Additionally, each chapter provides checkpoint links you can use to
download the example project to that point.

http://www.packtpub.com
http://www.packtpub.com/support

Sprites, Camera, Actions!

[18]

4.	 We should double-check that we are ready to move on. Try to run our clean
project in the simulator using the toolbar play button or the command + r
keyboard shortcut. After loading, the simulator should switch to landscape
view with a blank gray background (and with the node and FPS counter in
the bottom right). If the project will not run, or you still see "Hello World",
you will need to retrace your steps from the end of Chapter 1, Designing
Games with Swift, to finish your project preparation.

Checkpoint 2- A
If you want to download my project to this point, you can do so from this URL:
http://www.thinkingswiftly.com/game-development-with-swift/chapter-2

Drawing your first sprite
It is time to write some game code – fantastic! Open your GameScene.swift file
and find the didMoveToView function. Recall that this function fires every time
the game switches to this scene. We will use this function to get familiar with
the SKSpriteNode class. You will use SKSpriteNode extensively in your game,
whenever you want to add a new 2D graphic entity.

The term sprite refers to a 2D graphic or animation that moves around
the screen independently from the background. Over time, the term has
developed to refer to any game object on the screen in a 2D game. We
will create and draw your first sprite in this chapter: a happy little bee.

Building a SKSpriteNode class
Let's begin by drawing a blue square to the screen. The SKSpriteNode class can draw
both texture graphics and solid blocks of color. It is often helpful to prototype your
new game ideas with blocks of color before you spend time with artwork. To draw
the blue square, add an instance of SKSpriteNode to the game:

override func didMoveToView(view: SKView) {
 // Instantiate a constant, mySprite, instance of SKSpriteNode
 // The SKSpriteNode constructor can set color and size
 // Note: UIColor is a UIKit class with built-in color presets
 // Note: CGSize is a type we use to set node sizes

http://www.thinkingswiftly.com/game-development-with-swift/chapter-2

Chapter 2

[19]

 let mySprite = SKSpriteNode(color: UIColor.blueColor(), size:
 CGSize(width: 50, height: 50))

 // Assign our sprite a position in points, relative to its
 // parent node (in this case, the scene)
 mySprite.position = CGPoint(x: 300, y: 300)

 // Finally, we need to add our sprite node into the node tree.
 // Call the SKScene's addChild function to add the node
 // Note: In Swift, 'self' is an automatic property
 // on any type instance, exactly equal to the instance itself
 // So in this instance, it refers to the GameScene instance
 self.addChild(mySprite)
}

Go ahead and run the project. You should see a similar small blue square appear in
your simulator:

Swift allows you to define variables as constants, which can be
assigned a value only once. For best performance, use let to declare
constants whenever possible. Declare your variables with var when
you need to alter the value later in your code.

Sprites, Camera, Actions!

[20]

Adding animation to your Toolkit
Before we dive back in to sprite theory, we should have some fun with our
blue square. SpriteKit uses action objects to move sprites around the screen.
Consider this example: if our goal is to move the square across the screen, we must
first create a new action object to describe the animation. Then, we instruct our
sprite node to execute the action. I will illustrate this concept with many examples
in the chapter. For now, add this code in the didMoveToView function, below the
self.addChild(mySprite) line:

// Create a new constant for our action instance
// Use the moveTo action to provide a goal position for a node
// SpriteKit will tween to the new position over the course of the
// duration, in this case 5 seconds
let demoAction = SKAction.moveTo(CGPoint(x: 100, y: 100),
 duration: 5)
// Tell our square node to execute the action!
mySprite.runAction(demoAction)

Run the project. You will see our blue square slide across the screen towards the
(100,100) position. This action is re-usable; any node in your scene can execute this
action to move to the (100,100) position. As you can see, SpriteKit does a lot of the
heavy lifting for us when we need to animate node properties.

Inbetweening, or tweening, uses the engine to animate smoothly
between a start frame and an end frame. Our moveTo animation is a
tween; we provide the start frame (the sprite's original position) and
the end frame (the new destination position). SpriteKit generates the
smooth transition between our values.

Let's try some other actions. The SKAction.moveTo function is only one of many
options. Try replacing the demoAction line with this code:

let demoAction = SKAction.scaleTo(4, duration: 5)

Run the project. You will see our blue square grow to four times its original size.

Chapter 2

[21]

Sequencing multiple animations
We can execute actions together simultaneously or one after the each other with
action groups and sequences. For instance, we can easily scale our sprite larger
and spin it at the same time. Delete all of our action code so far and replace it with
this code:

// Scale up to 4x initial scale
let demoAction1 = SKAction.scaleTo(4, duration: 5)
// Rotate 5 radians
let demoAction2 = SKAction.rotateByAngle(5, duration: 5)
// Group the actions
let actionGroup = SKAction.group([demoAction1, demoAction2])
// Execute the group!
mySprite.runAction(actionGroup)

When you run the project, you will see a spinning, growing square. Terrific! If
you want to run these actions in sequence (rather than at the same time) change
SKAction.group to SKAction.sequence:

// Group the actions into a sequence
let actionSequence = SKAction.sequence([demoAction1, demoAction2])

// Execute the sequence!
mySprite.runAction(actionSequence)

Run the code and watch as your square first grows and then spins. Good. You are
not limited to two actions; we can group or sequence as many actions together
as we need.

We have only used a few actions so far; feel free to explore the SKAction class and
try out different action combinations before moving on.

Sprites, Camera, Actions!

[22]

Recapping your first sprite
Congratulations, you have learned to draw a non-textured sprite and animate it
with SpriteKit actions. Next, we will explore some important positioning concepts,
and then add game art to our sprites. Before you move on, make sure your
didMoveToView function matches with mine, and your sequenced animation is firing
properly. Here is my code up to this point:

override func didMoveToView(view: SKView) {
 // Instantiate a constant, mySprite, instance of SKSpriteNode
 let mySprite = SKSpriteNode(color: UIColor.blueColor(), size:
 CGSize(width: 50, height: 50))

 // Assign our sprite a position
 mySprite.position = CGPoint(x: 300, y: 300)

 // Add our sprite node into the node tree
 self.addChild(mySprite)

 // Scale up to 4x initial scale
 let demoAction1 = SKAction.scaleTo(CGFloat(4), duration: 2)
 // Rotate 5 radians
 let demoAction2 = SKAction.rotateByAngle(5, duration: 2)

 // Group the actions into a sequence
 let actionSequence = SKAction.sequence([demoAction1,
 demoAction2])

 // Execute the sequence!
 mySprite.runAction(actionSequence)
}

The story on positioning
SpriteKit uses a grid of points to position nodes. In this grid, the bottom left corner of
the scene is (0,0), with a positive X-axis to the right and a positive Y-axis to the top.

Similarly, on the individual sprite level, (0,0) refers to the bottom left corner of the
sprite, while (1,1) refers to the top right corner.

Chapter 2

[23]

Alignment with anchor points
Each sprite has an anchorPoint property, or an origin. The anchorPoint property
allows you to choose which part of the sprite aligns to the sprite's overall position.

The default anchor point is (0.5,0.5), so a new SKSpriteNode
centers perfectly on its position.

To illustrate this, let us examine the blue square sprite we just drew on the screen.
Our sprite is 50 pixels wide and 50 pixels tall, and its position is (300,300). Since we
have not modified the anchorPoint property, its anchor point is (0.5,0.5). This means
the sprite will be perfectly centered over the (300,300) position on the scene's grid.
Our sprite's left edge begins at 275 and the right edge terminates at 325. Likewise, the
bottom starts at 275 and the top ends at 325. The following diagram illustrates our
block's position on the grid:

Why do we prefer centered sprites by default? You may think it simpler to position
elements by their bottom left corner with an anchorPoint property setting of (0,0).
However, the centered behavior benefits us when we scale or rotate sprites:

•	 When we scale a sprite with an anchorPoint property of (0,0) it will only
expand up the y-axis and out the x-axis. Rotation actions will swing the
sprite in wide circles around its bottom left corner.

•	 A centered sprite, with the default anchorPoint property of (0.5, 0.5), will
expand or contract equally in all directions when scaled and will spin in
place when rotated, which is usually the desired effect.

Sprites, Camera, Actions!

[24]

There are some cases when you will want to change an anchor point. For instance, if
you are drawing a rocket ship, you may want the ship to rotate around the front nose
of its cone, rather than its center.

Adding textures and game art
You may want to take a screenshot of your blue box for your own enjoyment later.
I absolutely love reminiscing over old screenshots of my finished games when they
were nothing more than simple colored blocks sliding around the screen. Now it is
time to move past that stage and attach some fun artwork to our sprite.

Downloading the free assets
I am providing a downloadable pack for all of the art assets I use in this book. I
recommend you use these assets so you will have everything you need for our demo
game. Alternatively, you are certainly free to create your own art for your game if
you prefer.

These assets come from an outstanding public domain asset pack from Kenney Game
Studio. I am providing a small subset of the asset pack that we will use in our game.
Download the game art from this URL:

http://www.thinkingswiftly.com/game-development-with-swift/assets

More exceptional art
If you like the art, you can download over 16,000 game assets in the same style for
a small donation at http://kenney.itch.io/kenney-donation. I do not have an
affiliation with Kenney; I just find it admirable that he has released so much public
domain artwork for indie game developers.

As CC0 assets, you can copy, modify, and distribute the art, even for commercial
purposes, all without asking permission. You can read the full license here:

https://creativecommons.org/publicdomain/zero/1.0/

Drawing your first textured sprite
Let us use some of the graphics you just downloaded. We will start by
creating a bee sprite. We will add the bee texture to our project, load the image
onto a SKSpriteNode class, and then size the node for optimum sharpness on
retina screens.

http://www.thinkingswiftly.com/game-development-with-swift/assets
http://kenney.itch.io/kenney-donation
https://creativecommons.org/publicdomain/zero/1.0/

Chapter 2

[25]

Adding the bee image to your project
We need to add the image files to our Xcode project before we can use them in
the game. Once we add the images, we can reference them by name in our code;
SpriteKit is smart enough to find and implement the graphics. Follow these steps to
add the bee image to the project:

1.	 Right-click on your project in the project navigator and click on Add Files to
"Pierre Penguin Escapes the Antarctic" (or the name of your game). Refer to
this screenshot to find the correct menu item:

2.	 Browse to the asset pack you downloaded and locate the bee.png image
inside the Enemies folder.

3.	 Check Copy items if needed, then click Add.

You should now see bee.png in your project navigator.

Sprites, Camera, Actions!

[26]

Loading images with SKSpriteNode
It is quite easy to draw images to the screen with SKSpriteNode. Start by clearing
out all of the code we wrote for the blue square inside the didMoveToView function
in GameScene.swift. Replace didMoveToView with this code:

override func didMoveToView(view: SKView) {
 // set the scene's background to a nice sky blue
 // Note: UIColor uses a scale from 0 to 1 for its colors
 self.backgroundColor = UIColor(red: 0.4, green: 0.6, blue:
 0.95, alpha: 1.0);

 // create our bee sprite node
 let bee = SKSpriteNode(imageNamed: "bee.png")
 // size our bee node
 bee.size = CGSize(width: 100, height: 100)
 // position our bee node
 bee.position = CGPoint(x: 250, y: 250)
 // attach our bee to the scene's node tree
 self.addChild(bee)
}

Run the project and witness our glorious bee – great work!

Chapter 2

[27]

Designing for retina
You may notice that our bee image is quite blurry. To take advantage of retina
screens, assets need to be twice the pixel dimensions of their node's size property
(for most retina screens), or three times the node size for the iPhone 6 Plus. Ignore
the height for a moment; our bee node is 100 points wide but the PNG file is only 56
pixels wide. The PNG file needs to be 300 pixels wide to look sharp on the iPhone 6
Plus, or 200 pixels wide to look sharp on 2x retina devices.

SpriteKit will automatically resize textures to fit their nodes, so one approach is to
create a giant texture at the highest retina resolution (three times the node size) and
let SpriteKit resize the texture down for lower density screens. However, there is a
considerable performance penalty, and older devices can even run out of memory
and crash from the huge textures.

The ideal asset approach
These double- and triple-sized retina assets can be confusing to new iOS developers.
To solve this issue, Xcode normally lets you provide three image files for each
texture. For example, our bee node is currently 100 points wide and 100 points tall. In
a perfect world, you would provide the following images to Xcode:

•	 Bee.png (100 pixels by 100 pixels)
•	 Bee@2x.png (200 pixels by 200 pixels)
•	 Bee@3x.png (300 pixels by 300 pixels)

However, there is currently an issue that prevents 3x textures from working correctly
with texture atlases. Texture atlases group textures together and increase rendering
performance dramatically (we will implement our first texture atlas in the next
section). I hope that Apple will upgrade texture atlases to support 3x textures in
Swift 2. For now, we need to choose between texture atlases and 3x assets for the
iPhone 6 Plus.

My solution for now
In my opinion, texture atlases and their performance benefits are key features of
SpriteKit. I will continue using texture atlases, thus serving 2x images to the iPhone
6 Plus (which still looks fairly sharp). This means that we will not be using any 3x
assets in this book.

Sprites, Camera, Actions!

[28]

Further simplifying matters, Swift only runs on iOS7 and higher. The only non-retina
devices that run iOS7 are the aging iPad 2 and iPad mini 1st generation. If these older
devices are important for your finished games, you should create both standard and
2x images for your games. Otherwise, you can safely ignore non-retina assets
with Swift.

This means that we will only use double-sized images in this book. The
images in the downloadable asset bundle forgo the 2x suffix, since we
are only using this size. Once Apple updates texture atlases to use 3x
assets, I recommend that you switch to the methodology outlined in
The ideal asset approach section for your games.

Hands-on with retina in SpriteKit
Our bee image illustrates how this all works:

•	 Because we set an explicit node size, SpriteKit automatically resizes the bee
texture to fit our 100-point wide, 100-point tall sized node. This automatic
size-to-fit is very handy, but notice that we have actually slightly distorted
the aspect ratio of the image.

•	 If we do not set an explicit size, SpriteKit sizes the node (in points) to the
match texture's dimensions (in pixels). Go ahead and delete the line that
sets the size for our bee node and re-run the project. SpriteKit maintains the
aspect ratio automatically, but the smaller bee is still fuzzy. That is because
our new node is 56 points by 48 points, matching our PNG file's pixel
dimensions of 56 pixels by 48 pixels . . . yet our PNG file needs to be 112
pixels by 96 pixels for a sharp image at this node size on 2x retina screens.

•	 We want a smaller bee anyway, so we will resize the node rather than
generate larger artwork in this case. Set the size property of your bee node,
in points, to half the size of the texture's pixel resolution:

// size our bee in points:
bee.size = CGSize(width: 28, height: 24)

Chapter 2

[29]

Run the project and you will see a smaller, crystal sharp bee, as in this screenshot:

Great! The important concept here is to design your art files at twice the pixel
resolution of your node point sizes to take advantage of 2x retina screens, or three
times the point sizes to take full advantage of the iPhone 6 Plus. Now we will look
at organizing and animating multiple sprite frames.

Organizing your assets
We will quickly overrun our project navigator with image files if we add all our
textures as we did with our bee. Luckily, Xcode provides several solutions.

Exploring Images.xcassets
We can store images in an .xcassets file and refer to them easily from our code.
This is a good place for our background images:

1.	 Open Images.xcassets from your project navigator.
2.	 We do not need to add any images here now but, in the future, you can

drag image files directly into the image list, or right-click, then Import.
3.	 Notice that the SpriteKit demo's spaceship image is stored here. We do

not need it anymore, so we can right-click on it and choose Removed
Selected Items to delete it.

Sprites, Camera, Actions!

[30]

Collecting art into texture atlases
We will use texture atlases for most of our in-game art. Texture atlases organize
assets by collecting related artwork together. They also increase performance by
optimizing all of the images inside each atlas as if they were one texture. SpriteKit
only needs one draw call to render multiple images out of the same texture atlas.
Plus, they are very easy to use! Follow these steps to build your bee texture atlas:

1.	 We need to remove our old bee texture. Right-click on bee.png in the project
navigator and choose Delete, then Move to Trash.

2.	 Using Finder, browse to the asset pack you downloaded and locate the
Enemies folder.

3.	 Create a new folder inside Enemies and name it bee.atlas.
4.	 Locate the bee.png and bee_fly.png images inside Enemies and copy

them into your new bee.atlas folder. You should now have a folder named
bee.atlas containing the two bee PNG files. This is all you need to do to
create a new texture atlas – simply place your related images into a new
folder with the .atlas suffix.

5.	 Add the atlas to your project. In Xcode, right-click on the project folder
in the project navigator and click Add Files…, as we did earlier for our
single bee texture.

6.	 Find the bee.atlas folder and select the folder itself.
7.	 Check Copy items if needed, then click Add.

The texture atlas will appear in the project navigator. Good work; we organized our
bee assets into one collection and Xcode will automatically create the performance
optimizations mentioned earlier.

Updating our bee node to use the texture atlas
We can actually run our project right now and see the same bee as before. Our old
bee texture was bee.png, and a new bee.png exists in the texture atlas. Though we
deleted the standalone bee.png, SpriteKit is smart enough to find the new bee.png
in the texture atlas.

Chapter 2

[31]

We should make sure our texture atlas is working, and that we successfully deleted
the old individual bee.png. In GameScene.swift, change our SKSpriteNode
instantiation line to use the new bee_fly.png graphic in the texture atlas:

// create our bee sprite
// notice the new image name: bee_fly.png
let bee = SKSpriteNode(imageNamed: "bee_fly.png")

Run the project again. You should see a different bee image, its wings held lower
than before. This is the second frame of the bee animation. Next, we will learn to
animate between the two frames to create an animated sprite.

Iterating through texture atlas frames
We need to study one more texture atlas technique: we can quickly flip through
multiple sprite frames to make our bee come alive with motion. We now have two
frames of our bee in flight; it should appear to hover in place if we switch back and
forth between these frames.

Our node will run a new SKAction to animate between the two frames.
Update your didMoveToView function to match mine (I removed some older
comments to save space):

override func didMoveToView(view: SKView) {
 self.backgroundColor = UIColor(red: 0.4, green: 0.6, blue:
 0.95, alpha: 1.0)

 // create our bee sprite
 // Note: Remove all prior arguments from this line:
 let bee = SKSpriteNode()
 bee.position = CGPoint(x: 250, y: 250)
 bee.size = CGSize(width: 28, height: 24)
 self.addChild(bee)

 // Find our new bee texture atlas
 let beeAtlas = SKTextureAtlas(named:"bee.atlas")
 // Grab the two bee frames from the texture atlas in an array
 // Note: Check out the syntax explicitly declaring beeFrames
 // as an array of SKTextures. This is not strictly necessary,
 // but it makes the intent of the code more readable, so I

Sprites, Camera, Actions!

[32]

 // chose to include the explicit type declaration here:
 let beeFrames:[SKTexture] = [
 beeAtlas.textureNamed("bee.png"),
 beeAtlas.textureNamed("bee_fly.png")]
 // Create a new SKAction to animate between the frames once
 let flyAction = SKAction.animateWithTextures(beeFrames,
 timePerFrame: 0.14)
 // Create an SKAction to run the flyAction repeatedly
 let beeAction = SKAction.repeatActionForever(flyAction)
 // Instruct our bee to run the final repeat action:
 bee.runAction(beeAction)
}

Run the project. You will see our bee flap its wings back and forth – cool! You
have learned the basics of sprite animation with texture atlases. We will create
increasingly complicated animations using this same technique later in the book.
For now, pat yourself on the back. The result may seem simple, but you have
unlocked a major building block towards your first SpriteKit game!

Putting it all together
First, we learned how to use actions to move, scale, and rotate our sprites. Then, we
explored animating through multiple frames, bringing our sprite to life. Let us now
combine these techniques to fly our bee back and forth across the screen, flipping the
texture at each turn.

Add this code at the bottom of the didMoveToView function, beneath the
bee.runAction(beeAction) line:

// Set up new actions to move our bee back and forth:
let pathLeft = SKAction.moveByX(-200, y: -10, duration: 2)
let pathRight = SKAction.moveByX(200, y: 10, duration: 2)
// These two scaleXTo actions flip the texture back and forth
// We will use these to turn the bee to face left and right
let flipTextureNegative = SKAction.scaleXTo(-1, duration: 0)
let flipTexturePositive = SKAction.scaleXTo(1, duration: 0)
// Combine actions into a cohesive flight sequence for our bee
let flightOfTheBee = SKAction.sequence([pathLeft,
 flipTextureNegative, pathRight, flipTexturePositive])

Chapter 2

[33]

// Last, create a looping action that will repeat forever
let neverEndingFlight =
 SKAction.repeatActionForever(flightOfTheBee)

// Tell our bee to run the flight path, and away it goes!
bee.runAction(neverEndingFlight)

Run the project. You will see the bee flying back and forth, flapping its wings.
You have officially learned the fundamentals of animation in SpriteKit! We will
build on this knowledge to create a rich, animated game world for our players.

Centering the camera on a sprite
Games often require that the camera follows the player sprite as it moves through
space. We definitely want this camera behavior for Pierre, our penguin character,
whom we will soon be adding to the game. Since SpriteKit does not come with
built-in camera functionality, we will create our own structure to simulate the
effect we want.

One way we could accomplish this is by keeping Pierre in one position and moving
every other object past him. This is effective, yet semantically confusing, and can
cause errors when you are positioning game objects.

Creating a new world
I prefer to create a world node and attach all of our game nodes to it (instead of
directly to the scene). We can move Pierre forward through the world and simply
reposition the world node so that Pierre is always at the center of our device's
viewport. All of our enemies, power-ups, and structures will be children of the world
node, and will appear to move past the screen as we scroll through the world.

Each sprite node's position is always relative to its direct parent. When
you change a node's position, all of its child nodes come along for the
ride. This is very handy behavior for simulating our camera.

Sprites, Camera, Actions!

[34]

This diagram illustrates a simplified version of this technique with some
made-up numbers:

You can find the code for our camera functionality in the following code block. Read
the comments for a detailed explanation. This is just a quick recap of the changes:

•	 Our didMoveToView function was becoming too crowded. I broke out our
flying bee code into a new function named addTheFlyingBee. Later, we will
encapsulate game objects, such as bees, into their own classes.

•	 I created two new constants on the GameScene class: the world node and the
bee node.

•	 I updated the didMoveToView function. It adds the world node to the scene's
node tree, and calls the new addTheFlyingBee function.

•	 Inside the new bee function, I removed the bee constant, as GameScene now
declares it above as its own property.

•	 Inside the new bee function, instead of adding the bee node to the scene,
with self.addChild(bee), we want to add it to the world, with world.
addChild(bee).

•	 We are implementing a new function: didSimulatePhysics. SpriteKit calls
this function every frame after performing physics calculations and adjusting
positions. It is a great place to update our world position. The math to change
the world position resides in this new function.

Chapter 2

[35]

Please update your entire GameScene.swift file to match mine:

import SpriteKit

class GameScene: SKScene {
 // Create the world as a generic SKNode
 let world = SKNode()
 // Create our bee node as a property of GameScene so we can
 // access it throughout the class
 // (Make sure to remove the old bee declaration inside the
 // didMoveToView function.)
 let bee = SKSpriteNode()

 override func didMoveToView(view: SKView) {
 self.backgroundColor = UIColor(red: 0.4, green: 0.6, blue:
 0.95, alpha: 1.0)

 // Add the world node as a child of the scene
 self.addChild(world)
 // Call the new bee function
 self.addTheFlyingBee()
 }

 // I moved all of our bee animation code into a new function:
 func addTheFlyingBee() {
 // Position our bee
 bee.position = CGPoint(x: 250, y: 250)
 bee.size = CGSize(width: 28, height: 24)
 // Notice we now attach our bee node to the world node:
 world.addChild(bee)

 /*
 all of the same bee animation code remains here,
 I am excluding it in this text for brevity
 */
 }

 // A new function
 override func didSimulatePhysics() {

Sprites, Camera, Actions!

[36]

 // To find the correct position, subtract half of the
 // scene size from the bee's position, adjusted for any
 // world scaling.
 // Multiply by -1 and you have the adjustment to keep our
 // sprite centered:
 let worldXPos = -(bee.position.x * world.xScale -
 (self.size.width / 2))
 let worldYPos = -(bee.position.y * world.yScale -
 (self.size.height / 2))
 // Move the world so that the bee is centered in the scene
 world.position = CGPoint(x: worldXPos, y: worldYPos)
 }

}

Run the game. You should see our bee stuck directly at the center of the screen,
flipping back and forth every two seconds.

The bee is actually changing position, just as before, but the world is compensating
to keep the bee centered on the screen. When we add more game objects in Chapter 3,
Mix in the Physics, our bee will appear to fly as the entire world pans past the screen.

Chapter 2

[37]

Checkpoint 2-B
We have made many changes to our project in this chapter. If you would like to
download my project to this point, do so here:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-2

Summary
You have gained foundational knowledge of sprites, nodes, and actions in
SpriteKit and already taken huge strides towards your first game with Swift.

You configured your project for landscape orientation, drew your first sprite, and
then made it move, spin, and scale. You added a bee texture to your sprite, created
an image atlas, and animated through the frames of flight. Finally, you built a world
node to keep the gameplay centered on the player. Terrific work!

In the next chapter, we will use SpriteKit's physics engine to assign weight and
gravity to our world, spawn more flying characters, and create the ground and sky.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-2

[39]

Mix in the Physics
SpriteKit includes a fully functional physics engine. It is easy to implement and very
useful; most mobile game designs require some level of physical interaction between
game objects. In our game, we want to know when the player runs into the ground,
an enemy, or a power-up. The physics system can track these collisions and execute
our specific game code when any of these events occur. SpriteKit's physics engine
can also apply gravity to the world, bounce and spin colliding sprites against each
other, and create realistic movement through impulses – and it does all of this before
every single frame is drawn to the screen.

The topics in this chapter include:

•	 Adopting a protocol for consistency
•	 Organizing game objects into classes
•	 Adding the player's character
•	 Renovating the GameScene class
•	 Physics bodies and gravity
•	 Exploring physics simulation mechanics
•	 Movement with impulses and forces
•	 Bumping bees into bees

Laying the foundation
So far, we have learned through small bits of code, individually added to the
GameScene class. The intricacy of our application is about to increase. To build
a complex game world, we will need to construct re-usable classes and actively
organize our new code.

Mix in the Physics

[40]

Following protocol
To start, we want individual classes for each of our game objects (a bee class, a player
penguin class, a power-up class, and so on). Furthermore, we want all of our game
object classes to share a consistent set of properties and methods. We can enforce this
commonality by creating a protocol, or a blueprint for our game classes. The protocol
does not provide any functionality on its own, but each class that adopts the protocol
must follow its specifications exactly before Xcode can compile the project. Protocols
are very similar to interfaces, if you are from a Java or C# background.

Add a new file to your project (right-click in the project navigator and choose New
File, then Swift File) and name it GameSprite.swift. Then add the following code
to your new file:

import SpriteKit

protocol GameSprite {
 var textureAtlas: SKTextureAtlas { get set }
 func spawn(parentNode: SKNode, position: CGPoint, size:
 CGSize)
 func onTap()
}

Now, any class that adopts the GameSprite protocol must implement a
textureAtlas property, a spawn function, and an onTap function. We can safely
assume that the game objects provide these implementations when we work with
them in our code.

Reinventing the bee
Our old bee is working wonderfully, but we want to spawn many bees throughout
the world. We will create a Bee class, inheriting from SKSpriteNode, so we can
cleanly stamp as many bees to the world as we please.

It is a common convention to separate each class into its own file. Add a new Swift
file to your project and name it Bee.swift. Then, add this code:

import SpriteKit

// Create the new class Bee, inheriting from SKSpriteNode
// and adopting the GameSprite protocol:
class Bee: SKSpriteNode, GameSprite {
 // We will store our texture atlas and bee animations as
 // class wide properties.
 var textureAtlas:SKTextureAtlas =

Chapter 3

[41]

 SKTextureAtlas(named:"bee.atlas")
 var flyAnimation = SKAction()

 // The spawn function will be used to place the bee into
 // the world. Note how we set a default value for the size
 // parameter, since we already know the size of a bee
 func spawn(parentNode:SKNode, position: CGPoint, size: CGSize
 = CGSize(width: 28, height: 24)) {
 parentNode.addChild(self)
 createAnimations()
 self.size = size
 self.position = position
 self.runAction(flyAnimation)
 }

 // Our bee only implements one texture based animation.
 // But some classes may be more complicated,
 // So we break out the animation building into this function:
 func createAnimations() {
 let flyFrames:[SKTexture] =
 [textureAtlas.textureNamed("bee.png"),
 textureAtlas.textureNamed("bee_fly.png")]
 let flyAction = SKAction.animateWithTextures(flyFrames,
 timePerFrame: 0.14)
 flyAnimation = SKAction.repeatActionForever(flyAction)
 }

 // onTap is not wired up yet, but we have to implement this
 // function to adhere to our protocol.
 // We will explore touch events in the next chapter.
 func onTap() {}
}

It is now easy to spawn as many bees as we like. Switch back to GameScene.swift,
and add this code in didMoveToView:

// Create three new instances of the Bee class:
let bee2 = Bee()
let bee3 = Bee()
let bee4 = Bee()
// Use our spawn function to place the bees into the world:
bee2.spawn(world, position: CGPoint(x: 325, y: 325))
bee3.spawn(world, position: CGPoint(x: 200, y: 325))
bee4.spawn(world, position: CGPoint(x: 50, y: 200))

Mix in the Physics

[42]

Run the project. Bees, bees everywhere! Our original bee is flying back and forth
through a swarm. Your simulator should look like this:

Depending on how you look at it, you may perceive that the new bees are moving
and the original bee is still. We need to add a point of reference. Next, we will add
the ground.

The icy tundra
We will add some ground at the bottom of the screen to serve as a constraint for
player positioning and as a reference point for movement. We will create a new class
named Ground. First, let us add the texture atlas for the ground art to our project.

Another way to add assets
We will use a different method of adding files to Xcode. Follow these steps to add
the new artwork:

1.	 In Finder, navigate to the asset pack you downloaded in Chapter 2, Sprites,
Camera, Actions!, and then to the Environment folder.

2.	 You learned to create a texture atlas earlier, for our bee. I have already
created texture atlases for the rest of the art we use in this game. Locate the
ground.atlas folder.

Chapter 3

[43]

3.	 Drag and drop this folder into the project manager in Xcode, under the
project folder, as seen in this screenshot:

4.	 In the dialog box, make sure your settings match the following screenshot,
and then click Finish:

Perfect – you should see the ground texture atlas in the project navigator.

Mix in the Physics

[44]

Adding the Ground class
Next, we will add the code for the ground. Add a new Swift file to your project and
name it Ground.swift. Use the following code:

import SpriteKit

// A new class, inheriting from SKSpriteNode and
// adhering to the GameSprite protocol.
class Ground: SKSpriteNode, GameSprite {
 var textureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"ground.atlas")
 // Create an optional property named groundTexture to store
 // the current ground texture:
 var groundTexture:SKTexture?

 func spawn(parentNode:SKNode, position:CGPoint, size:CGSize) {
 parentNode.addChild(self)
 self.size = size
 self.position = position
 // This is one of those unique situations where we use
 // non-default anchor point. By positioning the ground by
 // its top left corner, we can place it just slightly
 // above the bottom of the screen, on any of screen size.
 self.anchorPoint = CGPointMake(0, 1)

 // Default to the ice texture:
 if groundTexture == nil {
 groundTexture = textureAtlas.textureNamed("ice-
 tile.png");
 }

 // We will create child nodes to repeat the texture.
 createChildren()
 }

 // Build child nodes to repeat the ground texture
 func createChildren() {
 // First, make sure we have a groundTexture value:
 if let texture = groundTexture {
 var tileCount:CGFloat = 0
 let textureSize = texture.size()
 // We will size the tiles at half the size
 // of their texture for retina sharpness:

Chapter 3

[45]

 let tileSize = CGSize(width: textureSize.width / 2,
 height: textureSize.height / 2)

 // Build nodes until we cover the entire Ground width
 while tileCount * tileSize.width < self.size.width {
 let tileNode = SKSpriteNode(texture: texture)
 tileNode.size = tileSize
 tileNode.position.x = tileCount * tileSize.width
 // Position child nodes by their upper left corner
 tileNode.anchorPoint = CGPoint(x: 0, y: 1)
 // Add the child texture to the ground node:
 self.addChild(tileNode)

 tileCount++
 }
 }
 }

 // Implement onTap to adhere to the protocol:
 func onTap() {}
}

Tiling a texture
Why do we need the createChildren function? SpriteKit does not support a built-in
method to repeat a texture over the size of a node. Instead, we create children nodes
for each texture tile and append them across the width of the parent. Performance
is not an issue; as long as we attach the children to one parent, and the textures all
come from the same texture atlas, SpriteKit handles them with one draw call.

Running wire to the ground
We have added the ground art to the project and created the Ground class.
The final step is to create an instance of Ground in our scene. Follow these steps to
wire-up the ground:

1.	 Open GameScene.swift and add a new property to the GameScene class to
create an instance of the Ground class. You can place this underneath the line
that instantiates the world node (the new code is in bold):
let world = SKNode()
let ground = Ground()

Mix in the Physics

[46]

2.	 Locate the didMoveToView function. Add the following code at the bottom,
underneath our bee spawning lines:

// size and position the ground based on the screen size.
// Position X: Negative one screen width.
// Position Y: 100 above the bottom (remember the ground's top
// left anchor point).
let groundPosition = CGPoint(x: -self.size.width, y: 100)
// Width: 3x the width of the screen.
// Height: 0. Our child nodes will provide the height.
let groundSize = CGSize(width: self.size.width * 3, height:
 0)
// Spawn the ground!
ground.spawn(world, position: groundPosition, size:
 groundSize)

Run the project. You will see the icy tundra appear underneath our bees. This small
change goes a long way towards creating the feeling that our central bee is moving
through space. Your simulator should look like this:

Chapter 3

[47]

A wild penguin appears!
There is one more class to build before we start our physics lesson: the Player class!
It is time to replace our moving bee with a node designated as the player.

First, we will add the texture atlas for our penguin art. By now, you are familiar with
adding files through the project navigator. Add the Pierre art as you did previously
with the ground assets. I named Pierre's texture atlas pierre.atlas. You can find it
in the asset pack, inside the Pierre folder.

Once you add Pierre's texture atlas to the project, you can create the Player class.
Add a new Swift file to your project and name it Player.swift. Then add this code:

import SpriteKit

class Player : SKSpriteNode, GameSprite {
 var textureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"pierre.atlas")
 // Pierre has multiple animations. Right now we will
 // create an animation for flying up, and one for going down:
 var flyAnimation = SKAction()
 var soarAnimation = SKAction()

 func spawn(parentNode:SKNode, position: CGPoint,
 size:CGSize = CGSize(width: 64, height: 64)) {
 parentNode.addChild(self)
 createAnimations()
 self.size = size
 self.position = position
 // If we run an action with a key, "flapAnimation",
 // we can later reference that key to remove the action.
 self.runAction(flyAnimation, withKey: "flapAnimation")
 }

 func createAnimations() {
 let rotateUpAction = SKAction.rotateToAngle(0, duration:
 0.475)
 rotateUpAction.timingMode = .EaseOut
 let rotateDownAction = SKAction.rotateToAngle(-1,
 duration: 0.8)
 rotateDownAction.timingMode = .EaseIn

Mix in the Physics

[48]

 // Create the flying animation:
 let flyFrames:[SKTexture] = [
 textureAtlas.textureNamed("pierre-flying-1.png"),
 textureAtlas.textureNamed("pierre-flying-2.png"),
 textureAtlas.textureNamed("pierre-flying-3.png"),
 textureAtlas.textureNamed("pierre-flying-4.png"),
 textureAtlas.textureNamed("pierre-flying-3.png"),
 textureAtlas.textureNamed("pierre-flying-2.png")
]
 let flyAction = SKAction.animateWithTextures(flyFrames,
 timePerFrame: 0.03)
 // Group together the flying animation frames with a
 // rotation up:
 flyAnimation = SKAction.group([
 SKAction.repeatActionForever(flyAction),
 rotateUpAction
])

 // Create the soaring animation, just one frame for now:
 let soarFrames:[SKTexture] =
 [textureAtlas.textureNamed("pierre-flying-1.png")]
 let soarAction = SKAction.animateWithTextures(soarFrames,
 timePerFrame: 1)
 // Group the soaring animation with the rotation down:
 soarAnimation = SKAction.group([
 SKAction.repeatActionForever(soarAction),
 rotateDownAction
])
 }

 func onTap() {}
}

Great! Before we continue, we need to replace our original bee with an instance of
the new Player class we just created. Follow these steps to replace the bee:

1.	 In GameScene.swift, near the top, remove the line that creates a bee
constant in the GameScene class. Instead, we want to instantiate an instance
of Player. Add the new line: let player = Player().

2.	 Completely delete the addTheFlyingBee function.
3.	 In didMoveToView, remove the line that calls addTheFlyingBee.

Chapter 3

[49]

4.	 In didMoveToView, at the bottom, add a new line to spawn the player:
player.spawn(world, position: CGPoint(x: 150, y: 250))

5.	 Further down, in didSimulatePhysics, replace the references to the bee
with references to player. Recall that we created the didSimulatePhysics
function in Chapter 2, Sprites, Camera, Actions!, when we centered the camera
on one node.

We have successfully transformed the original bee into a penguin. Before we move
on, we will make sure your GameScene class includes all of the changes we have
made so far in this chapter. After that, we will begin to explore the physics system.

Renovating the GameScene class
We have made quite a few changes to our project. Luckily, this is the last major
overhaul of the previous animation code. Moving forward, we will use the terrific
structure we built in this chapter. At this point, your GameScene.swift file should
look something like this:

class GameScene: SKScene {
 let world = SKNode()
 let player = Player()
 let ground = Ground()

 override func didMoveToView(view: SKView) {
 // Set a sky-blue background color:
 self.backgroundColor = UIColor(red: 0.4, green: 0.6, blue:
 0.95, alpha: 1.0)

 // Add the world node as a child of the scene:
 self.addChild(world)

 // Spawn our physics bees:
 let bee2 = Bee()
 let bee3 = Bee()
 let bee4 = Bee()
 bee2.spawn(world, position: CGPoint(x: 325, y: 325))
 bee3.spawn(world, position: CGPoint(x: 200, y: 325))
 bee4.spawn(world, position: CGPoint(x: 50, y: 200))

Mix in the Physics

[50]

 // Spawn the ground:
 let groundPosition = CGPoint(x: -self.size.width, y: 30)
 let groundSize = CGSize(width: self.size.width * 3,
 height: 0)
 ground.spawn(world, position: groundPosition, size:
 groundSize)

 // Spawn the player:
 player.spawn(world, position: CGPoint(x: 150, y: 250))
 }

 override func didSimulatePhysics() {
 let worldXPos = -(player.position.x * world.xScale –
 (self.size.width / 2))
 let worldYPos = -(player.position.y * world.yScale –
 (self.size.height / 2))
 world.position = CGPoint(x: worldXPos, y: worldYPos)
 }
}

Run the project. You will see our new penguin hovering near the bees. Great work;
we are now ready to explore the physics system with all of our new nodes. Your
simulator should look something like this screenshot:

Chapter 3

[51]

Exploring the physics system
SpriteKit simulates physics with physics bodies. We attach physics bodies to all
the nodes that need physics computations. We will set up a quick example before
exploring all of the details.

Dropping like flies
Our bees need to be part of the physics simulation, so we will add physics bodies
to their nodes. Open your Bee.swift file and locate the spawn function. Add the
following code at the bottom of the function:

// Attach a physics body, shaped like a circle
// and sized roughly to our bee.
self.physicsBody = SKPhysicsBody(circleOfRadius: size.width / 2)

It is that easy to add a node to the physics simulation. Run the project. You will see
our three Bee instances drop off the screen. They are now subject to gravity, which is
on by default.

Solidifying the ground
We want the ground to catch falling game objects. We can give the ground its own
physics body so the physics simulation can stop the bees from falling through it.
Open your Ground.swift file, locate the spawn function, and then add this code at
the bottom of the function:

// Draw an edge physics body along the top of the ground node.
// Note: physics body positions are relative to their nodes.
// The top left of the node is X: 0, Y: 0, given our anchor point.
// The top right of the node is X: size.width, Y: 0
let pointTopRight = CGPoint(x: size.width, y: 0)
self.physicsBody = SKPhysicsBody(edgeFromPoint: CGPointZero,
 toPoint: pointTopRight)

Mix in the Physics

[52]

Run the project. The bees will now quickly drop and then stop once they collide with
the ground. Notice how bees that fall farther bounce more energetically. After the
bees land, your simulator will look like this:

Checkpoint 3-A
Great work so far. We have added a lot of structure to our game and started to
explore the physics system. If you would like to download my project to this point,
do so here:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-3

Exploring physics simulation mechanics
Let's take a closer look at the specifics of SpriteKit's physics system. For instance, why
are the bees subject to gravity, but the ground stays where it is? Though we attached
physics bodies to both nodes, we actually used two different styles of physics bodies.
There are three types of physics bodies, and each behaves slightly differently:

•	 Dynamic physics bodies have volume and are fully subject to forces and
collisions in the system. We will use dynamic physics bodies for most parts
of the game world: the player, enemies, power-ups, and others.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-3

Chapter 3

[53]

•	 Static physics bodies have volume but no velocity. The physics simulation
does not move nodes with static bodies but they can still collide with other
game objects. We can use static bodies for walls or obstacles.

•	 Edge physics bodies have no volume and the physics simulation will
never move them. They mark off the boundaries of movement; other physics
bodies will never cross them. Edges can cross each other to create small
containment areas.

Voluminous (dynamic and static) bodies have a variety of properties that modify
how they react to collisions and movement through space. This allows us to create a
wide range of realistic physics effects. Each property controls one aspect of a body's
physical characteristics:

•	 Restitution determines how much energy is lost when one body bounces
into another. This changes the body's bounciness. SpriteKit measures
restitution on a scale from 0.0 to 1.0. The default value is 0.2.

•	 Friction describes the amount of force necessary to slide one body against
another body. This property also uses a scale of 0.0 to 1.0, with a default
value of 0.2.

•	 Damping determines how quickly a body slows as it moves through space.
You can think of damping as air friction. Linear damping determines how
quickly a body loses speed, while angular damping affects rotation. Both
measure from 0.0 to 1.0, with a default value of 0.1.

•	 Mass is measured in kilograms. It describes how far colliding objects push
the body and factors in momentum during movement. Bodies with more
mass will move less when hit by another body and will push other bodies
further when they collide with them. The physics engine automatically uses
the mass and the area of the body to determine density. Alternatively, you
can set the density and let the physics engine calculate mass. It is usually
more intuitive to set the mass.

All right – enough with the textbook! Let us solidify our learning with
some examples.

First, we want gravity to skip our bees. We will set their flight paths manually.
We need the bees to be dynamic physics bodies in order to interact properly with
other nodes, but we need these bodies to ignore gravity. For such instances, SpriteKit
provides a property named affectedByGravity. Open Bee.swift and, at the
bottom of the spawn function, add this code:

self.physicsBody?.affectedByGravity = false

Mix in the Physics

[54]

The question mark after physicsBody is optional chaining.
We need to unwrap physicsBody, since it is optional. If
physicsBody is nil, the entire statement will return nil
(instead of triggering an error). You can think of it as gracefully
unwrapping an optional property with an inline statement.

Run the project. The bees should now hover in place as they did before we added
their bodies. However, SpriteKit's physics simulation now affects them; they will
react to impulses and collisions. Great, let us purposefully collide the bees.

Bee meets bee
You may have noticed that we positioned bee2 and bee3 at the same height
in the game world. We only need to push one of them horizontally to create a
collision – perfect crash test dummies! We can use an impulse to create velocity
for the outside bee.

Locate the didMoveToView function in GameScene.swift. At the bottom, below
all of our spawn code, add this line:

bee2.physicsBody?.applyImpulse(CGVector(dx: -3, dy: 0))

Run the project. You will see the outermost bee fly towards the middle and crash
into the inner bee. This pushes the inner bee to the left and slows the first bee from
the contact.

Attempt the same experiment with a variable: increased mass. Before the impulse
line, add this code to adjust the mass of bee2:

bee2.physicsBody?.mass = 0.2

Run the project. Hmm, our heavier bee does not move very far with the same
impulse (it is a 200-gram bee, after all.) It eventually bumps into the inner bee,
but it is not a very exciting collision. We will need to crank up the impulse to propel
our beefier bee. Change the impulse line to use a dx value of -15:

bee2.physicsBody?.applyImpulse(CGVector(dx: -15, dy: 0))

Chapter 3

[55]

Run the project again. This time, our impulse provides enough energy to move the
heavy bee in an interesting way. Notice how much energy the heavy bee transfers
to the normal bee when they collide; the lighter bee shoots away after contact. Both
bees possess enough momentum to eventually slide completely off the screen. Your
simulator should look something like this screenshot, just before the bees slide off
the screen:

Before you move on, you may wish to experiment with the various physics
properties that I outlined earlier in the chapter. You can create many collision
variations; the physics simulation offers a lot of depth with out much effort.

Impulse or force?
You have several options for moving nodes with physics bodies:

•	 An impulse is an immediate, one-time change to a physics body's velocity.
In our test, an impulse gave the bee its velocity, and it slowly bled speed
to damping and its collision. Impulses are perfect for projectiles: missiles,
bullets, disgruntled birds, and so on.

Mix in the Physics

[56]

•	 A force applies velocity for only one physics calculation cycle. When we use
a force, we typically apply it before every frame. Forces are useful for rocket
ships, cars, or anything else that is continually self-propelled.

•	 You can also edit the velocity and angularVelocity properties of a body
directly. This is useful for setting a manual velocity limit.

Checkpoint 3-B
We have made a number of structural changes to our project in this chapter. Feel free
to download my project to this point:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-3

Summary
We have made great strides in this chapter. Our new class organization will serve
us well over the course of this book. We learned how to use protocols to enforce
commonality across classes, encapsulated our game objects into distinct classes, and
explored tiling textures over the width of the ground node. Finally, we cleaned out
some of our previous learning code from GameScene and used the new class system
to spawn all of our game objects.

We also applied the physics simulation to our game. We have only scratched the
surface of the powerful physics system in SpriteKit – we will dive deeper into custom
collision events in Chapter 7, Implementing Collision Events – but we have already
gained quite a bit of functionality. We explored the three types of physics bodies and
studied the various physics properties you can use to fine-tune the physical behavior
of your game objects. Then, we put all of our hard work into practice by bumping
our bees together and watching the results.

Next, we will try several control schemes and move our player around the game
world. This is an exciting addition; our project will begin to feel like a true game in
Chapter 4, Adding Controls.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-3

[57]

Adding Controls
Players control mobile games through a very limited number of interactions. Often,
games feature only a single mechanic: tap anywhere on the screen to jump or fly.
Contrast that to a console controller with dozens of button combinations. With so
few actions, keeping users engaged with polished, fun controls is vital to the success
of your game.

In this chapter, you will learn to implement several popular control schemes that
have emerged from the App Store. First, we will experiment with tilt controls; the
physical orientation of the device will determine where the player flies. Then, we will
wire up the onTap events on our sprite nodes. Finally, we will implement and polish
a simple control scheme for flying in our game: tap anywhere on the screen to fly
higher. You can combine these techniques to create unique and enjoyable controls in
your future games.

The topics in this chapter include:

•	 Retrofitting the Player class for flight
•	 Polling for device movement with Core Motion
•	 Wiring up the sprite onTap events
•	 Teaching our penguin to fly
•	 Improving the camera
•	 Looping the ground as the player moves forward

Adding Controls

[58]

Retrofitting the Player class for flight
We need to perform a few quick setup tasks before we can react to player input.
We will remove some of our older testing code and add a physics body to the
Player class.

The Beekeeper
First, clean up the old bee physics tests from the last chapter. Open GameScene.
swift, find didMoveToView, and locate the bottom two lines; one sets a mass for
bee2, the other applies an impulse to bee2. Remove these lines.

Updating the Player class
We need to give the Player class its own update function. We want to store
player-related logic in Player, and we need it to run before every frame.

1.	 Open Player.swift and add the following function inside Player:
func update() { }

2.	 In GameScene.swift, add this code at the bottom of the GameScene class:
override func update(currentTime: NSTimeInterval) {
 player.update()
}

Perfect. The GameScene class will call the player class update function on
every update.

Moving the ground
We initially placed the ground higher than necessary to make sure it displayed
for all screen sizes in the previous chapter. We can now move the ground into its
final position since the player will soon be moving around, bringing the camera
wherever they go.

In GameScene.swift, locate the line that defines the groundPosition constant and
change the y value from 100 to 30:

let groundPosition = CGPoint(x: -self.size.width, y: 30)

Chapter 4

[59]

Assigning a physics body to the player
We will use physics forces to move our player around the screen. To apply these
forces, we must first add a physics body to the player sprite.

Creating a physics body shape from a texture
When gameplay allows, you should use circles to define your physics bodies – they
are the most efficient shape for the physics simulation and result in the highest frame
rate. However, the accuracy of Pierre's shape is very important to our gameplay and
a circle is not a great fit for his shape. Instead, we will assign a special type of physics
body based on his texture.

Apple introduced the ability to define the shape of a physics body with opaque
texture pixels in Xcode 6. This is a convenient addition as it allows us to easily
create extremely accurate shapes for our sprites. There is a performance penalty; it is
computationally expensive to use these texture-driven physics bodies. You will want
to use them sparingly, only on your most important sprites.

To create Pierre's physics body, add this code in Player.swift, at the bottom of the
spawn function:

// Create a physics body based on one frame of Pierre's animation.
// We will use the third frame, when his wings are tucked in,
// and use the size from the spawn function's parameters:
let bodyTexture = textureAtlas.textureNamed("pierre-flying-3.png")
self.physicsBody = SKPhysicsBody(
 texture: bodyTexture,
 size: size)
// Pierre will lose momentum quickly with a high linearDamping:
self.physicsBody?.linearDamping = 0.9
// Adult penguins weigh around 30kg:
self.physicsBody?.mass = 30
// Prevent Pierre from rotating:
 self.physicsBody?.allowsRotation = false

Run the project and the ground will appear to rise up to Pierre. Since we have given
him a physics body, he is now subject to gravity. Pierre is actually dropping down
the grid, and the camera is adjusting to keep him centered. This is fine for now;
later we will give him the tools to fly into the sky. Next, let's learn how to move a
character, based on the tilt of the physical device.

Adding Controls

[60]

Polling for device movement with
Core Motion
Apple provides the Core Motion framework to expose precise information on the
iOS device's orientation in physical space. We can use this data to move our player
on the screen when the user tilts their device in the direction they want to move.
This unique style of input offers new game-play mechanics in mobile games.

You will need a physical iOS device for this Core Motion
section. The iOS simulator in Xcode does not simulate device
movement. However, this section is only a learning exercise
and is not required to finish the game we are building. Our
final game will not use Core Motion. Feel free to skip the Core
Motion section if you cannot test with a physical device.

Implementing the Core Motion code
It is very easy to poll for device orientation. We will check the device position during
every update and apply the appropriate force to our player. Follow these steps to
implement the Core Motion controls:

1.	 In GameScene.swift, near the very top, add a new import statement below
the import SpriteKit line:
import CoreMotion

2.	 Inside the GameScene class, add a new constant named motionManager and
instantiate an instance of CMMotionManager:
let motionManager = CMMotionManager()

3.	 Inside the GameScene function didMoveToView, add the following code at
the bottom. This lets Core Motion know that we want to poll the orientation
data, so it needs to start reporting data:
self.motionManager.startAccelerometerUpdates()

4.	 Finally, add the following code to the bottom of the update function to poll
the orientation, build an appropriate vector, and apply a physical force to the
player's character:
// Unwrap the accelerometer data optional:
if let accelData = self.motionManager.accelerometerData {
 var forceAmount:CGFloat

Chapter 4

[61]

 var movement = CGVector()

 // Based on the device orientation, the tilt number
 // can indicate opposite user desires. The
 // UIApplication class exposes an enum that allows
 // us to pull the current orientation.
 // We will use this opportunity to explore Swift's
 // switch syntax and assign the correct force for the
 // current orientation:
 Switch
 UIApplication.sharedApplication().statusBarOrientation {
 case .LandscapeLeft:
 // The 20,000 number is an amount that felt right
 // for our example, given Pierre's 30kg mass:
 forceAmount = 20000
 case .LandscapeRight:
 forceAmount = -20000
 default:
 forceAmount = 0
 }

 // If the device is tilted more than 15% towards complete
 // vertical, then we want to move the Penguin:
 if accelData.acceleration.y > 0.15 {
 movement.dx = forceAmount
 }
 // Core Motion values are relative to portrait view.
 // Since we are in landscape, use y-values for x-axis.
 else if accelData.acceleration.y < -0.15 {
 movement.dx = -forceAmount
 }

 // Apply the force we created to the player:
 player.physicsBody?.applyForce(movement)
}

Adding Controls

[62]

Run the project. You can slide Pierre across the ice by tilting your device in the
direction you want to move. Great work – we have successfully implemented our
first control system.

Notice that Pierre falls through the ground when you move
him too far in any direction. Later in the chapter, we will
improve the ground, continuously repositioning it to cover the
area beneath the player.

This is a simple example of using Core Motion data for player movement; we are not
going to use this method in our final game. Still, you can extrapolate this example
into advanced control schemes in your own games.

Checkpoint 4-A
To download my project, including the Core Motion code, visit this address:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-4

Wiring up the sprite onTap events
Your games will often require the ability to run code when the player taps a specific
sprite. I like to implement a system that includes all the sprites in your game so you
can add tap events to each sprite without building an additional structure. We have
already implemented onTap methods in all of our classes that adopt the GameSprite
protocol; we still need to wire up the scene to call these methods when the player
taps the sprites.

Before we move on, we need to remove the Core Motion code
since we will not be using it in the finished game. Once you finish
exploring the Core Motion example, please remove it from the game
by following the previous section's bullet points in reverse.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-4

Chapter 4

[63]

Implementing touchesBegan in the
GameScene
SpriteKit calls our scene's touchesBegan function every time the screen is touched.
We will read the location of the touch and determine the sprite node in that position.
We can check if the touched node adopts our GameSprite protocol. If it does,
this means it must have an onTap function, which we can then invoke. Add the
touchesBegan function below to the GameScene class – I like to place it just below
the didSimulatePhysics function:

override func touchesBegan(touches: Set<NSObject>, withEvent
 event: UIEvent) {
 for touch in (touches as! Set<UITouch>) {
 // Find the location of the touch:
 let location = touch.locationInNode(self)
 // Locate the node at this location:
 let nodeTouched = nodeAtPoint(location)
 // Attempt to downcast the node to the GameSprite protocol
 if let gameSprite = nodeTouched as? GameSprite {
 // If this node adheres to GameSprite, call onTap:
 gameSprite.onTap()
 }
 }
}

That is all we need to do to wire up all of the onTap functions we have implemented
on the game object classes we have made. Of course, all of these onTap functions are
empty at the moment; we will now add some functionality to illustrate the effect.

Larger than life
Open your Bee.swift file and locate the onTap function. Temporarily, we will
expand the bees to a giant size when tapped, to demonstrate that we have wired
our onTap functions correctly. Add this code inside the bee's onTap function:

self.xScale = 4
self.yScale = 4

Adding Controls

[64]

Run the project and tap on the bees. They will expand to four times their original
size, as shown in the following screenshot:

Oh no – giant bees! This example shows that our onTap functions work. You can
remove the scaling code you added to the Bee class. We will keep the onTap wire-up
code in GameScene so that we can use tap events later.

Teaching our penguin to fly
Let's implement the control scheme for our penguin. The player can tap anywhere
on the screen to make Pierre fly higher and release to let him fall. We are going to
make quite a few changes – if you need help, refer to the checkpoint at the end of
this chapter. Start by modifying the Player class; follow these steps to prepare our
Player for flight:

1.	 In Player.swift, add some new properties directly to the Player class:
// Store whether we are flapping our wings or in free-fall:
var flapping = false
// Set a maximum upward force.
// 57,000 feels good to me, adjust to taste:
let maxFlappingForce:CGFloat = 57000
// Pierre should slow down when he flies too high:
let maxHeight:CGFloat = 1000

Chapter 4

[65]

2.	 So far, Pierre has been flapping his wings by default. Instead, we want to
display the soaring animation by default and only run the flap animation
when the user presses the screen. In the spawn function, remove the line that
runs flyAnimation and, instead, run soarAnimation:
self.runAction(soarAnimation, withKey: "soarAnimation")

3.	 When the player touches the screen, we apply the upward force in the
Player class update function. Remember that GameScene calls this update
function once per frame. Add this code in update:
// If flapping, apply a new force to push Pierre higher.
if self.flapping {
 var forceToApply = maxFlappingForce

 // Apply less force if Pierre is above position 600
 if position.y > 600 {
 // The higher Pierre goes, the more force we
 // remove. These next three lines determine the
 // force to subtract:
 let percentageOfMaxHeight = position.y / maxHeight
 let flappingForceSubtraction =
 percentageOfMaxHeight * maxFlappingForce
 forceToApply -= flappingForceSubtraction
 }
 // Apply the final force:
 self.physicsBody?.applyForce(CGVector(dx: 0, dy:
 forceToApply))
}

// Limit Pierre's top speed as he climbs the y-axis.
// This prevents him from gaining enough momentum to shoot
// over our max height. We bend the physics for gameplay:
if self.physicsBody?.velocity.dy > 300 {
 self.physicsBody?.velocity.dy = 300
}

4.	 Finally, we will provide two functions on Player to allow other classes to
start and stop the flapping behavior. The GameScene class will call these
functions when it detects touch input. Add the following functions to the
Player class:
// Begin the flap animation, set flapping to true:
func startFlapping() {

Adding Controls

[66]

 self.removeActionForKey("soarAnimation")
 self.runAction(flyAnimation, withKey: "flapAnimation")
 self.flapping = true
}

// Stop the flap animation, set flapping to false:
func stopFlapping() {
 self.removeActionForKey("flapAnimation")
 self.runAction(soarAnimation, withKey: "soarAnimation")
 self.flapping = false
}

Perfect, our Player is ready for flight. Now we will simply invoke the start and stop
functions from the GameScene class.

Listening for touches in GameScene
The SKScene class (that GameScene inherits from) includes handy functions we can
use to monitor touch input. Follow these steps to wire up the GameScene class:

1.	 In GameScene.swift, in the touchesBegan function, add this code at the
bottom to start the Player flapping when the user touches the screen:
player.startFlapping()

2.	 Below touchesBegan, create two new functions in the GameScene class.
These functions stop the flapping when the user lifts his or her finger from
the screen, or when an iOS notification interrupts the touch:
override func touchesEnded(touches: Set<NSObject>,
 withEvent event: UIEvent) {
 player.stopFlapping()
}

override func touchesCancelled(touches: Set<NSObject>!,
 withEvent event: UIEvent) {
 player.stopFlapping()
}

Chapter 4

[67]

Fine-tuning gravity
Before we test out our new flying code, we need to make one adjustment. The default
gravity setting of -9.8 feels too real. Pierre lives in a cartoon world; real-world gravity
is a bit of a drag. We can adjust gravity in the GameScene class; add this line at the
bottom of the didMoveToView function:

// Set gravity
self.physicsWorld.gravity = CGVector(dx: 0, dy: -5)

Spreading your wings
Run the project. Tap the screen to make Pierre fly higher, release to let him fall. Play
with the action; Pierre rotates towards his vector and builds or loses momentum as
you tap and release. Terrific! You have successfully implemented the core mechanic
of our game. Take a minute to enjoy flying up and down, as in this screenshot:

Adding Controls

[68]

Improving the camera
Our camera code works well; it follows the player wherever they fly. However,
we can improve the camera to enhance the flying experience. In this section,
we will add two new features:

•	 Zoom the camera out as Pierre Penguin flies higher, reinforcing the feeling
of increasing height.

•	 Suspend vertical centering when the player drops below the halfway point
of the screen. This means the ground never fills too much of the screen, and
adds the feeling of cutting upwards into the air when Pierre flies higher and
the camera starts tracking him again.

Follow these steps to implement these two improvements:

1.	 In GameScene.swift, create a new variable in the GameScene class to store
the center point of the screen:
var screenCenterY = CGFloat()

2.	 In the didMoveToView function, set this new variable with the calculated
center of the screen's height:
// Store the vertical center of the screen:
screenCenterY = self.size.height / 2

3.	 We need to rework the didSimulatePhysics function significantly. Remove
the existing didSimulatePhysics function and replace it with this code:
override func didSimulatePhysics() {
 var worldYPos:CGFloat = 0

 // Zoom the world as the penguin flies higher
 if (player.position.y > screenCenterY) {
 let percentOfMaxHeight = (player.position.y -
 screenCenterY) / (player.maxHeight -
 screenCenterY)
 let scaleSubtraction = (percentOfMaxHeight > 1 ?
 1 : percentOfMaxHeight) * 0.6
 let newScale = 1 - scaleSubtraction
 world.yScale = newScale
 world.xScale = newScale
 // The player is above half the screen size
 // so adjust the world on the y-axis to follow:

Chapter 4

[69]

 worldYPos = -(player.position.y * world.yScale -
 (self.size.height / 2))
 }

 let worldXPos = -(player.position.x * world.xScale -
 (self.size.width / 3))

 // Move the world for our adjustment:
 world.position = CGPoint(x: worldXPos, y: worldYPos)
}

Run the project, and then fly up. The world scales smaller as you gain height. The
camera also now allows Pierre to dive below the center of the screen when you fly
close to the ground. The following screenshot illustrates the two extremes. Notice the
smaller sprites in the top screen, Pierre flies higher and the camera zooms out. In the
bottom shot, the camera stops following Pierre vertically as he approaches the ground:

Adding Controls

[70]

The combined effect adds a lot of polish to the game and increases the fun of
flying. Our flying mechanic feels great. The next step is to move Pierre forward
through the world.

Pushing Pierre forward
This style of game usually moves the world forward at a constant speed. Rather than
applying force or impulse, we can manually set a constant velocity for Pierre during
every update. Open the Player.swift file and add this code in the update function:

// Set a constant velocity to the right:
self.physicsBody?.velocity.dx = 200

Run the project. Our protagonist penguin will move forward past the swarm of bees
and through the world. This works well, but you will quickly notice that the ground
runs out as Pierre moves forward, as shown in this screenshot:

Recall that our ground is only as wide as the screen width multiplied by three.
Rather than extending the ground further, we will move the ground's position at
well-timed intervals. Since the ground is made from repeating tiles, there are many
opportunities to jump its position forward seamlessly. We simply need to figure out
when the player travels the correct distance.

Chapter 4

[71]

Tracking the player's progress
First, we need to keep track of how far the player has flown. We will use this later as
well, for keeping track of a high score. This is easy to implement. Follow these steps
to track how far the player has flown:

1.	 In the GameScene.swift file, add two new properties to the GameScene class:
let initialPlayerPosition = CGPoint(x: 150, y: 250)
var playerProgress = CGFloat()

2.	 In the didMoveToView function, update the line that spawns the player
to use the new initialPlayerPosition constant instead of the old
hard-coded value:
// Spawn the player:
player.spawn(world, position: initialPlayerPosition)

3.	 In the didSimulatePhysics function, update the new playerProgress
property with the player's new distance:
// Keep track of how far the player has flown
playerProgress = player.position.x -
 initialPlayerPosition.x

Perfect – we now have access to the player's progress at all times in the GameScene
class. We can use the distance traveled to reposition the ground at the correct time.

Looping the ground
There are many possible methods to create an endless ground loop. We will
implement a straightforward solution that jumps the ground forward after the player
travels over roughly one-third of its width. This method guarantees that the ground
always covers the screen, given that our player starts in the middle third.

We will create the jump logic on the Ground class. Follow these steps to implement
endless ground:

1.	 Open the Ground.swift file, and add two new properties to the
Ground class:
var jumpWidth = CGFloat()
// Note the instantiation value of 1 here:
var jumpCount = CGFloat(1)

Adding Controls

[72]

2.	 In the createChildren function, we find the total width from one-third
of the children tiles and make it our jumpWidth. We will need to jump the
ground forward every time the player travels this distance. You only need to
add one line: near the bottom of the function, but inside the conditional that
unwraps the texture. I will show the entire function in the following example,
for context, with the new line in bold:
func createChildren() {
 if let texture = groundTexture {
 var tileCount:CGFloat = 0
 let textureSize = texture.size()
 let tileSize = CGSize(width: textureSize.width / 2,
 height: textureSize.height / 2)

 while tileCount * tileSize.width < self.size.width
 {
 let tileNode = SKSpriteNode(texture: texture)
 tileNode.size = tileSize
 tileNode.position.x = tileCount *
 tileSize.width
 tileNode.anchorPoint = CGPoint(x: 0, y: 1)
 self.addChild(tileNode)

 tileCount++
 }

 // Find the width of one-third of the children nodes
 jumpWidth = tileSize.width * floor(tileCount / 3)
 }
}

3.	 Add a new function named checkForReposition to the Ground class, below
the createChildren function. The scene will call this function at every frame
to check if we should jump the ground forward:
func checkForReposition(playerProgress:CGFloat) {
 // The ground needs to jump forward
 // every time the player has moved this distance:
 let groundJumpPosition = jumpWidth * jumpCount

 if playerProgress >= groundJumpPosition {
 // The player has moved past the jump position!

Chapter 4

[73]

 // Move the ground forward:
 self.position.x += jumpWidth
 // Add one to the jump count:
 jumpCount++
 }
}

4.	 Open GameScene.swift and add this line at the bottom of the
didSimulatePhysics function to call the Ground class's new logic:

// Check to see if the ground should jump forward:
ground.checkForReposition(playerProgress)

Run the project. The ground will seem to stretch on forever as Pierre flies forward.
This looping ground is a big step towards the final game world. It may seem like a
lot of work for a simple effect, but the looping ground is important, and our method
will perform well on any screen size. Great work!

Checkpoint 4-B
To download my project up to this point, visit this address:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-4

Summary
In this chapter, we have transformed a tech demo into the beginnings of a real game.
We have added a great deal of new code. You learned how to implement three
distinct mobile game control methods: physical device motion, sprite tap events,
and flying higher when the screen is touched. We polished the flying mechanic for
maximum fun and sent Pierre flying forward through the world.

You also learned how to implement two common mobile game requirements:
looping the ground and a smarter camera system. Both of these features make a big
impact in our game.

Next, we will add more content to our level. Flying is already fun, but traveling past
the first few bees feels a little lonely. We will give Pierre Penguin some company in
Chapter 5, Spawning Enemies, Coins, and Power-ups.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-4

[75]

Spawning Enemies, Coins,
and Power-ups

One of the most enjoyable and creative aspects of game development is building
the game world for your players to explore. Our young project is starting to resemble
a playable game after adding the controls; the next step is to build more content.
We will create additional classes for new enemies, collectible coins, and special
power-ups that give Pierre Penguin a boost as he navigates the perils of our world.
We can then develop a system to spawn increasingly difficult patterns of these game
objects as the player advances.

The topics in this chapter include:

•	 Adding the power-up star
•	 A new enemy – the mad fly
•	 Another terror – bats!
•	 The spooky ghost
•	 Guarding the ground with the blade
•	 Adding coins
•	 Testing the new game objects

Spawning Enemies, Coins, and Power-ups

[76]

Introducing the cast
Strap on your hard hat, we are going to be writing a lot of code in this chapter.
Stick with it! The results are well worth the effort. Meet the new cast of characters
we will be introducing in this chapter:

Adding the power-up star
Many of my favorite games grant temporary invulnerability when the player picks
up a star. We will add a hyperactive star power-up to our game. Meet our star:

Locating the art assets
You can find the art assets for power-up stars and coins inside the goods.atlas
texture atlas in the Coins and Powerups folder of the assets bundle. Add the
goods.atlas texture atlas to your project now.

Adding the Star class
Once the art is in place, you can create a new Swift file named Star.swift in your
project; we will continue to organize classes into distinct files. The Star class will
be similar to the Bee class we created earlier; it will inherit from SKSpriteNode and
adhere to our GameSprite protocol. The star will add a lot of power to the player, so
we will also give it a special SKAction-based zany animation to make it stand out.

Chapter 5

[77]

To create the Star class, add the following code in your Star.swift file:

import SpriteKit

class Star: SKSpriteNode, GameSprite {
 var textureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"goods.atlas")
 var pulseAnimation = SKAction()

 func spawn(parentNode:SKNode, position: CGPoint,
 size: CGSize = CGSize(width: 40, height: 38)) {
 parentNode.addChild(self)
 createAnimations()
 self.size = size
 self.position = position
 self.physicsBody = SKPhysicsBody(circleOfRadius:
 size.width / 2)
 self.physicsBody?.affectedByGravity = false
 // Since the star texture is only one frame, set it here:
 self.texture =
 textureAtlas.textureNamed("power-up-star.png")
 self.runAction(pulseAnimation)
 }

 func createAnimations() {
 // Scale the star smaller and fade it slightly:
 let pulseOutGroup = SKAction.group([
 SKAction.fadeAlphaTo(0.85, duration: 0.8),
 SKAction.scaleTo(0.6, duration: 0.8),
 SKAction.rotateByAngle(-0.3, duration: 0.8)
]);
 // Push the star big again, and fade it back in:
 let pulseInGroup = SKAction.group([
 SKAction.fadeAlphaTo(1, duration: 1.5),
 SKAction.scaleTo(1, duration: 1.5),
 SKAction.rotateByAngle(3.5, duration: 1.5)
]);
 // Combine the two into a sequence:
 let pulseSequence = SKAction.sequence([pulseOutGroup,
 pulseInGroup])
 pulseAnimation =
 SKAction.repeatActionForever(pulseSequence)
 }

 func onTap() {}
}

Spawning Enemies, Coins, and Power-ups

[78]

Great! You should be familiar with most of this code at this point, since it is so
similar to some of the other classes we have made. Let's continue by adding another
new character: a grumpy fly.

Adding a new enemy – the mad fly
Pierre Penguin will need to dodge more than just bees to accomplish his goal.
We will add a few new enemies in this chapter, starting with the MadFly class.
The mad fly is quite grumpy, as you can see:

Locating the enemy assets
You can find all of the art for our new enemies in the Enemies folder of the
asset bundle, in the enemies.atlas texture atlas. Add this texture atlas to
your project now.

Adding the MadFly class
MadFly is another straightforward class; it looks a lot like the Bee code. Create a
new Swift file named MadFly.swift and enter this code:

import SpriteKit

class MadFly: SKSpriteNode, GameSprite {
 var textureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"enemies.atlas")
 var flyAnimation = SKAction()

 func spawn(parentNode:SKNode, position: CGPoint,
 size: CGSize = CGSize(width: 61, height: 29)) {
 parentNode.addChild(self)
 createAnimations()
 self.size = size
 self.position = position
 self.runAction(flyAnimation)

Chapter 5

[79]

 self.physicsBody = SKPhysicsBody(circleOfRadius:
 size.width / 2)
 self.physicsBody?.affectedByGravity = false
 }

 func createAnimations() {
 let flyFrames:[SKTexture] = [
 textureAtlas.textureNamed("mad-fly-1.png"),
 textureAtlas.textureNamed("mad-fly-2.png")
]
 let flyAction = SKAction.animateWithTextures(flyFrames,
 timePerFrame: 0.14)
 flyAnimation = SKAction.repeatActionForever(flyAction)
 }

 func onTap() {}
}

Congratulations, you have successfully implemented the mad fly. No time to
celebrate – onward to the bats!

Another terror – bats!
We are getting into quite a rhythm with creating new classes. Now, we will add a bat
to swarm with the bees. The bat is small, but has a very sharp fang:

Adding the Bat class
To add the Bat class, create a file named Bat.swift and add this code:

import SpriteKit

class Bat: SKSpriteNode, GameSprite {
 var textureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"enemies.atlas")
 var flyAnimation = SKAction()

 func spawn(parentNode:SKNode, position: CGPoint,
 size: CGSize = CGSize(width: 44, height: 24)) {
 parentNode.addChild(self)
 createAnimations()

Spawning Enemies, Coins, and Power-ups

[80]

 self.size = size
 self.position = position
 self.runAction(flyAnimation)
 self.physicsBody = SKPhysicsBody(circleOfRadius:
 size.width / 2)
 self.physicsBody?.affectedByGravity = false
 }

 func createAnimations() {
 // The Bat has 4 animation textures:
 let flyFrames:[SKTexture] = [
 textureAtlas.textureNamed("bat-fly-1.png"),
 textureAtlas.textureNamed("bat-fly-2.png"),
 textureAtlas.textureNamed("bat-fly-3.png"),
 textureAtlas.textureNamed("bat-fly-4.png"),
 textureAtlas.textureNamed("bat-fly-3.png"),
 textureAtlas.textureNamed("bat-fly-2.png")
]
 let flyAction = SKAction.animateWithTextures(flyFrames,
 timePerFrame: 0.06)
 flyAnimation = SKAction.repeatActionForever(flyAction)
 }

 func onTap() {}
}

Now that you have created the Bat class, there are two more enemies to add.
We will add the Ghost class next.

The spooky ghost
We will complement the bat with another spooky enemy: the Ghost as seen here:

Instead of animating through multiple frames, we will use actions to animate the
ghost's single frame.

Chapter 5

[81]

Adding the Ghost class
As with the other classes, create a new file in your project, Ghost.swift, and then
add the following code:

import SpriteKit

class Ghost: SKSpriteNode, GameSprite {
 var textureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"enemies.atlas")
 var fadeAnimation = SKAction()

 func spawn(parentNode:SKNode, position: CGPoint,
 size: CGSize = CGSize(width: 30, height: 44)) {
 parentNode.addChild(self)
 createAnimations()
 self.size = size
 self.position = position
 self.physicsBody = SKPhysicsBody(circleOfRadius:
 size.width / 2)
 self.physicsBody?.affectedByGravity = false
 self.texture =
 textureAtlas.textureNamed("ghost-frown.png")
 self.runAction(fadeAnimation)
 // Start the ghost semi-transparent:
 self.alpha = 0.8;
 }

 func createAnimations() {
 // Create a fade out action group:
 // The ghost becomes smaller and more transparent.
 let fadeOutGroup = SKAction.group([
 SKAction.fadeAlphaTo(0.3, duration: 2),
 SKAction.scaleTo(0.8, duration: 2)
]);
 // Create a fade in action group:
 // The ghost returns to full size and transparency.
 let fadeInGroup = SKAction.group([
 SKAction.fadeAlphaTo(0.8, duration: 2),
 SKAction.scaleTo(1, duration: 2)
]);
 // Package the groups into a sequence, then a
 // repeatActionForever action:

Spawning Enemies, Coins, and Power-ups

[82]

 let fadeSequence = SKAction.sequence([fadeOutGroup,
 fadeInGroup])
 fadeAnimation = SKAction.repeatActionForever(fadeSequence)
 }

 func onTap() {}
}

Perfect. Our ghost is ready for action. We have added a lot of flying enemies to chase
Pierre Penguin through the sky. We need a ground-based enemy that will prevent
the player from taking an easy path just above the ground. Next, we will add the
Blade class.

Guarding the ground – adding the blade
The Blade class will keep Pierre from flying too low. This enemy class will be similar
to the others we have created, with one exception: we will generate a physics body
based on the texture. The physics body circles that we have been using are much
faster computationally and are usually sufficient to describe the shapes of our
enemies; the Blade class requires a more complicated physics body, given its half-
circle shape and bumpy edges:

Adding the Blade class
To add the Blade class, create a new file named Blade.swift and add the
following code:

import SpriteKit

class Blade: SKSpriteNode, GameSprite {

Chapter 5

[83]

 var textureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"enemies.atlas")
 var spinAnimation = SKAction()

 func spawn(parentNode:SKNode, position: CGPoint,
 size: CGSize = CGSize(width: 185, height: 92)) {
 parentNode.addChild(self)
 self.size = size
 self.position = position
 // Create a physics body shaped by the blade texture:
 self.physicsBody = SKPhysicsBody(
 texture: textureAtlas.textureNamed("blade-1.png"),
 size: size)
 self.physicsBody?.affectedByGravity = false
 // No dynamic body for the blade, which never moves:
 self.physicsBody?.dynamic = false
 createAnimations()
 self.runAction(spinAnimation)
 }

 func createAnimations() {
 let spinFrames:[SKTexture] = [
 textureAtlas.textureNamed("blade-1.png"),
 textureAtlas.textureNamed("blade-2.png")
]
 let spinAction = SKAction.animateWithTextures(spinFrames,
 timePerFrame: 0.07)
 spinAnimation = SKAction.repeatActionForever(spinAction)
 }

 func onTap() {}
}

Congratulations, the Blade class was the last enemy we needed to add to our game.
This process may seem repetitive – you have written a lot of boilerplate code – but
separating our enemies into their own classes allows each enemy to implement
unique logic and behavior. The benefits of this structure will become apparent as
your games increase in complexity.

Next, we add the class for our coins.

Spawning Enemies, Coins, and Power-ups

[84]

Adding the coins
Coins are more fun if there are two value variations. We will create:

•	 A bronze coin, worth one coin.
•	 A gold coin, worth five coins.

The two coins will be distinguishable by their color on the screen and the
denomination text on the coin, as seen here:

Creating the coin classes
We only need a single Coin class to create both denominations. Everything in
the Coin class should look very familiar at this point. To create the Coin class,
add a new file named Coin.swift and then enter the following code:

import SpriteKit

class Coin: SKSpriteNode, GameSprite {
 var textureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"goods.atlas")
 // Store a default value for the bronze coin:
 var value = 1

 func spawn(parentNode:SKNode, position: CGPoint,
 size: CGSize = CGSize(width: 26, height: 26)) {
 parentNode.addChild(self)
 self.size = size
 self.position = position
 self.physicsBody = SKPhysicsBody(circleOfRadius:
 size.width / 2)
 self.physicsBody?.affectedByGravity = false
 self.texture =
 textureAtlas.textureNamed("coin-bronze.png")
 }

Chapter 5

[85]

 // A function to transform this coin into gold!
 func turnToGold() {
 self.texture =
 textureAtlas.textureNamed("coin-gold.png")
 self.value = 5
 }

 func onTap() {}
}

Great work – we have successfully added all of the new game objects we need for
our final game!

Organizing the project navigator
You may notice that these new classes cluttered the project navigator. This is a good
time to clean up the navigator. Right-click the project in the project navigator and
select Sort By Type, as shown in this screenshot:

Your project navigator will segment itself by file type and sort into alphabetical
order. This makes it much easier to find files as you need them.

Spawning Enemies, Coins, and Power-ups

[86]

Testing the new game objects
It is time to see our hard work in action. We will now add one instance of each of
our new classes to the game. Note that we will remove this testing code after we are
done; you may want to leave yourself a comment or extra space for easy removal.
Open GameScene.swift and locate the six lines that spawn the existing bees. Add
this code after the bee lines:

// Spawn a bat:
let bat = Bat()
bat.spawn(world, position: CGPoint(x: 400, y: 200))

// A blade:
let blade = Blade()
blade.spawn(world, position: CGPoint(x: 300, y: 76))

// A mad fly:
let madFly = MadFly()
madFly.spawn(world, position: CGPoint(x: 50, y: 50))

// A bronze coin:
let bronzeCoin = Coin()
bronzeCoin.spawn(world, position: CGPoint(x: 490, y: 250))

// A gold coin:
let goldCoin = Coin()
goldCoin.spawn(world, position: CGPoint(x: 460, y: 250))
goldCoin.turnToGold()

// A ghost!
let ghost = Ghost()
ghost.spawn(world, position: CGPoint(x: 50, y: 300))

// The powerup star:
let star = Star()
star.spawn(world, position: CGPoint(x: 250, y: 250))

You may also wish to comment out the Player class line that moves Pierre forward,
so the camera does not quickly move past your new game objects. Just make sure to
uncomment it when you are done.

Chapter 5

[87]

Once you are ready, run the project. You should see the entire family, as shown in
this screenshot:

Terrific work! All of our code has paid off and we have a large cast of characters
ready for action.

Checkpoint 5-A
To download my project to this point, browse to this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-5

Preparing for endless flight
In Chapter 6, Generating a Never-Ending World, we will build a never-ending level by
spawning tactical obstacle courses full of these new game objects. We need to clear
out all of our test objects to get ready for this new level spawning system. Once you
are ready, remove the spawning test code we just added to the GameScene class.
Also, remove the six lines that we have been using to spawn the three bees from
previous chapters.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-5

Spawning Enemies, Coins, and Power-ups

[88]

When you are finished, your GameScene class's didMoveToView function should
look like this:

override func didMoveToView(view: SKView) {
 // Set a sky-blue background color:
 self.backgroundColor = UIColor(red: 0.4, green: 0.6, blue:
 0.95, alpha: 1.0)

 // Add the world node as a child of the scene:
 self.addChild(world)

 // Store the vertical center of the screen:
 screenCenterY = self.size.height / 2

 // Spawn the ground:
 let groundPosition = CGPoint(x: -self.size.width, y: 30)
 let groundSize = CGSize(width: self.size.width * 3, height: 0)
 ground.spawn(world, position: groundPosition, size:
 groundSize)

 // Spawn the player:
 player.spawn(world, position: initialPlayerPosition)

 // Set gravity
 self.physicsWorld.gravity = CGVector(dx: 0, dy: -5)
}

When you run the project, you should only see Pierre and the ground,
as shown here:

We are now ready to build our level.

Chapter 5

[89]

Summary
You added the complete cast of characters to our game in this chapter. Look back at
all that you accomplished; you added the power-up star, the bronze and gold coins,
a spooky ghost, the mad fly, bats, and a blade. You tested all of the new classes and
then removed the test code so that the project is ready for the level generation system
we will put in place in the next chapter.

We spent a lot of effort building each new class. The world will come alive and
reward our hard work in Chapter 6, Generating a Never-Ending World.

[91]

Generating a Never-Ending
World

The unique challenge of an endless flyer-style game is in procedurally generating
a rich, entertaining game world that extends as far as your player can fly. We will
first explore level design concepts and tooling in Xcode; Apple added a built-in
level designer to Xcode 6, allowing developers to arrange nodes visually within a
scene. Once we become familiar with the SpriteKit level design methodology, we
will create a custom solution to generate our world. In this chapter, you will build an
entertaining world for our penguin game and learn to design and implement levels
in SpriteKit for any genre of game.

The topics in this chapter include:

•	 Designing levels with the SpriteKit scene editor
•	 Building encounters for Pierre Penguin
•	 Integrating scenes into the game
•	 Looping encounters for a never-ending world
•	 Adding the star power-up at random

Designing levels with the SpriteKit
scene editor
The scene editor is a valuable addition to SpriteKit. Previously, developers would be
forced to hardcode positional values or rely on third party tools or custom solutions.
Now, we can lay out our levels directly within Xcode. We can create nodes, attach
physics bodies and constraints, create physics fields, and edit properties directly
from the interface.

Generating a Never-Ending World

[92]

Feel free to experiment with the scene editor and familiarize yourself with its
interface. To use the scene editor, add a new scene file to your game and then select
the scene in the project navigator. Here is a simple example scene you might build
for a platformer game:

In this example, I simply dragged and positioned Color Sprite in the scene. If you
are making an unsophisticated game, you can paint nodes that do not require
texture-based animation directly within the scene editor. By editing physics bodies in
the editor, you can even create entire physics-based games in the editor, adding only
a few lines of code for the controls.

Complex games require custom logic and texture animation for every object, so we
will implement a system in our penguin game that only uses the scene editor as a
layout generation tool. We will write code to parse the layout data from the editor
and turn it into fully functioning versions of the game classes we have created
throughout this book. In this way, we will separate our game logic from our data
with minimal effort.

Chapter 6

[93]

Separating level data from game logic
Level layout is data, and it is best to separate data from code. You increase flexibility
by separating the level data into scene files. The benefits include:

•	 Non-technical contributors, such as artists and designers, can add and edit
levels without changing any code.

•	 Iteration time improves since you do not need to run the game in the
simulator each time you need to view your changes. Scene editor layouts
provide immediate visual feedback.

•	 Each level is in a unique file, which is ideal for avoiding merge conflicts
when using source control solutions like Git.

Using empty nodes as placeholders
The scene editor lacks the ability to create reusable classes and there is no strongly
typed method to link your code classes to scene editor nodes. Instead, we will use
empty nodes as placeholders in the scene editor and replace them in the code with
instances of our own classes. You will often see variations of this technique. For
instance, the SpriteKit adventure game demo from Apple uses this technique for
parts of its level design.

You can assign names to nodes in the scene editor and then query those names in
your code. For example, you can create empty nodes named Bat in the scene editor,
and then write code to replace every node named "Bat" with an instance of our Bat
class in the GameScene class.

To illustrate this concept, we will create our first encounter for the penguin game.

Encounters in endless flying
Endless flyer games continue until the player loses. They do not feature distinct
levels; instead, we will design "encounters" for our protagonist penguin to explore.
We can create an endless world by stringing together encounters one after the other
and randomly recycling from the beginning when we need more content.

Generating a Never-Ending World

[94]

The following image illustrates the basic concept:

A finished game might include 20 or more encounters to feel varied and
random. We will create three encounters in this chapter to populate the
encounter recycling system.

We will build each encounter in its own scene file, in the same way we would
approach a separate level in a standard platformer or physics game.

Creating our first encounter
First, create an encounter folder group to keep our project organized.
Right-click your project in the project navigator and create a new group named
Encounters. Then, right-click on Encounters and add a new SpriteKit scene file
(from the iOS | Resource category) named EncounterBats.sks.

Xcode will add the new scene file to your project and open the scene editor. You
should see a gray background with a yellow border, indicating the boundaries of the
new scene. Scenes default to 1024 points wide by 768 points tall. We should change
these values. It will be easy to chain encounters together if each encounter is 1000
pixels wide and 650 points tall.

Chapter 6

[95]

You can easily change the scene's size values in the SKNode inspector. Towards the
upper right of the scene editor, make sure you have the SKNode inspector open by
selecting the far right icon, and then change the width and height, as shown in the
following screenshot:

Generating a Never-Ending World

[96]

Next, we will create our first placeholder node for the Bat class. Follow these steps to
create an Empty Node in the scene editor:

1.	 You can drag nodes from the object library. To open the object library, look
towards the lower right side of the scene editor and select the circular icon,
as shown in the following screenshot:

Chapter 6

[97]

2.	 Drag an Empty Node onto your scene.
3.	 Using the SKNode inspector on the upper right side, name your node Bat,

as shown in this screenshot:

You will see Bat appear above the Empty Node. Great, we have created our first
placeholder. We will repeat this process until we have built an entire encounter
for Pierre Penguin to navigate. We can use more than just bats, but we need to first
define the names we will use to label each node. If you are making games in a team,
you will want to agree on labels beforehand. Here are the labels I will use for each
game object:

Game object class Scene editor node name
Bat Bat
Bee Bee
Blade Blade
Coin (bronze) BronzeCoin
Coin (gold) GoldCoin
Ghost Ghost
MadFly MadFly

Generating a Never-Ending World

[98]

Feel free to build out your bat encounter. Add more empty nodes and use the labels
until you are satisfied with the design. Try to picture the penguin character flying
through the encounter.

In my encounter, I created an easier path through the bats, filled with bronze coins,
and a more difficult path below the bats and above a blade, filled with gold coins.
You can use my bat encounter, shown in the following image, for inspiration:

Integrating scenes into the game
Next, we will create a new class to manage the encounters in our game. Add
a new Swift file to your project and name it EncounterManager.swift. The
EncounterManager class will loop through our encounter scenes and use the
positional data to create the appropriate game object classes in the game world.
Add the following code inside the new file:

import SpriteKit

class EncounterManager {
 // Store your encounter file names:
 let encounterNames:[String] = [
 "EncounterBats"
]

Chapter 6

[99]

 // Each encounter is an SKNode, store an array:
 var encounters:[SKNode] = []

 init() {
 // Loop through each encounter scene:
 for encounterFileName in encounterNames {
 // Create a new node for the encounter:
 let encounter = SKNode()

 // Load this scene file into a SKScene instance:
 if let encounterScene = SKScene(fileNamed:
 encounterFileName) {
 // Loop through each placeholder, spawn the
 // appropriate game object:
 for placeholder in encounterScene.children {
 if let node = placeholder as? SKNode {
 switch node.name! {
 case "Bat":
 let bat = Bat()
 bat.spawn(encounter, position:
 node.position)
 case "Bee":
 let bee = Bee()
 bee.spawn(encounter, position:
 node.position)
 case "Blade":
 let blade = Blade()
 blade.spawn(encounter, position:
 node.position)
 case "Ghost":
 let ghost = Ghost()
 ghost.spawn(encounter, position:
 node.position)
 case "MadFly":
 let madFly = MadFly()
 madFly.spawn(encounter, position:
 node.position)
 case "GoldCoin":
 let coin = Coin()
 coin.spawn(encounter, position:
 node.position)
 coin.turnToGold()
 case "BronzeCoin":

Generating a Never-Ending World

[100]

 let coin = Coin()
 coin.spawn(encounter, position:
 node.position)
 default:
 println("Name error: \(node.name)")
 }
 }
 }
 }

 // Add the populated encounter node to the array:
 encounters.append(encounter)
 }
 }

 // We will call this addEncountersToWorld function from
 // the GameScene to append all of the encounter nodes to the
 // world node from our GameScene:
 func addEncountersToWorld(world:SKNode) {
 for index in 0 ... encounters.count - 1 {
 // Spawn the encounters behind the action, with
 // increasing height so they do not collide:
 encounters[index].position = CGPoint(x: -2000, y:
 index * 1000)
 world.addChild(encounters[index])
 }
 }
}

Great, you just added the functionality to use our scene file data inside the game
world. Next, follow these steps to wire up the EncounterManager class in the
GameScene class:

1.	 Add a new instance of the EncounterManager class as a constant on the
GameScene class:
let encounterManager = EncounterManager()

2.	 At the bottom of the didMoveToView function, call addEncountersToWorld
to add each encounter node as a child of the GameScene class world node:
encounterManager.addEncountersToWorld(self.world)

3.	 Since the EncounterManager class spawns encounters far off the screen, we
will temporarily move our first encounter directly in front of the starting
player position to test our code. Add this line in the didMoveToView function:

encounterManager.encounters[0].position = CGPoint(x: 300,
 y: 0)

Chapter 6

[101]

Run the project. You will see Pierre flying through your new bat encounter. Your
game should look something like this screenshot:

Congratulations, you have implemented the core functionality of using placeholder
nodes in the scene editor. You can remove the line that positions this encounter at the
beginning of the game, which we added in step 3. Next, we will create a system that
repositions each encounter ahead of Pierre Penguin.

Checkpoint 6-A
You can download my project to this point at this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-6

Spawning endless encounters
We need at least three encounters to endlessly cycle and create a never-ending world;
two can be on the screen at any one time and a third positioned ahead of the player.
We can track Pierre's progress and reposition the encounter nodes ahead of him.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-6

Generating a Never-Ending World

[102]

Building more encounters
We need to build at least two more encounters before we can implement the
repositioning system. You can create more if you like; the system will support
any number of encounters. For now, add two more scene files to your game:
EncounterBees.sks and EncounterCoins.sks. You can completely fill these
encounters with bees, ghosts, blades, coins, and bats – have fun!

For inspiration, here is my bee encounter:

Chapter 6

[103]

Here is my coin encounter:

Updating the EncounterManager class
We have to let the EncounterManager class know about these new encounters.
Open the EncounterManager.swift file and add the new encounter names to
the encounterNames constant:

// Store your encounter file names:
let encounterNames:[String] = [
 "EncounterBats",
 "EncounterBees",
 "EncounterCoins"
]

We also need to keep track of the encounters that can potentially be on the screen at
any given time. Add two new properties to the EncounterManager class:

var currentEncounterIndex:Int?
var previousEncounterIndex:Int?

Generating a Never-Ending World

[104]

Storing metadata in SKSpriteNode userData
property
We are going to recycle the encounter nodes as Pierre moves through the world,
so we need to add the functionality to reset all of the game objects in an encounter
before placing it in front of the player. Otherwise, Pierre's previous trips through the
encounter would knock nodes out of place.

The SKSpriteNode class provides a property named userData that we can use to
store any miscellaneous data about the sprite. We will use the userData property
to store the initial position of each sprite in the encounter so we can reset the
sprites when we reposition an encounter. Add these two new functions to the
EncounterManager class:

// Store the initial positions of the children of a node:
func saveSpritePositions(node:SKNode) {
 for sprite in node.children {
 if let spriteNode = sprite as? SKSpriteNode {
 let initialPositionValue = NSValue(CGPoint:
 sprite.position)
 spriteNode.userData = ["initialPosition":
 initialPositionValue]
 // Save the positions for children of this node:
 saveSpritePositions(spriteNode)
 }
 }
}

// Reset all children nodes to their original position:
func resetSpritePositions(node:SKNode) {
 for sprite in node.children {
 if let spriteNode = sprite as? SKSpriteNode {
 // Remove any linear or angular velocity:
 spriteNode.physicsBody?.velocity = CGVector(dx: 0,
 dy: 0)
 spriteNode.physicsBody?.angularVelocity = 0
 // Reset the rotation of the sprite:
 spriteNode.zRotation = 0
 if let initialPositionVal =
 spriteNode.userData?.valueForKey("initialPosition")
 as? NSValue {
 // Reset the position of the sprite:
 spriteNode.position =

Chapter 6

[105]

 initialPositionVal.CGPointValue()
 }

 // Reset positions on this node's children
 resetSpritePositions(spriteNode)
 }
 }
}

We want to call our new saveSpritePositions function on init, when we are
first spawning the encounters. Update the init function of EncounterManager,
below the line that appends the encounter node to the encounters array (the new
line in bold):

// Add the populated encounter node to the encounter array:
encounters.append(encounter)
// Save initial sprite positions for this encounter:
saveSpritePositions(encounter)

Lastly, we need a function to reset encounters and reposition them in front of the
player. Add this new function to the EncounterManager class:

func placeNextEncounter(currentXPos:CGFloat) {
 // Count the encounters in a random ready type (Uint32):
 let encounterCount = UInt32(encounters.count)
 // The game requires at least 3 encounters to function
 // so exit this function if there are less than 3
 if encounterCount < 3 { return }

 // We need to pick an encounter that is not
 // currently displayed on the screen.
 var nextEncounterIndex:Int?
 var trulyNew:Bool?
 // The current encounter and the directly previous encounter
 // can potentially be on the screen at this time.
 // Pick until we get a new encounter
 while trulyNew == false || trulyNew == nil {
 // Pick a random encounter to set next:
 nextEncounterIndex =
 Int(arc4random_uniform(encounterCount))
 // First, assert that this is a new encounter:
 trulyNew = true

Generating a Never-Ending World

[106]

 // Test if it is instead the current encounter:
 if let currentIndex = currentEncounterIndex {
 if (nextEncounterIndex == currentIndex) {
 trulyNew = false
 }
 }
 // Test if it is the directly previous encounter:
 if let previousIndex = previousEncounterIndex {
 if (nextEncounterIndex == previousIndex) {
 trulyNew = false
 }
 }
 }

 // Keep track of the current encounter:
 previousEncounterIndex = currentEncounterIndex
 currentEncounterIndex = nextEncounterIndex

 // Reset the new encounter and position it ahead of the player
 let encounter = encounters[currentEncounterIndex!]
 encounter.position = CGPoint(x: currentXPos + 1000, y: 0)
 resetSpritePositions(encounter)
}

Wiring up EncounterManager in the
GameScene class
We will track Pierre's progress in the GameScene class and call the
EncounterManager class code when appropriate. Follow these steps to wire up the
EncounterManager class:

1.	 Add a new property to the GameScene class to track when we should next
position an encounter in front of the player. We will start with a value of 150
to spawn the first encounter right away:
var nextEncounterSpawnPosition = CGFloat(150)

Chapter 6

[107]

2.	 Next, we simply need to check if the player moves past this position
in the didSimulatePhysics function. Add this code at the bottom of
didSimulatePhysics:

// Check to see if we should set a new encounter:
if player.position.x > nextEncounterSpawnPosition {
 encounterManager.placeNextEncounter(
 nextEncounterSpawnPosition)
 nextEncounterSpawnPosition += 1400
}

Fantastic – we have added all the functionality we need for endlessly looping
encounters in front of the player. Run the project. You should see your encounters
looping in front of you forever. Enjoy flying through your hard work!

Spawning the star power-up at random
We still need to add the star power-up into the world. We can randomly spawn
a star every 10 encounters to add some extra excitement. Follow these steps to
add the star logic:

1.	 Add a new instance of the Star class as a constant on the GameScene class:
let powerUpStar = Star()

2.	 Call the star's spawn function, anywhere inside the GameScene
didMoveToView function:
// Spawn the star, out of the way for now
powerUpStar.spawn(world, position: CGPoint(x: -2000,
 y: - 2000))

3.	 Inside the GameScene didSimulatePhysics function, update your new
encounter code as follows:

// Check to see if we should set a new encounter:
if player.position.x > nextEncounterSpawnPosition {
encounterManager.placeNextEncounter(
 nextEncounterSpawnPosition)
 nextEncounterSpawnPosition += 1400

 // Each encounter has a 10% chance to spawn a star:

Generating a Never-Ending World

[108]

 let starRoll = Int(arc4random_uniform(10))
 if starRoll == 0 {
 if abs(player.position.x - powerUpStar.position.x)
 > 1200 {
 // Only move the star if it is off the screen.
 let randomYPos =
 CGFloat(arc4random_uniform(400))
 powerUpStar.position = CGPoint(x:
 nextEncounterSpawnPosition, y: randomYPos)
 powerUpStar.physicsBody?.angularVelocity = 0
 powerUpStar.physicsBody?.velocity =
 CGVector(dx: 0, dy: 0)
 }
 }
}

Run the game again and you should see a star spawn occasionally inside your
encounters, as shown in the following screenshot:

Chapter 6

[109]

Checkpoint 6-B
To download my project to this point, visit this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-6

Summary
Great job – we have covered a lot of ground in this chapter. You learned about
Xcode's new scene editor, learned to use the scene editor to lay out placeholder
nodes, and interpreted the node data to spawn game objects in our game world.
Then, you created a system to loop encounters for our endless flyer game.

Congratulate yourself; the encounter system you built in this chapter is the most
complex system in our game. You are officially in a great position to finish your first
SpriteKit game!

Next, we will look at creating custom events when game objects collide. We will
add health, damage, coin pick-up, invincibility, and more in Chapter 7, Implementing
Collision Events.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-6

[111]

Implementing Collision
Events

So far, we have let the SpriteKit physics simulation detect and handle collisions
between game objects. You have seen that Pierre Penguin sends enemies and coins
flying off into space when he flies into them. This is because the physics simulation
automatically monitors collisions and sets the post-collision trajectory and velocity
of each colliding body. In this chapter, we will add our own game logic when
two objects come into contact: taking damage from enemies, granting the player
invulnerability after touching the star, and tracking points as the player collects
coins. The game will become more fun to play as the game mechanics come to life.

The topics in this chapter include:

•	 Learning the SpriteKit collision vocabulary
•	 Adding contact events to our game
•	 Player health and damage
•	 Collecting coins
•	 The power-up star logic

Learning the SpriteKit collision
vocabulary
SpriteKit uses some unique concepts and terms to describe physics events.
If you familiarize yourself with these terms now, it will be easier to understand
the implementation steps later in the chapter.

Implementing Collision Events

[112]

Collision versus contact
There are two types of interactions when physics bodies come together in
the same space:

•	 A collision is the physics simulation's mathematical analysis and
repositioning of bodies after they touch. Collisions include all the automatic
physical interactions between bodies: preventing overlap, bouncing apart,
spinning through the air, and transferring momentum. By default, physics
bodies collide with every other physics body in the scene; we have witnessed
this automatic collision behavior in our game so far.

•	 A contact event also occurs when two bodies touch. Contact events allow
us to wire in our custom game logic when two bodies come into contact.
Contact events do not create any change on their own; they only provide us
with the chance to execute our own code. For instance, we will use contact
events to assign damage to the player when he or she runs into an enemy.
There are no contact events by default; we will manually configure contacts
in this chapter.

Physics bodies collide with every other body in the scene by default,
but you can configure specific bodies to ignore collisions and pass
through each other without any physical reaction.
Additionally, collisions and contacts are independent; you can disable
physical collision between two types of bodies and still fire custom code
with a contact event when the bodies pass through each other.

Physics category masks
You can assign physics categories to each physics body in your game. These
categories allow you to specify the bodies that should collide, the bodies that should
contact, and the bodies that should pass through each other without any event.
When two bodies try to share the same space, the physics simulation will compare
each body's categories and test if collision or contact events should fire.

Our game will include physics categories for the penguin, the
ground, the coins, and the enemies.

Chapter 7

[113]

Physics categories are stored as 32-bit masks, which allow the physics simulation
to perform these tests with processor-efficient bitwise operations. It is not strictly
necessary to understand bitwise operations to use physics categories, but it is a nice
topic for further reading, if you are interested in enhancing your knowledge. If you
are interested, try an Internet search for swift bitwise operations.

Each physics body has three properties which you can use to control collisions in
your game. Let's begin with a very simple summary of each property, and then
explore them in depth:

•	 categoryBitMask: The physics body's physical categories
•	 collisionBitMask: Collide with these physical categories
•	 contactTestBitMask: Contact with these physical categories

The categoryBitMask property stores the body's current physics categories.
The default value is 0xFFFFFFFF, equating to every category. This means that,
by default, every physics body belongs to every physics category.

The collisionBitMask property specifies the physical categories the body should
collide with, preventing two bodies from sharing the same space. The starting
value is 0xFFFFFFFF, or all bits set, meaning that the body will collide with every
category by default. When one body begins to overlap with another, the physics
simulation compares each body's collisionBitMask against the other body's
categoryBitMask. If there is a match, a collision takes place. Note that this test
works two ways; each body can independently participate or ignore a collision.

The contactTestBitMask property works just like the collision property, but
specifies categories for contact events, instead of collisions. The default value is
0x00000000, or no bits set, meaning that the body will not contact with anything
by default.

This is a dense subject. It is ok to move forward if you do not yet fully understand
this topic. Implementing category masks into our game will help you learn.

Using category masks in Swift
Apple's Adventure game demo provides a good implementation of bitmasks in
Swift. We will follow their example and use an enum to store our categories as
UInt32 values, writing these bitmasks in an easy-to-read manner. The following is
an example of a physics category enum for a theoretical war game:

enum PhysicsCategory:UInt32 {
 case playerTank = 1

Implementing Collision Events

[114]

 case enemyTanks = 2
 case missiles = 4
 case bullets = 8
 case buildings = 16
}

It is very important to double the value for each subsequent group; this is a
necessary step to create proper bitmasks for the physics simulation. For example, if
we were to add fighterJets, the value would need to be 32. Always remember to
double subsequent values to create unique bitmasks that perform as expected in
the physics tests.

Bitmasks are binary values that the CPU can very quickly compare to
check for a match. You do not need to understand bitwise operators to
complete this material, but if you are already familiar and curious, this
doubling method works because 2 is equivalent to 1 << 1 (binary:
10), 4 is equivalent to 1 << 2 (binary: 100), 8 is equivalent to 1 << 3
(binary: 1000), and so on. We opt for the manual doubling since enum
values must be literals, and these values are easier for humans to read.

Adding contact events to our game
Now that you are familiar with SpriteKit's physics concepts, we can head into Xcode
to implement physics categories and contact logic for our penguin game. We will
start by adding in our physics categories.

Setting up the physics categories
To create our physics categories, open your GameScene.swift file and enter the
following code at the bottom, completely outside the GameScene class:

enum PhysicsCategory:UInt32 {
 case penguin = 1
 case damagedPenguin = 2
 case ground = 4
 case enemy = 8
 case coin = 16
 case powerup = 32
}

Chapter 7

[115]

Notice how we double each succeeding value, as in our previous example.
We are also creating an extra category for our penguin to use after he takes damage.
We will use the damagedPenguin physics category to allow the penguin to pass
through enemies for a few seconds after taking damage.

Assigning categories to game objects
Now that we have the physics categories, we need to go back through our existing
game objects and assign the categories to the physics bodies. We will start with
the Player class.

The player
Open Player.swift and add the following code at the bottom of the
spawn function:

self.physicsBody?.categoryBitMask =
 PhysicsCategory.penguin.rawValue
self.physicsBody?.contactTestBitMask =
 PhysicsCategory.enemy.rawValue |
 PhysicsCategory.ground.rawValue |
 PhysicsCategory.powerup.rawValue |
 PhysicsCategory.coin.rawValue

We assigned the penguin physics category to the Player physics body, and used
the contactTestBitMask property to set up contact tests with enemies, the ground,
power-ups, and coins.

Also, notice how we use the rawValue property of our enum values. You will need to
use the rawValue property whenever you are using the physics category bitmasks.

The ground
Next, let's assign the physics category for the Ground class. Open Ground.swift,
and add the following code at the bottom of the spawn function:

self.physicsBody?.categoryBitMask =
 PhysicsCategory.ground.rawValue

All we need to do is assign the ground bitmask to the Ground class physics body,
since it already collides with everything by default.

Implementing Collision Events

[116]

The star power-up
Open Star.swift and add the following code at the bottom of the spawn function:

self.physicsBody?.categoryBitMask =
 PhysicsCategory.powerup.rawValue

This assigns the power-up physics category to the Star class.

Enemies
Perform this same action in Bat.swift, Bee.swift, Blade.swift, Ghost.swift,
and MadFly.swift. Add the following code inside their spawn functions:

self.physicsBody?.categoryBitMask = PhysicsCategory.enemy.rawValue
self.physicsBody?.collisionBitMask =
 ~PhysicsCategory.damagedPenguin.rawValue

We use the bitwise NOT operator (~) to remove the damagedPenguin physics category
from collisions with enemies. Enemies will collide with all categories except the
damagedPenguin physics category. This allows us to change the penguin's category
to the damagedPenguin value when we want the penguin to ignore enemy collisions
and pass straight through.

Coins
Lastly, we will add the coin physics category. We do not want coins to collide with
other game objects, but we still want to monitor for contact events. Open Coin.
swift and add the following code at the bottom of the spawn function:

self.physicsBody?.categoryBitMask = PhysicsCategory.coin.rawValue
self.physicsBody?.collisionBitMask = 0

Preparing GameScene for contact events
Now that we have assigned the physics categories to our game objects, we can
monitor for contact events in the GameScene class. Follow these steps to wire up
the GameScene class:

1.	 First, we need to tell the GameScene class to implement the
SKPhysicsContactDelegate protocol. SpriteKit can then inform the
GameScene class when contact events occur. Change the GameScene class
declaration line to look like this:
class GameScene: SKScene, SKPhysicsContactDelegate {

Chapter 7

[117]

2.	 We will tell SpriteKit to inform GameScene of contact events by setting
the GameScene physicsWorld contactDelegate property to the
GameScene class. At the bottom of the GameScene didMoveToView
function, add this line:
self.physicsWorld.contactDelegate = self

3.	 SKPhysicsContactDelegate defines a didBeginContact function that will
fire when contact occurs. We can now implement this didBeginContact
function in the GameScene class. Create a new function in the GameScene
class named didBeginContact, as shown in the following code:

func didBeginContact(contact: SKPhysicsContact) {
 // Each contact has two bodies; we do not know which is which.
 // We will find the penguin body, then use
 // the other body to determine the type of contact.
 let otherBody:SKPhysicsBody
 // Combine the two penguin physics categories into one
 // bitmask using the bitwise OR operator |
 let penguinMask = PhysicsCategory.penguin.rawValue |
 PhysicsCategory.damagedPenguin.rawValue
 // Use the bitwise AND operator & to find the penguin.
 // This returns a positive number if body A's category
 // is the same as either the penguin or damagedPenguin:
 if (contact.bodyA.categoryBitMask & penguinMask) > 0 {
 // bodyA is the penguin, we will test bodyB:
 otherBody = contact.bodyB
 }
 else {
 // bodyB is the penguin, we will test bodyA:
 otherBody = contact.bodyA
 }
 // Find the type of contact:
 switch otherBody.categoryBitMask {
 case PhysicsCategory.ground.rawValue:
 println("hit the ground")
 case PhysicsCategory.enemy.rawValue:
 println("take damage")

Implementing Collision Events

[118]

 case PhysicsCategory.coin.rawValue:
 println("collect a coin")
 case PhysicsCategory.powerup.rawValue:
 println("start the power-up")
 default:
 println("Contact with no game logic")
 }
}

This function will serve as a central hub for our contact events. We will print to the
console when our various contact events occur, to test that our code is working.

Viewing console output
You can use the println function to write information to the console, which is very
useful for debugging. If you have not yet used the console in Xcode, follow these
simple steps to view it:

1.	 In the upper right-hand corner of Xcode, make sure the debug area is turned
on, as shown in this screenshot:

2.	 In the bottom right-hand corner of Xcode, make sure the console is turned
on, as shown in this screenshot:

Chapter 7

[119]

Testing our contact code
Now that you can see your console output, run the project. You should see our
println strings appear in the console as you fly Pierre into various game objects.
Your console should look something like this:

Congratulations – if you see the contact output in the console, you have completed
the structure for our contact system.

You may notice that flying into coins produces strange collision behavior,
which we will enhance later in the chapter. Next, we will add game logic for
each type of contact.

Checkpoint 7-A
To download my project to this point, visit this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-7

Player health and damage
The first custom contact logic is player damage. We will assign the player health
points and take them away when damaged. The game will end when the player runs
out of health. This is one of the core mechanics of our gameplay. Follow these steps
to implement the health logic:

1.	 In the Player.swift file, add six new properties to the Player class:
// The player will be able to take 3 hits before game over:
var health:Int = 3
// Keep track of when the player is invulnerable:
var invulnerable = false
// Keep track of when the player is newly damaged:
var damaged = false

http://www.thinkingswiftly.com/game-development-with-swift/chapter-7

Implementing Collision Events

[120]

// We will create animations to run when the player takes
// damage or dies. Add these properties to store them:
var damageAnimation = SKAction()
var dieAnimation = SKAction()
// We want to stop forward velocity if the player dies,
// so we will now store forward velocity as a property:
var forwardVelocity:CGFloat = 200

2.	 Inside the update function, change the code that moves the player through
the world to use the new forwardVelocity property:
// Set a constant velocity to the right:
self.physicsBody?.velocity.dx = self.forwardVelocity

3.	 At the very beginning of the startFlapping function, add this line to
prevent the player from flying higher when dead:
if self.health <= 0 { return }

4.	 Add the same line at the very beginning of the stopFlapping function to
prevent the soar animation from running after death:
if self.health <= 0 { return }

5.	 Add a new function named die to the Player class:
func die() {
 // Make sure the player is fully visible:
 self.alpha = 1
 // Remove all animations:
 self.removeAllActions()
 // Run the die animation:
 self.runAction(self.dieAnimation)
 // Prevent any further upward movement:
 self.flapping = false
 // Stop forward movement:
 self.forwardVelocity = 0
}

6.	 Add a new function named takeDamage to the Player class:
func takeDamage() {
 // If invulnerable or damaged, return:
 if self.invulnerable || self.damaged { return }

Chapter 7

[121]

 // Remove one from our health pool
 self.health--
 if self.health == 0 {
 // If we are out of health, run the die function:
 die()
 }
 else {
 // Run the take damage animation:
 self.runAction(self.damageAnimation)
 }
}

7.	 Open the GameScene.swift file. Inside the didBeginContact function,
update the switch case that fires when contact is made with an enemy:
case PhysicsCategory.enemy.rawValue:
 println("take damage")
 player.takeDamage()

8.	 We will also take damage when we hit the ground. Update the ground case
in the same way:

case PhysicsCategory.ground.rawValue:
 println("hit the ground")
 player.takeDamage()

Good work – let's test our code to make sure everything is working correctly. Run
the project and smash into some enemies. You can watch the printed output in the
console to make sure everything is working correctly. After taking damage three
times, the penguin should drop to the ground and become unresponsive.

You may notice that there is no way for the player to tell how many
health points he or she has remaining as they play the game. We will
add a health meter to the scene in the next chapter.

Next, we will enhance the feel of the game with new animations when the player
takes damage and when the game ends.

Implementing Collision Events

[122]

Animations for damage and game over
We will use SKAction sequences to create fun animations when the player takes
damage. By combining actions, we will grant temporary safety in a damaged state
after the player hits an enemy. We will show a fade animation that slowly pulses at
first and then speeds up as the safe state starts to wear off.

The damage animation
To add the new animation, add this code at the bottom of the Player class
createAnimations function:

// --- Create the taking damage animation ---
let damageStart = SKAction.runBlock {
 // Allow the penguin to pass through enemies:
 self.physicsBody?.categoryBitMask =
 PhysicsCategory.damagedPenguin.rawValue
 // Use the bitwise NOT operator ~ to remove
 // enemies from the collision test:
 self.physicsBody?.collisionBitMask =
 ~PhysicsCategory.enemy.rawValue
}
// Create an opacity pulse, slow at first and fast at the end:
let slowFade = SKAction.sequence([
 SKAction.fadeAlphaTo(0.3, duration: 0.35),
 SKAction.fadeAlphaTo(0.7, duration: 0.35)
])
let fastFade = SKAction.sequence([
 SKAction.fadeAlphaTo(0.3, duration: 0.2),
 SKAction.fadeAlphaTo(0.7, duration: 0.2)
])
let fadeOutAndIn = SKAction.sequence([
 SKAction.repeatAction(slowFade, count: 2),
 SKAction.repeatAction(fastFade, count: 5),
 SKAction.fadeAlphaTo(1, duration: 0.15)
])
// Return the penguin to normal:
let damageEnd = SKAction.runBlock {
 self.physicsBody?.categoryBitMask =
 PhysicsCategory.penguin.rawValue
 // Collide with everything again:
 self.physicsBody?.collisionBitMask = 0xFFFFFFFF
 // Turn off the newly damaged flag:
 self.damaged = false
}

Chapter 7

[123]

// Store the whole sequence in the damageAnimation property:
self.damageAnimation = SKAction.sequence([
 damageStart,
 fadeOutAndIn,
 damageEnd
])

Next, update the takeDamage function to flag the player as damaged, immediately
after taking a hit. The damage animation you just created will turn the damaged
flag back off once it has completed. After this change, the first four lines of the
takeDamage function should look like this (the new code is written in bold):

// If invulnerable or damaged, return out of the function:
if self.invulnerable || self.damaged { return }
// Set the damaged state to true after being hit:
self.damaged = true

Run the project. Directly after taking damage, your penguin should fade and be able
to pass through enemies, as shown in this image:

We are starting to see some good results from our hard work. Notice how the
penguin can pass through enemies but still collides with coins, the star, and the
ground while in the invulnerable state. Next, we will add a game over animation.

Implementing Collision Events

[124]

The game over animation
We will create a funny, over-the-top death animation when the penguin runs out of
health. When Pierre loses his last hit point, he will hang in the air, scale larger, flip
over on to his back, and then finally fall to the ground. To implement this animation,
add the following code at the bottom of the Player class createAnimations
function:

/* --- Create the death animation --- */
let startDie = SKAction.runBlock {
 // Switch to the death texture with X eyes:
 self.texture =
 self.textureAtlas.textureNamed("pierre-dead.png")
 // Suspend the penguin in space:
 self.physicsBody?.affectedByGravity = false
 // Stop any movement:
 self.physicsBody?.velocity = CGVector(dx: 0, dy: 0)
 // Make the penguin pass through everything except the ground:
 self.physicsBody?.collisionBitMask =
 PhysicsCategory.ground.rawValue
}

let endDie = SKAction.runBlock {
 // Turn gravity back on:
 self.physicsBody?.affectedByGravity = true
}

self.dieAnimation = SKAction.sequence([
 startDie,
 // Scale the penguin bigger:
 SKAction.scaleTo(1.3, duration: 0.5),
 // Use the waitForDuration action to provide a short pause:
 SKAction.waitForDuration(0.5),
 // Rotate the penguin on to his back:
 SKAction.rotateToAngle(3, duration: 1.5),
 SKAction.waitForDuration(0.5),
 endDie
])

Chapter 7

[125]

Run the project and bump into three enemies. You will see the comedic death
animation play, as shown in this screenshot:

Poor Pierre Penguin! Good job implementing the damage and death animations.
Next, we will handle coin collection on the coin contact event.

Collecting coins
As a main goal for the player, collecting coins should be one of the most enjoyable
aspects of our game. We will create a rewarding animation when the player contacts
a coin. Follow these steps to implement coin collection:

1.	 In GameScene.swift, add a new property to the GameScene class:
var coinsCollected = 0

2.	 In Coin.swift, add a new function to the Coin class named collect:
func collect() {
 // Prevent further contact:
 self.physicsBody?.categoryBitMask = 0

Implementing Collision Events

[126]

 // Fade out, move up, and scale up the coin:
 let collectAnimation = SKAction.group([
 SKAction.fadeAlphaTo(0, duration: 0.2),
 SKAction.scaleTo(1.5, duration: 0.2),
 SKAction.moveBy(CGVector(dx: 0, dy: 25),
 duration: 0.2)
])
 // After fading it out, move the coin out of the way
 // and reset it to initial values until the encounter
 // system re-uses it:
 let resetAfterCollected = SKAction.runBlock {
 self.position.y = 5000
 self.alpha = 1
 self.xScale = 1
 self.yScale = 1
 self.physicsBody?.categoryBitMask =
 PhysicsCategory.coin.rawValue
 }
 // Combine the actions into a sequence:
 let collectSequence = SKAction.sequence([
 collectAnimation,
 resetAfterCollected
])
 // Run the collect animation:
 self.runAction(collectSequence)
}

3.	 In GameScene.swift, call the new collect function from the coin contact
case in the didBeginContact function:

case PhysicsCategory.coin.rawValue:
 // Try to cast the otherBody's node as a Coin:
 if let coin = otherBody.node as? Coin {
 // Invoke the collect animation:
 coin.collect()
 // Add the value of the coin to our counter:
 self.coinsCollected += coin.value
 println(self.coinsCollected)
 }

Chapter 7

[127]

Great work! Run the project and try to collect some coins. You will see the coins
perform their collection animation. The game will keep track of how many coins
you are collecting and print the number to the console. The player cannot see that
number yet; we will add a text counter on the game screen in the next chapter.
Next, we will implement the power-up star game logic.

The power-up star logic
When the player contacts the star, we will grant invulnerability for a short time
and give the player great speed to power through encounters. Follow these steps to
implement the power-up:

1.	 In Player.swift, add a new function to the Player class, as shown here:
func starPower() {
 // Remove any existing star power-up animation, if
 // the player is already under the power of star
 self.removeActionForKey("starPower")
 // Grant great forward speed:
 self.forwardVelocity = 400
 // Make the player invulnerable:
 self.invulnerable = true
 // Create a sequence to scale the player larger,
 // wait 8 seconds, then scale back down and turn off
 // invulnerability, returning the player to normal:
 let starSequence = SKAction.sequence([
 SKAction.scaleTo(1.5, duration: 0.3),
 SKAction.waitForDuration(8),
 SKAction.scaleTo(1, duration: 1),
 SKAction.runBlock {
 self.forwardVelocity = 200
 self.invulnerable = false
 }
])
 // Execute the sequence:
 self.runAction(starSequence, withKey: "starPower")
}

Implementing Collision Events

[128]

2.	 Invoke the new function from the GameScene class didBeginContact
function, under the power-up case:

case PhysicsCategory.powerup.rawValue:
 player.starPower()

You may find it helpful to increase the spawn rate of the star power-up in
order to test. Remember that we are generating a random number in the
didSimulatePhysics function of GameScene to determine how often we
spawn the star. To spawn the star more often, comment out the line that generates
a random number and replace it with a hardcoded 0, as shown here (the new code
is written in bold):

//let starRoll = Int(arc4random_uniform(10))
let starRoll = 0
if starRoll == 0 {

Great, now it will be easy to test the star power-up. Run the project and find a
star. The penguin should scale to a large size and start charging forward, blowing
enemies aside as he passes, as shown here:

Remember to change the star-spawning code back to a random number before you
continue, or the star will spawn too often.

Chapter 7

[129]

Checkpoint 7-B
We have made terrific progress in this chapter. To download my project up to this
point, visit this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-7

Summary
Our penguin game is looking great! You have brought the core mechanics to life by
implementing the sprite contact events. You learned how SpriteKit handles collisions
and contacts, used bitmasks to assign collision categories to different types of sprites,
wired up a contact system in our penguin game, and added custom game logic for
taking damage, collecting coins, and gaining the star power-up.

We have a playable game at this point; the next step is adding polish, menus, and
features to make the game stand out. We will make our game shine by adding a
HUD, background images, particle emitters, and more in Chapter 8, Polishing to a
Shine – HUD, Parallax Backgrounds, Particles, and More.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-7

[131]

Polishing to a Shine – HUD,
Parallax Backgrounds,

Particles, and More
Our core gameplay mechanics are in place; now we can improve the overall
user experience. We will turn our focus to the non-gameplay features that make
our games shine. To start, we will add a heads-up display (HUD) to display the
player's health and coin count. Then, we will implement multiple layers of parallax
background to add depth and immersion to the game world. We will also explore
SpriteKit's particle system, and use a particle emitter to add production value to the
game. Combined, these steps will add to the fun of the gameplay experience, invite
the player deeper into the game world, and impart a professional, polished feeling
to our app.

The topics in this chapter include:

•	 Adding a HUD
•	 Parallax background layers
•	 Using the particle system
•	 Granting safety as the game starts

Adding a heads-up display
Our game needs a HUD to show the player's current health and coin score.
We can use hearts to indicate health – like classic games in the past – and draw
text to the screen with SKLabelNode to display the number of coins collected.

Polishing to a Shine – HUD, Parallax Backgrounds, Particles, and More

[132]

We will attach the HUD to the scene itself, instead of to the world node, since it does
not move as the player flies forward. We do not want to block the player's vision of
upcoming obstacles to the right, so we will place the HUD elements in the top left
corner of the screen.

When we are finished, our HUD will look like this (after the player collects 110 coins
and sustains one point of damage):

To implement the HUD, follow these steps:

1.	 First, we need to add the HUD art assets into the game. In the asset pack,
find the HUD.atlas texture atlas and add it to your project.

2.	 Next, we will create a HUD class to handle all of the HUD logic. Add a new
Swift file to your project, HUD.swift, and add the following code to begin
work on the HUD class:
import SpriteKit

class HUD: SKNode {
 var textureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"hud.atlas")
 // An array to keep track of the hearts:
 var heartNodes:[SKSpriteNode] = []
 // An SKLabelNode to print the coin score:
 let coinCountText = SKLabelNode(text: "000000")
}

Chapter 8

[133]

3.	 We need an initializer-style function to create a new SKSpriteNode for
each heart shape and configure the new SKLabelNode for the coin counter.
Add a function named createHudNodes to the HUD class, as follows:
func createHudNodes(screenSize:CGSize) {
 // --- Create the coin counter ---
 // First, create and position a bronze coin icon:
 let coinTextureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"goods.atlas")
 let coinIcon = SKSpriteNode(texture:
 coinTextureAtlas.textureNamed("coin-bronze.png"))
 // Size and position the coin icon:
 let coinYPos = screenSize.height - 23
 coinIcon.size = CGSize(width: 26, height: 26)
 coinIcon.position = CGPoint(x: 23, y: coinYPos)
 // Configure the coin text label:
 coinCountText.fontName = "AvenirNext-HeavyItalic"
 coinCountText.position = CGPoint(x: 41, y: coinYPos)
 // These two properties allow you to align the text
 // relative to the SKLabelNode's position:
 coinCountText.horizontalAlignmentMode =
 SKLabelHorizontalAlignmentMode.Left
 coinCountText.verticalAlignmentMode =
 SKLabelVerticalAlignmentMode.Center
 // Add the text label and coin icon to the HUD:
 self.addChild(coinCountText)
 self.addChild(coinIcon)

 // Create three heart nodes for the life meter:
 for var index = 0; index < 3; ++index {
 let newHeartNode = SKSpriteNode(texture:
 textureAtlas.textureNamed("heart-full.png"))
 newHeartNode.size = CGSize(width: 46, height: 40)
 // Position the hearts below the coin counter:
 let xPos = CGFloat(index * 60 + 33)
 let yPos = screenSize.height - 66
 newHeartNode.position = CGPoint(x: xPos, y: yPos)
 // Keep track of nodes in an array property:
 heartNodes.append(newHeartNode)
 // Add the heart nodes to the HUD:
 self.addChild(newHeartNode)
 }
}

Polishing to a Shine – HUD, Parallax Backgrounds, Particles, and More

[134]

4.	 We also need a function that the GameScene class can call to update
the coin counter label. Add a new function to the HUD class named
setCoinCountDisplay, as follows:
func setCoinCountDisplay(newCoinCount:Int) {
 // We can use the NSNumberFormatter class to pad
 // leading 0's onto the coin count:
 let formatter = NSNumberFormatter()
 formatter.minimumIntegerDigits = 6
 if let coinStr =
 formatter.stringFromNumber(newCoinCount) {
 // Update the label node with the new coin count:
 coinCountText.text = coinStr
 }
}

5.	 We will also need a function to update the heart graphic when the
player's health changes. Add a new function to the HUD class named
setHealthDisplay, as follows:
func setHealthDisplay(newHealth:Int) {
 // Create a fade SKAction to fade out any lost hearts:
 let fadeAction = SKAction.fadeAlphaTo(0.2,
 duration: 0.3)
 // Loop through each heart and update its status:
 for var index = 0; index < heartNodes.count; ++index {
 if index < newHealth {
 // This heart should be full red:
 heartNodes[index].alpha = 1
 }
 else {
 // This heart should be faded:
 heartNodes[index].runAction(fadeAction)
 }
 }
}

Chapter 8

[135]

6.	 Our HUD class is complete. Next, we will wire it up in the GameScene class.
Open GameScene.swift and add a new property to the GameScene class,
instantiating an instance of the HUD class:
let hud = HUD()

7.	 We need to place the HUD node into the scene, on top of the other game
objects. Add this code at the bottom of the GameScene didMoveToView
function:
// Create the HUD's child nodes:
hud.createHudNodes(self.size)
// Add the HUD to the scene:
self.addChild(hud)
// Position the HUD above any other game element
hud.zPosition = 50

8.	 We are ready to send health and coin updates to the HUD. First, we
will update the HUD with health updates when the player takes damage.
Inside the GameScene didBeginContact function, locate the contact cases
where the player takes damage – when he or she touches the ground or an
enemy – and add this new code (in bold), to send health updates to the HUD:
case PhysicsCategory.ground.rawValue:
 player.takeDamage()
 hud.setHealthDisplay(player.health)
case PhysicsCategory.enemy.rawValue:
 player.takeDamage()
 hud.setHealthDisplay(player.health)

9.	 Finally, we will update the HUD whenever the player collects a coin.
Locate the contact case where the player contacts a coin and call the HUD
setCoinCountDisplay function (new code in bold) as follows:
case PhysicsCategory.coin.rawValue:
 // Try to cast the otherBody's node as a Coin:
 if let coin = otherBody.node as? Coin {
 coin.collect()
 self.coinsCollected += coin.value
 hud.setCoinCountDisplay(self.coinsCollected)
 }

Polishing to a Shine – HUD, Parallax Backgrounds, Particles, and More

[136]

10.	 Run the project and you should see your coin counter and health meter
appear in the upper left hand corner, as seen in this screenshot:

Great job! Our HUD is complete. Next, we will build our background layers.

Parallax background layers
Parallax adds the feeling of depth to your game by drawing separate background
layers and moving them past the camera at varying speeds. Very slow backgrounds
give the illusion of distance, while fast moving backgrounds appear to be very
close to the player. We can enhance the effect by painting faraway objects with
increasingly desaturated colors.

In our game, we will achieve the parallax effect by attaching our backgrounds to the
world, then slowly pushing the backgrounds to the right as the world moves left.
As the world moves to the left (bringing the backgrounds with it), we will move the
background's x position to the right so that the total movement is less than for the
normal game objects. The result will be background layers that appear to move more
slowly than the rest of our game, and thus appear farther away.

In addition, each background will only be 3000 points wide, but will jump forward at
precise intervals to loop seamlessly, in a similar way to the Ground class.

Chapter 8

[137]

Adding the background assets
First, add the art by following these steps:

1.	 Open your project's Images.xcassets file in Xcode.
2.	 In the provided game assets, locate the four background images in

the Backgrounds folder.
3.	 Drag and drop the four backgrounds into the left pane of the

Images.xcassets file.

You should see the backgrounds appear in the left pane as shown here:

Implementing a background class
We will need a new class to manage the repositioning logic for parallax and
seamless looping. We can instantiate a new instance of a Background class for
each background layer. To create the Background class, add a new Swift file,
Background.swift, to your project, using the following code:

import SpriteKit

class Background: SKSpriteNode {
 // movementMultiplier will store a float from 0-1 to indicate
 // how fast the background should move past.
 // 0 is full adjustment, no movement as the world goes past
 // 1 is no adjustment, background passes at normal speed
 var movementMultiplier = CGFloat(0)

Polishing to a Shine – HUD, Parallax Backgrounds, Particles, and More

[138]

 // jumpAdjustment will store how many points of x position
 // this background has jumped forward, useful for calculating
 // future seamless jump points:
 var jumpAdjustment = CGFloat(0)
 // A constant for background node size:
 let backgroundSize = CGSize(width: 1000, height: 1000)

 func spawn(parentNode:SKNode, imageName:String,
 zPosition:CGFloat, movementMultiplier:CGFloat) {
 // Position from the bottom left:
 self.anchorPoint = CGPointZero
 // Start backgrounds at the top of the ground (y: 30)
 self.position = CGPoint(x: 0, y: 30)
 // Control the order of the backgrounds with zPosition:
 self.zPosition = zPosition
 // Store the movement multiplier:
 self.movementMultiplier = movementMultiplier
 // Add the background to the parentNode:
 parentNode.addChild(self)

 // Build three child node instances of the texture,
 // Looping from -1 to 1 so the backgrounds cover both
 // forward and behind the player at position zero.
 // closed range operator: "..." includes both endpoints:
 for i in -1...1 {
 let newBGNode = SKSpriteNode(imageNamed: imageName)
 // Set the size for this node from constant:
 newBGNode.size = backgroundSize
 // Position these nodes by their lower left corner:
 newBGNode.anchorPoint = CGPointZero
 // Position this background node:
 newBGNode.position = CGPoint(
 x: i * Int(backgroundSize.width), y: 0)
 // Add the node to the Background:
 self.addChild(newBGNode)
 }
 }

 // We will call updatePosition every frame to
 // reposition the background:
 func updatePosition(playerProgress:CGFloat) {

Chapter 8

[139]

 // Calculate a position adjustment after loops and
 // parallax multiplier:
 let adjustedPosition = jumpAdjustment + playerProgress *
 (1 - movementMultiplier)
 // Check if we need to jump the background forward:
 if playerProgress - adjustedPosition >
 backgroundSize.width {
 jumpAdjustment += backgroundSize.width
 }
 // Adjust this background forward as the world
 // moves back so the background appears slower:
 self.position.x = adjustedPosition
 }
}

Wiring up backgrounds in the GameScene
class
We need to make three code additions to the GameScene class to wire up our
backgrounds. First, we will create an array to keep track of the backgrounds.
Next, we will spawn the backgrounds as the scene begins. Finally, we can
call the Background class updatePosition function from the GameScene
didSimulatePhsyics function to reposition the backgrounds before every frame.
Follow these steps to wire up the backgrounds:

1.	 Create a new array property on the GameScene class itself to store our
backgrounds, as shown here:
var backgrounds:[Background] = []

2.	 At the bottom of the didMoveToView function, instantiate and spawn our
four backgrounds:
// Instantiate four Backgrounds to the backgrounds array:
for i in 0...3 {
 backgrounds.append(Background())
}
// Spawn the new backgrounds:
backgrounds[0].spawn(world, imageName: "Background-1",
 zPosition: -5, movementMultiplier: 0.75)
backgrounds[1].spawn(world, imageName: "Background-2",
 zPosition: -10, movementMultiplier: 0.5)

Polishing to a Shine – HUD, Parallax Backgrounds, Particles, and More

[140]

backgrounds[2].spawn(world, imageName: "Background-3",
 zPosition: -15, movementMultiplier: 0.2)
backgrounds[3].spawn(world, imageName: "Background-4",
 zPosition: -20, movementMultiplier: 0.1)

3.	 Lastly, add the following code at the bottom of the didSimulatePhysics
function to reposition the backgrounds before each frame:
// Position the backgrounds:
for background in self.backgrounds {
 background.updatePosition(playerProgress)
}

4.	 Run the project. You should see the four background images as separate
layers behind the action, moving past with a parallax effect. This screenshot
shows the backgrounds as they should appear in your game:

If you are using the iOS simulator to test your game, it is normal to
experience a lowered frame rate after adding these large background
textures to the game. The game will still run well on iOS devices.

Chapter 8

[141]

Excellent! You have successfully implemented your background system. The
background makes Pierre Penguin's world feel full, adding immersion to the game.
Next, we will use a particle emitter to add a trail behind Pierre – a fun addition that
helps the player master the controls.

Checkpoint 8-A
To download my project to this point, visit this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-8

Harnessing SpriteKit's particle system
SpriteKit includes a powerful particle system that makes it easy to add exciting
graphics to your game. Particle emitter nodes create many small instances of an
image that combine together to create a great-looking effect. You can use emitter
nodes to generate snow, fire, sparks, explosions, magic, and other useful effects that
would otherwise require a lot of effort.

For our game, you will learn to use an emitter node to create a trail of small dots
behind Pierre Penguin as he flies, making it easier for the player to learn how their
taps influence Pierre's flight path.

When we are finished, Pierre's dot trail will look something like this:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-8

Polishing to a Shine – HUD, Parallax Backgrounds, Particles, and More

[142]

Adding the circle particle asset
Each particle system emits multiple versions of a single image in order to create a
cumulative particle effect. In our case, the image is a simple circle. To add the circle
image to the game, follow these steps:

1.	 Open the Images.xcassets file in Xcode.
2.	 Locate the dot.png image in the Particles folder of the provided

game assets.
3.	 Drag and drop the image file into the left pane of Images.xcassets.

Creating a SpriteKit Particle File
Xcode provides an excellent UI for creating and editing particle systems. To use the
UI, we will add a new SpriteKit Particle File to our project. Follow these steps to
add the new file:

1.	 Start by adding a new file to your project and locating the SpriteKit
Particle File type. You can find this template under the Resource category,
as shown here:

Chapter 8

[143]

2.	 In the following prompt, select Snow as the Particle Template.
3.	 Name the file PierrePath.sks and click Create to add the new file

to your project.

Xcode will open the new particle emitter in the main frame, which should look
something like this:

Previewing the Snow template in Xcode's particle editor

At the time of writing, Xcode's particle editor remains quirky.
If you do not see the white snow particle effect in the middle, try
clicking anywhere in the dark gray center area to reposition the
particle emitter – occasionally it does not start where expected.
This is also useful for testing setting changes without overlap from old
particles. Simply click anywhere in the editor to reposition the emitter.

Make sure you have the right-hand sidebar turned on by lighting up the Utilities
button in the upper right corner of Xcode, as shown here:

Polishing to a Shine – HUD, Parallax Backgrounds, Particles, and More

[144]

You can use the Utilities sidebar to edit the animation qualities of the particle
emitter. You can edit several properties: the number of particles, the lifetime
of a particle, how fast the particles move, how they scale up or down, and so on.
This is a fantastic tool because you can see immediate feedback from your changes.
Feel free to experiment by changing the particle properties.

Configuring the path particle settings
To create Pierre's dot trail, update your particle settings to match the settings
shown in this screenshot:

You have the correct settings when your editor shows a tiny white circle with no
apparent movement.

Chapter 8

[145]

Adding the particle emitter to the game
We will attach our new emitter to the Player node, so the emitter will create new
white circles wherever the player flies. We can easily reference the emitter design we
just created in the editor from our code. Open Player.swift and add this code at
the bottom of the spawn function:

// Instantiate a SKEmitterNode with the PierrePath design:
let dotEmitter = SKEmitterNode(fileNamed: "PierrePath.sks")
// Place the particle zPosition behind the penguin:
dotEmitter.particleZPosition = -1
// By adding the emitter node to the player, the emitter will move
// with the penguin and emit new dots wherever the player moves
self.addChild(dotEmitter)
// However, the particles themselves should attach to the world,
// so they trail behind as the player moves forward.
// (Note that self.parent refers to the world node)
dotEmitter.targetNode = self.parent

Run the project. You should see the white dots trailing behind Pierre, as shown here:

Good work. Now the player can see where they have flown, which is both fun and
instructive. The feedback from the dots will help the player learn the sensitivity of
the control system and thus master the game more quickly.

This is just one of many special effects you can create with particle emitter nodes.
You can explore other creative possibilities now that you know how to create, edit,
and place particle emitters in the world. Other fun ideas include sparks when Pierre
bumps into enemies, or gentle snow falling in the background.

Polishing to a Shine – HUD, Parallax Backgrounds, Particles, and More

[146]

Granting safety as the game starts
You may have noticed that Pierre Penguin quickly falls to the ground as soon
as you launch the game, which is not much fun. Instead, we can launch Pierre
into a graceful looping arc as the game starts to give the player a moment to
prepare for flight. To do so, open Player.swift and add this code at the bottom
of the spawn function:

// Grant a momentary reprieve from gravity:
self.physicsBody?.affectedByGravity = false
// Add some slight upward velocity:
self.physicsBody?.velocity.dy = 50
// Create a SKAction to start gravity after a small delay:
let startGravitySequence = SKAction.sequence([
 SKAction.waitForDuration(0.6),
 SKAction.runBlock {
 self.physicsBody?.affectedByGravity = true
 }])
self.runAction(startGravitySequence)

Checkpoint 8-B
To download my project to this point, visit this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-8

Summary
We brought the game world to life in this chapter. We drew a HUD to show
the player their remaining health and coin score, added parallax backgrounds to
increase the depth and immersion of the world, and learned to use particle emitters
to create special graphics in our games. In addition, we added a small delay before
gravity drags our hero down at the beginning of each flight. Our game is fun and
looking great!

Next, we need a menu so we can restart the game without rebuilding the project or
manually closing the application. In Chapter 9, Adding Menus and Sounds, we will
design a start menu, add a retry button when the player dies, and play sounds and
music to create a deeper gameplay experience.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-8

[147]

Adding Menus and Sounds
It is easy to overlook menu design, but the menu provides your game's first
impression to the player. When used correctly, your menus reinforce the brand of
your game and provide a pleasant break in the action that retains the player between
gameplay. We will add two menus in this chapter: a main menu that shows when
the game starts, and a retry menu that appears when the player loses a game.

Likewise, immersive sounds are vital to a great game. Sound is your opportunity
to support the mood of the game world and emphasize key gameplay mechanics
such as coin collecting and taking damage. Additionally, every fun game deserves
addictive background music! We will add background music and sound effects in
this chapter to complete the mood of the game world.

Topics in this chapter include:

•	 Building the main menu scene
•	 Adding the restart game menu
•	 Adding music with AVAudio
•	 Playing sound effects with SKAction

Building the main menu
We can use SpriteKit components to build our main menu. We will create a new
scene in a new file for our main menu, and then use code to place a background
sprite node, logo text node, and button sprite nodes. Let's start by adding the menu
scene to the project and building out the nodes.

Adding Menus and Sounds

[148]

Creating the menu scene and menu nodes
To create the menu scene, follow these steps:

1.	 We will use a new background image for the menu. Let's add it to
our project.

1.	 Locate Background-menu.png in the Backgrounds folder of
the asset bundle.

2.	 Open Images.xcassets in Xcode, and then drag and drop
Background-menu.png into Images.xcassets to make it
available in your project.

2.	 Add a new Swift file to your project named MenuScene.swift.
3.	 Add the following code to create the MenuScene scene class:

import SpriteKit

class MenuScene: SKScene {
 // Grab the HUD texture atlas:
 let textureAtlas:SKTextureAtlas =
 SKTextureAtlas(named:"hud.atlas")
 // Instantiate a sprite node for the start button
 // (we'll use this in a moment):
 let startButton = SKSpriteNode()

 override func didMoveToView(view: SKView) {
 }
}

4.	 Next, we need to configure a few scene properties. Add this code inside
the new scene's didMoveToView function:
// Position nodes from the center of the scene:
self.anchorPoint = CGPoint(x: 0.5, y: 0.5)
// Set a sky-blue background color:
self.backgroundColor = UIColor(red: 0.4, green: 0.6,
 blue: 0.95, alpha: 1.0)
// Add the background image:
let backgroundImage = SKSpriteNode(imageNamed: "Background-menu")
backgroundImage.size = CGSize(width: 1024, height: 768)
self.addChild(backgroundImage)

Chapter 9

[149]

5.	 We need to draw the name of the game near the top of the menu. Add this
code at the bottom of the didMoveToView function to draw "Pierre Penguin
Escapes the Antarctic":
// Draw the name of the game:
let logoText = SKLabelNode(fontNamed: "AvenirNext-Heavy")
logoText.text = "Pierre Penguin"
logoText.position = CGPoint(x: 0, y: 100)
logoText.fontSize = 60
self.addChild(logoText)
// Add another line below:
let logoTextBottom = SKLabelNode(fontNamed: "AvenirNext-Heavy")
logoTextBottom.text = "Escapes the Antarctic"
logoTextBottom.position = CGPoint(x: 0, y: 50)
logoTextBottom.fontSize = 40
self.addChild(logoTextBottom)

6.	 Now we will add the start button. The start button is the combination of
a SKSpriteNode for the button graphic and a SKLabelNode for the "Start
Game" text. Add this code at the bottom of the didMoveToView function to
create the button:
// Build the start game button:
startButton.texture = textureAtlas.textureNamed("button.png")
startButton.size = CGSize(width: 295, height: 76)
// Name the start node for touch detection:
startButton.name = "StartBtn"
startButton.position = CGPoint(x: 0, y: -20)
self.addChild(startButton)

// Add text to the start button:
let startText = SKLabelNode(fontNamed:
 "AvenirNext-HeavyItalic")
startText.text = "START GAME"
startText.verticalAlignmentMode = .Center
startText.position = CGPoint(x: 0, y: 2)
startText.fontSize = 40
// Name the text node for touch detection:
startText.name = "StartBtn"
startButton.addChild(startText)

Adding Menus and Sounds

[150]

7.	 Finally, we will make the start button pulse in and out to add movement and
excitement to the menu. Add this code at the bottom of the didMoveToView
function to fade the button in and out:

// Pulse the start button in and out gently:
let pulseAction = SKAction.sequence([
 SKAction.fadeAlphaTo(0.7, duration: 0.9),
 SKAction.fadeAlphaTo(1, duration: 0.9),
])
startButton.runAction(
 SKAction.repeatActionForever(pulseAction))

Great work! We have created our MenuScene class and added all the nodes we need
to build the menu. Next, we will update our app to start with the menu instead of
going directly to the GameScene class.

Launching the main menu when the game
starts
So far, our app has launched directly to the GameScene class whenever it starts.
We will now update our view controller to start with the MenuScene class instead.
Follow these steps to launch the menu when the game starts:

1.	 Open GameViewController.swift and locate the viewWillLayoutSubviews
function.

2.	 Replace the entire viewWillLayoutSubviews function with this code:

override func viewWillLayoutSubviews() {
 super.viewWillLayoutSubviews()

 // Build the menu scene:
 let menuScene = MenuScene()
 let skView = self.view as! SKView
 // Ignore drawing order of child nodes
 // (This increases performance)
 skView.ignoresSiblingOrder = true
 // Size our scene to fit the view exactly:
 menuScene.size = view.bounds.size
 // Show the menu:
 skView.presentScene(menuScene)
}

Chapter 9

[151]

Run the project and you should see the app start with your new main menu, which
looks something like this screenshot:

Terrific work! Next, we will wire up the START GAME button to transition to the
GameScene class.

Wiring up the START GAME button
Just like in GameScene, we will add a touchesBegan function to the MenuScene class
to capture touches on the START GAME button. To implement touchesBegan,
open MenuScene.swift and, at the bottom of the class, add a new function named
touchesBegan, as shown here:

override func touchesBegan(touches: Set<NSObject>, withEvent
 event: UIEvent) {
 for touch in (touches as! Set<UITouch>) {
 let location = touch.locationInNode(self)
 let nodeTouched = nodeAtPoint(location)

 if nodeTouched.name == "StartBtn" {
 // Player touched the start text or button node

Adding Menus and Sounds

[152]

 // Switch to an instance of the GameScene:
 self.view?.presentScene(GameScene(size: self.size))
 }
 }
}

Run the project and tap the start button. The game should switch to the GameScene
class and gameplay will begin. Congratulations, you have successfully implemented
your first main menu in SpriteKit. Next, we will add a simple restart menu that
appears on top of GameScene when the player dies.

Adding the restart game menu
The restart menu is even simpler to implement. Rather than create a new scene,
we can extend our existing HUD class to display a restart button when the game ends.
We will also include a smaller button to return the player to the main menu. This
menu will appear on top of the action, as in this screenshot:

Chapter 9

[153]

Extending the HUD
First, we need to create and draw our new button nodes in the HUD class.
Follow these steps to add the nodes:

1.	 Open the HUD.swift file and add two new properties to the HUD class,
as follows:
let restartButton = SKSpriteNode()
let menuButton = SKSpriteNode()

2.	 Add the following code at the bottom of the createHudNodes function:
// Add the restart and menu button textures to the nodes:
restartButton.texture =
 textureAtlas.textureNamed("button-restart.png")
menuButton.texture =
 textureAtlas.textureNamed("button-menu.png")
// Assign node names to the buttons:
restartButton.name = "restartGame"
menuButton.name = "returnToMenu"
// Position the button node:
let centerOfHud = CGPoint(x: screenSize.width / 2,
 y: screenSize.height / 2)
restartButton.position = centerOfHud
menuButton.position =
 CGPoint(x: centerOfHud.x - 140, y: centerOfHud.y)
// Size the button nodes:
restartButton.size = CGSize(width: 140, height: 140)
menuButton.size = CGSize(width: 70, height: 70)

3.	 We purposefully did not add these nodes as children of the HUD yet, so they
will not appear on the screen until we are ready. Next, we will add a function
to make the buttons appear. We will call this function from the GameScene
class when the player dies. Add a function named showButtons to the HUD
class, as shown here:

func showButtons() {
 // Set the button alpha to 0:
 restartButton.alpha = 0
 menuButton.alpha = 0
 // Add the button nodes to the HUD:
 self.addChild(restartButton)

Adding Menus and Sounds

[154]

 self.addChild(menuButton)
 // Fade in the buttons:
 let fadeAnimation =
 SKAction.fadeAlphaTo(1, duration: 0.4)
 restartButton.runAction(fadeAnimation)
 menuButton.runAction(fadeAnimation)
}

Wiring up GameScene for game over
We need to tell the HUD class to show the restart and main menu buttons once the
player runs out of health. Open GameScene.swift and add a new function to the
GameScene class named gameOver, as shown here:

func gameOver() {
 // Show the restart and main menu buttons:
 hud.showButtons()
}

That is all for now – we will add to the gameOver function in the next chapter,
when we implement a high score system.

Informing the GameScene class when the
player dies
So far, the GameScene class is oblivious to whether the player is alive or
dead. We need to change that in order to use our new gameOver function.
Open Player.swift, locate the die function, and add the following code at
the bottom of the function:

// Alert the GameScene:
if let gameScene = self.parent?.parent as? GameScene {
 gameScene.gameOver()
}

We access GameScene by traveling up the node tree. The Player node's parent
is the world node. The world node's parent is the GameScene class.

Chapter 9

[155]

Run the project and die. You should see the two new buttons appear after death,
as shown here:

Good work. The buttons are displaying properly, but nothing happens yet when we
tap on them. To complete our restart menu, we simply need to implement tap events
for the two new buttons in the GameScene class's touchesBegan function.

Implementing touch events for the restart
menu
Now that our buttons are displaying, we can add touch events in the GameScene
class that are similar to the START GAME button in the MenuScene class.

Adding Menus and Sounds

[156]

To add the touch events, open GameScene.swift and locate the touchesBegan
function. We will add the restart menu code at the bottom of the for loop. I am
including the entire touchesBegan function in the following code, with new
additions in bold:

override func touchesBegan(touches: Set<NSObject>, withEvent
 event: UIEvent) {
 player.startFlapping()

 for touch in (touches as! Set<UITouch>) {
 let location = touch.locationInNode(self)
 let nodeTouched = nodeAtPoint(location)

 if let gameSprite = nodeTouched as? GameSprite {
 gameSprite.onTap()
 }

 // Check for HUD buttons:
 if nodeTouched.name == "restartGame" {
 // Transition to a new version of the GameScene
 // to restart the game:
 self.view?.presentScene(
 GameScene(size: self.size),
 transition: .crossFadeWithDuration(0.6))
 }
 else if nodeTouched.name == "returnToMenu" {
 // Transition to the main menu scene:
 self.view?.presentScene(
 MenuScene(size: self.size),
 transition: .crossFadeWithDuration(0.6))
 }
 }
}

To test your new menu, run the project and run out of health on purpose.
You should now be able to start a new game when you die, or transition back
to the main menu with a tap on the menu button. Great! You have completed
the two basic menus required for every game.

These simple steps go a long way towards the overall completion of the game, and
the penguin game is looking terrific. Next, we will add event sounds and music to
complete the game world.

Chapter 9

[157]

Checkpoint 9-A
Download my project to this point at this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-9

Adding music and sound
SpriteKit and Swift make it very easy to play sounds in our games. We can drag
sound files into our project, just like image assets, and trigger playback with
SKAction playSoundFileNamed.

We can also use the AVAudio class from the AVFoundation framework for more
precise audio control. We will use AVAudio to play our background music.

Adding the sound assets to the game
Locate the Sound directory in the Assets folder and add it to your project by
dragging and dropping it into the project navigator. You should see the Sound
folder show up in your project just like any other asset.

Playing background music
First, we will add the background music. We want our music to play regardless of
which scene the player is currently looking at, so we will play the music from the
view controller itself. To play the music, follow these steps:

1.	 Open GameViewController.swift and add the following import statement
at the very top, just below the existing import lines, to allow us access to
AVFoundation classes:
import AVFoundation

2.	 Locate the GameViewController class and add the following property to
store our AVAudioPlayer:
var musicPlayer = AVAudioPlayer()

3.	 At the very bottom of the viewWillLayoutSubviews function, add this code
to play and loop the music:

// Start the background music:
let musicUrl = NSBundle.mainBundle().URLForResource(
 "Sound/BackgroundMusic.m4a", withExtension: nil)

http://www.thinkingswiftly.com/game-development-with-swift/chapter-9

Adding Menus and Sounds

[158]

if let url = musicUrl {
 musicPlayer =
 AVAudioPlayer(contentsOfURL: url, error: nil)
 musicPlayer.numberOfLoops = -1
 musicPlayer.prepareToPlay()
 musicPlayer.play()
}

Run the project. You should hear the background music as soon as the app starts.
The music should continue as you move from the main menu to the game and back.

Playing sound effects
Playing simple sounds is even easier. We will use SKAction objects to play sounds
on specific events, such as picking up a coin or starting the game.

Adding the coin sound effect to the Coin class
First, we will add a happy sound each time the player collects a coin. To add the coin
sound effect, follow these steps:

1.	 Open Coin.swift and add a new property to the Coin class to cache a coin
sound action:
let coinSound =
 SKAction.playSoundFileNamed("Sound/Coin.aif",
 waitForCompletion: false)

2.	 Locate the collect function and add the following line at the bottom of the
function to play the sound:

// Play the coin sound:
self.runAction(coinSound)

That is all you need to do to play the coin sound every time the player collects a coin.
You can run the project now to test it out if you like.

To avoid memory-based crashes, it is important to cache each
playSoundFileNamed action object and rerun the same object
each time you want to play a sound, rather than creating a new
instance of a SKAction object for each playback.

Chapter 9

[159]

Adding the power-up and hurt sound effects to the
Player class
We will play an exciting sound when the player finds the star power-up and
an injury noise when the player takes damage. Follow these steps to implement
the sounds:

1.	 Open Player.swift and add two new properties to the Player class to
cache the sound effects:
let powerupSound =
 SKAction.playSoundFileNamed("Sound/Powerup.aif",
 waitForCompletion: false)
let hurtSound =
 SKAction.playSoundFileNamed("Sound/Hurt.aif",
 waitForCompletion: false)

2.	 Find the takeDamage function and add this line at the bottom:
// Play the hurt sound:
self.runAction(hurtSound)

3.	 Find the starPower function and add this line at the bottom:

// Play the powerup sound:
self.runAction(powerupSound)

Playing a sound when the game starts
Lastly, we will play a sound when the game starts. Follow these steps to play
this sound:

1.	 Open GameScene.swift. We will play this sound effect from the
didMoveToView function. Normally, it is vital to cache sound actions in a
property, but we do not have to cache the game start sound because we will
only play it once per scene load.

2.	 Add this line at the bottom of the GameScene didMoveToView function:

// Play the start sound:
self.runAction(SKAction.playSoundFileNamed("Sound/StartGame.aif",
 waitForCompletion: false))

Great—we have added all the sound effects for our game. You can now run the
project to test out each sound.

Adding Menus and Sounds

[160]

Checkpoint 9-B
Download my project to this point at this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-9

Summary
We have taken large steps towards finishing the game in this chapter. We learned to
create menus in SpriteKit, added the main menu to the game, and gave the player
a way to restart the game when they run out of health. Then, we enhanced the
gameplay experience with catchy background music and timely sound effects.
The game now feels finished; we are very nearly ready to publish our game.

One final step remains: we will explore integration with the Apple Game Center to
track high scores and achievements in Chapter 10, Integrating with Game Center. Game
Center integration encourages your players to keep playing and improving. They
will be able to see their own best score, view the top scores from around the world,
and challenge their friends to beat their best effort.

http://www.thinkingswiftly.com/game-development-with-swift/chapter-9

[161]

Integrating with Game Center
Apple provides an online social gaming network called Game Center. Your players
can share high scores, track achievements, challenge friends, and start matchmaking
for multiplayer games with Game Center. In this chapter, we will use Apple's iTunes
Connect website to register our app with Apple. Then, we can integrate with Game
Center to add leaderboards and achievements in our game.

You will need an active Apple developer account (which costs $99
per year) to register your app with Apple, access the iTunes Connect
website with Game Center, and publish your game to the App Store.

The topics in this chapter include:

•	 Registering an app with iTunes Connect
•	 Authenticating the player's Game Center account in our app
•	 Opening Game Center from the MenuScene class
•	 Adding a leaderboard
•	 Creating and awarding achievements

Integrating with Game Center

[162]

Registering an app with iTunes Connect
Since Apple will be storing our high scores and achievements on their centralized
servers, we need to communicate to Apple that we need Game Center for our app.
The first step is to create a record for our app on the iTunes Connect website.
Follow these steps to create an iTunes Connect record:

1.	 In a web browser, navigate to http://itunesconnect.apple.com.
2.	 Sign in with your Apple developer account information.
3.	 When you reach the iTunes Connect dashboard, click on the My Apps icon.
4.	 Towards the upper left, click on the + symbol and select New iOS App,

as shown here:

5.	 In the subsequent dialogue, locate the link at the bottom that says Register a
new bundle ID on the Developer Portal. Click this link to create a bundle ID
for your app.

6.	 You will arrive on a page titled Registering an App ID. This page may
appear overwhelming at first, but you only need to fill out two fields. First,
enter the name of your app in the App Description section.

http://itunesconnect.apple.com

Chapter 10

[163]

7.	 Scroll down to the App ID Suffix section. Make sure to select Explicit App
ID and then enter the Bundle ID field from your Xcode project settings, as
shown here:

8.	 Scroll down to the App Services section and double-check that the Game
Center option is already checked.

9.	 At the bottom of the page, click Continue. Then click Submit on the
subsequent confirmation page.

10.	 You can now close this tab and return to iTunes Connect, picking up where
you left off on the new iOS app screen.

Integrating with Game Center

[164]

It can take some time before the bundle ID you just created
shows up in iTunes Connect. If this happens, take a break and
try again after a few moments.

11.	 Enter the Name of your app, the Primary Language, the Version, and SKU
(which is not visible to the public). Then select the Bundle ID you just
created, as shown in this screenshot:

12.	 Click Create in the lower right. You should now see an overview for your
app in iTunes Connect, which will look something like this screenshot:

Congratulations, not only are we closer to configuring Game Center, we have also
taken the first step towards preparing our app for submission to the app store!

Chapter 10

[165]

Configuring Game Center
Now that we have an iTunes Connect app record, we can tell Apple more about
how we want to use Game Center in our game. Follow these steps to configure
Game Center:

1.	 On your app page, click the link for Game Center in the top navigation.
2.	 Choose Enable for Single Game, as shown here:

3.	 You will see a screen allowing you to create new leaderboards and
achievements for your game. Perfect! We will use this page later in the
chapter.

We have informed Apple that we want to use Game Center in our game.
Next, we need to create a sandbox user account for testing purposes.

Integrating with Game Center

[166]

Creating a test user
Game Center uses separate test servers during app development, so we will not be
able to use our real Apple ID to log in to Game Center while we are testing. Instead,
we will create a sandbox account in iTunes Connect.

The website of iOS Developer Library states "Always create new test accounts to
test your game in Game Center. Never use an existing Apple ID."

Follow these steps to create a Game Center sandbox account for testing:

1.	 In iTunes Connect, use the dropdown menu in the upper left to select
Users and Roles, as shown here:

2.	 Once you are on the Users and Roles page, click on Sandbox Testers in the
navigation bar at the top of the screen.

3.	 As directed on the Sandbox Testers page, click the + icon to add a new user.

Chapter 10

[167]

4.	 Fill out the test user's information to your liking. Here is how I filled out my
test user's information:

5.	 Click the Save button to create the new user.

Make sure to keep your live Apple ID and your sandbox account
separate. The sandbox account will become invalid if you use it to
log in to a live Game Center app.

Great! That is all we need to begin implementing Game Center into our game.
The next step is to integrate Game Center with our game code. We will start by
authenticating the player's Game Center account when they open our app.

Authenticating the player's Game Center
account
As soon as our app starts, we will check if the player is already logged in to their
Game Center account. If not, we will give them a chance to log in. Later, when
we want to submit high scores or achievements, we can use the authentication
information we gathered when the app launched, instead of interrupting their
gaming session to collect their Game Center information.

Integrating with Game Center

[168]

Follow these steps to authenticate the player's Game Center account when the
app starts:

1.	 We will be working in the GameViewController class, so open
GameViewController.swift in Xcode.

2.	 Add a new import statement at the top of the file so we can use the
GameKit framework:
import GameKit

3.	 In the GameViewController class, add a new function called
authenticateLocalPlayer with this code:
// (We pass in the menuScene instance so we can create a
// leaderboard button in the menu when the player is
// authenticated with Game Center)
func authenticateLocalPlayer(menuScene:MenuScene) {
 // Create a new Game Center localPlayer instance:
 let localPlayer = GKLocalPlayer.localPlayer();
 // Create a function to check if they authenticated
 // or show them the log in screen:
 localPlayer.authenticateHandler = {
 (viewController : UIViewController!,
 error : NSError!) -> Void in
 if viewController != nil {
 // They are not logged in, show the log in:
 self.presentViewController(viewController,
 animated: true, completion: nil)
 }
 else if localPlayer.authenticated {
 // They authenticated successfully!
 // We will be back later to create a
 // leaderboard button in the MenuScene
 }
 else {
 // Not able to authenticate, skip Game Center
 }
 }
}

Chapter 10

[169]

4.	 At the bottom of the GameViewController class viewWillLayoutSubviews
function, add a call to the new authenticateLocalPlayer function you
just created:

authenticateLocalPlayer(menuScene)

Run your project. You should see Game Center animate in, asking for your
credentials, as seen here:

Great! Remember to use your sandbox account. The first time you log in, Game
Center will ask a few extra questions to set up your account. Once you finish with
the Game Center form, you should return to the main menu, with a small banner
animating in and out from the top of the screen, letting you know you are signed in.
The banner looks something like this:

If you see this welcome back banner, you have successfully implemented the Game
Center authentication code. Next, we will add a leaderboard button to the menu so
the player can see their progress within our app.

Integrating with Game Center

[170]

Opening Game Center in our game
If the user is authenticated, we will add a button to the MenuScene class so they can
open the leaderboard and view achievements from within our game. Alternatively,
players can always use the Game Center app in iOS to view their progress.

Follow these steps to create a leaderboard button in the menu scene:

1.	 Open MenuScene.swift in Xcode.
2.	 Add a new import statement at the top of the file so we can use the

GameKit framework:
import GameKit

3.	 Update the line that declares the MenuScene class so that our class adopts the
GKGameCenterControllerDelegate protocol. This allows the Game Center
screen to inform our scene when the player closes the Game Center:
class MenuScene: SKScene, GKGameCenterControllerDelegate {

4.	 We need a function that will create the leaderboard button and add it to
the scene. We will call this function once the Game Center authenticates
the player. Add a new function to the MenuScene class named
createLeaderboardButton as shown here:
func createLeaderboardButton() {
 // Add some text to open the leaderboard
 let leaderboardText = SKLabelNode(fontNamed:
 "AvenirNext")
 leaderboardText.text = "Leaderboard"
 leaderboardText.name = "LeaderboardBtn"
 leaderboardText.position = CGPoint(x: 0, y: -100)
 leaderboardText.fontSize = 20
 self.addChild(leaderboardText)
}

5.	 We will call our createLeaderboardButton function from the
didMoveToView function if the player is already authenticated with
Game Center. This creates the button for players who return to the main
menu after playing a game. Add the following code to the bottom of the
didMoveToView function:
// If they're logged in, create the leaderboard button
// (This will only apply to players returning to the menu)
if GKLocalPlayer.localPlayer().authenticated {
 createLeaderboardButton()
}

Chapter 10

[171]

6.	 Next, we will create the function that actually opens the Game Center.
Add a new function named showLeaderboard, as shown here:
func showLeaderboard() {
 // A new instance of a game center view controller:
 let gameCenter = GKGameCenterViewController()
 // Set this scene as the delegate (helps enable the
 // done button in the game center)
 gameCenter.gameCenterDelegate = self
 // Show the leaderboards when the game center opens:
 gameCenter.viewState =
 GKGameCenterViewControllerState.Leaderboards
 // Find the current view controller:
 if let gameViewController =
 self.view?.window?.rootViewController {
 // Display the new Game Center view controller:
 gameViewController.showViewController(gameCenter,
 sender: self)
 gameViewController.navigationController?
 .pushViewController(gameCenter, animated: true)
 }
}

7.	 We need to add another function to adhere to the
GKGameCenterControllerDelegate protocol. This function is named
gameCenterViewDidFinish, and the Game Center will invoke it when
the player clicks the Done button in Game Center. Add the function to the
MenuScene class, as shown here:
// This hides the game center when the user taps 'done'
func gameCenterViewControllerDidFinish
 (gameCenterViewController:
 GKGameCenterViewController!) {
 gameCenterViewController.dismissViewControllerAnimated(
 true, completion: nil)
}

Integrating with Game Center

[172]

8.	 To wrap up the MenuScene code, we need to check for taps on
our leaderboard button in the touchesBegan function to invoke
showLeaderboard. Update the touchesBegan function if block
as shown in the following (new code in bold):
if nodeTouched.name == "StartBtn" {
 self.view?.presentScene(GameScene(size: self.size))
}
else if nodeTouched.name == "LeaderboardBtn" {
 showLeaderboard()
}

9.	 Next, open GameViewController.swift and locate the
authenticateLocalPlayer function.

10.	 Update the block where the player authenticated successfully to call
our new createLeaderboardButton function in the MenuScene class.
This creates the leaderboard button for newly authenticated people as
they start the app. The code is shown here (new code in bold):

else if localPlayer.authenticated {
 // They authenticated successfully
 menuScene.createLeaderboardButton()
}

Good work. Run the project and you should see a leaderboard button appear in the
menu after Game Center authenticates, as shown here:

Terrific – if you tap on the Leaderboard text, Game Center will open within the
game. Now your players will be able to view leaderboards and achievements directly
from your game. Next, we will create a leaderboard and an achievement in iTunes
Connect to populate Game Center.

Chapter 10

[173]

Checkpoint 10-A
To download my project to this point, visit this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-10

Adding a leaderboard of high scores
We will submit the player's scores to the Game Center servers every time they finish
a game. The first step is to register a new leaderboard on iTunes Connect.

Creating a new leaderboard in iTunes Connect
First, we will create our leaderboard in iTunes Connect. We can then connect to this
leaderboard from our code and send new scores. Follow these steps to create the
leaderboard record in iTunes Connect:

1.	 Log back in to iTunes Connect and navigate into the Game Center page for
your app.

2.	 Locate and click the button that says Add Leaderboard.
3.	 The next page asks you what type of leaderboard you want to create.

Choose Single Leaderboard.
4.	 Fill out the information for your leaderboard. You can reference my

example here:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-10

Integrating with Game Center

[174]

Let's take a look at each field:

°° Reference Name is an internal use name for leaderboard listings
in iTunes Connect

°° Leaderboard ID is a unique identifier we will reference from
our code

°° Score Format Type describes the type of data you will be passing
in (most commonly integer data for high scores)

°° Normal leaderboards use a Score Submission Type of Best Score,
with a Sort Order of High to Low

°° Score Range is an anti-cheating measure you can use to block
obviously false scores from showing up on the leaderboard

5.	 Next, click the Add Language button. You will choose a name and score
formatting for your leaderboard on this screen. These fields are largely
self-explanatory, but you can reference my example here:

6.	 Click Save twice (once for the language dialogue and once on the
leaderboard screen).

You should be back on the Game Center page with your new leaderboard listed in
the leaderboards section. Next, we will push new scores into the leaderboard from
our game code.

Chapter 10

[175]

Updating the leaderboard from the code
It is simple to send a new score to the leaderboard from the code. Follow these steps
to send the number of coins collected to the leaderboard every time a game ends:

1.	 In Xcode, open GameScene.swift.
2.	 Add an import statement at the top so we can use the GameKit framework

in this file:
import GameKit

3.	 Add a new function in the GameScene class named updateLeaderboard,
as shown here:
func updateLeaderboard() {
 if GKLocalPlayer.localPlayer().authenticated {
 // Create a new score object, with our leaderboard:
 let score = GKScore(leaderboardIdentifier:
 "pierre_penguin_coins")
 // Set the score value to our coin score:
 score.value = Int64(self.coinsCollected)
 // Report the score (wrap the score in an array)
 GKScore.reportScores([score],
 withCompletionHandler:
 {(error : NSError!) -> Void in
 // The error handler was used more in previous
 // versions of iOS, it would be unusual to
 // receive an error now:
 if error != nil {
 println(error)
 }
 })
 }
}

4.	 In the GameScene class GameOver function, call the new updateLeaderboard
function:

// Push their score to the leaderboard:
updateLeaderboard()

Integrating with Game Center

[176]

Run the project and play through a game to send a test coin score to the leaderboard.
Then, tap back to the menu scene and click the Leaderboard button to open Game
Center within your game. You should see your first score appear in the leaderboard!
It will look something like this:

Great work – you have implemented your first Game Center leaderboard.
Next, we will follow a similar series of steps to create an achievement for
collecting 500 coins in one game.

Adding an achievement
Achievements add a second layer of fun to your game and create replay value.
To demonstrate a Game Center achievement, we will add a reward for collecting
500 coins without dying.

Chapter 10

[177]

Creating a new achievement in iTunes
Connect
Just like the leaderboard, we first need to create an iTunes Connect record for our
achievement. Follow these steps to create the record:

1.	 Log into iTunes Connect and navigate to the Game Center page for your app.
2.	 Underneath the leaderboards list, locate and click the Add

Achievement button.
3.	 Fill out the information for your achievement. Here are my values:

Let’s take a look at each field:

°° Reference Name is the name iTunes Connect will use internally to
refer to the achievement

°° Achievement ID is the unique identifier we will use to reference this
achievement in our code

°° You can assign a Point Value to each achievement so players can
earn more achievement points as they collect new achievements

°° Hidden and Achievable More Than Once are self-explanatory, but
you can use the question mark buttons on the right for additional
information from Apple

Integrating with Game Center

[178]

4.	 Click the Add Language button. We will name the achievement and give it a
description, as in the leaderboard process. Additionally, an image is required
for achievements. The image dimensions can be 512x512 or 1024x1024.
You can find the one I used in our Assets bundle download, in the Extras
folder, gold-medal.png. Here are my values:

5.	 Click Save twice (once for the language dialogue and once on the
achievement screen).

Terrific, you should be back on the main iTunes Connect Game Center page
for your app with your new achievement listed in the Achievements section.
Next, we will integrate this achievement into the game.

Updating achievements from the code
Much like sending leaderboard updates, we can send achievement updates to Game
Center from GameScene. Follow these steps to integrate our 500 coin achievement:

1.	 Open GameScene.swift in Xcode.

Chapter 10

[179]

2.	 If you skipped over the leaderboard section, you will need to add a new
import statement at the top of the file so we can use GameKit. If you have
already implemented the leaderboard, you can skip this:
import GameKit

3.	 Add a new function to the GameScene class named checkForAchievements,
as shown here:
func checkForAchievements() {
 if GKLocalPlayer.localPlayer().authenticated {
 // Check if they earned 500 coins in this game:
 if self.coinsCollected >= 500 {
 let achieve = GKAchievement(identifier:
 "500_coins")
 // Show a notification that they earned it:
 achieve.showsCompletionBanner = true
 achieve.percentComplete = 100
 // Report the achievement!
 GKAchievement.reportAchievements([achieve],
 withCompletionHandler:
 {(error:NSError!) -> Void in
 if error != nil {
 println(error)
 }
 })
 }
 }
}

4.	 At the bottom of the gameOver function, invoke the new
checkForAchievements function:

// Check if they earned the achievement:
checkForAchievements()

Integrating with Game Center

[180]

Run the project and, if you dare, complete a 500 coin fly through. When your
game ends, you should see a banner proclaiming your new achievement conquest,
as shown here:

Great work! You have implemented Game Center leaderboards and achievements
into your game.

Checkpoint 10-B
To download my project to this point, visit this URL:

http://www.thinkingswiftly.com/game-development-with-swift/chapter-10

Summary
Integrating with Game Center is a great feature for your players. In this chapter,
we learned how to create an iTunes Connect record for our app, authenticate Game
Center users in our code, create new leaderboards and achievements on iTunes
Connect, and then integrate those leaderboards and achievements within our game.
We have made a lot of progress!

We are officially finished working on the game itself. In the next chapter, we will
prepare our app for publication, upload the code for Apple to review, and revisit
what we have learned while creating our great game. Everything is coming together
and we are ready to take the final step to publish our game. Congratulations!

http://www.thinkingswiftly.com/game-development-with-swift/chapter-10

[181]

Ship It! Preparing for the App
Store and Publication

What a grand journey! We have stepped through each component of the game
development process in Swift and we are finally ready to share our hard work with
the world. We need to prepare our project for publication by finishing the assets
associated with it: the assorted app icons, the launch screen, and the screenshots for
the App Store. Then, we will fill out the description and information for our app in
iTunes Connect. Finally, we will use Xcode to upload a production archive build and
submit it to the Apple review process. We are very close to seeing our game in the
App Store!

While I can show you the general path you can use to submit your app, this process
is constantly changing as Apple updates iTunes Connect. In addition, every app has
unique aspects that may require a variation on the path I demonstrate in this chapter.
I encourage you to browse Apple's official documentation in the iOS Developer
Library and refer to Stack Overflow for updated answers. You can locate the iOS
Developer Library by browsing to https://developer.apple.com/library/ios.

Topics in this chapter include:

•	 Finalizing assets: app icons and the launch screen
•	 Finalizing iTunes Connect information
•	 Configuring pricing
•	 Uploading our project from Xcode
•	 Submitting for review in iTunes Connect

https://developer.apple.com/library/ios

Ship It! Preparing for the App Store and Publication

[182]

Finalizing assets
There are several peripheral assets we need before we can publish our game.
We will create a set of app icons, redesign the launch screen, and take screenshots
for each device we support for the App Store previews.

Adding app icons
Our app requires multiple sizes of our app icon to display correctly in the App
Store and the various iOS devices we support. You can find a sample icon set in the
provided assets bundle, in the Icon folder.

You should design your icon to be 1024 pixels wide by 1024 pixels
tall and then resize down for the other variations. Make sure to check
each variation to ensure it looks good after resizing. You will upload
this large size directly to iTunes Connect later in the chapter.

The best way to integrate your icons into your project is to use the Images.xcassets
asset bundle, preconfigured for app icons, that comes along with new projects.
We will drag and drop our icons into this file to bring them into the project.

Follow these steps to add our icons to the project:

1.	 In Xcode, open the Images.xcassets file and locate the AppIcon image set
in the left pane.

2.	 Drag and drop the images from the assets bundle into the corresponding icon
slots. You can drag your files in as a group and Xcode will process them into
the correct slots. You can ignore the icon slots for Settings icons, since our
app does not integrate with iOS settings. When you are finished, your icon
image set will look something like this:

Chapter 11

[183]

3.	 Go into your general project settings by clicking on your project in the project
navigator. Locate the App Icons Source setting and make sure it is set to
AppIcon to use the image bundle, as shown here:

We are finished adding our icons in Xcode. We will need to upload a few more icon
sizes to iTunes Connect later. You can run your project on a real device to see your
new icons in action.

Designing the launch screen
When a user taps your icon on their device, iOS shows your app's launch
screen as an extremely fast-loading simple preview. This creates the illusion that
your app loads almost instantly. The player gets immediate feedback from their tap
while your app actually loads in the background. This is not the place to add logos,
branding, or information of any kind. The goal is to create a very simple screen
that looks like your app before the content is in place. For Pierre Penguin, we will
implement a simple blank sky blue background that looks like the main menu before
it has any content.

Follow these steps to set up your sky blue launch screen:

1.	 Open the LaunchScreen.xib file in Xcode. You will see the launch screen
open in the interface builder.

2.	 Select each preexisting text element and delete each one with the Delete key
on your keyboard.

3.	 Select the entire frame by clicking anywhere in the white space of the
launch screen.

Ship It! Preparing for the App Store and Publication

[184]

4.	 Make sure you have your Utilities bar open on the right hand side of Xcode,
and open the Attributes Inspector, as demonstrated here:

5.	 Locate the background color setting in the right bar, then click on the existing
white color option to open a color selection window.

6.	 Choose the color sliders tab, and enter the RGB value 102, 153, 242,
as shown here:

Chapter 11

[185]

7.	 You should see the entire frame turn the sky blue color from our game.
8.	 Next, enter your general settings by clicking the project name in the project

navigator. As you did before for the app icons, make sure the Launch Screen
File setting is LaunchScreen:

Perfect! When we run our app, we will see the sky blue color immediately, providing
a smoother transition between the home screen and our fully loaded app.

Taking screenshots for each supported
device
Fun screenshots will make your game stand out in the App Store. I created some
sample screenshots for Pierre Penguin in the assets bundle's Screenshots folder.
You will need to create separate screenshots for each iOS device you want to support.

Screenshots must be JPG or PNG files. You can use my example screenshots as
templates for each size of screenshot you need, or follow this table:

Device size Screenshot size for a full screen game
3.5" (required) 960x640 pixels
4" (required) 1136x640 pixels
4.7" 1334x750 pixels
5.5" 2208x1242 pixels
iPad (all versions) 2048x1536 pixels

Once your screenshots are prepared, you are ready to finalize your game settings in
iTunes Connect. We will complete the iTunes Connect details next.

Ship It! Preparing for the App Store and Publication

[186]

Finalizing iTunes Connect information
iTunes Connect controls our app's details in the App Store. We will use iTunes
Connect to create a description for our game, add the screenshots we want to display
in the App Store, and configure our pricing information and project settings.

Follow these steps to fill out your iTunes Connect information:

1.	 Open the iTunes Connect website in your Web browser. Browse to the
My Apps section, and then click on your game. iTunes Connect will take
you to the Versions tab of your game's page.

2.	 We will start with the screenshots. Drag and drop each device screenshot into
the corresponding slot in the App Video Preview and Screenshots section,
as seen here:

3.	 Scroll down and fill out the information in the next section:
Name, Description, Keywords, and associated URLs. These fields are
self-explanatory, but you can always click on the small gray question
mark circles for detailed information from Apple.

Chapter 11

[187]

A word on keywords: users will find your app more easily if you have
strong, accurate keywords. Try to use phrases you think people may
type in to the App Store that should lead them to your game. You are
limited to 100 characters, so omit spaces between keywords.

4.	 Next, scroll down to the General App Information section. Here you will
upload your app icon, enter a version number (1.0), pick the App Store
category for your app (Games), and provide your address information.
Again, click on the gray question mark circles if you need further information
on any of these fields.

5.	 Scroll down and locate Game Center, then flip the slider to the on position.
You will need to add your leaderboard and achievements by clicking the
blue plus icons, as shown here:

6.	 Finally, scroll to the App Review Information section and fill out
your contact information again. This is for the Apple employee reviewing
your app in the event they need more information. You can also select
whether you want your game to release to the App Store automatically after
approval, or wait for you to release it manually later to coincide with your
marketing efforts.

7.	 Click on Save in the upper right corner.

Ship It! Preparing for the App Store and Publication

[188]

Configuring pricing
Pierre Penguin is going to be free for all to play, but you can choose from many
pricing strategies for your games.

Apple is constantly updating iTunes Connect and I expect
that the Pricing section will soon receive an overhaul. Your
experience may not match these steps exactly.

Follow these steps to set the price for your game:

1.	 On the iTunes Connect page for your game, click the Pricing tab in the top
navigation bar.

2.	 Choose an Availability Date, Price Tier, and educational discount. Here are
my settings for reference:

3.	 Click on Save in the lower right.

Perfect! Our iTunes Connect information is complete and ready to submit to the App
Store review process. Now we just need to finalize and upload our build in Xcode.

If you want to charge for your game then you will need to fill out
the contracts and banking information found in the Agreements,
Tax, and Banking section of iTunes Connect.

Chapter 11

[189]

Uploading our project from Xcode
Next, we will create a final build of our game, validate that it contains everything it
needs for the App Store, and upload the bundle to iTunes Connect.

First, we will create the deployment archive for our game. When you are happy with
your project, use the Product menu and select Archive..., as shown here:

Once the process finishes, Xcode will open your archive list. From here, you can
validate your app to make sure it includes all the requisite assets and profiles it
needs to be on the App Store. Follow these steps to validate your app and upload it
to iTunes Connect:

1.	 Click on the Validate button, as shown in the following screenshot, to
validate your app.

Ship It! Preparing for the App Store and Publication

[190]

2.	 The following screen will ask you to choose a development team for your
app. If you are a solo developer, you will simply select your own name,
as shown here:

3.	 Xcode will create a distribution provisioning profile for you, and then take
you to a summary screen. Simply click the Validate button:

Chapter 11

[191]

4.	 Xcode will proceed to validate that everything is ready for the App Store,
which may take a few moments. After it completes, you should see a success
message, as shown in the following screenshot. If you receive any errors,
you may be missing an asset or profile that the App Store requires. Read
and respond to the error message, and refer to the iOS Developer Library,
Internet searches, or Stack Overflow for further assistance.

5.	 Click Done, then click the blue Submit to App Store button to upload the
archive to iTunes Connect, as shown here:

Ship It! Preparing for the App Store and Publication

[192]

6.	 You will need to click through the validate steps again, and then finally click
Submit. Xcode will then upload your app to iTunes Connect and display
another success message.

Congratulations! You have successfully uploaded your app to Apple. We are almost
finished submitting our app. Next, we will return to iTunes Connect to push our app
into the review and approval process.

Submitting for review in iTunes Connect
We are finished prepping our project and we are ready to push our hard work into
the Apple review process. Follow these steps to submit your app to Apple:

1.	 Return to the iTunes Connect website and browse to your game's page (on
the versions tab).

2.	 Scroll down to the Build section, and select Click + to add a build before
you submit your app.

3.	 Use the radio button to select the archive you just uploaded, then click
Done, as shown here. It can take a few minutes (or sometimes hours)
for the uploaded build to show in this list:

Chapter 11

[193]

4.	 Click Save in the upper right corner and the Submit for Review button
should light up in blue:

5.	 Click Submit for Review and iTunes Connect will show the Submit for
Review page with three final questions about your game. Apple wants to
know if your app uses cryptography, third party content, or advertising.
I answered no to all three questions for Pierre Penguin. It is important to
answer these questions accurately, so use the question mark icons in iTunes
Connect for more information if you are unsure how to proceed.

6.	 After you answer the Submit for Review questions, click on Submit in the
upper right. This is the final step of the submission process.

If your app submits successfully, iTunes Connect will return to the versions tab
of your app's page. You will see the app status change to Waiting For Review, as
shown here:

Terrific! We have submitted our game to Apple. It is typical for the review
process to take 7-14 days. Do not be discouraged if your game comes back without
approval, Apple commonly requires developers to correct small issues and resubmit
their apps. You are on your way to seeing your game in the App Store!

Ship It! Preparing for the App Store and Publication

[194]

Summary
Many indie developers struggle with the final steps of publishing their games. If you
are ready to publish a game, you are doing a great job! In this chapter, we created
app icons and our launch screen, finalized our App Store marketing information in
iTunes Connect, used Xcode to archive and upload our game, and submitted our
game to Apple for review. You should now be confident in your ability to publish
your games to the App Store.

We accomplished a great deal in the course of this book: we assembled a complete
Swift game from a new project template to publication. As we go our separate ways,
I wish you tremendous luck in your future game development endeavors. My hope
is that you are now confident in starting your own game projects with Swift. I look
forward to seeing your creations in the App Store!

[195]

Index
A
achievement

about 176
adding 176
creating, in iTunes Connect 177, 178
updating, from code 178-180

anchorPoint property 23
app

registering, with iTunes Connect 162-164
artwork, adding to sprite

bee image, adding 25
designing, for retina 27
exceptional art 24
free assets, downloading 24
images, loading with SKSpriteNode 26

assets
app icons, adding 182, 183
art, collecting into texture atlases 30
finalizing 182
Images.xcassets, exploring 29
launch screen, designing 183-185
organizing 29
screenshots, capturing for

supported device 185
Automatic Reference Counting (ARC) 3

B
bats

adding 79
Bat class

adding 79, 80
bee

collision, creating 54, 55

Bee class
creating 40-42

bee texture atlas
bee node, updating 30
building 30
iterating, through texture atlas

frames 31, 32
blade

adding 82
Blade class

adding 82, 83

C
camera

centering, on sprite 33
enhancing 68-70

cast
about 76
bats, adding 79
blade, adding 82
coins, adding 84
mad fly, creating 78
power-up star, adding 76
spooky ghost, adding 80

categories, assigning to game objects
coins 116
enemies 116
ground 115
player 115
star power-up 116

categoryBitMask property 113
coins

adding 84
collecting 125-127

[196]

Coin class
creating 84, 85

collision 112
collisionBitMask property 113
collision events

implementing 111
constant velocity, for Pierre

endless ground loop, creating 71, 72
player progress, tracking 71
setting 70

contact events
about 112
adding, to game 114
categories, assigning to game objects 115
GameScene, preparing for 116-118
physics categories, setting up 114

contactTestBitMask property 113
control scheme, for penguin

gravity, fine-tuning 67
implementing 64-66
touchesBegan, in GameScene 66
wings, spreading 67

Core Motion
about 60
code, implementing 60-62
device movement, polling with 60

D
damage animation 122, 123
damping 53
density 53
development environment

setting up 6
Xcode 6

device movement
polling, with Core Motion 60

dynamic physics bodies 52

E
edge physics bodies 53
encounters, in endless flying

building 93, 94
first encounter, creating 94-98

endless encounters
building 102
EncounterManager class, updating 103
EncounterManager, wiring up in

GameScene 106
metadata, storing in SKSpriteNode

userData property 104, 105
spawning 101

F
force 56
friction 53

G
game

enhancements 5
finish line, crossing 5
marketing 5
monetizing 5

game art
adding, to sprite 24

Game Center
about 5
configuring 165
integrating with 5
opening, in game 170-172
player account, authenticating 167-169
test user, creating 166, 167

game code
structuring 4

game objects
testing 86, 87

game over animation 124, 125
GameScene class

didMoveToView function 12
renovating 49, 50
touchesBegan function 12
update function 12

GameScene, preparing for contact events
about 116-118
console output, viewing 118
contact code, testing 119

Ghost class
adding 81, 82

Ground class
adding 44, 45

[197]

H
heads-up display (HUD)

about 131
adding 131, 132
implementing 132-136

I
Images.xcassets

exploring 29
impulse

using 54, 55
Integrated Development

Environment (IDE) 6
iTunes Connect

app, registering with 162-164
URL 162

iTunes Connect information
finalizing 186, 187
pricing, configuring 188
project, uploading from Xcode 189-191
review, submitting 192, 193

L
leaderboard, of high scores

adding 173
creating, in iTunes Connect 173, 174
updating, from code 175, 176

levels
building 5

levels, never-ending world
designing, with SpriteKit scene

editor 91, 92
empty nodes, using as placeholders 93
level data, separating from game logic 93

limitations, Swift
less resources 3
operating system compatibility 3

M
mad fly

adding 78
enemy assets, locating 78

MadFly class
adding 78, 79

main menu
building 147
launching, on game start 150, 151
menu nodes, creating 148-150
menu scene, creating 148-150
START GAME button, wiring up 151, 152

mass 53
menus

building 5
music

adding 157
background music, playing 157, 158

N
never-ending level

preparing 87, 88
never-ending world

encounters, in endless flying 93, 94
endless encounters, spawning 101
generating 91
levels, designing with SpriteKit

scene editor 91, 92
scenes, integrating into game 98-101
star power-up, spawning 107

nodes
moving, with physics bodies 55, 56

O
Objective-C 1

P
parallax background layers

about 136
background assets, adding 137
background class, implementing 137-139
backgrounds, wiring up in GameScene

class 139-141
particle system, SpriteKit

circle particle asset, adding 142
harnessing 141

[198]

particle emitter, adding to game 145
path particle settings, configuring 144
SpriteKit Particle File, creating 142, 143

penguin texture atlas
adding 47, 48

physics bodies
about 51
dynamic physics 52
edge physics 53
static physics 53

physics simulation mechanics 52, 53
physics system

about 51
dropping like flies 51
ground, solidifying 51

player account, Game Center
authenticating 167-169

Player class
Beekeeper 58
ground, moving 58
physics body, assigning to player 59
physics body shape, creating from

texture 59
retrofitting 58
updating 58

player damage 119
player health

about 119
implementing 119-121

player input
reacting to 4

players control
about 57
camera, enhancing 68-70

positioning
about 22
alignment, with anchor points 23, 24

power-up star
adding 76
art assets, locating 76
implementing 127, 128

project navigator
organizing 85

protocol
following 40

R
restart game menu

about 152
adding 152
GameScene, informing when

player dies 154
GameScene, wiring up for game over 154
HUD, extending 153
touch events, implementing 155

restitution 53
retina, designing for

about 27
ideal asset approach 27
implementing 28
texture atlases 27

S
safety

granting, on game start 146
SKScene class 10
SKSpriteNode class

building 18, 19
sound

adding 157
playing, on game start 159
sound assets, adding to game 157

sound effects
coin sound effect, adding to Coin class 158
playing 158
power-up and hurt sound effects,

adding to Player class 159
spooky ghost 80
sprite

about 18
animation, adding to toolkit 20
artwork, adding 24
camera, centering on 33
centered behavior benefits 23
drawing 18
implementing 32
multiple animations, sequencing 21
recapping 22
SKSpriteNode class, building 18, 19

[199]

SpriteKit
about 4
particle system, harnessing 141

SpriteKit collision vocabulary
about 111
category masks, using in Swift 113
collision, versus contact 112
physics category masks 112, 113

sprite onTap events
touchesBegan, implementing in

GameScene 63
wiring up 62

Star class
adding 76-78

star power-up
spawning 107

static physics bodies 53
Swift

about 1
automatic memory management 3
features 2, 3
interoperability 2
limitations 3
prerequisites 3
strong typing 2
syntax 2
type inference 2

Swift game
creating 7, 8
demo code, clearing 12
demo code, examining 12
project, navigating 9
SpriteKit demo, exploring 9-11

T
texture

adding, to sprite 24
tiling 45

texture atlases 27
touchesBegan

implementing, in GameScene 63, 64

U
UI

building 5

W
wire

running, to ground 45, 46
world node

creating 33-36

X
Xcode

about 6
installing 6

Thank you for buying
Game Development with Swift

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Swift Essentials
ISBN: 978-1-78439-670-1 Paperback: 228 pages

Get up and running lightning fast with this practical
guide to building applications with Swift

1.	 Rapidly learn how to program Apple's newest
programming language, Swift, from the basics
through to working applications.

2.	 Create graphical iOS applications using Xcode
and storyboard.

3.	 Build a network client for GitHub repositories,
with full source code on GitHub.

Learning Swift
ISBN: 978-1-78439-250-5 Paperback: 266 pages

Build a solid foundation in Swift to develop smart
and robust iOS and OS X applications

1.	 Practically write expressive, understandable,
and maintainable Swift code.

2.	 Discover and optimize the features of Swift to
write cleaner and better code.

3.	 This is a step-by-step guide full of practical
examples to create efficient IOS applications.

Please check www.PacktPub.com for information on our titles

iOS Game Programming
Cookbook
ISBN: 978-1-78439-825-5 Paperback: 300 pages

Over 45 interesting game recipes that will help you
create your next enthralling game

1.	 Learn to create 2D graphics with Sprite
Kit, game physics, AI behaviours, 3D game
programming, and multiplayer gaming.

2.	 Use native iOS frameworks for OpenGL to
create 3D textures, allowing you to explore 3D
animations and game programming.

3.	 Explore powerful iOS game features through
detailed step-by-step recipes.

Learning iOS 8 for Enterprise
ISBN: 978-1-78439-182-9 Paperback: 220 pages

Design and develop stunning iOS applications for
business environments

1.	 Learn how to develop iPhone apps in
an easier, step-by-step manner using
real-world solutions.

2.	 Save time, learn faster, and gather knowledge
of new technologies.

3.	 Work with powerful tools like Xcode
and Simulator.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Designing Games with Swift
	Why you will love Swift
	Beautiful syntax
	Interoperability
	Strong typing
	Smart type inference
	Automatic memory management
	An even playing field

	Are there any downsides to Swift?
	Less resources
	Operating system compatibility

	Prerequisites
	What you will learn in this book
	Embracing SpriteKit
	Reacting to player input
	Structuring your game code
	Building UI/menus/levels
	Integrating with Game Center
	Maximizing fun
	Crossing the finish line

	Further research
	Marketing and monetizing your game
	Making games specifically for the desktop
on OSX

	Setting up your development environment
	Introducing Xcode

	Creating our first Swift game
	Navigating our project
	Exploring the SpriteKit Demo
	Examining the demo code
	Cleaning up

	Summary

	Chapter 2: Sprites, Camera, Actions!
	Sharpening our pencils
	Checkpoint 2- A
	Drawing your first sprite
	Building a SKSpriteNode class
	Adding animation to your Toolkit
	Sequencing multiple animations

	Recapping your first sprite

	The story on positioning
	Alignment with anchor points

	Adding textures and game art
	Downloading the free assets
	More exceptional art

	Drawing your first textured sprite
	Add the bee image to your project
	Loading images with SKSpriteNode
	Designing for retina

	Organizing your assets
	Exploring Images.xcassets
	Collecting art into texture atlases
	Updating our bee node to use the texture atlas
	Iterating through texture atlas frames

	Putting it all together
	Centering the camera on a sprite
	Creating a new world

	Checkpoint 2-B
	Summary

	Chapter 3: Mix in the Physics
	Laying the foundation
	Following protocol
	Re-inventing the bee
	The icy tundra
	Another way to add assets
	Adding the Ground class
	Tiling a texture
	Running wire to the ground

	A wild penguin appears!
	Renovating the GameScene class

	Exploring the physics system
	Dropping like flies
	Solidifying the ground

	Checkpoint 3-A
	Exploring physics simulation mechanics
	Bee meets bee
	Impulse or force?

	Checkpoint 3-B
	Summary

	Chapter 4: Adding Controls
	Retrofitting the Player class for flight
	The Beekeeper
	Updating the Player class
	Moving the ground
	Assigning a physics body to the player
	Creating a physics body shape from a texture

	Polling for device movement with
Core Motion
	Implementing the Core Motion code

	Checkpoint 4-A
	Wiring up the sprite onTap events
	Implementing touchesBegan in the GameScene
	Larger than life

	Teaching our penguin to fly
	Listening for touches in GameScene
	Fine-tuning gravity
	Spreading your wings

	Improving the camera
	Pushing Pierre forward
	Tracking player progress
	Looping the ground

	Checkpoint 4-B
	Summary

	Chapter 5: Spawning Enemies, Coins, and Power-ups
	Introducing the cast
	Adding the power-up star
	Locating the art assets
	Adding the Star class

	Adding a new enemy – the mad fly
	Locating the enemy assets
	Adding the MadFly class

	Another terror – bats!
	Adding the Bat class

	The spooky ghost
	Adding the Ghost class

	Guarding the ground – adding the blade
	Adding the Blade class

	Adding the coins
	Creating the coin classes

	Organizing the project navigator
	Testing the new game objects
	Checkpoint 5-A
	Preparing for endless flight

	Summary

	Chapter 6: Generating a Never-Ending World
	Designing levels with the SpriteKit
scene editor
	Separating level data from game logic
	Using empty nodes as placeholders

	Encounters in endless flying
	Creating our first encounter

	Integrating scenes into the game
	Checkpoint 6-A
	Spawning endless encounters
	Building more encounters
	Updating the EncounterManager class
	Storing metadata in SKSpriteNode userData property

	Wiring up EncounterManager in the GameScene class

	Spawning the star power-up at random
	Checkpoint 6-B
	Summary

	Chapter 7: Implementing Collision Events
	Learning the SpriteKit collision vocabulary
	Collision versus contact
	Physics category masks
	Using category masks in Swift

	Adding contact events to our game
	Setting up the physics categories
	Assigning categories to game objects
	The player
	The ground
	The star power-up
	Enemies
	Coins

	Preparing GameScene for contact events
	Viewing console output
	Testing our contact code

	Checkpoint 7-A
	Player health and damage
	Animations for damage and game over
	The damage animation
	The game over animation

	Collecting coins
	The power-up star logic
	Checkpoint 7-B
	Summary

	Chapter 8: Polishing to a Shine – HUD, Parallax Backgrounds, Particles, and More
	Adding a heads-up display
	Parallax background layers
	Adding the background assets
	Implementing a background class
	Wiring up backgrounds in the GameScene class

	Checkpoint 8-A
	Harnessing SpriteKit's particle system
	Adding the circle particle asset
	Creating a SpriteKit Particle File
	Configuring the path particle settings
	Adding the particle emitter to the game

	Granting safety as the game starts
	Checkpoint 8-B
	Summary

	Chapter 9: Adding Menus and Sounds
	Building the main menu
	Creating the menu scene and menu nodes
	Launching the main menu when the game starts
	Wiring up the START GAME button

	Adding the restart game menu
	Extending the HUD
	Wiring up GameScene for game over
	Informing the GameScene class when the player dies
	Implementing touch events for the restart menu

	Checkpoint 9-A
	Adding music and sound
	Adding the sound assets to the game
	Playing background music
	Playing sound effects
	Adding the coin sound effect to the Coin class
	Adding the power-up and hurt sound effects to the Player class
	Playing a sound when the game starts

	Checkpoint 9-B
	Summary

	Chapter 10: Integrating with Game Center
	Registering an app with iTunes Connect
	Configuring Game Center
	Creating a test user

	Authenticating the player's Game Center account
	Opening Game Center in our game
	Checkpoint 10-A
	Adding a leaderboard of high scores
	Creating a new leaderboard in iTunes Connect
	Updating the leaderboard from the code

	Adding an achievement
	Creating a new achievement in iTunes Connect
	Updating achievements from the code

	Checkpoint 10-B
	Summary

	Chapter 11: Ship It! Preparing for the App Store and Publication
	Finalizing assets
	Adding app icons
	Designing the launch screen
	Taking screenshots for each supported device

	Finalizing iTunes Connect information
	Configuring pricing

	Uploading our project from Xcode
	Submitting for review in iTunes Connect
	Summary

	Index

