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Abstract

One of the most fundamental notions of cryptography is that of simulation. It stands behind
the concepts of semantic security, zero knowledge, and security for multiparty computation.
However, writing a simulator and proving security via the use of simulation is a non-trivial task,
and one that many newcomers to the field often find difficult. In this tutorial, we provide a
guide to how to write simulators and prove security via the simulation paradigm. Although we
have tried to make this tutorial as stand-alone as possible, we assume some familiarity with the
notions of secure encryption, zero-knowledge, and secure computation.

Keywords: secure computation, the simulation technique, tutorial

∗This tutorial appeared in the book Tutorials on the Foundations of Cryptography, published in honor of Oded
Goldreich’s 60th birthday.



Contents

1 Introduction 2

2 Preliminaries and Notation 3

3 The Basic Paradigm – Semantic Security 4

4 Secure Computation – Simulation for Semi-Honest Adversaries 6
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Defining Security for Semi-Honest Adversaries . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Oblivious Transfer for Semi-Honest Adversaries . . . . . . . . . . . . . . . . . . . . . 10

5 Simulating the View of Malicious Adversaries – Zero Knowledge 14
5.1 Defining Zero Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Preliminaries – Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Non-Constant Round Zero Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Constant-Round Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Honest-Verifier Zero Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Defining Security for Malicious Adversaries 31
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Modular Sequential Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Determining Output – Coin Tossing 37
7.1 Coin Tossing a Single Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Securely Tossing Many Coins and the Hybrid Model . . . . . . . . . . . . . . . . . . 43

8 Extracting Inputs – Oblivious Transfer 49

9 The Common Reference String Model – Oblivious Transfer 57

10 Advanced Topics 59
10.1 Composition and Universal Composability . . . . . . . . . . . . . . . . . . . . . . . . 59
10.2 Proofs in the Random Oracle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.3 Adaptive Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Acknowledgements 61

References 62



1 Introduction

What is simulation? Although it means different things in different settings, there is a clear
common denominator. Simulation is a way of comparing what happens in the “real world” to what
happens in an “ideal world” where the primitive in question is secure by definition. For example,
the definition of semantic security for encryption compares what can be learned by an adversary
who receives a real ciphertext to what can be learned by an adversary who receives nothing. The
definition states that an encryption scheme is secure if they can both learn approximately the same
amount of information. This is very strange. Clearly, the latter adversary who receives nothing
can learn nothing about the plaintext since it receives no information. However, this is exactly the
point. Since the adversary who receives nothing can learn nothing by triviality (this is an “ideal
world” that is secure by definition), this implies that in the real world, where the adversary receives
the ciphertext, nothing is learned as well.

At first, this seems to be a really complicated way of saying something simple. Why not just
define encryption to be secure if nothing is learned? The problem is that it’s not at all clear how
to formalize the notion that “nothing is learned”. If we try to say that an adversary who receives a
ciphertext cannot output any information about the plaintext, then what happens if the adversary
already has information about the plaintext? For example, the adversary may know that it is
English text. Of course, this has nothing to do with the security of the scheme since the adversary
knew this beforehand and independently of the ciphertext. The simulation-based formulation of
security enables us to exactly formalize this. We say that an encryption scheme is secure if the
only information derived (or output by the adversary) is that which is based on a priori knowledge.
If the adversary receiving no ciphertext is able to output the same information as the adversary
receiving the ciphertext, then this is indeed the case.

It is unclear at this point why this is called “simulation”; what we have described is a comparison
between two worlds. This will be explained throughout the tutorial (first in Section 3). For now,
it suffices to say that security proofs for definitions formulated in this way work by constructing
a simulator that resides in the alternative world that is secure by definition, and generates a view
for the adversary in the real world that is computationally indistinguishable from its real view. In
fact, as we will show, there are three distinct but intertwined tasks that a simulator must fulfill:

1. It must generate a view for the real adversary that is indistinguishable from its real view;

2. It must extract the effective inputs used by the adversary in the execution; and

3. It must make the view generated be consistent with the output that is based on this input.

We will not elaborate on these points here, since it is hard to explain them clearly out of context.
However, they will become clear by the end of the tutorial.

Organization. In this tutorial, we will demonstrate the simulation paradigm in a number of
different settings, together with explanations about what is required from the simulator and proof.
We demonstrate the aforementioned three different tasks of the simulator in simulation-based proofs
via a gradual progression. Specifically, in Section 3 we provide some more background to the
simulation paradigm and how it expresses itself in the context of encryption. Then, in Section 4,
we show how to simulate secure computation protocols for the case of semi-honest adversaries (who
follow the protocol specification, but try to learn more than allowed by inspecting the protocol
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transcript). We begin with this case since semi-honest simulation is considerably easier than in
the malicious case. Next, we demonstrate the three elements of simulation through the following
progression. In Section 5 we show how to simulate in the context of zero-knowledge proofs. In
this context, the corrupted party (who is the verifier) has no private input nor output. Thus,
the simulation consists of the first task only: generating a view that is indistinguishable from the
potentially malicious verifier’s view in an execution with a real prover. Next, we proceed to secure
computation with security in the presence of (static) malicious adversaries. After presenting the
definitions in Section 6, we proceed to the problem of secure coin tossing in Section 7. In this task,
the parties receive output and the simulator must generate a view that is consistent with this output.
Thus, an additional element of the simulator’s role is added. (In this section, we also demonstrate
the hybrid model and the technique of how to write simulation-based proofs in this model.) Then,
in Section 8 we consider the oblivious transfer functionality and show how the simulator extracts
the inputs of the adversary. This completes the three elements of simulation-based proofs. Finally,
in Section 9 we show how to simulate in the common reference string model, and in Section 10 we
briefly discuss some advanced topics related to simulation: concurrent composition, the random
oracle model, and adaptive corruptions.

2 Preliminaries and Notation

For a finite set S ⊆ {0, 1}∗, we write x ∈R S to say that x is distributed uniformly over the set S.
We denote by Un the uniform distribution over the set {0, 1}n. A function µ(·) is negligible if for
every positive polynomial p(·) and all sufficiently large n’s, it holds that µ(n) < 1/p(n). Finally,
we denote the empty string by λ.

Computational indistinguishability. A probability ensemble X = {X(a, n)}a∈{0,1}∗;n∈N is an
infinite sequence of random variables indexed by a ∈ {0, 1}∗ and n ∈ N. In the context of secure
computation, the value a will represent the parties’ inputs and n will represent the security param-
eter. Two probability ensembles X = {X(a, n)}a∈{0,1}∗;n∈N and Y = {Y (a, n)}a∈{0,1}∗;n∈N are said

to be computationally indistinguishable, denoted by X
c≡ Y , if for every non-uniform polynomial-time

algorithm D there exists a negligible function µ(·) such that for every a ∈ {0, 1}∗ and every n ∈ N,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ µ(n).

All parties are assumed to run in time that is polynomial in the security parameter. (Formally,
every party considered has a security parameter tape upon which the value 1n is written. Then
the party is polynomial in the input on this tape. We note that this means that a party may not
even be able to read its entire input, as would occur in the case where its input is longer than its
overall running time.)

Non-uniformity. The above notion of computational indistinguishability is inherently non uni-
form, and this is not merely because we allow D to be non uniform. In order to see why this is
the case, we show what it means if two ensembles are not computationally indistinguishable. We
first write out the requirement of computational indistinguishability in full (not using the notion

“negligible function”). That is, X
c≡ Y if for every non-uniform polynomial-time algorithm D and
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every polynomial p(·) there exists an N ∈ N such that for every n > N and every a ∈ {0, 1}∗,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| < 1

p(n)
.

Now, the contradiction of this is that there exists a D and a polynomial p(·) such that for every
N ∈ N there exists an n > N and an a ∈ {0, 1}∗ for which

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≥ 1

p(n)
.

Stated in short, there exists a D and a polynomial p(·) such that for an infinite number of n’s there
exists an a ∈ {0, 1}∗ for which

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≥ 1

p(n)
.

In particular, this means that for every such n there can be a different a. Now, in order to carry
out a reduction that breaks some cryptographic primitive or assumption if the ensembles are not
computationally indistinguishable, it is necessary for the reduction to know the value of a associated
with its given n. The value a associated with n must therefore be written on the advice tape of
the reduction algorithm, making it inherently non uniform.

Order of quantifiers for computational indistinguishability. We observe that the definition
of computational indistinguishability above is not the same as saying that for every a ∈ {0, 1}∗ it

holds that {X(a, n)}n∈N
c≡ {Y (a, n)}n∈N. In order to see why, observe that this formulation here

guarantees that for every a and every non-uniform probabilistic-polynomial time D, there exists a
negligible function µ such that for every n, D distinguishes X(a, n) from Y (a, n) with probability
at most µ(n). This means that there can be a different negligible function for every a, and this
function can even depend on a. In particular, consider the negligible function µa that equals 1 for
every n < 2|a| and equals 2−n for every n ≥ 2|a|, and assume that for every a ∈ {0, 1}∗ the function
µa is taken. Such a function meets the definition requirements. However, this notion is too weak
to be of use. For example, zero knowledge would become trivial for all languages in NP since the
simulator could output ⊥ if n < 2|x| where x is the statement being proven, and can just find the
witness in the case that n ≥ 2|x|. This problem does not arise with the actual definition because it
requires that there exists a single negligible function for all values of a ∈ {0, 1}∗.

3 The Basic Paradigm – Semantic Security

The birth of complexity-based cryptography (or “provable security”) began with the first rigorous
definition of the security of encryption [24]. The formulation captures the notion that nothing
is learned about the plaintext from the ciphertext. As we discussed in the Introduction, this is
actually very non-trivial to formalize. Since we have motivated this definition in the Introduction,
we proceed directly to present it.

The definition allows the length of the plaintext to depend on the security parameter, and allows
for arbitrary distributions over plaintexts (as long as the plaintexts sampled are of polynomial
length). The definition also takes into account an arbitrary auxiliary information function h of

4



the plaintext that may be leaked to the adversary through other means (e.g., because the same
message x is used for some other purpose as well). The aim of the adversary is to learn some
function f of the plaintext, from the ciphertext and the provided auxiliary information. According
to the definition, it should be possible to learn the same information from the auxiliary information
alone (and from the length of the plaintext), and without the ciphertext.

Definition 3.1 (Def. 5.2.1 in [18]) A private-key encryption scheme (G,E,D) is semantically
secure (in the private-key model) if for every non-uniform probabilistic-polynomial time algorithm A
there exists a non-uniform probabilistic-polynomial time algorithm A′ such that for every probabil-
ity ensemble {Xn}n∈N with |Xn| ≤ poly(n), every pair of polynomially-bounded functions f, h :
{0, 1}∗ → {0, 1}∗, every positive polynomial p(·) and all sufficiently large n:

Pr
k←G(1n)

[
A(1n, Ek(Xn), 1|Xn|, h(1n, Xn)) = f(1n, Xn)

]
< Pr

[
A′(1n, 1|Xn|, h(1n, Xn)) = f(1n, Xn)

]
+

1

p(n)

(The probability in the above terms is taken over Xn as well as over the internal coin tosses of the
algorithms G,E and A or A′.)

Observe that the adversary A is given the ciphertext Ek(Xn) as well as auxiliary information
h(1n, Xn), and attempts to guess the value of f(1n, Xn). Algorithm A′ also attempts to guess the
value of f(1n, Xn), but is given only h(1n, Xn) and the length of Xn. The security requirement
states that A′ can correctly guess f(1n, Xn) with almost the same probability as A. Intuitively,
then, the ciphertext Ek(Xn) does not reveal any information about f(1n, Xn), for any f , since
whatever can be learned by A (given the ciphertext) can be learned by A′ (without being given
the ciphertext).

Semantic security as simulation. Although the definition does not explicitly mention “simula-
tion” or an ideal world, the definition follows this exact paradigm. In the world in which A′ resides,
it is given only the auxiliary information and plaintext length, and not the ciphertext. Thus, A′
resides in an ideal world where, trivially, anything that it learns is from the auxiliary information
and plaintext length only. The proof that A′ can learn as much as A can learn is exactly the
comparison between the real world and the ideal world, as discussed in the Introduction.

It is now possible to explain why this ideal/real world comparison is called simulation. The
reason is that the proof technique used to show that a scheme meets a definition formalized in this
way is simulation. Let us examine how one would go about proving that an encryption scheme
meets Definition 3.1. The main question is how can one construct a machine A′ that outputs
f(1n, Xn) with almost the same probability as A? How can A′ even know what A does? The
answer is that A′ simulates an execution of A and outputs what A does. If A′ could perfectly
simulate such an execution – by providing A with its expected inputs – then A′ would output
f(1n, Xn) with exactly the same probability as A would. However, clearly A′ cannot do this since
it does not receive Ek(Xn) for input. This is solved by having A′ give A an encryption of garbage
instead, as follows:

Simulator A′: Upon input 1n, 1|Xn|, h = h(1n, Xn), algorithm A′ works as follows
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1. A′ runs the key generation algorithm G(1n) in order to receive k (note that A′
indeed needs to be given 1n in order to do this).

2. A′ computes c = Ek
(
0|Xn|

)
as an encryption of “garbage” (note that A′ indeed

needs to be given 1|Xn| in order to do this).

3. A′ runs A(1n, c, 1|Xn|, h) and outputs whatever A outputs.

The simulation that A′ runs is clearly flawed; instead of giving A an encryption of Xn it gives
A an encryption of zeroes. However, if encryptions are indistinguishable, then A should output
f(1n, Xn) with approximately the same probability when given Ek(Xn) as when given Ek

(
0|Xn|

)
.

Otherwise, it would be possible to distinguish such encryptions by seeing whether A succeeds in
outputting f(1n, Xn) or not. Therefore, such a proof proceeds by showing that A indeed cannot
distinguish between two such encryptions. For example, if the encryption works by XORing the
plaintext with the output of a pseudorandom generator, then the reduction works by showing that
any non-negligible difference between the probability that A correctly outputs f(1n, Xn) in the
two cases can be converted into a distinguisher that distinguishes the output of the pseudorandom
generator from random with non-negligible probability.

This modus operandi is actually typical of all simulation-based proofs. The simulator somehow
simulates an execution for the adversary while handing it “garbage” that looks indistinguishable.
Then, the proof proceeds by showing that the simulation is “good”, or else the given assumption
can be broken.

4 Secure Computation – Simulation for Semi-Honest Adversaries

4.1 Background

The model that we consider here is that of two-party computation in the presence of static semi-
honest adversaries. Such an adversary controls one of the parties (statically, and so at the onset
of the computation) and follows the protocol specification exactly. However, it may try to learn
more information than allowed by looking at the transcript of messages that it received and its
internal state. Note that this is a very weak adversary model; if the adversary does anything not
according to specification – even just choosing its random tape in a non-random way – then it may
be able to completely break the protocol (and there are actual examples of natural protocols with
this property). Nevertheless, a protocol that is secure in the presence of semi-honest adversaries
does guarantee that there is no inadvertent leakage of information; when the parties involved
essentially trust each other but want to make sure that no record of their input is found elsewhere,
then this can suffice. Beyond this, protocols that are secure for semi-honest adversaries are often
designed as the first step towards achieving stronger notions of security.

We note that it is much easier to define and prove security for semi-honest adversaries than for
malicious adversaries, since we know exactly what the adversary will do (it just follows the protocol
specification).

4.2 Defining Security for Semi-Honest Adversaries

Two-party computation. A two-party protocol problem is cast by specifying a possibly random
process that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process
as a functionality and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That
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is, for every pair of inputs x, y ∈ {0, 1}n, the output-pair is a random variable (f1(x, y), f2(x, y))
ranging over pairs of strings. The first party (with input x) wishes to obtain f1(x, y) and the second
party (with input y) wishes to obtain f2(x, y).

Privacy by simulation. As expected, we wish to formalize the idea that a protocol is secure
if whatever can be computed by a party participating in the protocol can be computed based on
its input and output only. This is formalized according to the simulation paradigm by requiring
the existence of a simulator who generates the view of a party in the execution. However, since
the parties here have input and output, the simulator must be given a party’s input and output
in order to generate the view. Thus, security here is formalized by saying that a party’s view in
a protocol execution be simulatable given its input and output. This formulation implies that the
parties learn nothing from the protocol execution beyond what they can derive from their input
and prescribed output.

One important point to note is that since the parties are semi-honest, it is guaranteed that
they use the actual inputs written on their input tapes. This is important since it means that the
output is well defined, and not dependent on the adversary. Specifically, for inputs x, y, the output
is defined to be f(x, y), and so the simulator can be given this value. As we will see, this is very
different in the case of malicious adversaries, for the simple reason that a malicious adversary can
ignore the input written on the input tape and can take any other input. (This is similar to the fact
that a malicious verifier in zero knowledge can ignore its random tape and use internal hardcoded
randomness instead.)

Definition of security. We begin with the following notation:

• Let f = (f1, f2) be a probabilistic polynomial-time functionality and let π be a two-party
protocol for computing f . (Throughout, whenever we consider a functionality, we always
assume that it is polynomially-time computable.)

• The view of the ith party (i ∈ {1, 2}) during an execution of π on (x, y) and security parameter
n is denoted by viewπi (x, y, n) and equals (w, ri;mi

1, ...,m
i
t), where w ∈ {x, y} (its input

depending on the value of i), ri equals the contents of the ith party’s internal random tape,
and mi

j represents the jth message that it received.

• The output of the ith party during an execution of π on (x, y) and security parameter n is de-
noted by outputπi (x, y, n) and can be computed from its own view of the execution. We denote
the joint output of both parties by outputπ(x, y, n) = (outputπ1 (x, y, n), outputπ2 (x, y, n)).

Definition 4.1 Let f = (f1, f2) be a functionality. We say that π securely computes f in the
presence of static semi-honest adversaries if there exist probabilistic polynomial-time algorithms S1
and S2 such that{

(S1(1n, x, f1(x, y)), f(x, y))
}
x,y,n

c≡
{

(viewπ1 (x, y, n), outputπ(x, y, n))
}
x,y,n

, and{
(S2(1n, y, f2(x, y)), f(x, y))

}
x,y,n

c≡
{

(viewπ2 (x, y, n), outputπ(x, y, n))
}
x,y,n

,

where x, y ∈ {0, 1}∗ such that |x| = |y|, and n ∈ N.
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Observe that according to the definition, it is not enough for the simulator Si to generate a
string indistinguishable from viewπ

i (x, y). Rather, the joint distribution of the simulator’s out-
put and the functionality output f(x, y) = (f1(x, y), f2(x, y)) must be indistinguishable from
(viewπi (x, y), outputπ(x, y)). This is necessary for probabilistic functionalities. In particular, con-
sider the case that the parties wish to securely compute some randomized functionality f(x, y),
where the parties receive different output. For example, let x and y be lists of data elements, and
let f be a functionality that outputs an independent random sample of x∪y of some predetermined
size to each party. Now, consider a protocol that securely outputs the same random sample to
both parties (and where each party’s view can be simulated). Clearly, this protocol should not be
secure. In particular, party P1 should have no information about the sample received by P2, and
vice versa. Now, consider a simpler definition of security which compares the distribution generated
by the simulator only to the view of the adversary (and not the joint distribution). Specifically,
the definition requires that:{

S1(1n, x, f1(x, y))
}
x,y,n

c≡
{
viewπ1 (x, y, n)

}
x,y,n

, and{
S2(1n, y, f2(x, y))

}
x,y,n

c≡
{
viewπ2 (x, y, n)

}
x,y,n

.

It is not difficult to see that the aforementioned protocol that securely computes the same output
to both is secure under this definition. This is due to the fact that each party’s view consists of a
random sample of x ∪ y, as required, and this view can be simulated. The requirement that each
sample be independent cannot be expressed by looking at each output separately. This therefore
demonstrates that the definition is not satisfactory (since a clearly insecure protocol is “secure by
definition”). For this reason, Definition 4.1 is formulated by looking at the joint distribution.

A simpler formulation for deterministic functionalities. In the case where the functionality
f is deterministic, the aforementioned simpler definition can be used (along with an additional
correctness requirement) since the problem described above does not arise. We first present the
definition, and then explain why it suffices.

The definition has two requirements (a) correctness, meaning that the output of the parties
is correct, and (b) privacy, meaning that the view of each party can be (separately) simulated.
Formally, correctness is the requirement that there exists a negligible function µ such that for every
x, y ∈ {0, 1}∗ and every n,

Pr [outputπ(x, y, n) 6= f(x, y)] ≤ µ(n),

and privacy is the requirement that there exist probabilistic-polynomial time S1 and S2 such that{
S1(1n, x, f1(x, y))

}
x,y∈{0,1}∗;n∈N

c≡
{
viewπ1 (x, y, n)

}
x,y∈{0,1}∗;n∈N , (4.1){

S2(1n, y, f2(x, y))
}
x,y∈{0,1}∗;n∈N

c≡
{
viewπ2 (x, y, n)

}
x,y∈{0,1}∗;n∈N . (4.2)

For the case of deterministic functionalities f , any protocol that meets the correctness and privacy
requirements is secure by Definition 4.1. In order to see this, observe that the distinguisher is given
the indices x, y of the ensemble and so can compute f(x, y) by itself. Thus,{

S1(1n, x, f1(x, y))
}
x,y∈{0,1}∗;n∈N

c≡
{
viewπ1 (x, y, n)

}
x,y∈{0,1}∗;n∈N . (4.3)
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implies that{
(S1(1n, x, f1(x, y)), f(x, y))

}
x,y∈{0,1}∗;n∈N

c≡
{

(viewπ1 (x, y, n), f(x, y))
}
x,y∈{0,1}∗;n∈N . (4.4)

In addition, the correctness requirement guarantees that outputπ(x, y, n) is computationally indis-
tinguishable from f(x, y), implying that{

(viewπ1 (x, y, n), f(x, y))
}
x,y∈{0,1}∗;n∈N

c≡
{

(viewπ1 (x, y, n), outputπ(x, y, n))
}
x,y∈{0,1}∗;n∈N . (4.5)

Combining Equations (4.4) and (4.5), we have that{
(S1(1n, x, f1(x, y)), f(x, y))

}
x,y∈{0,1}∗;n∈N

c≡
{

(viewπ1 (x, y, n), outputπ(x, y, n))
}
x,y∈{0,1}∗;n∈N ,

and so the protocol meets Definition 4.1. This argument works for deterministic functionalities,
but does not work for probabilistic ones. The reason is that Eq. (4.4) needs to be read as the same
sample of f(x, y) = (f1(x, y), f2(x, y)) given to S1 and appearing in the random variable next to it
in the ensemble. However, when we say that the distinguisher can compute f(x, y) by itself, it is
not true that it can sample f(x, y) so that f1(x, y) is the same input given to the simulator. This
problem does not arise for deterministic functionalities, since f(x, y) is a single well-defined value.
Thus, the claim that Eq. (4.3) implies Eq. (4.4) holds only for deterministic functionalities. See [18,
Section 7.2.2] for more discussion on these definitions.

The fact that Definition 4.1 implies privacy and correctness is immediate. Thus, for determin-
istic functionalities, these formulations are equivalent.

Triviality for semi-honest adversaries. We remark that many problems become trivial in
the case of semi-honest adversaries. For example, zero knowledge is trivial since the “prover” can
just say this is correct. Since all parties are semi-honest, including the prover, this guarantees that
the statement is indeed correct. Another example is commitments: in order to “commit” to a
value x, the committer can simply store it locally without sending anything. Then, in order to
“decommit”, the committer can just send the value. This protocol is perfectly hiding. In addition,
it is perfectly binding since a semi-honest adversary follows the specification and so will always send
the correct value. Finally, if a number of parties wish to toss an unbiased coin, then one of them
can simply locally toss a coin and send the result to all others. Since the party tossing the coin is
semi-honest, this guarantees that the coin is unbiased. Having said this, we stress that standard
secure computation tasks – where multiple parties with inputs wish to compute a joint function of
their inputs – are certainly not trivial.

Auxiliary information. In Section 3, and in the definition of security for malicious adversaries
in Section 6, auxiliary information is explicitly provided to the adversary. In contrast, here it
appears that there is no auxiliary information. However, auxiliary input is implicit in the definition
since computational indistinguishability with respect to non-uniform adversaries is required. Thus,
the distinguisher is given auxiliary input. Note that there is no need to provide any auxiliary
information to the adversary running the protocol since it is semi-honest and thus follows the exact
same instructions irrespective of any auxiliary input.

9



4.3 Oblivious Transfer for Semi-Honest Adversaries

In this section, we consider a standard two-party functionality, where both parties have private
inputs and wish to compute an output. We will show how to securely compute the bit oblivious
transfer functionality, defined by f((b0, b1), σ) = (λ, bσ), where b0, b1, σ ∈ {0, 1} [35, 16]. Stated in
words, P1 has a pair of input bits (b0, b1) and P2 has a choice bit σ. The function is such that P1

receives no output (denoted by the empty string λ), and in particular learns nothing about σ. In
contrast, P2 receives the bit of its choice bσ and learns nothing about the other bit b1−σ. This is
called “oblivious transfer” since the first party has two inputs and sends exactly one of the inputs
to the receiver, according to the receiver’s choice, without knowing which is sent. We present the
protocol of [16] in Protocol 4.2, which relies on enhanced trapdoor permutations.

Background – enhanced trapdoor permutations [18, Appendix C.1]. Informally, a family
of trapdoor permutations is a family of bijective functions with the property that randomly-sampled
functions are hard to invert on randomly sampled values (in its range). However, there exists a
trapdoor so that given the trapdoor, the function can be efficiently inverted. Enhanced trapdoor
permutation have the additional property that it is possible to sample values from the range, so
that it is hard to invert the function on these values even when given the coins used for sampling.
Formally, a collection of trapdoor permutations is a collection of functions {fα}α accompanied by
four probabilistic-polynomial time algorithms I, S, F, F−1 such that:

1. I(1n) selects a random n-bit index α of a permutation fα along with a corresponding trap-
door τ . Denote by I1(1

n) the α-part of the output.

2. S(α) samples an (almost uniform) element in the domain (equivalently, the range) of fα. We
denote by S(α; r) the output of S(α) with random tape r; for simplicity we assume that
r ∈ {0, 1}n.

3. F (α, x) = fα(x), for α in the range of I1 and x in the range of S(α).

4. F−1(τ, y) = f−1α (y) for y in the range of fα and (α, τ) in the range of I.

Then, the family is a collection of enhanced trapdoor permutations if for every non-uniform probabilistic-
polynomial time adversary A there exists a negligible function µ such that for every n,

Pr
[
A(1n, α, r) = f−1α (S(α; r))

]
≤ µ(n)

where α ← I1(1
n) and r ∈R {0, 1}n is random. Observe that given α and r, A can compute

y = S(α; r). Thus, A’s task is to invert y, when it is also given the random coins used by S to
sample y. See [18, Appendix C.1] for more discussion on the definition and for constructions of
enhanced trapdoor permutations.

We will also refer to a hard-core predicate B of a family of enhanced trapdoor permutations
[17, Section 2.5]. We say that B is a hard-core predicate of (I, S, F, F−1) if for every non-uniform
probabilistic-polynomial time adversary A there exists a negligible function µ such that for every n,

Pr
[
A(1n, α, r) = B

(
α, f−1α (S(α; r))

)]
≤ 1

2
+ µ(n).

10



The protocol idea. The idea behind the protocol is that P1 chooses an enhanced trapdoor
permutation, and sends the permutation description (without the trapdoor) to P2. Then, P2

samples two elements y0, y1 where it knows the preimage of yσ but does not know the preimage of
y1−σ. Party P2 sends y0, y1 to P1, who inverts them both using the trapdoor, and sends b0 masked
by the hard-core bit of f−1(y0), and b1 masked by the hard-core bit of f−1(y1). Party P2 is able
to obtain bσ since it knows f−1(yσ), but is unable to obtain b1−σ since it does not know f−1(y1−σ)
and so cannot guess its hard-core bit with probability non-negligibly greater than 1/2. In addition,
P1 sees only y0, y1 which are identically distributed (even though P2 generates them differently),
and so learns nothing about P2’s bit σ. See Protocol 4.2 for the protocol description.

PROTOCOL 4.2 (Oblivious Transfer [16])

• Inputs: P1 has b0, b1 ∈ {0, 1} and P2 has σ ∈ {0, 1}. (Both parties have (I, S, F, F−1)
defining a collection of enhanced trapdoor permutations and a hard-core predicate B.)

• The protocol:

1. P1 runs I(1n) to obtain a permutation-trapdoor pair (α, τ). P1 sends α to P2.

2. P2 runs S(α) twice; denote the first value obtained by xσ and the second by y1−σ.
Then, P2 computes yσ = F (α, xσ) = fα(xσ), and sends y0, y1 to P1.

3. P1 uses the trapdoor τ and computes x0 = F−1(α, y0) = f−1
α (y0) and x1 =

F−1(α, y1) = f−1
α (y1). Then, it computes β0 = B(α, x0)⊕ b0 and β1 = B(α, x1)⊕ b1,

where B is a hard-core predicate of f . Finally, P1 sends (β0, β1) to P2.

4. P2 computes bσ = B(α, xσ)⊕ βσ and outputs the result.

We prove the following theorem:

Theorem 4.3 Assume that (I, S, F, F−1) constitutes a family of enhanced trapdoor permutations
with a hard-core predicate B. Then, Protocol 4.2 securely computes the functionality f((b0, b1), σ) =
(λ, bσ) in the presence of static semi-honest adversaries.

Proof: Since this is the first proof in this tutorial, we prove it in excruciating detail; in later
proofs we will not necessarily work through all the fine details. The oblivious transfer functionality
is deterministic, and thus it suffices to use the simpler formulation of security. Correctness is
immediate, and we therefore proceed to the simulation. We construct a separate simulator for each
party (S1 for P1’s view and S2 for P2’s view, as in Definition 4.1).

Consider first the case that P1 is corrupted. Observe that P1 receives no output. Thus, we
merely need to show that a simulator can generate the view of the incoming messages received by
P1. In the protocol, P1 receives a single message consisting of a pair of values y0, y1 in the domain
of fα. Formally, S1 is given (b0, b1) and 1n and works as follows:

1. S1 chooses a uniformly distributed random tape r for P1 (of the length required, which is
what is needed to run I).

2. S1 computes (α, τ)← I(1n; r), using the r from above.

3. S1 runs S(α) twice with independent randomness to sample values y0, y1.
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4. Finally, S1 outputs ((b0, b1), r; (y0, y1)); the pair (y0, y1) simulates the incoming message from
P2 to P1 in the protocol.

Note that S1 cannot sample y0, y1 in the same way as the honest P2 since it does not know P2’s input
σ. Nevertheless, the definition of a collection of trapdoor permutation states that S(α) outputs a
value that is almost uniformly distributed in the domain of fα (and the domain equals the range,
since it is a permutation). Thus, it follows that the distribution over F (α, S(α)) is statistically
close to the distribution over S(α). This implies that

{(F (α, x0), y1)}
s≡ {(y0, y1)}

s≡ {(y0, F (α, x1))}

where α is in the range of I, and x0, x1, y0, y1 are all samples of S(α). The view of P1 includes a
pair as above, along with a uniformly generated tape. Note that the pair (F (α, x0), y1) is exactly
what P1 sees when P2 has input σ = 0, that the pair (y0, y1) is the simulator-generated view, and
that the pair (y0, F (α, x1)) is exactly what P1 sees when P2 has input σ = 1. Thus, we conclude
that for every σ ∈ {0, 1},

{S1(1n, (b0, b1))}
s≡ {viewπ1 ((b0, b1), σ)}

as required.
Next, we proceed to the case that P2 is corrupted, and construct a simulator S2. In this case, we

need to do something very different in the simulation. In particular, we need to construct a view so
that the output defined by that view equals the real output of the protocol. (Observe that a party’s
view includes its input, random tape, and all incoming messages. Thus, by running the protocol
instructions on this view, an output is obtained. This output has to be the “correct” one, or the
distinguisher can easily see that it is not the view of a real execution.) Recall that S2 receives P2’s
input and output, and thus is able to achieve the above. In this protocol, this is achieved by having
S2 set βσ = B(α, xσ) ⊕ bσ, like the real P1. In contrast, S2 is unable to compute β1−σ correctly,
since it does not know b1−σ.

Simulator S2 receives for input 1n plus P2’s input and output bits (σ, bσ). Then:

1. S2 chooses a uniform random tape for P2. Since P2’s randomness is for running S(α) twice,
we denote the random tape by r0, r1.

1

2. S2 runs I(1n) and obtains (α, τ).

3. S2 computes xσ = S(α; rσ) and y1−σ = S(α; r1−σ), and sets x1−σ = F−1(τ, y1−σ).

4. S2 sets βσ = B(α, xσ)⊕ bσ, where bσ is P2’s output received by S2.

5. S2 sets β1−σ = B(α, x1−σ).

6. S2 outputs (σ, r0, r1;α, (β0, β1)).

First, note that by putting the “σ-value” first, the real view of P2 in an execution can be written as:

viewπ2 ((b0, b1), σ) =
(
σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ)⊕ b1−σ)

)
where x0 = S(α; r0) and x1 = S(α; r1). In contrast, the output of the simulator written in this way is:

S2(1n, σ, bσ) =
(
σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ))

)
1In almost all cases, the simulation begins by the simulator choosing a uniform random tape for the party.
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where x0 = S(α; r0) and x1 = S(α; r1). Thus, these are identical when b1−σ = 0. Formally, when
b1−σ = 0, for every σ, bσ ∈ {0, 1} and every n:{

S2(1n, σ, bσ)
}
≡
{
viewπ2 ((b0, b1), σ)

}
.

It therefore remains to show that the view is indistinguishable in the case that b1−σ = 1. The only
difference between the two is whether β1−σ = B(α, x1−σ) or β1−σ = B(α, x1−σ)⊕ 1. Thus, we need
to show that for every σ, bσ ∈ {0, 1},{(

σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ))
)} c≡

{(
σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ)⊕ 1)

)}
where the distribution on the left is that generated by S2 and the distribution on the right is the
real one when b1−σ = 1. Assume by contradiction that there exists a non-uniform probabilistic-
polynomial time distinguisher D, a polynomial p(·) and an infinite series of tuples (σ, bσ, n) such
that

Pr[D(σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ))) = 1]

− Pr[D(σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ)⊕ 1)) = 1] ≥ 1

p(n)
.

(Without loss of generality, we assume that for infinitely many n’s, D outputs 1 with greater or
equal probability when receiving B(α, x1−σ) than when receiving B(α, x1−σ)⊕ 1.) We construct a
non-uniform probabilistic-polynomial time guessing algorithm A that uses D to guess the hard-core
predicate.

Algorithm A is given σ, bσ on its advice tape, and receives (1n, α, r) for input. A’s aim is to guess
B(α, S(α; r)). Algorithm A sets r1−σ = r (from its input), chooses a random rσ, and computes
xσ = S(α; rσ) and βσ = B(α, xσ) ⊕ bσ. Finally, A chooses a random β1−σ, invokes D on input
(σ, r0, r1;α, (βσ, β1−σ)) and outputs β1−σ if D outputs 1, and 1−β1−σ otherwise. Observe that if A
guesses β1−σ correctly then it invokes D on (σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ))), and otherwise
it invokes D on (σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ)⊕ 1)). Thus, if D outputs 1, then A assumes
that it guessed β1−σ correctly (since D outputs 1 with higher probability when given B(α, x1−σ)
than when given B(α, x1−σ) ⊕ 1). Otherwise, it assumes that it guessed β1−σ incorrectly and so
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outputs 1− β1−σ. It therefore follows that:

Pr[A(1n, α, r) = B(α, x)] =
1

2
· Pr[A(1n, α, r) = B(α, x) | β1−σ = B(α, x)]

+
1

2
· Pr[A(1n, α, r) = B(α, x) | β1−σ 6= B(α, x)]

=
1

2
· Pr[D(σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ))) = 1]

+
1

2
· Pr[D(σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ)⊕ 1)) = 0]

=
1

2
· Pr[D(σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ))) = 1]

+
1

2
· (1− Pr[D(σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ)⊕ 1)) = 1])

=
1

2
+

1

2
· Pr[D(σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ))) = 1]

− 1

2
· Pr[D(σ, r0, r1;α, (B(α, xσ)⊕ bσ, B(α, x1−σ)⊕ 1)) = 1]

≥ 1

2
+

1

2p(n)

in contradiction to the assumption that B is a hard-core predicate of f . We conclude that S2’s
output is computationally indistinguishable from the view of P2 in a real execution.

Discussion. We remark that this protocol is a good example of the fact that security in the
presence of semi-honest adversaries guarantees nothing if the corrupted party does not behave
completely honestly. In particular, if P2 generates both y0 and y1 by choosing x0, x1 and computing
y0 = F (α, x0) and y1 = F (α, x1), then it will learn both b0 and b1. Furthermore, P1 has no way of
detecting this at all.

This concludes our treatment of semi-honest adversaries. As we have seen, proving security for
semi-honest adversaries requires constructing a simulator that generates the entire view itself. This
view must be a function of the input and output, since the view fully defines the output. Unlike
in the case of malicious adversaries who may behave in an arbitrary way, semi-honest adversaries
follow the protocol specification exactly. Thus, there is no need to “rewind” them or “interact”
with them, in contrast to what we will see in the sequel below.

5 Simulating the View of Malicious Adversaries – Zero Knowledge

In this section we will consider simulation in the context of zero-knowledge proof systems. Unlike
what we have seen until now, simulation for zero knowledge considers malicious adversaries (in
particular, malicious verifiers) who may behave arbitrarily and not necessarily according to the
protocol specification. However, as we have mentioned in the introduction, in zero knowledge there
are no private inputs or output. Thus, the simulator needs to generate the view of the verifier in a
proof, without the additional complexity of considering inputs and outputs. As we will see below,
this can already be challenging.

We will begin by defining zero knowledge and commitments in Sections 5.1 and 5.2, respectively.
Then, in Section 5.3, we present a non-constant round zero-knowledge proof for any language inNP.
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Additional proof techniques are needed to achieve constant-round zero knowledge, as we show in
Section 5.4. Finally, we highlight the difference between semi-honest and malicious adversaries by
comparing to honest-verifier zero knowledge (which considers semi-honest verifiers) in Section 5.5.

5.1 Defining Zero Knowledge

Notation. Let A be a probabilistic polynomial-time machine. We denote by A(x, y, r) the output
of the machine A on input x, auxiliary-input y and random-tape r. In contrast to the rest of this
tutorial where the parties are assumed to be polynomial time in a separate security parameter n
(see Section 2), in this section we set n = |x| and so A runs in time that is polynomial in the
length of the statement x. We do this in order to be consistent with the standard definitions of
zero knowledge.

Let A and B be interactive machines. We denote by outputB(A(x, y, rA), B(x, z, rB)) the output
of party B in an interactive execution with party A, on public input x, where A has auxiliary-
input y and random-tape rA, and B has auxiliary input z and random-tape rB. We will some-
times drop rA or rB from this notation, which will mean that the random tape is not fixed but
rather chosen at random. For example we denote by outputB(A(x, y), B(x, z)) the random variable
outputB(A(x, y, Um), B(x, z, U ′m′)) where m (resp., m′) is the number of random bits that A (resp.,
B) uses on input of size |x|.

The definition. Loosely speaking, an interactive proof system for a language L involves a prover
P and a verifier V , where upon common input x, the prover P attempts to convince V that x ∈ L.
We note that the prover is often given some private auxiliary-input that “helps” it to prove the
statement in question to V . Such a proof system has the following two properties:

1. Completeness: this states that when honest P and V interact on common input x ∈ L, then
V is convinced of the correctness of the statement that x ∈ L (except with at most negligible
probability).

2. Soundness: this states that when V interacts with any (cheating) prover P ∗ on common input
x 6∈ L, then V will be convinced with at most negligible probability. (Thus V cannot be tricked
into accepting a false statement.)

A formal definition of interactive proofs can be found in [17, Section 4.2].
We now recall the definition of zero knowledge [25]. Informally speaking, a proof is zero knowl-

edge if there exists a simulator that can generate the view of the verifier from the statement alone.
We remark that the corrupted verifier may output anything it wishes, including its view. Thus,
one may equivalently consider the view of the verifier and its output. For the sake of this tutorial,
we will only consider black-box zero knowledge [23, 17], where the simulator receives only oracle
access to the verifier. In addition, we will consider only NP languages. We therefore present this
definition only.

Definition 5.1 Let (P, V ) be an interactive proof system for an NP-language L, and let RL be the
associated NP-relation. We say that (P, V ) is black-box computational zero knowledge if there exists
a probabilistic-polynomial time oracle machine S such that for every non-uniform probabilistic-
polynomial time algorithm V ∗ it holds that:{

outputV ∗(P (x,w), V ∗(x, z))
}
(x,w)∈RL,z∈{0,1}∗

c≡
{
SV ∗(x,z,r,·)(x)

}
x∈L,z∈{0,1}∗
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where r is uniformly distributed, and where V ∗(x, z, r, ·) denotes the next-message function of the
interactive machine V ∗ when the common input x, auxiliary input z and random-tape r are fixed
(i.e., the next message function of V ∗ receives a message history ~m and outputs V ∗(x, z, r, ~m)).

In some cases, the simulator (and verifier) are allowed to run in expected polynomial-time and not
strict polynomial-time. We will relate to this later.

We remark that in our definition above, we fix the random tape of the verifier. With very few
exceptions (e.g., the non-black uniform zero-knowledge protocol of [1]), the ability to set the random
tape of the adversary does not help. This is due to the fact that the adversary can completely ignore
its random tape, and can use a pseudorandom function applied to its history with an internally
hardcoded key. Thus, in most cases of simulation, one can just ignore the random tape. Note that
if the definition is not black box, then it is necessary to choose a random tape for the adversary.
However, in most cases, this can just be chosen to be uniformly distributed of the appropriate
length, and then ignored.

5.2 Preliminaries – Commitment Schemes

We will use commitment schemes in a number of places throughout the tutorial. We denote by Com
a non-interactive perfectly binding commitment scheme. Let c = Comn(x; r) denote a commitment
to x using random string r and with security parameter n. We will typically omit the explicit
reference to n and will write c = Com(x; r). Let Com(x) denote a commitment to x using uniform
randomness. Let decom(c) denote the decommitment value of c; to be specific, if c = Com(x; r)
then decom(c) = (x, r).

A formal definition of commitment schemes can be found in [17, Section 4.4.1]. Informally,
perfect binding is formalized by saying that the sets of all commitments to different values are
disjoint; that is, for all x1 6= x2 it holds that Cx1 ∩ Cx2 = ∅ where Cx1 = {c | ∃r : c = Com(x1; r)}
and Cx2 = {c | ∃r : c = Com(x2; r)}. Computational hiding can be formalized in multiple ways, and
basically states that commitments to different strings are computationally indistinguishable. For

bit commitments, this can easily be stated by requiring that C0
c≡ C1 where Cb = {Com(b;Un)}n∈N

is the ensemble of commitments to bit b.

LR-security of commitments. One of the proofs below is made significantly easier by using a
definition of security of commitments that is both adaptive and already includes security for multiple
commitments. We present a definition that is based on the LR-oracle definition of encryption [4].
The LR-oracle (Left or Right oracle) definition is formulated by providing the adversary with an
oracle that receives two equal-length inputs, and either always returns a commitment to the first
(left) input or always returns a commitment to the second (right) input. The task of the adversary is
to determine whether it is receiving left or right commitments. This definition is much easier to work
with, as we will see below, partly because the hybrid argument relating to multiple commitments is

already built in. We first define the oracle as LRbCom(x0, x1) =

{
Com(xb) if |x0| = |x1|
⊥ otherwise

, where

Com(x) denotes a (non-interactive) commitment to x. We define the LR experiment with a non-
interactive perfectly-binding commitment scheme Com and an adversary A who is either given
LR0

Com or LR1
Com and attempts to distinguish between these cases. The experiment is as follows:

Experiment LR-commitCom,A(1n):
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1. Choose a random b← {0, 1}.
2. Set b′ ← ALRb

Com(·,·)(1n).

3. Output 1 if and only if b′ = b.

The following can be proven via a standard hybrid argument:

Theorem 5.2 If Com is a non-interactive perfectly-binding commitment scheme with security for
non-uniform adversaries, then for every non-uniform probabilistic-polynomial time adversary A
there exists a negligible function µ such that

Pr [LR-commitCom,A(1n) = 1] ≤ 1

2
+ µ(n).

We remark that non-uniform security is needed, as we will see below.

5.3 Non-Constant Round Zero Knowledge

Consider the zero-knowledge proofs for NP of 3-coloring [22] and Hamiltonicity [6]. Both of these
protocols work by the prover first sending commitments. Next, the verifier sends a “challenge”
asking the prover to open some of the commitments. Finally, the prover sends the appropriate
decommitments, and the verifier checks that the results are as expected. In the case of 3-coloring,
the prover commits to a random valid coloring, and the verifier asks to open the colors associated
with a single edge. In the case of Hamiltonicity, the prover commits to the adjacency matrix of a
random permutation of the graph, and the verifier asks to either open the entire graph or to open a
simple cycle. In both of these cases, if the prover knows the challenge of the verifier ahead of time,
then it can easily prove without knowing the required NP-witness. Let us focus on the 3-coloring
case. If the prover does not know a 3-coloring, then it cannot commit to a valid coloring. Thus,
there must be at least one edge in the graph which assigns the same color to both endpoints of
the edge in the committed coloring by the prover. If the verifier asks to open the colors of this
edge, then the prover will be caught cheating. Thus, the prover can cheat with probability at most
1/|E| (where E is the set of edges). By repeating the proof n · |E| times (where n is the number of
nodes in the graph), we have that the prover can get away with cheating with probability at most(

1− 1
|E|

)n·|E|
< e−n which is negligible. Thus, this proof is sound.

Regarding zero knowledge, observe that in each execution a new random coloring of the edges is
committed to by the prover, and the verifier only sees the colors of a single edge. Thus, the verifier
simply sees two (different) random colors for the endpoints of the edges each time. This clearly
reveals nothing about the coloring of the graph. We stress that such an argument is insufficient
and we must prove this intuition by constructing a simulator. The idea behind the simulation here
is that if the simulator knows the edge to be queried ahead of time, then it can commit to random
different colors on the endpoints of that edge and to garbage elsewhere. By the hiding property of
the commitment scheme, this will be indistinguishable. As we will see, the simulator will simply
repeatedly guess the edge that is to be queried ahead of time until it is correct.

The rewinding technique (with commitments as envelopes). We begin by describing how
to construct a simulator when we model the commitments as perfect envelopes that reveal nothing
until opened. The key tool for constructing a simulator is that of rewinding. Specifically, the
simulator invokes the verifier, and guesses a random edge e = (vi, vj) ∈R E with the hope that the
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PROTOCOL 5.3 (Zero-Knowledge Proof for 3-Coloring)

• Common input: a graph G = (V,E) with V = {v1, . . . , vn}

• Auxiliary input for the prover: a coloring of the graph ψ : V → {1, 2, 3} such that for every
(vi, vj) ∈ E it holds that ψ(vi) 6= ψ(vj)

• The proof system: Repeat the following n · |E| times (using independent randomness each
time):

1. The prover selects a random permutation π over {1, 2, 3}, defines φ(v) = π(ψ(v)) for
all v ∈ V , and computes ci = Com(φ(vi)) for all i. The prover sends the verifier the
commitments (c1, . . . , cn).

2. The verifier chooses a random edge e ∈R E and sends e to the prover.

3. Let e = (vi, vj) be the edge received by the prover. The prover sends
decom(ci), decom(cj) to the verifier.

4. Let φ(vi) and φ(vj) denote the respective decommitment values from ci and cj . The
verifier checks that the decommitments are valid, that φ(vi), φ(vj) ∈ {1, 2, 3}, and
that φ(vi) 6= φ(vj). If not, it halts and outputs 0.

If the checks pass in all iterations, then the verifier outputs 1.

verifier will query that edge. The simulator then sends the verifier (its oracle in the black-box case)
commitments to a coloring whereby vi and vj are given two different random colors in {1, 2, 3} and
zeroes for the rest. If the verifier replies with the edge e′ = e, then the simulator opens the envelopes
for the nodes in e, and the simulation of this iteration is complete. Otherwise, the simulator rewinds
the verifier to the beginning of the iteration and tries again, this time choosing a new random edge.
This is repeated until e′ = e and so the simulator succeeds. (In order to get negligible soundness
error, many sequential executions of the protocol are run, and so after it succeeds the simulator
proceeds to the next iteration. This essentially means fixing the transcript of incoming messages to
this point, and continuing with the residual verifier that is defined by the fixed transcript prefix.)
Since the verifier has no way of knowing which edge e the simulator chose (since this fact is hidden
inside unopened envelopes), the expected number of repetitions required is |E|, and probability
that more than n · |E| repetitions are needed is negligible. Note that the distribution over the view
of the verifier in the simulation is identical to its view in a real execution. This is due to the fact
that in both a real proof and in a simulation the verifier sees a set of “envelopes” and an opening
to two different random colors. The difference between the two is that in a real proof no rewinding
took place, in contrast to the simulation. However, this fact is not evident in the verifier’s final
view, and so they both look the same.

This concept of rewinding is often confusing at first sight. We therefore add two remarks. First,
one may wonder how it is possible to “technically” rewind the verifier. In fact, when considering
black-box zero knowledge, this is trivial. Specifically, the simulator is given oracle access to the
next message function V ∗(x, z, r, ·) of the verifier. This means that it provides a transcript ~m =
(m1,m2, . . .) of incoming messages and receives back the next message sent when V ∗ has input x,
auxiliary input z, random tape r and incoming messages ~m. Now, rewinding is essentially S calling
its oracle with (r, (m1,m2,m3)) and then with (r, (m1,m2,m

′
3)), and so on. It is worthwhile also

translating this notion of rewinding into modern computing terms. Virtual machines (VMs) are
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now very common. Snapshots of a VM can be taken at any time, and it is possible to rewind a VM
by simply restoring the snapshot. The VM then continues from exactly the same state as before,
and it has no way of knowing that this “rewinding” took place. This is exactly what a simulator
does with the verifier.

A second point that is sometimes confusing is why the zero knowledge property, and in particular
the existence of a simulator, does not contradict soundness. If the simulator can prove the theorem
without knowing the witness (and possibly even if the theorem is not true), then what prevents a
cheating prover from doing the same? The answer is that the simulator has additional power that
the prover does not have. In our example above, this power is the ability to rewind the verifier; a
real prover cannot rewind the verifier, in contrast to the simulator. Conceptually, this makes a lot
of sense. The motivation behind the simulation paradigm is that whatever the verifier can learn in
a real interaction with the prover it can learn by itself. The verifier can indeed generate its view by
applying the simulator to itself and rewinding, as described above. The prover, who is an external
entity to the verifier, cannot do this.

The above analysis and explanation relate to the case that commitments are modeled as ideal
envelopes. It is important to stress that this modeling of commitments is an oversimplification that
bypasses the main technical difficulties involved when proving that the simulation works. First,
it is necessary to show that the view of the verifier is indistinguishable in the simulation and
real execution. This requires a reduction to the hiding property of commitments, since the actual
distribution is very different. In particular, the real prover commits to a valid coloring of the graph,
whereas the commitment in the simulation is to zeroes except for the nodes on the opened edge.
A second, more subtle, issue is that it is required to prove that the simulation halts successfully
within n·|E| attempts, except with negligible probability. In the “envelopes” case, this is immediate.
However, when using actual commitments that are just computationally hiding, this needs a proof
(perfectly-hiding commitments could be used, but then the protocol would only be computationally
sound, and a reduction to the computationally-binding property of the commitment would anyway
be needed in order to prove soundness). In order to see the issue that arises here, consider the
case of a verifier who can break the commitments. Such a verifier could work as follows: if the
committed values constitute a valid coloring then send a random edge; otherwise, if they are all
zeroes except for two nodes, then send any edge apart from the one connecting those two nodes.
Clearly, when the simulator works with this verifier, it never succeeds. Now, by the hiding property
of commitments, this should not happen. However, it shows that the success of the simulator also
depends on the computational hiding of the commitments, and thus a reduction to this property is
needed as well. Formally, this can be solved by proving – via a reduction to the hiding property of
commitments – that the probability that any given edge is queried by the verifier when it receives
valid-prover commitments in the first message is negligibly close to the probability that the edge is
queried when it receives (garbage) simulator-generated commitments. Our actual proof will work
differently, since we will first show that there exists a hypothetical simulator who receives the
correct coloring and generates a distribution identical to a real proof, and then we will show that
the actual simulator generates a distribution that is computationally indistinguishable from the
hypothetical one. In addition, we prove that the hypothetical simulator halts successfully within
n·|E| attempts except with negligible probability. Thus, the fact that the actual simulator generates
a distribution that is computationally indistinguishable from the hypothetical one also implies that
it halts successfully within n · |E| attempts, except with negligible probability.
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On dealing with aborts. At some point in the simulation, it is possible that V ∗ does not reply
with a valid edge. In this case, we have to specify what the simulator should do. In fact, the
protocol itself must specify to the honest prover what to do in such a case. One strategy is to state
that if the verify returns an illegal value, then the honest prover halts the execution. This certainly
works and will be necessary in later cases (e.g., constant-round zero knowledge), where the prover is
unable to proceed if the verifier does not respond with a valid value. However, in this specific case,
the easiest thing to do is to have the real prover interpret any invalid reply as a default edge. In this
case, the simulator will deal with an invalid message in the same way. According to this strategy,
there are actually no invalid messages from V ∗, and this somewhat simplifies the simulation.

A formal proof of security. We are now ready to prove the zero-knowledge property of the
3-coloring protocol (we do not prove soundness since the focus of this tutorial is on simulation).

Theorem 5.4 Let Com be a perfectly-binding commitment scheme with security for non-uniform
adversaries. Then, the 3-coloring protocol of [22] is black-box computational zero knowledge.

Proof: We begin by describing the simulator. S is given a graph G = (V,E) with V = {v1, . . . , vn}
and oracle access to some probabilistic-polynomial time V ∗(x, z, r, ·), and works as follows:

1. S initializes the message history transcript ~m to be the empty string λ.

2. Repeat n · |E| times:

(a) S sets j = 1.

(b) S chooses a random edge (vk, v`) ∈R E and chooses two random different colors for vk
and v`. Formally, S chooses φ(vk) ∈R {1, 2, 3} and φ(v`) ∈R {1, 2, 3} \ {φ(vk)}. For all
other vi ∈ V \ {vk, v`}, S sets φ(vi) = 0.

(c) For every i = 1, . . . , n, S computes ci = Com(φ(vi)).

(d) S “sends” the vector (c1, . . . , cn) to V ∗. Formally, S queries ~m concatenated with this
vector to its oracle (indeed S does not interact with V ∗ and so cannot actually “send”
it any message). Let e ∈ E be the reply back from the oracle.

(e) If e = (vk, v`), then S completes this iteration by concatenating the commitments
(c1, . . . , cn) and (decom(ck), decom(c`)) to ~m. Formally, S updates the history string
~m← (~m, (c1, . . . , cn), (decom(ck), decom(c`))).

(f) If e 6= (vk, v`) then S sets j ← j + 1. If j = n · |E|, then S outputs a fail symbol ⊥. Else
(when j 6= n · |E|), S returns to Step 2b (i.e., S tries again for this i). This return to
Step 2b is the rewinding of V ∗ by the simulator.

3. S outputs whatever V ∗ outputs on the final transcript ~m.

It is clear that S runs in polynomial-time, since each repetition runs for at most n · |E| iterations,
and there are n · |E| repetitions.

In order to prove that S generates a transcript that is indistinguishable from a real transcript,
we need to prove a reduction to the security of the commitment scheme. We begin by constructing
an alternative simulator S ′ who is given a valid coloring ψ as auxiliary input. We stress that S ′
is not a valid simulator, since it is given ψ. Rather, it is a thought experiment used in the proof.
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Now, S ′ works in exactly the same way as S (choosing e at random, rewinding, and so on) except
that in every iteration it chooses a random permutation π over {1, 2, 3}, sets φ(v) = π(ψ(v)), and
computes ci = Com(φ(vi)) for all i, exactly like the real prover.

We begin by proving that conditioned on S ′ not outputting ⊥, it generates output that is
identically distributed to V ∗’s output in a real proof. That is, for every V ∗, every (G,ψ) ∈ RL and
every z ∈ {0, 1}∗,{

outputV ∗(P (G,ψ), V ∗(G, z))
}
≡
{
S ′V

∗(G,z,r,·)
(G,ψ) | S ′V

∗(G,z,r,·)
(G,ψ) 6= ⊥

}
. (5.1)

In order to see this, observe that the distribution over the commitments viewed by V ∗ is identical
to a real proof (since they are commitments to a random permutation of a valid coloring). The only
difference is that S ′ chooses an edge e ahead of time and only concludes an iteration if the query
sent by V ∗ equals e. However, since e is chosen uniformly every time, and since V ∗ is rewound to
the beginning of each iteration until it succeeds (and we condition on it indeed succeeding), these
have identical distributions.

Next, we prove that S ′ outputs ⊥ with at most negligible probability. Observe that the commit-
ments provided by S ′ reveal no information whatsoever about the choice of e in that iteration (this
is due to the fact that the commitments are the same for every choice of e). Thus, the probability
that a single iteration succeeds is exactly 1/|E|, implying that S ′ outputs ⊥ for one of the i’s in the

simulation with probability
(

1− 1
|E|

)n·|E|
< e−n. There are n · |E| iterations, and so by the union

bound, S ′ outputs ⊥ somewhere in the simulation with probability less than n · |E| · e−n, which is
negligible. This implies that2{

S ′V
∗(G,z,r,·)

(G,ψ) | S ′V
∗(G,z,r,·)

(G,ψ) 6= ⊥
}

c≡
{
S ′V

∗(G,z,r,·)
(G,ψ)

}
. (5.2)

Finally, we prove that the outputs of S and S ′ are computationally indistinguishable:{
S ′V

∗(G,z,r,·)
(G,ψ)

}
c≡
{
SV ∗(G,z,r,·)(G)

}
. (5.3)

Intuitively, we prove this via a reduction to the security of the commitment scheme. Specifically, as-
sume by contradiction, that there exists a probabilistic-polynomial time verifier V ∗, a probabilistic-
polynomial time distinguisher D, and a polynomial p(·) such that for an infinite sequence (G,ψ, z)
where (G,ψ) ∈ R and z ∈ {0, 1}∗,∣∣∣Pr

[
D
(
G,ψ, z,S ′V

∗(G,z,r,·)
(G,ψ)

)
= 1
]
− Pr

[
D
(
G,ψ, z,SV ∗(G,z,r,·)(G)

)
= 1
]∣∣∣ ≥ 1

p(n)
,

where n denotes the number of nodes in G, and R denotes the 3-coloring relation. Without loss
of generality, assume that D outputs 1 with higher probability when it receives the output of S ′
than when it receives the output of S. We construct a non-uniform probabilistic polynomial-time
adversary A for the commitment experiment LR-commit as defined in Section 5.2. Adversary A
receives (G,ψ, z) on its advice tape (for n, where G has n nodes), and works as follows:

1. A initializes V ∗ with input graph G, auxiliary input z and a uniform random tape r.

2Observe that for all events A and F , Pr[A] = Pr[A ∧ F ] + Pr[A ∧ ¬F ] ≤ Pr[F ] + Pr[A | ¬F ]. Thus, if F occurs
with negligible probability, then |Pr[A]− Pr[A|¬F ]| is negligible.
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2. Then, A runs the instructions of S ′ with input (G,ψ) and oracle V ∗(x, z, r; ·), with some
changes. First, note that A knows ψ and so can compute φ(v) = π(ψ(v)) just like S ′. Next,
A does not generate the commitments by computing ci = Com(φ(vi)) for all i, as S ′ does.
Rather, A works as follows. For every iteration of the simulation:

(a) For the randomly chosen edge e = (vk, v`), adversary A generates commitments ck =
Com(φ(vk)) and c` = Com(φ(v`)) by itself.

(b) For all other i (i.e., for all i ∈ {1, . . . , n}\{k, `}), adversary A queries its LR-oracle with
the pair (0, φ(i)). Denote by ci the commitment received back.

A simulates S ′ querying V ∗ with the commitments (c1, . . . , cn) as a result of the above.
Observe that A can decommit to vk, v` as needed by S ′, since it computed the commitments
itself.

3. When S ′ concludes, then A invokes D on the output generated by S ′, and outputs whatever
D outputs.

Observe that when b = 1 in the LR-oracle experiment, the commitments c1, . . . , cn are generated
as valid commitments to a random coloring, and the distribution over V ∗’s view is identical to an
execution of S ′. Thus (conditioning on the b chosen in LR-commit),

Pr [LR-commitCom,A(1n) = 1 | b = 1] = Pr
[
D
(
G, z,S ′V

∗(G,z,r,·)
(G,ψ)

)
= 1
]
.

Likewise, when b = 0 in the LR-oracle experiment, then the commitments c1, . . . , cn are all 0
except for the commitments cj , ck which are to two random different colors. Thus, this is exactly
the distribution generated by S, and

Pr [LR-commitCom,A(1n) = 1 | b = 0] = Pr
[
D
(
G, z,SV ∗(G,z,r,·)(G)

)
= 0
]
.

We have:

Pr [LR-commitCom,A(1n) = 1]

=
1

2
· Pr [LR-commitCom,A(1n) = 1 | b = 1] +

1

2
· Pr [LR-commitCom,A(1n) = 1 | b = 0]

=
1

2
· Pr

[
D
(
G, z,S ′V

∗(G,z,r,·)
(G,ψ)

)
= 1
]

+
1

2
· Pr

[
D
(
G, z,SV ∗(G,z,r,·)(G)

)
= 0
]

=
1

2
· Pr

[
D
(
G, z,S ′V

∗(G,z,r,·)
(G,ψ)

)
= 1
]

+
1

2
·
(

1− Pr
[
D
(
G, z,SV ∗(G,z,r,·)(G)

)
= 1
])

=
1

2
+

1

2
·
(

Pr
[
D
(
G, z,S ′V

∗(G,z,r,·)
(G,ψ)

)
= 1
]
− Pr

[
D
(
G, z,SV ∗(G,z,r,·)(G)

)
= 1
])

≥ 1

2
+

1

2p(n)
.

This contradicts the security of Com, as stated in Theorem 5.2. Combining Equations (5.1)–(5.3),
we conclude that {

outputV ∗(P (G,ψ), V ∗(G, z))
}

c≡
{
SV ∗(G,z,r,·)(G)

}
thereby completing the proof.

22



Discussion on the proof technique. The main technique used in the above proof is to construct
an alternative, hypothetical simulator S ′ who is given the actual coloring. Of course, S ′ could work
by just playing the real prover. However, this would not help us prove the indistinguishability of S.
Thus, we design S ′ to work in exactly the same way as S, except that it generates commitments that
are the same as the real prover. In this way, we separate the two differences between S and a real
prover: (a) the flow of S that involves choosing e and rewinding, and (b) the commitments that are
incorrectly generated. The only difference between the real prover and S ′ is the flow, and the first
part of the proof shows that this results in at most a negligible difference. Then, the second part of
the proof, showing that the outputs of S ′ and S are computationally indistinguishable, works via
reduction to the commitments. This technique is often used in simulation-based proofs, and in some
cases there are series of simulators that bridge the differences between the real execution and the
simulation. This is similar to sequences of hybrids in game-based proofs, with the only difference
being that the sequence here is from the simulation to the real execution (or vice versa). We
recommend reading more about this technique in the tutorial on sequences of games by Shoup [37].

5.4 Constant-Round Zero-Knowledge

Constant-round zero-knowledge introduces a number of difficulties regarding simulation. The pro-
tocol itself, as described in [20], is actually very simple and straightforward. However, its proof
is far more involved than it seems, and requires new techniques that are important in general. In
addition, it highlights difficulties that arise in many places when carrying out simulation.

Background. Before proceeding, we first consider simply running the n · |E| executions of the
3-coloring protocol in parallel, instead of sequentially. At first sight, this does not seem to make
a difference to the zero-knowledge property, since the order of execution does not change what
is revealed. Despite this, all known simulation attempts fail, and so we simply have no way of
proving that this is still zero knowledge. In order to see why, in the suggested parallel protocol,

the prover sends N
def
= n · |E| vectors of commitments to random colorings, the verifier responds

with N edges, and the prover opens the commitments of the two nodes of the edge. The only way
that we know to simulate this protocol is for the simulator to guess the query edges ahead of time.
However, the probability of correctly guessing N random edges before the verifier sends them is just
|E|−n|E| which is exponentially small. It is important to understand that rewinding does not solve
the problem, since the verifier can choose different random edges each time, even if it has a fixed
random tape. For example, the verifier could have a key to a pseudorandom function hardwired,
and can choose its randomness in every execution as a function of the (entire) first message that
it receives. As a result, when rewinding, effectively new randomness is used each time and the
simulator would have to try an exponential number of rewinding attempts. Indeed, Goldreich and
Krawczyk showed that this parallel protocol is not black-box zero knowledge, and in fact that no
constant-round public-coin proof for a language not in BPP is black-box zero knowledge [21] (where
public coin means that the verifier’s queries are just random coin tosses). Despite this, we have no
proof that it is not zero knowledge in general. We stress again, that the lack of a known attack on
a protocol is not sufficient to conclude that it is secure. Thus, an alternative protocol is needed.

The solution presented by Goldreich and Kahan to this problem is to simply have the verifier
commit to its query before the prover sends its commitments. This prevents a malicious verifier
from changing its query during rewinding. Details appear in Protocol 5.5.

Before discussing zero knowledge, we remark that the commitments from the verifier are per-
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PROTOCOL 5.5 (The Goldreich-Kahan Proof System [20])
The proof system of [20] works as follows (we provide a clear, yet rather informal description
here):

1. The prover sends the first message of a (two-round) perfectly-hiding commitment scheme,
denoted Comh. See [17, Section 4.9.1] for a definition of such commitments.

2. The verifier chooses N
def
= n · |E| random edges e1, . . . , eN ∈R E. Let q = (e1, . . . , eN ) be

the query string; the verifier commits to q using the perfectly-hiding commitment Comh

3. The prover prepares the first message in N parallel executions of the basic three-round
proof system in Protocol 5.3 (i.e., commitments to N independent random colorings of
the graph), and sends commitments to all using the perfectly-binding commitment scheme
Com.

4. The verifier decommits to the string q.

5. If the verifier’s decommitment is invalid, then the prover aborts. Otherwise, the prover
sends the appropriate decommitments in every execution. Specifically, if ei is the edge in
the ith execution, then the prover decommits to the nodes of that edge in the ith set of
commitments to colorings.

6. The verifier outputs 1 if and only if all checks pass (as in the original proof system).

fectly hiding, whereas the commitments from the prover are perfectly binding. This is necessary
for proving soundness, but since our focus here is simulation, we will not relate to this issue from
here on; see [20] or [17, Section 4.9] for a proof of soundness.

The main difference between this protocol and the simple parallel repetition of the basic
3-coloring protocol is the fact that the verifier is committed ahead of time to its queries. Thus,
the simulator can first receive the verifier’s commitments, and can then send garbage commitments
and receive back the decommitments. After receiving the decommitments the simulator knows all
of the queries, and can rewind the verifier back to the point after it sent the commitments and
give new prover commitments like in the simulation of a single execution. This works because the
verifier is committed to its edge queries before it receives the prover commitments, and so cannot
change them. Thus, the simulator can learn the edges (by giving garbage commitments first) and
can then provide “good” commitments for which it is able to decommit and complete the proof.

Despite its simplicity, there are a number of issues that must be dealt with when translating
this into a formal proof. First, we have to deal with the fact that the verifier may not decommit
correctly in Step 4. This may seem simple – if this happens, then just have the simulator abort
as well. This makes sense since in a real proof the prover would abort in such a case. However,
the problem is that the verifier may sometimes decommit correctly and sometimes not decommit
correctly, and this decision may be taken as a result of the messages it receives (specifically, the
commitments sent by the prover). If this is the case, and the verifier aborts with some probability p,
then the simulator will abort with probability approximately 2p.3 Note that this problem is not
solved by interpreting an invalid decommit as default edges, as in Protocol 5.3, since the simulator
will prepare commitments to default edges if the verifier aborted the first time and will not be able

3This holds since the probability of abort when the simulator sends the first garbage commitments equals p, and
probability of abort when the simulator sends the good commitments the second time (if a first abort didn’t occur)
is also p. Thus, we have that the simulator aborts with probability p + (1− p) · p = 2p− p2.
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to answer if the verifier does not abort the second time, or vice versa.
The following strategy for the simulator S addresses this problem:

1. S invokes V ∗ and internally hands it an honestly-generated first (receiver) message of the
perfectly-hiding commitment protocol.

2. S receives V ∗’s reply consisting of a commitment c.

3. S sends V ∗ garbage commitments and receives its decommitment. If the decommitment is
not valid, it aborts. Otherwise, denote the decommitted string by q = (e1, . . . , eN ).

4. S rewinds V ∗ to the beginning (sending the same first message of the perfectly-hiding com-
mitment protocol) and receives its commitment c. (Since V ∗ has a fixed random tape and
this is the first step of the protocol, it always sends the same commitment c.) Then, S
hands simulated prover commitments to V ∗ that can be answered according to q; i.e., send
commitments to random distinct colors on the nodes of the edge committed by the verifier
and to 0 elsewhere. If V ∗ aborts on these commitments, then S repeats this step with fresh
randomness. When V ∗ provides correct decommitments, S proceeds to the next step.

5. S sends V ∗ decommitments to the nodes on the committed edge, and outputs whatever V ∗

outputs.

One issue that arises when trying to prove that this simulation strategy works is that the commit-
ment to q is perfectly hiding and thus only computationally binding. This means that it is possible
that V ∗ decommits to a valid q′ 6= q, but in such a case the simulation will fail. This possibility
is ruled out by showing that if this occurs with non-negligible probability, then V ∗ can be used to
break the computational binding of the commitments.

More importantly, it turns out that this strategy is overly simplistic, for a very important
reason. Specifically, it is not necessarily the case that the simulator runs in expected polynomial-
time.4 This may seem surprising. In particular, let ε denote the probability that V ∗ does not
abort (ε = 1 − p from above). Then, supposedly, we have that the expected running time of the
simulator is 1 − ε + ε · 1ε times a fixed polynomial for computing all the commitments and so on.
This is the case since with probability 1 − ε the verifier V ∗ aborts and the simulation ends, and
with probability ε the simulation proceeds to Step 4. However, since each attempt to receive a
decommitment from V ∗ in this step succeeds with probability ε only, we expect to have to repeat
1/ε times. Thus, the overall expected cost is poly(n) · (1−ε+ε · 1ε ) = poly(n) · (2−ε). Despite being
appealing, and true when commitments are modeled as “perfect envelopes”, the above analysis is
simply false. In particular, the probability that the verifier decommits correctly when receiving
the first prover commitments to pure garbage is not necessarily the same as the probability that
it decommits correctly when receiving the simulator-generated commitments. In order to see this,
if the verifier was all powerful, it could break open the commitments and purposefully make the
simulation fail by decommitting when it receives pure garbage (or fully valid commitments) and
not decommitting when it receives commitments that can be opened only to its query string. This
means that we can only argue that this doesn’t happen by a reduction to the commitments, and
this also means that there may be a negligible difference. Thus, we actually have that the expected
running time of the simulator is

4Note that the simulator, as is, certainly does not run in strict polynomial time. However, this is inherent for
black-box constant-round protocols [2], and we show only that it runs in expected polynomial time.
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poly(n) ·
(

1− ε(n) + ε(n) · 1

ε(n)− µ(n)

)
for some negligible function µ. Now, it is once again tempting to conclude that the above is
polynomial because µ(n) is negligible, and so ε(n)−µ(n) is almost the same as ε(n). This is indeed
true for “large” values of ε(n). For example, if ε(n) > 2µ(n) then ε(n) − µ(n) > ε(n)/2. This
then implies that ε(n)/(ε(n)− µ(n)) < 2. Unfortunately, however, this is not true in general. For
example, consider the case that µ(n) = 2−n/2 − 2−n and ε(n) = µ(n) + 2−n = 2−n/2. Then,

ε(n)

ε(n)− µ(n)
=

2−n/2

2−n/2 − (2−n/2 − 2−n)
=

2−n/2

2−n
= 2n/2,

which is exponential in n. We therefore have that the simulation does not run in expected
polynomial-time. This technical problem was observed and solved by [20]. This problem arises
in other places, and essentially in any place that rewinding is used where a different (but indis-
tinguishable) distribution is used between rewindings, and some success criteria must be reached
in order to proceed (e.g., the party must decommit correctly). For just one example of where
this arises in the context of general secure computation, see [31, Section 4.2]. We remark that
in the specific case of constant-round zero-knowledge proofs, it is possible to bypass this problem
by changing the protocol [36]. However, in other cases – for example, efficient secure two-party
computation – it is not necessarily possible without incurring additional cost.

We show how to deal with this problem in the proof of the theorem below.

Theorem 5.6 Let Comh and Com be perfectly-hiding and perfectly-binding commitment schemes,
respectively, with security in the presence of non-uniform probabilistic-polynomial time adversaries.
Then, Protocol 5.5 is black-box computational zero knowledge with an expected polynomial-time
simulator.

Proof: We first present the simplified strategy above for a black-box simulator S given oracle
access to a verifier V ∗ (with a fixed input, auxiliary input and random tape), and then explain how
to modify it. The simplified simulator S works as follows:

1. S hands V ∗ the first message of Comh (formally, this is via the oracle, but we write it this
way for conciseness).

2. S receives from V ∗ its perfectly-hiding commitment c to some query string q = (e1, . . . , eN ),
where N = n · |E|.

3. S generates N vectors of n commitments to 0, hands them to V ∗, and receives back its reply.

4. If V ∗ aborts by not replying with a valid decommitment to c (and the decommitment is
to a vector of N edges), then S aborts and outputs whatever V ∗ outputs. Otherwise, let
q = (e1, . . . , eN ) be the decommitted value. S proceeds to the next step.

5. Rewinding phase – S repeatedly rewinds V ∗ back to the point where it receives the prover
commitments, until it decommits to q from above:

(a) S generates N vectors of commitments ~c1, . . . ,~cN , as follows. Let ei = (vj , vk) in q.
Then, the jth and kth commitments in ~ci are to random distinct colors in {1, 2, 3} and
all other commitments are to 0. Simulator S hands all vectors to V ∗, and receives back
its reply.

26



(b) If V ∗ does not generate a valid decommitment, then S returns to the previous step (using
fresh randomness).

(c) If V ∗ generates a valid decommitment to some q′ 6= q, then S outputs ambiguous and
halts.

(d) Otherwise, V ∗ exits the loop and proceeds to the next step.

6. S completes the proof by handing V ∗ decommitments to the appropriate nodes in all of
~c1, . . . ,~cN , and outputs whatever V ∗ outputs.

The intuition behind the simulation is clear. S repeatedly rewinds until the string q is the one that it
initially chose. In this case, it can decommit appropriately and conclude the proof. Intuitively, the
fact that the result is computationally indistinguishable from a real proof by an honest prover follows
from the hiding property of the perfectly-binding commitments, as in the proof of Theorem 5.4 in
Section 5.3.

As we have already demonstrated, this simplified strategy suffers from the problem that S
actually may not run in expected polynomial time. This is solved by ensuring that the simulator
S never runs “too long”. Specifically, if S proceeds to the rewinding phase of the simulation,
then it first estimates the value of ε(n) which is the probability that V ∗ does not abort given
garbage commitments. This is done by repeating Step 3 of the simulation (sending fresh random
commitments to all zeroes) until m = O(n) successful decommits occurs (for a polynomial m(n);
to be exact m = 12n suffices), where a successful decommit is where V ∗ decommits to q, the string
it first decommitted to. We remark that as in the original strategy, if V ∗ correctly decommits to
a different q′ 6= q then S outputs ambiguous. Then, an estimate ε̃ of ε is taken to be m/T , where
T is the overall number of attempts until m successful decommits occurred. As shown in [20], this
suffices to ensure that the probability that ε̃ is not within a constant factor of ε(n) is at most 2−n.
(An exact computation of how to achieve this exact bound using Chernoff can be found in [26,
Section 6.5.3].)

Next, S runs the rewinding phase in Step 5 of the simulation up to n times. Each time, S limits
the number of rewinding attempts in the rewinding phase to n/ε̃ iterations. We have the following
cases:

1. If within n/ε̃ rewinding iterations, S obtains a successful decommitment from V ∗ to q, then
it completes the proof as described. It can do so in this case because the prover commitments
enable it to answer the query q.

2. If S obtains a valid decommitment to some q′ 6= q then it outputs ambiguous.

3. If S does not obtain any correct decommitment within n/ε̃ attempts, then S aborts this
attempted rewinding phase.

As mentioned, the above phase is repeated up to n times, each time using independent coins. If
the simulator S doesn’t successfully conclude in any of the n attempts, then it halts and outputs
fail. We will show that this strategy ensures that the probability that S outputs fail is negligible.

In addition to the above, S keeps a count of its overall running time and if it reaches 2n steps,
then it halts, outputting fail. (This additional time-out is needed to ensure that S does not run too
long in the case that the estimate ε̃ is not within a constant factor of ε(n). Recall that this “bad
event” can only happen with probability 2−n.)

We first claim that S runs in expected polynomial-time.
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Claim 5.7 Simulator S runs in expected-time that is polynomial in n.

Proof: Observe that in the first and all later iterations, all of S’s work takes a strict polynomial-
time number of steps. We therefore need to bound only the number of rewinding iterations. Before
proceeding, however, we stress that rewinding iterations only take place if V ∗ provides a valid
decommitment in the first place. Thus, all rewinding only occur with probability ε(n).

Now, S first rewinds in order to obtain an estimate ε̃ of ε(n). This involves repeating until
m(n) = 12n successful decommitments are obtained. Therefore, the expected number of repetitions
in order to obtain ε̃ equals exactly 12n/ε(n) (since the expected number of trials for a single success
is 1/ε(n); observe that in all of these repetitions the commitments are to all zeroes). After the
estimate ε̃ has been obtained, S runs the rewinding phase of Step 5 for a maximum of n times, in
each phase limiting the number of rewinding attempts to n/ε̃.

Given the above, we are ready to compute the expected running-time of S. In order to do
this, we differentiate between two cases. In the first case, we consider what happens if ε̃ is not
within a constant factor of ε(n). The only thing we can say about S’s running-time in this case
is that it is bound by 2n (since this is an overall bound on its running-time). However, since this
event happens with probability at most 2−n, this case adds only a polynomial number of steps to
the overall expected running-time. We now consider the second case, where ε̃ is within a constant
factor of ε(n) and thus ε(n)/ε̃ = O(1). In this case, we can bound the expected running-time of S
by

poly(n) · ε(n) ·
(

12n

ε(n)
+ n · n

ε̃

)
= poly(n) · ε(n)

ε̃
= poly(n)

and this concludes the analysis.

Next, we prove that the probability that S outputs fail is negligible.

Claim 5.8 The probability that S outputs fail is negligible in n.

Proof: Notice that the probability that S outputs fail is less than or equal to the probability
that it does not obtain a successful decommitment in any of the n rewinding phase attempts plus
the probability that it runs for 2n steps.

We first claim that the probability that S runs for 2n steps is negligible. We have already
shown in Claim 5.7, that S runs in expected polynomial-time. Therefore, the probability that an
execution will deviate so far from its expectation and run for 2n steps is negligible. (It is enough
to use Markov’s inequality to establish this fact.)

We now continue by considering the probability that in all n rewinding phase attempts, S
does not obtain a successful decommitment within n/ε̃ steps. First, recall that ε(n) equals the
probability that V ∗ decommits when given commitments to all zeroes. Next, observe that there
exists a negligible function µ such that the probability that V ∗ decommits when given commitments
as in Step 5a is at least ε(n) − µ(n). If ε(n) is a negligible function then this is immediate (since
it just means that V ∗ decommits with probability at least 0, which is always correct). In contrast,
if ε(n) is non-negligible, then this can be proven by a direct reduction to the hiding property of
the commitment scheme. In particular, if V ∗ decommits with probability that is non-negligibly
different in both cases, then this in itself can be used to distinguish commitments of one type from
another. Having established this, consider the following two possible cases:

1. Case 1: ε(n) ≤ 2µ(n): In this case, V ∗ decommits to its query string with only negligible
probability. This means that the probability that S even reaches the rewinding phase is
negligible. Thus, S only outputs fail with negligible probability.
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2. Case 2: ε(n) > 2µ(n): Recall that V ∗ successfully decommits in any iteration with probability

at least ε(n)−µ(n). Now, since in this case ε(n) > 2µ(n) we have that ε(n)−µ(n) > ε(n)
2 . Thus,

the expected number of iterations needed until V ∗ successfully decommits is 1
ε(n)−µ(n) <

2
ε(n) .

Assuming that ε̃ is within a constant factor of ε(n), we have that 2/ε(n) = O(1/ε̃) and
so the expected number of rewindings in any given rewinding attempt is bound by O(1/ε̃).
Therefore, by Markov’s inequality, the probability that S tries more than n/ε̃ iterations in
any given rewinding phase attempt is at most O(1/n). It follows that the probability that S
tries more than this number of iterations in n independent rewinding phases is negligible in
n (specifically, it is bound by O(1/n)n).

This holds under the assumption that ε̃ is within a constant factor of ε(n). However, the
probability that ε̃ is not within a constant factor of ε(n) is also negligible.

Putting the above together, we have that S outputs fail with negligible probability only.

Next, we prove the following:

Claim 5.9 The probability that S outputs ambiguous is negligible in n.

Proof Sketch: Intuitively, if there exists an infinite series of inputs for which S outputs am-
biguous with non-negligible probability, then this can be used to break the computational binding
of the Comh commitment scheme. The only subtlety is that S runs in expected polynomial-time,
whereas an attacker for the binding of the commitment scheme must run in strict polynomial-time.
Nevertheless, this can be overcome by simply truncating S to twice its expected running time. By
Markov’s inequality, this reduces the success probability of the binding attack by at most 1/2, and
so this is still non-negligible.

It remains to prove that the output distribution generated by S is computationally indistin-
guishable from the output of V ∗ in a real proof with an honest prover. We have already shown
that S outputs fail or ambiguous with only negligible probability. Thus, the only difference between
the output distribution generated by S and the output distribution generated in a real proof is
the perfectly binding commitments to the colors. As in the proof of Theorem 5.4, this can be
formally proven by constructing an alternative simulator who is given the coloring and works in
the same way as S except that it generates the commitments via its oracle. Then, the LR-commit
experiment can be used to show indistinguishability between this and a real proof for non-uniform
distinguishers. We omit the details due to the similarity to Theorem 5.4. This completes the proof.

Discussion. Beyond the Goldreich-Kahan technique itself, which is of importance and arises in
multiple situations where rewinding-based simulation is used, there are two important lessons to
be taken away from this proof. First, negligible differences can make a difference, and care must
be taken wherever they appear. The intuition that a negligible event does not happen, and that
computationally indistinguishable distributions behave the same, is correct only to a point. The
case shown here is an excellent example of this. Second, great care must be taken to prove every
claim made via a reduction to the primitive that guarantees it. In the constant-round protocol for
zero knowledge, it is clear to everyone that in order to prove indistinguishability of the simulation,
a reduction to the security of the commitment scheme is necessary. (Although, without doing it
carefully, the need for security in the presence of non-uniform adversaries can be missed.) However,
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it is far less clear that it is necessary to prove that the simulation runs in polynomial-time, that the
perfectly-hiding commitment remains computationally binding, and so on. In general, any property
that doesn’t hold when the cryptographic primitive is completely broken requires a reduction. Thus,
when proving security, a good mental experiment to carry out is to consider what happens to the
simulation and proof when the adversary is all powerful. If some important property needed in the
proof no longer holds, then a reduction is needed to prove it. Furthermore, if there is a property
of a cryptographic primitive that is not used anywhere in the proof, then one should reconsider
whether it is actually needed.

We also remark that the simulator presented here runs in expected polynomial time and not strict
polynomial time. This is inherent for constant-round black-box zero knowledge, as proven in [2]
(perhaps surprisingly, it is not possible to somehow truncate the simulator’s execution and obtain
only a negligible difference). Thus, in some cases – and in particular when considering constant-
round protocols – simulators are relaxed to be allowed to run in expected polynomial time.

Soundness. We reiterate that in order to prove security for zero knowledge, it is necessary to
separately prove that soundness holds. We have omitted this here since it is not the focus of the
tutorial.

5.5 Honest-Verifier Zero Knowledge

A proof system is honest-verifier zero knowledge if the zero-knowledge property holds for semi-
honest verifiers. We stress that the proof system must be sound for malicious provers. Otherwise,
as we have mentioned above, it is meaningless (the prover can just say “trust me”).

It is instructional to consider honest-verifier zero knowledge as well, since this enables a com-
parison to the simulation technique above for arbitrary malicious verifiers, and serves as a good
contrast between semi-honest simulation as in Section 4 and the remainder of this tutorial that con-
siders malicious adversaries. As we will see, simulation for semi-honest adversaries is very different
than for malicious adversaries.

Parallel 3-coloring. Consider the basic 3-coloring protocol described in Protocol 5.3 run n · |E|
times in parallel. Specifically, the prover generates n · |E| sets of commitments to random colorings
and sends them to the verifier. The verifier chooses q = (e1, . . . , eN ) at random and sends q to the
prover. Finally, the prover decommits as in the protocol.

The simulator S for honest-verifier zero knowledge. We proceed directly to describe the
simulator for this protocol. Given a graph G = (V,E) with |V | = n and auxiliary input z, the
simulator S works as follows:

1. Let N = n · |E|. Then, for i = 1, . . . , N , S chooses a random edge ei ∈ E, and sets
q = (e1, . . . , eN ). Let rq be the random coin tosses that define q.

2. For every i = 1, . . . , N :

(a) Let ei = (vj , vk).

(b) S chooses random φ(vj) ∈R {1, 2, 3} and φ(vk) ∈R {1, 2, 3} \ {φ(vj)}. For all other
v` ∈ V \ {vj , vk}, S sets φ(v`) = 0.
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(c) S sets the commitment vector ~ci = (c1i , . . . , c
n
i ) = (Com(φ(v1)), . . . ,Com(φ(vn))).

(d) S sets the decommitment vector ~di = (decom(cji ), decom(cki ))

3. S outputs the view of the (semi-honest) verifier, defined by: 〈G, z, rq; (~c1, . . . ,~cN ), (~d1, . . . , ~dN )〉.

Before proving that this is indeed indistinguishable from a real view in a real interaction, observe
that there is no rewinding here and the simulator S just chooses the query string of the verifier.
This is allowed since a semi-honest verifier chooses its query string by reading it directly from
its random tape. Since S chose rq randomly, and writes rq on the verifier’s random tape, it is
given that the verifier’s query is q. The reason why S need not rewind at all is because it already
knows the query string (indeed, it chose it). In fact, S here does not “interact” with the verifier
at all, unlike the simulator for regular (malicious) zero knowledge interacts with V ∗. Rather, S
just generates the transcript of messages, independently of the adversary. This is allowed since the
verifier is semi-honest, and so we know exactly what it will do already.

Restating the above, it is not necessary to interact with the adversary or rewind it to somehow
guess the query string, since we know exactly how the verifier chooses that string in the semi-honest
case. Thus, the problem that the verifier can choose its query in an arbitrary way, and in particular
possibly based on the first message does not arise. This means that a simpler protocol suffices, and
it is much easier to prove security. Recall that this parallel 3-coloring protocol is not black-box
zero knowledge for malicious verifiers [21]. Thus, honest-verifier zero knowledge is strictly easier to
achieve than black-box zero knowledge.

Theorem 5.10 If Com is a perfectly-binding commitment scheme, then the parallel 3-coloring
protocol is honest-verifier zero knowledge.

Proof Sketch: Assume by contradiction that there exists an infinite series of (G, z) and a
distinguisher D, such that D distinguishes the output of S from a real execution transcript with
non-negligible probability. Then, a non-uniform polynomial-time distinguisher A, given a valid
coloring ψ of G on its advice tape, can be constructed for the commitment scheme, as follows. A
works exactly like S, but uses its LR-oracle (as in Section 5.3) to generate pairs of commitments
to either a real random coloring or to simulator-generated commitments values (the two random
colors for the query edge and zeroes otherwise). The distinguisher A works in a very similar way
to in the proof of Theorem 5.4. As with the proof of Theorem 5.4, the distribution generated when
the commitments are to the real colorings is exactly that of a real execution, and otherwise it is
the simulation. Thus, the distributions are indistinguishable, as required.

6 Defining Security for Malicious Adversaries

6.1 Motivation

In this section, we present the definition of security for the case of malicious adversaries who may
use any efficient attack strategy and thus may arbitrarily deviate from the protocol specification. In
this case, it does not suffice to require the existence of a simulator that can generate the view of the
corrupted party, based on its prescribed input and output as is sufficient for the case of semi-honest
adversaries. First and foremost, the generation of such a view depends on the actual input used by
the adversary, and this input affects the actual output received. Furthermore, in contrast to the
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case of semi-honest adversaries, the adversary may not use the input that it is provided. Thus, for
example, a simulator for the case where P1 is corrupted cannot just take x and f(x, y) and generate
a view (in order to prove that nothing more than the output is learned), because the adversary
may not use x at all. Furthermore, beyond the possibility that a corrupted party may learn more
than it should, we require that a corrupted party should not be able to cause the output to be
incorrectly distributed. This is not captured by considering the view of the adversary alone.

In order to capture these threats, and others, the security of a protocol is analyzed by com-
paring what an adversary can do in the protocol to what it can do in an ideal scenario that is
secure by definition. In this context, the ideal model consists of an ideal computation involving an
incorruptible trusted third party to whom the parties send their inputs. The trusted party computes
the functionality on the inputs and returns to each party its respective output. Loosely speaking,
a protocol is secure if any adversary interacting in the real protocol (where no trusted third party
exists) can do no more harm than if it were involved in the ideal computation. See [8, 18] for
detailed motivation and discussion on this definitional paradigm.

We remark that in defining security for two parties it is possible to consider only the setting
where one of the parties is corrupted, or to also consider the setting where none of the parties
are corrupted, in which case the adversary seeing the transcript between the parties should learn
nothing. Since this latter case can easily be achieved by using encryption between the parties we
present the simpler formulation of security that assumes that exactly one party is always corrupted.5

Before proceeding, it is worth contrasting the above to the case of zero knowledge (where
malicious verifiers were considered). Recall that in the context of zero knowledge, simulation is
used to show that the adversary learns nothing. Specifically, the adversary is able to generate its
view by itself, without receiving any external information, and thus it learns nothing from the
real interaction. This works for zero knowledge where the adversarial party has no private input
and is supposed to learn nothing. In fact, in the zero knowledge case, the adversarial verifier
does learn that the statement is correct. However, the definition of zero knowledge only states
that the adversarial verifier may learn nothing when the statement is in the language, and so is
“correct”. This makes sense since zero-knowledge proofs are typically used to ensure that parties
behave “correctly”. Thus, when the verifier is corrupted, the prover is honest and so the statement
is supposed to be true. (The case of a corrupted prover who wishes to prove an incorrect statement
to an honest verifier is covered separately by soundness.) In the coming sections, we will consider
the more general case where parties are supposed to learn output, and also possibly have input. As
we will see, this considerably changes the way simulators work, although the techniques shown so
far are also needed.

6.2 The Definition

Execution in the ideal model. In the case of no honest majority (and in particular in the two-
party case that we consider here), it is in general impossible to achieve guaranteed output delivery
and fairness [15]. This “weakness” is therefore incorporated into the ideal model by allowing the
adversary in an ideal execution to abort the execution or obtain output without the honest party
obtaining its output. Denote the participating parties by P1 and P2 and let i ∈ {1, 2} denote

5There is no need to consider the case of both parties corrupted, since in such a case there is nothing to protect.
In the case of adaptive corruptions (see Section 10.3), there is reason to consider corrupting both. However, this is
beyond the scope of this tutorial.
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the index of the corrupted party, controlled by an adversary A. An ideal execution for a function
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ proceeds as follows:

Inputs: Let x denote the input of party P1, and let y denote the input of party P2. The adversary
A also has an auxiliary input denoted by z. All parties are initialized with the same value 1n

on their security parameter tape (including the trusted party).

Send inputs to trusted party: The honest party Pj sends its prescribed input to the trusted
party. The corrupted party Pi controlled by A may either abort (by replacing the input with
a special aborti message), send its prescribed input, or send some other input of the same
length to the trusted party. This decision is made by A and may depend on the input value
of Pi and the auxiliary input z. Denote the pair of inputs sent to the trusted party by (x′, y′)
(note that if i = 2 then x′ = x but y′ does not necessarily equal y, and vice versa if i = 1).

Early abort option: If the trusted party receives an input of the form aborti for some i ∈ {1, 2},
it sends aborti to the honest party Pj and the ideal execution terminates. Otherwise, the
execution proceeds to the next step.

Trusted party sends output to adversary: At this point the trusted party computes f1(x
′, y′)

and f2(x
′, y′) and sends fi(x

′, y′) to party Pi (i.e., it sends the corrupted party its output).

Adversary instructs trusted party to continue or halt: A sends either continue or aborti to
the trusted party. If it sends continue, the trusted party sends fj(x

′, y′) to the honest party
Pj . Otherwise, if A sends aborti, the trusted party sends aborti to party Pj .

Outputs: The honest party always outputs the output value it obtained from the trusted party.
The corrupted party outputs nothing. The adversary A outputs any arbitrary (probabilistic
polynomial-time computable) function of the prescribed input of the corrupted party, the
auxiliary input z, and the value fi(x

′, y′) obtained from the trusted party.

Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a two-party functionality, where f = (f1, f2), let
A be a non-uniform probabilistic polynomial-time machine, and let i ∈ {1, 2} be the index of the
corrupted party. Then, the ideal execution of f on inputs (x, y), auxiliary input z to A and security
parameter n, denoted by idealf,A(z),i(x, y, n), is defined as the output pair of the honest party and
the adversary A from the above ideal execution.

Execution in the real model. We next consider the real model in which a real two-party
protocol π is executed (and there exists no trusted third party). In this case, the adversary A
sends all messages in place of the corrupted party, and may follow an arbitrary polynomial-time
strategy. In contrast, the honest party follows the instructions of π. We consider a simple network
setting where the protocol proceeds in rounds, where in each round one party sends a message to
the other party. (In the multiparty setting, this is an unsatisfactory model and one must allow
all parties to send messages at the same time. However, in this case, it is standard to assume a
rushing adversary, meaning that it receives the messages sent by the honest parties before it sends
its own.)

Let f be as above and let π be a two-party protocol for computing f , meaning that when P1 and
P2 are both honest, then the parties output f1(x, y) and f2(x, y), respectively, after an execution of
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π with respective inputs x and y. Furthermore, let A be a non-uniform probabilistic polynomial-
time machine and let i ∈ {1, 2} be the index of the corrupted party. Then, the real execution of π
on inputs (x, y), auxiliary input z to A and security parameter n, denoted by realπ,A(z),i(x, y, n),
is defined as the output pair of the honest party and the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and
real models, we can now define security of protocols. Loosely speaking, the definition asserts that
a secure protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated by saying that adversaries in the ideal model are able to simulate executions of
the real-model protocol.

Definition 6.1 Let f be a two-party functionality and let π be a two-party protocol that computes
f .6 Protocol π is said to securely compute f with abort in the presence of static malicious adversaries
if for every non-uniform probabilistic polynomial-time adversary A for the real model, there exists
a non-uniform probabilistic polynomial-time adversary S for the ideal model, such that for every
i ∈ {1, 2}, {

idealf,S(z),i(x, y, n)
}
x,y,z,n

c≡
{
realπ,A(z),i(x, y, n)

}
x,y,z,n

where x, y ∈ {0, 1}∗ under the constraint that |x| = |y|, z ∈ {0, 1}∗ and n ∈ N.

The above definition assumes that the parties (and adversary) know the input lengths (this
can be seen from the requirement that |x| = |y| is balanced and so all the inputs in the vector of
inputs are of the same length). We remark that some restriction on the input lengths is unavoidable
because, as in the case of encryption, to some extent such information is always leaked. We will
ignore this throughout, and just assume that the functionality is such that the parties know the
lengths of all inputs.

In this tutorial we only consider security with abort. Therefore, in the latter when we say
“securely computes” the intention is always with abort.

Discussion. Observe that Definition 6.1 implies privacy (meaning that nothing but the output
is learned), corrrectness (meaning that the output is correctly computed) and more. This holds
because the ideal and real distributions include both the corrupted and honest parties’ outputs.
Specifically, in the ideal model, the adversary cannot learn anything about the honest party’s input
beyond what is revealed in the output. Now, since the ideal and real distributions must be
indistinguishable, this in particular implies that the output of the adversary in the ideal and real
executions is indistinguishable. Thus, whatever the adversary learns in a real execution can be
learned in the ideal model. Regarding correctness, if the adversary can cause the honest party’s
output to diverge from a correct value in a real execution, then this will result in a non-negligible
difference between the distribution over the honest party’s output in the real and ideal executions.
Observe that correctness in the real model only is rather tricky to define. Is a computation correct
if there exists some input for the corrupted party such that the output of the honest party is the
correct result on that input and its own? This is a very unsatisfactory definition. First, it is possible
that such an input exists, but it may be computationally hard to find. Second, it is possible that it

6A prerequisite of any secure protocol is that it computes the functionality, meaning that two honest parties
receive correct output. As we show at the end of Section 8, this is a necessary requirement.
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is easy to find such an input, but only if the honest party’s input is already known.7 The ideal/real
definition solves all of these problems at once. This is because in the ideal model, the adversary
has to send its input explicitly to the trusted party, and correctness is judged relative to the actual
input sent. This also means that parties actually “know” their inputs in protocols that are secure.
See [18, Section 7.2.3] for more discussion.

Remark 6.2 (Deterministic versus probabilistic adversaries): In all of the proofs in this tutorial –
and in most proofs in general – the real-world adversary A is used in a black-box manner. Thus, the
simulator S who is given input x and auxiliary input z for the corrupted party, can begin by choosing

a random string r and defining the residual adversary A′(·) def
= A(x, z, r; ·), with security parameter

1n (as on its own security parameter tape). From then on, S works with A′ and simulates for A′.
Due to the above, it suffices to consider a deterministic adversary, with a fixed input, auxiliary
input and random tape. This simplifies the treatment throughout.

Expected polynomial-time simulation. It is sometimes necessary to relax the requirement
on the simulator and allow it to run in expected polynomial time. As we have mentioned, this is
the case for constant-round zero knowledge and thus when using constant-round zero knowledge
proofs inside other protocols. However, it is also necessary when constructing constant-round
protocols for general secure computation (where a protocol for general secure computation can be
used to securely compute and polynomial-time computable function). This is due to the fact that
such a general protocol can be used to securely compute the “zero-knowledge proof of knowledge”
functionality. Thus, if the simulator is black box, it must run in expected polynomial time [2].

6.3 Modular Sequential Composition

A protocol that is secure under sequential composition maintains its security when run multiple
times, as long as the executions are run sequentially (meaning that each execution concludes before
the next execution begins). Sequential composition theorems are theorems that state “if a proto-
col is secure in the stand-alone model under definition X, then it remains secure under X under
sequential composition”. Thus, we are interested in proving protocols secure under Definitions 4.1
and 6.1 (for semi-honest, and malicious adversaries), and immediately deriving their security under
sequential composition. This is important for two reasons. First, sequential composition consti-
tutes a security goal within itself as security is guaranteed even when parties run many executions,
albeit sequentially. Second, sequential composition theorems are useful tools that help in writing
proofs of security. Specifically, it enables one to design a protocol using calls to ideal functionalities
(as subprotocols), and to analyze its security in this partially ideal setting. This makes protocol
design and analysis significantly more simple. Thus, the use of composition theorems in order to
help in proving simulation-based proofs of security is one of the most important techniques.

We do not present proofs of the sequential composition theorems for the semi-honest and mali-
cious cases, and we recommend reading these proofs in [18]; see Sections 7.3.1 and 7.4.2 respectively.
However, we do present a formal statement of the theorem for malicious adversaries as we will use
it in the tutorial.

7This relates to an additional property that is guaranteed by the definition, called independence of inputs, meaning
that the corrupted party is unable to make its input depend on the honest party’s input. For example, in a closed-
bid auction, it should not be possible for a corrupted party to make its bid be exactly $1 greater than the honest
party’s bid.
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Modular sequential composition. The basic idea behind the formulation of the modular se-
quential composition theorems is to show that it is possible to design a protocol that uses an ideal
functionality as a subroutine, and then analyze the security of the protocol when a trusted party
computes this functionality. For example, assume that a protocol is constructed using oblivious
transfer as a subroutine. Then, first we construct a protocol for oblivious transfer and prove its
security. Next, we prove the security of the protocol that uses oblivious transfer as a subroutine, in
a model where the parties have access to a trusted party computing the oblivious transfer function-
ality. The composition theorem then states that when the “ideal calls” to the trusted party for the
oblivious transfer functionality are replaced with real executions of a secure protocol computing
this functionality, the protocol remains secure. We begin by presenting the “hybrid model” where
parties communicate by sending regular messages to each other (as in the real model) but also have
access to a trusted party (as in the ideal model).

The hybrid model. We consider a hybrid model where parties both interact with each other
(as in the real model) and use trusted help (as in the ideal model). Specifically, the parties run a
protocol π that contains “ideal calls” to a trusted party computing some functionalities f1, . . . , fp(n).
These ideal calls are just instructions to send an input to the trusted party. Upon receiving the
output back from the trusted party, the protocol π continues. The protocol π is such that fi is
called before fi+1 for every i (this just determines the “naming” of the calls as f1, . . . , fp(n) in that
order). In addition, if a functionality fi is reactive (meaning that it contains multiple stages), then
no messages are sent by the parties directly to each other from the time that the first message
is sent to fi to the time that all stages of fi have concluded. We stress that the honest party
sends its input to the trusted party in the same round and does not send other messages until it
receives its output (this is because we consider sequential composition here). The trusted party
may be used a number of times throughout the execution of π. However, each use is independent
(i.e., the trusted party does not maintain any state between these calls). We call the regular
messages of π that are sent amongst the parties standard messages and the messages that are sent
between parties and the trusted party ideal messages.

Sequential composition – malicious adversaries. Let f1, . . . , fp(n) be probabilistic polynomial-
time functionalities and let π be a two-party hybrid-model protocol that uses ideal calls to a trusted
party computing f1, . . . , fp(n). Furthermore, let A be a non-uniform probabilistic polynomial-time
machine and let i be the index of the corrupted party. Then, the f1, . . . , fp(n)-hybrid execution of π

on inputs (x, y), auxiliary input z to A and security parameter n, denoted hybrid
f1,...,fp(n)

π,A(z),i (x, y, n),
is defined as the output of the honest party and the adversary A from the hybrid execution of π
with a trusted party computing f1, . . . , fp(n).

Let ρ1, . . . , ρp(n) be protocols (as we will see ρi takes the place of fi in π). Consider the real
protocol πρ1,...,ρp(n) that is defined as follows. All standard messages of π are unchanged. When
a party is instructed to send an ideal message α to the trusted party to compute fj , it begins
a real execution of ρj with input α instead. When this execution of ρj concludes with output
y, the party continues with π as if y were the output received from the trusted party for fj
(i.e., as if it were running in the hybrid model).

The composition theorem states that if ρ1, . . . , ρp(n) securely compute f1, . . . , fp(n) respectively,
and π securely computes some functionality g in the f1, . . . , fp(n)-hybrid model, then πρ1,...,ρp(n)

securely computes g in the real model. As discussed above, the hybrid model that we consider
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here is where the protocols are run sequentially. Thus, the fact that sequential composition only is
considered is implicit in the theorem, via the reference to the hybrid model.

Theorem 6.3 Let p(n) be a polynomial, let f1, . . . , fp(n) be two-party probabilistic polynomial-
time functionalities and let ρ1, . . . , ρp(n) be protocols such that each ρi securely computes fi in the
presence of malicious adversaries. Let g be a two-party functionality and let π be a protocol that
securely computes g in the f1, . . . , fp(n)-hybrid model in the presence of malicious adversaries. Then,
πρ1,...,ρp(n) securely computes g in the presence of malicious adversaries.

Composition with expected polynomial-time simulation. The composition theorem proven
by [8, 18] holds for strict polynomial-time adversaries, and certain difficulties arise when considering
expected polynomial-time simulation. This issue was considered by [28], and a far simpler solution
was later provided in [19]. Although of importance, we will ignore this issue in this tutorial.

Sequential composition – semi-honest adversaries. A composition theorem that is analo-
gous to Theorem 6.3 also holds for semi-honest adversaries; see [18, Section 7.4.2].

7 Determining Output – Coin Tossing

Previously, we considered the simulation of malicious adversaries in the context of zero knowledge.
However, as we have mentioned, zero knowledge is an easier case since the verifier receives no output
(if the prover is honest, then the verifier already knows that the statement is true). In this section,
we consider the problem of coin tossing. The coin-tossing functionality has no input, but the
parties must receive the same uniformly-distributed output. Thus, in this section, we demonstrate
simulation in this more difficult scenario, where the view must be generated and correlated to the
actual output.

7.1 Coin Tossing a Single Bit

In this section, we present the protocol by Blum for tossing a single coin securely [5]. The protocol
securely computes the functionality fct(λ, λ) = (U1, U1) where U1 is a random variable that is
uniformly distributed over {0, 1}. We stress that we only consider security with abort here, and
thus it is possible for one party to see the output and then abort before the other receives it (e.g.,
in the case that it is not a favorable outcome for that party). Indeed, it is impossible for two parties
to toss a coin fairly so that neither party can cause a premature abort or bias the outcome [15].

Tossing a single coin. The idea behind the protocol is very simple: both parties locally choose a
random bit, and the result is the XOR of the two bits. The problem that arises is that if P1 sends its
random bit to P2 first, then P2 can cheat and send a bit that forces the output to be the result that
it desires. One possible way to solve this problem is to have P1 and P2 simultaneously send their bits
to each other. However, we do not have simultaneous channels that force independence. (Formally,
we defined a real model where protocols proceed in rounds and in each round one message is sent
from one party to the other.) This is solved by having P1 send a commitment to its bit b1, rather
than b1 itself. From the hiding property of the commitment scheme, when P2 sends b2 it must send
it independently of b1 (since it only receives a commitment). Likewise, from the binding property
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of the commitment scheme, P1 cannot change b1 after it is committed. Therefore, even though P1

sees b2 before decommitting, it cannot change the value. See Protocol 7.1 for a description of the
protocol.

PROTOCOL 7.1 (Blum’s Coin Tossing of a Single Bit)

• Security parameter: Both parties have security parameter 1n

• The protocol:

1. P1 chooses a random b1 ∈ {0, 1} and a random r ∈ {0, 1}n and sends c = Com(b1; r)
to P2.

2. Upon receiving c, party P2 chooses a random b2 ∈ {0, 1} and sends b2 to P1.

3. Upon receiving b2, party P1 sends (b1, r) to P2 and outputs b = b1 ⊕ b2. (If P2 does
not reply, or replies with an invalid value, then P2 sets b2 = 0.)

4. Upon receiving (b1, r) from P1, party P2 checks that c = Com(b1; r). If yes, it outputs
b = b1 ⊕ b2; else it outputs ⊥.

Before we proceed to proving the security of Protocol 7.1, we discuss the main challenges in
carrying out the simulation. This is our first example of a “standard” secure computation. The
simulator here is the ideal-model adversary. As such, it externally interacts with the trusted party
computing the functionality (in this case, fct(λ, λ) = (U1, U1)), and internally interacts with the
real-model adversary as part of the simulation. Throughout simulation-based proofs, it is very
important to emphasize the difference between such interactions. (Of course, internal interaction is
not real, and is just the simulator internally feeding messages to A that it runs as a subroutine, as
in Section 5.) In general, the simulator needs to send the trusted party the corrupted party’s input
and receive back its output. In this specific case of coin tossing, the parties have no input, and so
the adversary just receives the output from the trusted party (formally, the parties send an empty
string λ as input so that the trusted party knows to compute the functionality). The challenge
of the simulator is to make the output of the execution that it simulates equal the output that it
received from the trusted party.

We elaborate on this challenge: in the simulation, the simulator receives the output bit b from
the trusted party and needs to make the result of the execution equal b. Thus, it has to be able
to completely bias the outcome to be a specific value. This contradicts the basic security of a
coin tossing protocol! However, like zero knowledge versus soundness in the case of zero-knowledge
proofs, this contradiction is overcome by the fact that the simulator has some additional power that
a real adversary does not have. As before, the additional power it has here is the ability to rewind
the adversary. Intuitively, since we are tossing a single bit, and in each execution the probability
that the result equals b is 1/2, it follows that the simulator can just run the protocol numerous times
from scratch, until the result is b. Since we expect to need to rewind only twice, we are guaranteed
that the simulator will succeed within n attempts, except with negligible probability. However,
another concern arises here. Specifically, a corrupted P1 may abort and refuse to decommit to its
first commitment. Observe that P1 already knows the output at this point, and so this decision
may be a function of what the output will be. Fortunately, in the ideal model, the definition of
security allows the corrupted party to obtain the input, and not necessarily provide the output to
the honest party. However, the simulation must take great care to not skew the probability of this
happening (if in a real execution P2 receives output with probability p when the output will be 0,
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and receives output with probability q when the output will be 1, then these probabilities must be
negligibly close to p and q in the simulation as well). We now proceed to the actual proof (this
proof is based heavily on [18, Section 7.4.3.1]).

Theorem 7.2 Assume that Com is a perfectly-binding commitment scheme. Then, Protocol 7.1
securely computes the bit coin-tossing functionality defined by fct(λ, λ) = (U1, U1).

Proof: It is clear that Protocol 7.1 computes fct, since when both parties are honest they output
b1 ⊕ b2 which is uniformly distributed. We now proceed to prove that the protocol is secure.

Let A be a non-uniform probabilistic polynomial-time adversary. As discussed in Remark 6.2,
we may consider a deterministic A. We first consider the case that P2 is corrupted. We describe
the simulator S:

1. S sends λ externally to the trusted party computing fct and receives back a bit b.

2. S initializes a counter i = 1.

3. S invokes A, chooses a random b1 ∈R {0, 1} and r ∈R {0, 1}n and internally hands A the
value c = Com(b1; r) as if it was sent by P2.

4. If A replies with b2 = b⊕ b1, then S internally hands A the pair (b1, r) and outputs whatever
A outputs. (As in the protocol, if A does not reply or replies with an invalid value, then this
is interpreted as b2 = 0.)

5. If A replies with b2 6= b⊕ b1 and i < n, then S sets i = i+ 1 and returns back to Step 3.

6. If i = n, then S outputs fail.

We first prove that S outputs fail with negligible probability. Intuitively, this is the case since
A’s response bit b2 is (computationally) independent of b1. In order to see this, observe that an
iteration succeeds if and only if b1 ⊕ b2 = b, where b2 is A’s response to Com(b1). We have:

Pr[A(Com(b1)) = b1 ⊕ b] =
1

2
· Pr[A(Com(0)) = b] +

1

2
· Pr[A(Com(1)) = 1⊕ b]

=
1

2
· Pr[A(Com(0)) = b] +

1

2
· (1− Pr[A(Com(1)) = b])

=
1

2
+

1

2
· (Pr[A(Com(0)) = b]− Pr[A(Com(1)) = b])

where the probability is taken over the choice of b1 and the randomness used to generate the
commitment. By the assumption that Com is a perfectly-biding commitment scheme, and thus
is computationally hiding, we have that there exists a negligible function µ such that for every
b ∈ {0, 1} ∣∣Pr[A(Com(0)) = b]− Pr[A(Com(1)) = b]

∣∣ ≤ µ(n),

and so
1

2
· (1− µ(n)) ≤ Pr[A(Com(b1)) = b1 ⊕ b] ≤

1

2
· (1 + µ(n)). (7.1)
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(We stress that in Eq. (7.1), the probability is taken over the choice of b1 and the randomness used
to generate Com(b1).) Since S outputs fail if and only if A(Com(b1)) 6= b1 ⊕ b in all n iterations,
we have that S outputs fail with probability at most(

1

2
· (1 + µ(n))

)n
<

(
2

3

)n
which is negligible (the inequality holds for all large enough n’s).

Next, we show that conditioned on the fact that S does not output fail, the output distributions
ideal and real are statistically close. Observe that in both the real and ideal (i.e., simulated)
executions, the bit b2 sent by A is fully determined by b1, r. Specifically, we can write b2 =
A(Com(b1; r)). We therefore have that both distributions are of the form (b,A(Com(b1; r), b1, r)),
where b = b1 ⊕A(Com(b1; r)). The difference between the distributions is as follows:

• Real: In a real execution, b1 and r are uniformly distributed.

• Ideal: In an ideal execution, a random b is chosen, and then random b1 and r are chosen
under the constraint that b1 ⊕A(Com(b1; r)) = b.

In order to see that these distributions are statistically close, we calculate the probability that
every (b1, r) is chosen according to the distributions. Fix b̂1, r̂. Then, in the real execution it is
immediate that (b̂1, r̂) appears with probability exactly 2−(n+1).

Regarding the ideal execution, denote by Sb = {(b1, r) | b1 ⊕ A(Com(b1; r)) = b}. Observe
that Sb contains all the pairs (b1, r) that can lead to an output of b in the ideal execution (since
S concludes when b1 ⊕ A(Com(b1; r)) = b). We claim that the fixed (b̂1, r̂) appears in the ideal
execution with probability

1

2
· 1

|Sb|
. (7.2)

This holds because b is uniformly chosen by the trusted party, and then conditioned on not out-
putting fail, simulator S samples a uniformly distributed element from Sb. (This can be seen by
the fact that S concludes as soon as it obtains an element of Sb, and in every iteration it chooses
a random b1, r with the “hope” that it is in Sb.)

It remains to show that for every b ∈ {0, 1}, the set Sb has close to 2n elements. However, this
follows directly from Eq. (7.1). Specifically, Eq. (7.1) states that for every b, the probability that
A(Com(b1; r)) = b1 ⊕ b is 1

2 · (1 ± µ(n)). However, this probability is exactly the probability that
(b1, r) ∈ Sb. This implies that

1

2
· (1− µ(n)) ≤ |Sb|

2n+1
≤ 1

2
· (1 + µ(n)),

and so
2n · (1− µ(n)) ≤ |Sb| ≤ 2n · (1 + µ(n)).

Combining this with Eq. (7.2), we have that the pair (b̂1, r̂) appears with probability between
2−(n+1) · (1− µ(n)) and 2−(n+1) · (1 + µ(n)). This is therefore statistically close to the probability
that (b̂1, r̂) appears in a real execution. The real and ideal output distributions are therefore
statistically close.8

8It may seem surprising that we obtain statistical closeness, even though we are relying on the computational
hiding of the commitment scheme. However, the computational hiding is used only to ensure that S outputs fail with
negligible probability, and holds when considering any polynomial-time A.
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We now turn to the case that P1 is corrupted. The simulation here needs to take into account
the case that A does not reply with a valid message and so aborts. The simulator S works as
follows:

1. S sends λ externally to the trusted party computing fct and receives back a bit b.

2. S invokes A and internally receives the message c that A sends to P1.

3. S internally hands A the bit b2 = 0 as if coming from P2, and receives back its reply. Then,
S internally hands A the bit b2 = 1 as if coming from P2, and receives back its reply. We
have the following cases:

(a) IfA replies with a valid decommitment (b1, r) such that Com(b1; r) = c in both iterations,
then S externally sends continue to the trusted party. In addition, S defines b2 = b1⊕ b,
internally hands A the bit b2, and outputs whatever A outputs.

(b) If A does not reply with a valid decommitment in either iteration, then S externally
sends abort1 to the trusted party. Then, S internally hands A a random bit b2 and
outputs whatever A outputs.

(c) If A replies with a valid decommitment (b1, r) such that Com(b1; r) = c only when
given b2 where b1 ⊕ b2 = b, then S externally sends continue to the trusted party. Then,
S internally hands A the bit b2 = b1 ⊕ b and outputs whatever A outputs.

(d) If A replies with a valid decommitment (b1, r) such that Com(b1; r) = c only when
given b2 where b1⊕ b2 6= b, then S externally sends abort1 to the trusted party. Then, S
internally hands A the bit b2 = b1 ⊕ b⊕ 1 and outputs whatever A outputs.

We prove that the output distribution is identical. We consider three cases:

1. Case 3a – A always replies with a valid decommitment: In this case, A’s view in a real
execution consists of a random bit b2, and the honest P2’s output equals b = b1 ⊕ b2, where
b1 is the committed value in c. Since b1 is fully determined by the commitment c before b2 is
chosen by P1, it follows that b is uniformly distributed.

In contrast, in an ideal execution, the bit b is uniformly chosen. Then, A’s view consists
of b2 = b1 ⊕ b, and the honest P2’s output equals b. Since b1 is fully determined by the
commitment c before any information about b is given to A, it follows that b2 = b1 ⊕ b is
uniformly distributed.

In both cases, the bits b and b2 are uniformly distributed under the constraint that b⊕b2 = b1.
Therefore, the joint distributions over A’s output and the honest party’s output are identical
in the real and ideal executions.

2. Case 3b – A never replies with a valid decommitment: In this case, A’s view consists of a
uniformly distributed bit, exactly like in a real execution. In addition, the honest P2 outputs⊥
in both the real and ideal executions (with probability 1). Thus, the joint distributions over
A’s output and the honest party’s output are identical in the real and ideal executions.

3. Case 3c and 3d – A replies with a valid decommitment for exactly one value b̂2 ∈ {0, 1}: Let
b1 be the value committed in the commitment c sent by A (since A is deterministic and this
is the first message, this is a fixed value). Then, in the real execution, if P2 sends b̂2 then A
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replies with a valid decommitment and the honest P2 outputs b = b1 ⊕ b̂2. In contrast, if P2

sends b̂2 ⊕ 1, then A does not reply with a valid decommitment and P2 outputs ⊥.

Consider now the ideal execution. If b⊕ b1 = b̂2, then S hands A the bit b̂2. In this case, A
replies with a valid decommitment and the honest party P2 outputs b = b1 ⊕ b̂2. In contrast,
if b ⊕ b1 = b̂2 ⊕ 1, then S hands A the bit b̂ ⊕ 1. In this case, A does not reply with a valid
decommitment and P2 outputs ⊥.

We therefore see that the distribution over the view of A and the output of P2 is identical in
both cases.

This completes the proof of the theorem.

Discussion. The proof of Theorem 7.2 is surprising in its complexity. The intuition behind the
security of Protocol 7.1 is very straightforward. Nevertheless, formally justifying this fact is very
difficult.9 Some specific observations are worth making. First, as in the zero-knowledge proofs,
the mere fact that the simulator (for the case of P2 corrupted) runs in polynomial time is not
straightforward and requires a reduction to the security of the commitment scheme. Second, in the
malicious setting, many additional issues needed to be dealt with:

1. The adversary can send any message and so the simulator must “interact” with it.

2. The adversary may abort in some cases and this must be carefully simulated so that the
distribution is not skewed when aborts can happen.

3. The adversary may abort after it receives the output and before the honest party receives the
output. This must be correlated with the abort and continue instructions sent to the trusted
party, in order to ensure that the honest party aborts with the same probability in the real
and ideal executions, and that this behavior matches the view of the adversary.

Third, it is worth comparing this proof to those of zero knowledge in Section 5. In both cases, we
deal with a malicious adversary. However, in zero knowledge, there is no “joint distribution” over
the output, since there is no output. Thus, it suffices to simulate the view of the verifier V ∗ alone.
Although this is not so easy, it is far less delicate than this proof here. The need to consider the
joint distribution over the outputs, and to simulate for the output received from the trusted party
(whatever it may be), adds considerable complexity.

Technique discussion. It is worthwhile observing that S essentially plays the role of the honest
party, in that it generates the messages from the honest party that the adversary expects to see.
This is true in all simulations. Of course, S does not actually send the messages that the honest
party sends, since S has to make the output received by A equal the output sent by the trusted
party computing the functionality. This is something that cannot be possible in a real execution,
or else a corrupted party could fully determine the output.

9I would like to add a personal anecdote here. The first proof of security that I read that followed the ideal/real
simulation paradigm with security for malicious adversaries was this proof by Oded Goldreich (it appeared in a very
early draft on Secure Multiparty Computation that can be found at www.wisdom.weizmann.ac.il/∼oded/pp.html).
I remember reading it multiple times until I understood why all the complications were necessary. Thus, for me, this
proof brings back fond memories of my first steps in secure computation.
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Interaction with the trusted party or ideal functionality. As we have seen, the simulator
externally interacts with the trusted party computing the functionality. In many papers, the
simulator is described as interacting directly with the functionality itself (and not a trusted party
computing it). This is merely an issue of terminology and the intention is exactly the same.

7.2 Securely Tossing Many Coins and the Hybrid Model

In this section, we will show how to toss many coins. Of course, we could apply the sequential
composition theorem and obtain that in order to toss some ` = poly(n) coins, the parties can carry
out ` sequential executions of Protocol 7.1. However, we wish to toss many coins in a constant
number of rounds. Formally, the functionality is parameterized by a polynomial ` and is defined
by f `ct(λ, λ) = (U`(n), U`(n)). Note that the security parameter n is also given to the trusted party,
and thus it can compute the length `(n) itself.

Our main aim in this section is to introduce simulation-based proofs in the hybrid model.
As such, we will assume that we are given a constant-round protocol that securely computes
the zero-knowledge proof of knowledge functionality for any NP-relation. This functionality is
parameterized by a relation R ∈ NP and is defined by fRzk((x,w), x) = (λ,R(x,w)). Note that fzk
receives x from both parties; if different values of x are received then the output is 0. Formally, we
define:

fRzk((x,w), x′) =

{
(λ,R(x,w)) if x = x′

(λ, 0) otherwise

We remark that any zero-knowledge proof of knowledge for R, as defined in [17, Section 4.7], securely
computes the functionality fRzk. This folklore fact was formally proven in [27]. The existence of a
constant-round zero-knowledge proof of knowledge was proven in [30]. Thus, we conclude that fRzk
can be securely computed in a constant number of rounds.

As we will see here, working in the hybrid model greatly simplifies things. In fact, the proof
of security in this section – for a far more complex protocol than for tossing a single coin – is far
simpler.

Protocol idea. As in Protocol 7.1, the idea behind the protocol is to have P1 commit to a random
string ρ1 of length `(n), and then for P2 to reply with another random string ρ2 of length `(n).
The result is the XOR ρ1⊕ρ2 of these two strings. Unfortunately, we do not know how to simulate
such a protocol. This is due to the fact that when P2 is corrupted, S would need to rewind the
adversary A an exponential number of times in order to make ρ1 ⊕ ρ2 equal a specific string ρ
provided by the trusted party. This is similar to the problem with simulating the basic 3-round
zero-knowledge protocol when running it many times in parallel. We solve this problem by not
having P1 decommit to ρ1 at all. Rather, it sends ρ1 and proves in zero knowledge that this is the
value in the commitment. In the real world, this is the same as decommitting (up to the negligible
probability that P1 can cheat in the proof). However, in the ideal simulation, the simulator can
cheat in the zero-knowledge proof and send ρ1 = ρ ⊕ ρ2, where ρ is the value received from the
trusted party, even though the value committed to is completely different.

In the case that P1 is corrupted, there is another problem that arises. Specifically, in order to
simulate, the simulator first needs to learn the value ρ1 committed before it can set ρ2 = ρ ⊕ ρ1.
Thus, it first needs to hand A a random ρ2 with the hope that it will decommit ρ1 and correctly
prove the proof. If it does not, then the simulator can just abort. If it does send ρ1 and correctly
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proves the zero-knowledge proof, then the simulator can now rewind and hand it ρ2 = ρ ⊕ ρ1.
However, what happens if A aborts given this ρ2? If the simulator aborts now then the probability
of abort is much higher in the ideal execution than in a real execution (because it aborts with
the probability that A aborts when given a random ρ2 plus the probability that A aborts when
receiving ρ2 = ρ1 ⊕ ρ). But, the simulator cannot do anything else since there is only one ρ2 that
can be used at this point. We solve this problem by adding a zero-knowledge proof of knowledge
that P1 proves as soon as it commits to ρ1. The simulator can then extract ρ1 and set ρ2 = ρ1 ⊕ ρ
without any rewinding (of course, beyond the internal rewinding needed to prove the security of
fRzk; nevertheless, thanks to the composition theorem we can ignore this here). If A aborts on this
ρ2 then the simulator aborts; otherwise it does not. This gives the required probability of abort,
as we will see. See Protocol 7.3 for the full specification.

PROTOCOL 7.3 (Multiple Coin Tossing)

• Input: Both parties have input 1n (where `(n) is the number of coins to be tossed).

• Security parameter: Both parties have security parameter 1n.

• Hybrid functionalities: Let L1 = {c | ∃(x, r) : c = Com(x; r)} be the language of all
valid commitments, and let R1 be its associated NP-relation (for statement c the witness
is x, r such that c = Com(x; r)). Let L2 = {(c, x) | ∃r : c = Com(x; r)} be the language of
all pairs of commitments and committed values, and let R2 be its associated NP-relation
(for statement (c, x) the witness is r such that c = Com(x; r)).

The parties have access to a trusted party that computes the zero-knowledge proof of
knowledge functionalities fR1

zk and fR2

zk associated with relations R1 and R2, respectively.

• The protocol (for tossing `(n) coins):

1. P1 chooses a random ρ1 ∈ {0, 1}`(n) and a random r ∈ {0, 1}poly(n) of length sufficient
to commit to `(n) bits, and sends c = Com(ρ1; r) to P2.

2. P1 sends (c, (ρ1, r)) to fR1

zk .

3. Upon receiving c, party P2 sends c to fR1

zk and receives back a bit b. If b = 0 then P2

outputs ⊥ and halts. Otherwise, it proceeds.

4. P2 chooses a random ρ2 ∈ {0, 1}`(n) and sends ρ2 to P1.

5. Upon receiving ρ2, party P1 sends ρ1 to P2 and sends ((c, ρ1), r) to fR2

zk . (If P2 does
not reply, or replies with an invalid value, then P1 sets ρ2 = 0`(n).)

6. Upon receiving ρ1, party P2 sends (c, ρ1) to fR2

zk and receives back a bit b. If b = 0
then P2 outputs ⊥ and halts. Otherwise, it outputs ρ = ρ1 ⊕ ρ2.

7. P1 outputs ρ = ρ1 ⊕ ρ2.

Technique discussion – proving in the hybrid model. Before proceeding to prove the se-
curity of Protocol 7.3, we explain how a proof of security in the hybrid model works. Recall that
the sequential composition theorem states that if a protocol securely computes a functionality f in
the g-hybrid model for some functionality g, then it remain secure when using a secure subprotocol
that securely computes g. An important observation here is that in the hybrid model with g, there
is no “negligible error” or “computational indistinguishability” when computing g. Rather, g is
secure by definition, and an incorruptible trusted party computes it. Thus, there is no need to

44



prove a reduction that if an adversary can break the protocol for securely computing f , then there
exists an adversary that breaks the subprotocol that securely computes g. As we have seen above,
such reductions are often a major effort in the proof, and thus working in a hybrid model saves
this effort.

A second important observation is that a protocol that is designed in the g-hybrid model for
some g contains instructions for sending inputs to the trusted party computing f . Furthermore,
parties receive outputs from the computation of g from the trusted party. This means that an
adversary for the protocol also sends its inputs to the computation of g in the clear, and expects
to receive its outputs back. In the specific example of Protocol 7.3, the functionality used is a zero-
knowledge proof of knowledge functionality. Thus, if the adversary controls the party running the
prover, then it directly sends the input and witness pair (x,w) to fzk. This means that a simulator
who internally runs the adversary will receive (x,w) from the adversary and so immediately has the
input and witness. Observe that there is no need to run the proof’s knowledge extractor and deal
with negligible error and polynomial-time issues. The simulator obtains these for free. Likewise, if
the adversary controls the party running the verifier, then it expects to receive 1 as output from
fzk (in the typical case that an honest party never tries to prove an incorrect statement in the
protocol). Thus, the simulator can just hand it 1 as the output from the trusted party, and there
is no need for it to run the zero-knowledge simulator and prove a reduction that computational
indistinguishability holds. In addition, this “simulation” that works by sending 1 is perfect.

In summary, in the simulation, the simulator plays the trusted party that computes the function-
ality used in the hybrid model that interacts with the adversary. The simulator directly receives
the input that the adversary sends and can write any output that it likes. (We stress that this
should not be confused with the trusted party that the simulator externally interacts with in the
ideal model. This interaction is unchanged.) As a result, S has many types of interactions and it
is very helpful to the reader to explicitly differentiate between them within the proof:

1. External interaction with the trusted party: this is real interaction where S sends and receives
messages externally.

2. Internal simulated interaction with the real adversary A: this is simulated interaction and
involves internally invoking A as a subroutine on incoming messages. This interaction is of
two sub-types:

(a) Internal simulation of real messages between A and the honest party.

(b) Internal simulation of ideal messages between A and the trusted party computing the
functionality used as a subprotocol in the hybrid model.

We attempt to differentiate between these types of interactions in the simulator description.

Theorem 7.4 Assume that Com is a perfectly-binding commitment scheme and let ` be a poly-
nomial. Then, Protocol 7.3 securely computes the functionality f `ct(λ, λ) = (U`(n), U`(n)) in the(
fR1
zk , f

R2
zk

)
-hybrid model.

Proof: As with Protocol 7.1, it is clear that Protocol 7.3 computes f `ct and two honest parties
output a uniformly distributed string of length `(n). We therefore proceed to prove that the protocol
is secure. We construct a simulator who is given an output string ρ and generates a transcript that
results in ρ being the output. The simulator utilizes the calls to fR1

zk and fR2
zk in order to do this.

We first consider the case that P1 is corrupted, and then the case that P2 is corrupted.
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P1 corrupted: Simulator S works as follows:

1. S invokes A, and receives the message c that A sends to P2, and the message (c′, (ρ1, r)) that
A sends to fR1

zk .

2. If c′ 6= c or c 6= Com(ρ1; r), then S sends abort1 to the trusted party computing f `ct, simulates
P2 aborting, and outputs whatever A outputs. Otherwise, it proceeds to the next step.

3. S sends 1n to the external trusted party computing f `ct and receives back a string ρ ∈ {0, 1}`(n).

4. S sets ρ2 = ρ⊕ ρ1 (where ρ is as received from f `ct and ρ1 is as received from A as part of its
message to fR1

zk ), and internally hands ρ2 to A.

5. S receives the message ρ′1 that A sends to P2, and the message ((c′′, ρ′′1), r′′) that A sends
to fR2

zk . If c′′ 6= c or ρ′1 6= ρ′′1 or c 6= Com(ρ′′1; r′′) then S sends abort1 to the trusted party
computing f `ct, simulates P2 aborting, and outputs whatever A outputs.

Otherwise, S externally sends continue to the trusted party, and outputs whatever A outputs.

We show that the simulation in this case is perfect ; that is, the joint output distribution in the
ideal model with S is identically distributed to the joint output distribution in an execution of
Protocol 7.3 in the fzk-hybrid model with A. In order to show this, we consider three phases of the
execution: (1) A, controlling P1, sends c to P2 and (c, (ρ1, r)) to fR1

zk ; (2) P2 sends ρ2 to P1; and

(3) A sends ρ2 to P2 and ((c, ρ1), r) to fR2
zk .

1. Phase 1: Since A is deterministic (see Remark 6.2) and there is no rewinding, the distribution
over the first phase is identical in the real and ideal executions. (If these messages cause P2

to output ⊥, then this is the entire distribution and so is identical.)

2. Phase 2: Assume that the phase 1 messages do not result in P2 outputting ⊥. Then, we
claim that for every triple (c, ρ1, r) making up the phase 1 messages, the distribution over
ρ2 received by A is identical in the real and ideal executions. In a real execution, the honest
P2 chooses ρ2 ∈R {0, 1}`(n) uniformly and independently of (c, ρ1, r). In contrast, in an ideal
execution, ρ ∈R {0, 1}`(n) is chosen uniformly and then ρ2 is set to equal ρ ⊕ ρ1 (where
ρ1 is previously fixed since it is committed in a perfectly-binding commitment). Since ρ is
chosen independently of ρ1, we have that ρ1⊕ρ is also uniformly distributed in {0, 1}`(n) and
independent of (c, ρ1, r).

3. Phase 3: Assume again that the phase 1 messages do not result in P2 outputting ⊥. Then,
we claim that for every (c, ρ1, r, ρ2) making up the phase 1 and 2 messages, it holds that the
honest P2 outputs the exact same value in a real execution with A and in an ideal execution
with S. In order to see this, observe that this phase consists only of A sending ρ′1 to P2 and
((c′′, ρ′′1), r′′) to fR2

zk . There are two cases:

(a) Case 1 – c′′ = c and ρ′1 = ρ′′1 and c = Com(ρ′′; r′′): In this case, in a real execution the
trusted party computing fR2

zk will send 1 to P2 and in an ideal execution S will send
continue to the trusted party. This holds because both A and P2 send the same public
statement (c, ρ′1) to fR2

zk and it holds that c = Com(ρ′1; r
′′). Now, in a real execution, P2

outputs ρ′1 ⊕ ρ2, whereas in an ideal execution P2 outputs ρ = ρ1 ⊕ ρ2. However, since
c is a perfectly-binding commitment scheme, we have that ρ′1 = ρ1. This implies that in
this case the honest P2 outputs the same ρ = ρ1 ⊕ ρ2 in the real and ideal executions.
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(b) Case 2 – c′′ 6= c or ρ′1 6= ρ′′1 or c 6= Com(ρ′′; r′′): In this case, in an ideal execution S will
send abort1 to the trusted party (by its specification), and the honest P2 will output ⊥.
In a real execution, in this case, the trusted party computing fR2

zk will send 0 to P2. This
is because either A and P2 send different statements to the trusted party ((c, ρ′1) versus
(c′′, ρ′′1)) or the witness is incorrect and c 6= Com(ρ′′; r′′). Thus, the honest P2 in a real
protocol execution will also output ⊥.

We have shown that the distributions in each phase are identical, conditioned on the previous
phases. This therefore proves that the overall joint distribution over A’s view and P2’s output is
identical in the real and ideal executions. (Although the simulation is perfect, this does not mean
that the real protocol is perfectly secure, since this analysis is in the hybrid model only.)

P2 is corrupted. Simulator S works as follows:

1. S sends 1n to the external trusted party computing f `ct and receives back a string ρ ∈ {0, 1}`(n).
S externally sends continue to the trusted party (P1 always receives output).

2. S chooses a random r ∈ {0, 1}poly(n) of sufficient length to commit to `(n) bits, and computes
c = Com(0`(n); r).

3. S internally invokes A and hands it c.

4. S receives back some ρ2 from A (if A doesn’t send a valid ρ2 then S sets ρ2 = 0`(n) as in the
real protocol).

5. S sets ρ1 = ρ2 ⊕ ρ and internally hands A the message ρ1 as if coming from P1.

6. S receives some pair (c′, ρ′1) from A as it sends to fR2
zk (as the “verifier”). If (c′, ρ′1) 6=

(c, ρ1) then S internally simulates fR2
zk sending 0 to A. Otherwise, S internally simulates fR2

zk
sending 1 to A.

7. S outputs whatever A outputs.

The only difference between a real execution of the protocol (in the fzk-hybrid model) and an
ideal execution with the simulator is the commitment c received by A. In a real execution it is a
commitment to ρ1, whereas in the simulation it is a commitment to 0`(n). It may be tempting to
simply say that these distributions are therefore indistinguishable, by the hiding property of the
commitment scheme. However, as we have stressed before, a reduction must be given in order to
prove this formally. In this specific case, such a reduction is not as straightforward as it may seem.
In order to see this, observe that in a reduction, the distinguisher would ask for a commitment to
either ρ1 or to 0`(n) and then would run the simulator S with the only difference being that it uses
the commitment c received instead of generating itself. Since S simulates fR1

zk and fR2
zk , it need

not know the randomness used (or even whether it is a commitment to ρ1 or to 0`(n)). Thus, it
can seemingly carry out the reduction. The problem with this is that S receives ρ externally and
sets ρ1 = ρ2 ⊕ ρ. Since ρ2 is received from A (controlling P2) after A receives c, the distinguisher
for the commitment scheme only knows the value of ρ1 after it obtains the commitment c in the
distinguishing game. Thus, the reduction fails because in the commitment experiment, the pair of
values are of course determined ahead of time (it is not possible to commit to either x1 or x2 when
x2 is chosen after the commitment is given and may be a function of the commitment value c).
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We therefore begin by first showing an alternative way to generate the joint output distribution
of S and the honest P1 in the ideal model. Let S ′ work in the same way as S except that instead
of receiving ρ externally from the trusted party, S ′ chooses ρ by itself (uniformly at random) after
receiving ρ2 from A. In addition, the output of the honest party is set to be ρ. Stated differently,
S ′ outputs the pair (ρ, output(A)), where output(A) is the output of A after the simulation. It is
immediate that the output of S ′ is identically distributed to an ideal execution. That is{

S ′(1n)
}
n∈N
≡
{
idealf`ct,S(1n, 1n, n)

}
n∈N

. (7.3)

This is due to the fact that the only difference is the point at which ρ is chosen. However, since it
is chosen independently in both cases, the output distribution is the same. (Note that S ′ is not a
valid simulator since the trusted party does not choose the output ρ. Nevertheless, we present S ′
as a way of proving the indistinguishability of two distribution, and not as a valid simulator.)

We now wish to show that the output of S ′ is computationally indistinguishable from the real
output realπ,A(1n, 1n, n). Since we have already shown that its output is identical to the ideal
output distribution, this completes the proof. In order to prove this, we construct an adversary D
for the commitment scheme. We use a definition that a commitment to 0`(n) is computationally
indistinguishable from a commitment to a random string R of length `(n), even given the random
string R. (This follows easily from the standard definition of hiding for commitments, and in
particular, from the the LR-oracle formulation in Section 5.2.)

The adversary D is given a commitment c and (random) string R and runs the code of S ′ with
the following differences. First, instead of computing c = Com(0`(n); r) by itself, it uses c that it
received as input. In addition, instead of choosing ρ uniformly and setting ρ1 = ρ⊕ρ2, distinguisher
D sets ρ1 = R and ρ = ρ1 ⊕ ρ2. Apart from that, D follows the instructions of S ′. We have the
following:

• If D receives the commitment c = Com(0`(n)) then its output is identical to the output of S ′.
In order to see this, observe that the only difference is that D sets ρ = ρ2⊕ρ1 where ρ1 = R is
uniformly distributed (ρ1 does not appear elsewhere in the execution since c is a commitment
to 0). Since ρ1 is random and independent of everything else, ρ is uniformly distributed,
exactly as in an execution of S ′. The commitment c is also exactly as generated by S ′. Thus,
the output distribution is identical.

• If D receives the commitment c = Com(ρ1) then its output is identical to the joint output
distribution from a real execution. This holds because the commitment from P1 is a commit-
ment to a random ρ1, and the same ρ1 is sent to A in the last message of the protocol. In
addition, the output of the honest party is ρ1⊕ ρ2 exactly like in a real execution. Thus, this
is just a real execution between an honest P1 and the adversary A.

It follows from the hiding property of the commitment scheme that the output distributions gener-
ated by D are computationally indistinguishable. Therefore, the output of S ′ – which is identical
to the output in a real execution – is computationally indistinguishable from the joint output of a
real execution. That is, {

S ′(1n)
}
n∈N

c≡
{
realπ,A(1n, 1n, n)

}
n∈N

. (7.4)

The proof is completed by combining Equations (7.3) and (7.4).
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Discussion – the power of proving in the hybrid model. We remark that the proof for
Protocol 7.3 is considerably more simple than the proof for Protocol 7.1. This may seem somewhat
surprising since the protocol is far more complex. However, it is actually not at all surprising since
the proof of security is carried out in the fzk-hybrid model. This is a very powerful tool and it makes
proving security much easier. For one thing, in this specific case, no rewinding is necessary. Thus,
it is not necessary to justify that the simulation is polynomial time, and it is also not necessary to
justify that the output distribution is not skewed by the rewinding procedure.

8 Extracting Inputs – Oblivious Transfer

In the coin-tossing functionality, the parties have no input. Thus, the simulator’s challenge is
to receive the output from the trusted party and to generate a view of a real execution for the
adversary that corresponds to the received output. However, in general, functionalities do have
input, and in this case the output from the trusted party is only defined after the parties provide
input. Thus, the simulator must extract the input from the adversary, send it to the trusted party
and receive back the output. The view generated by the simulator must then correspond to this
input and output. As we will see below, this introduces additional challenges.

In this section, we will study the oblivious transfer functionality defined by fot((x0, x1), σ) =
(λ, xσ) where x0, x1 are from a fixed domain and σ is a bit [16, 35]. We present a version of the
oblivious transfer protocol of [34] (the original protocol of [34] is in the common reference string
model and will be presented in Section 9).

Preliminaries – the RAND procedure. Before presenting the protocol, we will describe and
prove an important property of a probabilistic procedure, calledRAND, that is used in the protocol.
Let G be a multiplicative group of prime order q. Define the probabilistic procedure

RAND(g, x, y, z) = (u, v) =
(
gs · yt, xs · zt

)
where s, t ∈R Zq are uniformly random.

Claim 8.1 Let g be a generator of G and let x, y, z ∈ G. If (g, x, y, z) do not form a Diffie-Hellman
tuple (i.e., there does not exist a ∈ Zq such that y = ga and z = xa), then RAND(g, x, y, z) is
uniformly distributed in G2.

Proof: We prove that for every (a, b) ∈ G×G,

Pr[u = a ∧ v = b] =
1

|G|2
, (8.1)

where (u, v) = RAND(g, x, y, z) and the probability is taken over the random choices of s, t ∈ Zq
(this implies that (u, v) is uniformly distributed). Let α, β, γ ∈ Zq be values such that x = gα,
y = gβ and z = gγ and γ 6= α · β mod q. (Note that if γ = α · β mod q then this implies that
z = gγ = (gα)β = xβ and so y = gβ and z = xβ in contradiction to the assumption in the claim.)
Then,

u = gs · yt = gs · (gβ)t = gs+β·t and v = xs · zt = (gα)s · (gγ)t = gα·s+γ·t .
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Now, let δ, ε ∈ Zq such that a = gδ and b = gε. Then, since s, t are uniformly distributed in Zq it
follows that Eq. (8.1) holds if and only if there is a single solution to the equations

s+ β · t = δ and α · s+ γ · t = ε .

(Observe that g, x, y, z and a, b are fixed. Thus, α, β, γ, δ, ε are fixed and s, t are uniformly chosen.)
Now, there exists a single solution to these equations if and only if the matrix(

1 β
α γ

)
is invertible, which is the case here because its determinant is α · β − γ and by the assumption
α · β 6= γ mod q and so α · β − γ 6= 0 mod q. This completes the proof.

The protocol idea. We are now ready to present the protocol. The idea behind the protocol
is as follows. The receiving party P2 generates a tuple (g0, g1, h0, h1) that is not a Diffie-Hellman
tuple and sends it to P1 (along with a proof that it is indeed not a Diffie-Hellman tuple).10 Next,
P2 computes g = (gσ)r and h = (hσ)r and sends the pair to P1. Then, P1 computes (u0, v0) =
RAND(g0, g, h0, h) and (u1, v1) = RAND(g1, g, h1, h). Finally, P1 uses v0 to mask the input x0
and uses v1 to mask x1. We will prove that if (g0, g1, h0, h1) is not a Diffie-Hellman tuple, then for
every g, h it holds that at least one of (g0, g, h0, h), (g1, g, h1, h) is not a Diffie-Hellman tuple. Thus,
at least one of the values v0, v1 is uniformly distributed as proven in Claim 8.1, and so a corrupted
P2 can only learn at most one of x0, x1. Regarding the case that P1 is corrupted, we must argue
that it cannot learn P2’s input bit σ. However, P1 only sees (gσ)r, (hσ)r and this hides σ by the
Decisional Diffie-Hellman assumption. We stress that the above “explanation” regarding security
explains why P1 cannot learn P2’s input and why P2 can learn at most one of x0, x1. However,
it does not show how to simulate, and this requires additional ideas, as we will show. The full
description appears in Protocol 8.2.

Theorem 8.3 Assume that the Decisional Diffie-Hellman problem is hard in the auxiliary-input
group G. Then, Protocol 8.2 securely computes fot in the presence of malicious adversaries.

Proof: We begin by showing that Protocol 8.2 computes fot (meaning that two honest parties
running the protocol compute the correct output). This holds since when both parties are honest,
we have:

wσ
(uσ)r

=
vσ · xσ
(uσ)r

=
gs · ht · xσ

((gσ)s · (hσ)t)r
=

((gσ)r)s · ((hσ)r)t · xσ
((gσ)s · (hσ)t)r

=
(gσ)r·s · (hσ)r·t · xσ

(gσ)r·s · (hσ)r·t
= xσ.

We now proceed to prove security, and separately consider the case that P1 is corrupted and the
case that P2 is corrupted.

10The protocol is actually a bit different in that P2 generates a tuple (g0, g1, h0, h1) so that (g0, g1, h0,
h1
g1

) is a Diffie-
Hellman tuple. Of course, this implies that (g0, g1, h0, h1) is not a Diffie-Hellman tuple. This method is used since it
enables P2 to prove that (g0, g1, h0, h1) is not a Diffie-Hellman tuple very efficiently by proving that (g0, g1, h0,

h1
g1

) is
a Diffie-Hellman tuple.
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PROTOCOL 8.2 (Oblivious Transfer)

• Inputs: Party P1’s input is a pair (x0, x1) and party P2’s input is a bit σ. We assume for
simplicity that x0, x1 ∈ G where G is defined in the auxiliary input.

• Auxiliary input: Both parties hold a security parameter 1n and (G, q, g0), where G is an
efficient representation of a group of prime order q with a generator g0, and q is of length n.
(It is possible to generate this group in the protocol, if needed.)

• Hybrid functionality: Let L = {(G, q, g0, x, y, z) | ∃a ∈ Zq : y = (g0)a ∧ z = xa} be
the language of all Diffie-Hellman tuples (where (G, q, g0) are as above), and let RL be
its associated NP-relation. The parties have access to a trusted party that computes the
zero-knowledge proof of knowledge functionality fRL

zk associated with relation RL.

• The protocol:

1. Party P2 chooses random values y, α ∈R Zq and computes g1 = (g0)y, h0 = (g0)α and
h1 = (g1)α+1 and sends (g1, h0, h1) to party P1.

2. P2 sends statement
(
G, q, g0, g1, h0, h1

g1

)
and witness α to fRL

zk .

3. P1 sends statement
(
G, q, g0, g1, h0, h1

g1

)
to fRL

zk and receives back a bit. If the bit

equals 0, then it halts and outputs ⊥. Otherwise, it proceeds to the next step.

4. P2 chooses a random value r ∈R Zq, computes g = (gσ)r and h = (hσ)r, and sends
(g, h) to P1.

5. P1 computes (u0, v0) = RAND(g0, g, h0, h), and (u1, v1) = RAND(g1, g, h1, h).

P1 sends P2 the values (u0, w0) where w0 = v0 · x0, and (u1, w1) where w1 = v1 · x1.

6. P2 computes xσ = wσ/(uσ)r.

7. P1 outputs λ and P2 outputs xσ.

P1 is corrupted. Recall that in general the simulator S needs to extract the corrupted party’s
input in order to send it to the trusted party, and needs to simulate its view so that its output
corresponds to the output received back from the trusted party. However, in this case, P1 receives
no output, and so S’s task is somewhat simpler; it needs to extract A’s input while generating a
view of an interaction with an honest P2. Since a corrupted P1 is not supposed to learn anything
about P2’s input, it seems that the following strategy should work:

1. Internally invoke A and run a complete execution between A and an honest P2 with input
σ = 0. Let x0 be the output that P2 receives as output from the protocol execution.

2. Rewind and internally invoke A from scratch and run a complete execution between A and
an honest P2 with input σ = 1. Let x1 be the output that P2 receives as output from the
protocol execution.

3. Send (x0, x1) to the external trusted party computing fot.

4. Output whatever A output on either one of the two executions above.

Intuitively, this works since S obtains the output that P2 would have obtained upon either input.
In addition, the view of P2 does not reveal its input bit (as we have described above), and thus
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either view can be taken. Unfortunately, this intuition is completely wrong. In order to see why,
consider an adversary A who chooses x0, x1 randomly by applying a pseudorandom function to its
view until the last step of the protocol (but otherwise works honestly). Furthermore, assume that
A outputs the inputs it chose. Now, S does not know if the honest P2 in the ideal model has input
σ = 0 or σ = 1. If the honest P2 has input σ = 0 and S outputs what A outputs on the second
execution above, then the output that P2 has in the ideal model will not match either x0 or x1
output by A (except with negligible probability). The same will occur if P2 has input σ = 1 and S
outputs what A outputs on the first execution above. In contrast, in a real execution, P2 always
outputs one of x0 or x1 output by A (depending on its value σ). Thus this strategy completely
fails and it is easy to distinguish between a real and ideal execution.

We therefore use a completely different strategy for extracting A’s input that does not involve
rewinding. The idea behind the strategy is as follows. As we have mentioned above, if (g0, g1, h0, h1)
is not a Diffie-Hellman tuple, then one of x0, x1 is hidden information-theoretically. However, if
(g0, g1, h0, h1) is a Diffie-Hellman tuple, then it is actually possible to efficiently recover both x0
and x1 from P1’s message. Therefore, S will provide (g0, g1, h0, h1) that is a Diffie-Hellman tuple
and will simply “cheat” by simulating fRL

zk ’s response to be 1 even though the statement is false.
By the Decisional Diffie-Hellman assumption, this will be indistinguishable, but will enable S to
extract both inputs. S works as follows:

1. S internally invokes A controlling P1 (we assume that A is deterministic; see Remark 6.2).

2. S chooses y, α ∈R Zq and computes g1 = (g0)
y, h0 = (g0)

α and h1 = (g1)
α. (Note that

h1 = (g1)
α and not (g1)

α+1 as an honest P2 would compute it.)

3. S internally hands (g1, h0, h1) to A.

4. When A sends a message intended for fRL
zk . If the message equals

(
G, q, g0, g1, h0, h1g1

)
then

S internally hands A the bit 1 as if it came from fRL
zk . If the message equals anything else,

then S simulates A receiving 0 from fRL
zk .

5. S chooses a random value r ∈R Zq, computes g = (g0)
r and h = (h0)

r, and internally sends
(g, h) to A. (This is exactly like an honest P2 with input σ = 0.)

6. When A sends messages (u0, w0), (u1, w1) then simulator S computes x0 = w0/(u0)
r and

x1 = w1/(u1)
r·y−1 mod q. (If the message is not formed correctly, then S sends abort1 to the

trusted party and outputs whatever A outputs. Otherwise, it proceeds.)

7. S sends (x0, x1) to the trusted party computing fot. (Formally, S receives back output λ and
then sends continue to the trusted party. This isn’t really necessary since only P2 receives
output. Nevertheless, formally, S must send continue in order for P2 to receive output.)

8. S outputs whatever A outputs, and halts.

In order to show that the simulation achieves indistinguishability, we first change the protocol.
Denote Protocol 8.2 by π, and denote by π′ a protocol that is the same as π except for the two
following differences:

1. P2 chooses y, α ∈R Zq and computes g1 = (g0)
y, h0 = (g0)

α and h1 = (g1)
α, instead of

computing h1 = (g1)
α+1.
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2. fRL
zk is modified so that it sends 1 to P1 if and only if P1 and P2 sends the same statement

(and irrespective of the witness sent by P2).

We claim that for every probabilistic-polynomial time non-uniform adversary A controlling P1:{
realπ,A(z)((x0, x1), σ, n)

}
x0,x1,σ,z,n

c≡
{
realπ′,A(z)((x0, x1), σ, n)

}
x0,x1,σ,z,n

. (8.2)

We stress that we only claim that the output distributions of π and π′ are indistinguishable when
P1 is corrupted. We make no claim when P2 is corrupted, and indeed it is not true in that case.
This suffices since we are currently proving the case that P1 is corrupted. There is one difference
between π and π′ and this is how g1, h0, h1 are chosen. (The change to fRL

zk is just to ensure that
the output is always 1 unless A sends a different statement. Since P2 is honest, this makes no
difference.) However, in order to prove Eq. (8.2), we have to show both that the joint distribution
over A’s view and P2’s output is indistinguishable in π and π′. Note that the joint distribution
including P2’s output must be considered since P2 computes its output as a function of (uσ, wσ)
which is computed using (g1, h0, h1) that is generated differently in π′.

We prove this via a straightforward reduction to the DDH assumption in G. We use a variant
that states that for every probabilistic-polynomial time non-uniform distinguisher D there exists a
negligible function µ such that∣∣Pr[D(G, q, g0, g1, (g0)r, (g1)r) = 1]− Pr[D(G, q, g0, g1, (g0)r, (g1)r+1) = 1]

∣∣ ≤ µ(n) (8.3)

where G is a group of prime order q with generator g0, g1 ∈ G is a random group element, and
r ∈ Zq is randomly chosen. This assumption can be proven to be to be true if the standard DDH
assumption holds. In order to see this, observe that by the standard DDH assumption

|Pr[D(G, q, g0, g1, (g0)r, (g1)r) = 1]− Pr[D(G, q, g0, g1, (g0)r, (g1)s) = 1]| ≤ µ(n) (8.4)

where g1 ∈ G and r, s ∈ Zq are randomly chosen. In addition, observe that the distribution over
(g0, g1, (g0)

r, (g1)
s) is identical to the distribution over (g0, g1, (g0)

r, (g1)
s+1). Thus, a straightfor-

ward reduction to the standard DDH assumption gives that∣∣Pr[D(G, q, g0, g1, (g0)r, (g1)s) = 1]− Pr[D(G, q, g0, g1, (g0)r, (g1)r+1) = 1]
∣∣ ≤ µ(n). (8.5)

In order to see this, a distinguisher D′ receiving (g0, g1, h0, h1) can run D on (g0, g1, h0, h1 · g1). If
D′ received (g0, g1, (g0)

r, (g1)
r) then it generates a tuple of the form (g0, g1, (g0)

r, (g1)
r+1), and if D′

received (g0, g1, (g0)
r, (g1)

s) then it generates a tuple of the form (g0, g1, (g0)
r, (g1)

s+1), which as we
have mentioned is identical to (g0, g1, (g0)

r, (g1)
s). Thus, if D can distinguish with non-negligible

probability in Eq. (8.5), then D′ can use D to solve the standard DDH problem. Combining
Equations (8.4) and (8.5), we obtain that Eq. (8.3) holds.

We now proceed to prove Eq. (8.2) based on the above DDH variant. Assume, by contradiction,
that there exists an adversaryA controlling P1, a distinguisher Dπ, a polynomial p(·), and an infinite
series of tuples (G, q, g, x0, x1, σ, z, n) with |q| = n such that∣∣Pr

[
Dπ(realπ,A(z)((x0, x1), σ, n)) = 1

]
− Pr

[
Dπ(realπ′,A(z)((x0, x1), σ, n)) = 1

]∣∣ ≥ 1

p(n)
.

We construct a non-uniform probabilistic-polynomial time distinguisher D who receives input
(G, q, g0, g1, h0, h1), and a tuple (x0, x1, σ, z, n) on its advice tape (where n equals the security
parameter used for the DDH instance generation), and works as follows:
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1. D invokes A and an honest P2 with security parameter 1n, respective inputs x0, x1 and σ,
and auxiliary input z for A.

2. D runs the execution between A and P2 following the instructions of π′ with one change.
Instead of P2 choosing y, α ∈ Zq and generating g1, h0, h1, distinguisher D takes these values
from its input. Everything else is the same; observe that P2 does not use y, α anywhere else
inside π′ and thus D can carry out the simulation of π′ in this way.

3. D invokes Dπ on the joint output of A and the honest P2 from this execution, and outputs
whatever Dπ outputs.

Since the only difference between π and π′ is how the values g1, h0, h1 are chosen, we have that

Pr[D(G, q, g0, g1, (g0)r, (g1)r) = 1] = Pr
[
Dπ(realπ′,A(z)((x0, x1), σ, n)) = 1

]
and

Pr[D(G, q, g0, g1, (g0)r, (g1)r+1) = 1] = Pr
[
Dπ(realπ,A(z)((x0, x1), σ, n)) = 1

]
.

Thus, ∣∣Pr[D(G, q, g0, g1, (g0)r, (g1)r) = 1]− Pr[D(G, q, g0, g1, (g0)r, (g1)r+1) = 1]
∣∣ ≥ 1

p(n)

in contradiction to the assumption that the DDH problem is hard in G. Thus, Eq. (8.2) holds.
Next, we prove that for every A controlling P1:{
realπ′,A((x0, x1), σ, n)

}
x0,x1,σ∈{0,1}∗;n∈N ≡ {idealfot,S((x0, x1), σ, n)}x0,x1,σ∈{0,1}∗;n∈N (8.6)

(i.e., the distributions are identical). There are two differences between the description of π′ and
an ideal execution with S:

1. In an ideal execution, the pair (g, h) in the view of A is generated by computing (g0)
r and

(h0)
r. In contrast, in π′, these values are generated by P2 computing (gσ)r and (hσ)r.

2. In an ideal execution, the honest P2’s outputs are determined by the trusted party, based on
(x0, x1) sent by S and its input σ (unknown to S). In contrast, in π′, the honest P2’s output
is determined by the protocol instructions.

Regarding the first difference, we claim that the view of A in both cases is identical. When
σ = 0 then this is immediate. However, when σ = 1 it also holds. This is because g1 = (g0)

y

and h1 = (h0)
y (where the latter is because h1 = (g1)

α = ((g0)
y)α = ((g0)

α)y = (h0)
y). Thus,

(g0)
r = (g1)

r·y−1 mod q and (h0)
r = (h1)

r·y−1 mod q. Since r is uniformly distributed in Zq, the values
r and r · y−1 mod q are both uniformly distributed. Therefore, ((gσ)r, (hσ)r) as generated in π′ is
identically distributed to ((g0)

r, (h0)
r) as generated by S in an ideal execution.

Regarding the second difference, it suffices to show that the values (x0, x1) sent by S to the
trusted party computing fot are the exact outputs that P2 receives in π′ on that transcript. There
are two cases:

• Case 1 – P2 in π′ has input σ = 0: In this case, in both π′ and the ideal execution with S
we have that g = (g0)

r and h = (h0)
r. Furthermore, in π′, party P2 outputs x0 = w0/(u0)

r.
Likewise, in an ideal execution with S, the value x0 is defined by S to be w0/(u0)

r. Thus,
the value is identical.
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• Case 2 – P2 in π′ has input σ = 1: In this case, in π′ the pair (g, h) is generated by
computing g = (g1)

r and h = (h1)
r for a random r, and P2’s output is obtained by computing

x1 = w1/(u1)
r. In contrast, in an ideal execution with S the pair (g, h) is generated by

computing g = (g0)
r and h = (h0)

r for a random r, and P2’s output is defined by S to be
w1/(u1)

r·y−1 mod q.

Fix the messages (g1, h0, h1) and (g, h) sent by P2 to A in either π′ or in an ideal execution
with S. In both cases, there exists a unique y such that g1 = (g0)

y and h1 = (h0)
y (from P2’s

instructions in π′ and from S’s specification). Let k be the unique value such that g = (g1)
k

and h = (h1)
k. In an execution of π′ the value k is set to equal r as chosen by P2. In contrast,

in an ideal execution with S, the value k is set to equal r · y−1 mod q where r is the value
chosen by S. (The fact that this is the correct value of k is justified above.) Now, in both
a real execution of π′ and an ideal execution with S, party P2’s output is determined by
w1/(u1)

k. Thus, the output is the same in both cases.

This completes the proof of Eq. (8.6). The computational indistinguishability for the simulation in
the case that P1 is corrupted is obtained by combining Equations (8.2) and (8.6).

Before proceeding to prove the case that P2 is corrupted, we remark that our proof of indistin-
guishability of the ideal and real executions does not work in a single step. This is due to the fact
that S needs to have y where g1 = (g0)

y in order to extract x1. However, in the DDH reduction, y
is not given to the distinguisher (indeed, the DDH problem is easy if y is given). Thus, the proof
is carried out in two separate steps.

P2 is corrupted. We now proceed to the case that P2 is corrupted. First, S needs to extract
P2’s input bit σ in order to send it to the trusted party and receive back xσ. As we will show, this
is made possible by the fact that in the fRL

zk -hybrid model S receives the witness α from A (recall

that in this model, A controlling P2 must send the valid witness directly to fRL
zk or P1 will abort).

S will use α to determine whether A “used” input σ = 0 or σ = 1. Next, S needs to generate a
view for A that is indistinguishable from a real view. The problem is that S is given xσ but not
x1−σ. However, Claim 8.1 guarantees that RAND completely hides x1−σ (since as we will show
the tuple input to RAND in this case is not a Diffie-Hellman tuple). Thus, S can use any fixed
value in place of x1−σ and the result is identically distributed. Indeed, in this case we will show
that the simulation is perfect. We now describe the simulator S:

1. S internally invokes A controlling P2.

2. S internally obtains (g1, h0, h1) from A, as it intends to send to P1.

3. S internally obtains an input tuple and α from A, as it intends to send to fRL
zk .

4. S checks that the input tuple equals (G, q, g0, g1, h0, h1g1 ), that h0 = (g0)
α and h1

g1
= (g1)

α.
If not, S externally sends abort2 to the trusted party computing fot, outputs whatever A
outputs, and halts. Else, it proceeds.

5. S internally obtains a pair (g, h) from P2. If h = gα then S sets σ = 0. Otherwise, it sets
σ = 1.

6. S externally sends σ to the trusted party computing fot and receives back xσ. (S sends
continue to the trusted party; this isn’t really needed since P1 has only an empty output.
Nevertheless, formally it needs to be sent.)
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7. S computes (uσ, vσ) = RAND(gσ, g, hσ, h) and wσ = vσ ·xσ. In addition, S sets (u1−σ, w1−σ)
to be independent uniformly distributed in G2.

8. S internally hands (u0, w0), (u1, w1) to A.

9. S outputs whatever A outputs and halts.

We construct an alternative simulator S ′ in an alternative ideal model with a trusted party who
sends both of P1’s inputs x0, x1 to S ′ upon receiving σ. Simulator S ′ works in exactly the same
way as S with the exception that it computes (u1−σ, w1−σ) by first computing (u1−σ, v1−σ) =
RAND(g1−σ, g, h1−σ, h) and w1−σ = v1−σ · x1−σ, instead of choosing them uniformly.

First, we claim that the output distribution of the adversary S ′ in the alternative ideal model is
identical to the output of the adversary A in a real execution with an honest P1 (it is not necessary
to consider P1’s output since it has none in fot). This follows because S ′ generates (u0, w0) and
(u1, w1) exactly like an honest P1, using the correct inputs (x0, x1). In addition, S ′ verifies the
validity of (g1, h0, h1) using witness α, exactly like fRL

zk . Thus, the result is just a real execution
of the protocol. (Observe that the determination of σ by S ′ is actually meaningless since it is not
used in the generation of (u0, w0) and (u1, w1).)

We now claim that the output distribution of the adversary S ′ in the alternative ideal model is
identical to the output of the adversary S in an ideal execution with fot. Since the only difference
is in how (u1−σ, w1−σ) are computed, we need to show that the values u1−σ, w1−σ generated by
S ′ are independent uniformly distributed values in G. We stress that the value σ here is the one
determined by S in the simulation in Step 5.

First, consider the case that σ = 0. By Step 5, this implies that h = gα. We first claim that in
this case (g1, g, h1, h) is not a Diffie-Hellman tuple. This follows from the fact that by Step 4 we
have that h1

g1
= (g1)

α and so h1 = gα+1
1 . This implies that (g1, g, h1, h) = (g1, g, (g1)

α+1, gα) which
is not a Diffie-Hellman tuple. Now, by Claim 8.1, since (g1, g, h1, h) is not a Diffie-Hellman tuple, it
follows that (u1, v1) = RAND(g1, g, h1, h) is uniformly distributed in G2, so (u1, w1) = (u1, v1 · x1)
is uniformly distributed. Thus, (u1, w1) are identically distributed in the executions with S and S ′.

Next, consider the case that σ = 1. By Step 5, this implies that h 6= gα; let α′ 6= α mod q such
that h = gα

′
. As above, we first show that (g0, g, h0, h) is not a Diffie-Hellman tuple. By Step 4 we

have that h0 = (g0)
α and so (g0, g, h0, h) = (g0, g, (g0)

α, gα
′
) where α 6= α′ mod q. Thus, it is not a

Diffie-Hellman tuple. As in the previous claim, using Claim 8.1 we have that in this case (u0, w0)
as generated by S ′ is uniformly distributed and so has the same distribution as (u0, w0) generated
by S. This completes the proof.

Correctness in the case of two honest parties. Recall that Definition 6.1 includes a separate
requirement that π computes f , meaning that two honest parties obtain correct output, and indeed
our proof of Protocol 8.2 begins by showing that π computes f . In order to see that this separate
requirement is necessary, consider the oblivious transfer functionality f((x0, x1), σ) = (λ, xσ) and
consider the following protocol π:

1. P1 sends x0 to P2

2. P2 outputs x0

We will now show that without the requirement that π computes f , this protocol is secure. Let
A be an adversary. In the case that P1 is corrupted, we construct an ideal simulator that invokes
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A and receives the string x0 that A intends to send to P2. Simulator S then sends (x0, x0) to the
trusted party. Clearly, A’s view is identical in both cases, and likewise the output of the honest P2

is x0 in both the real and ideal executions. In the case that P2 is corrupted, the simulator S sends
σ = 0 to the trusted party and receives back x0. Simulator S then internally simulates P1 sending
x0 to A. Here too, the view of A is identical in the real and ideal executions. This demonstrates
why it is necessary to separately require that π computes f .

9 The Common Reference String Model – Oblivious Transfer

Until now, we have considered the plain model with no trusted setup. However, in some cases,
a trusted setup is used to obtain additional properties. For example, a common reference string
can be used to achieve non-interactive zero knowledge [7], which is impossible in the plain model.
In addition, this is used to achieve security under composition, as will be discussed briefly in
Section 10.1.

The common reference string model. Let M be a probabilistic-polynomial time machine that
generates a common-reference string that is given to both parties. We remark that in the common
random string model, M(1n) outputs a uniformly-distributed string of length poly(n), whereas in
the common reference string the distribution can be arbitrary. Let CRS denote “common reference
string”.

In the CRS model, in the real model the parties are provided the same string generated by M ,
whereas in the ideal model the simulator chooses the string. Since the real and ideal models must
be indistinguishable, this means that the CRS chosen by the simulator must be indistinguishable
from the CRS chosen by M . However, this still provides considerable power to the simulator.
For example, assume that the CRS contains an encryption key pk to a CCA-secure public-key
encryption scheme. Then, in the real model, neither party knows the associated secret key. In
contrast, since the simulator chooses the CRS, it can know the associated secret key and so can
decrypt any ciphertext generated by the adversary.

The motivation behind this definition is that if an adversary can attack the protocol in the
real model, then it can also attack the protocol in the ideal model with the simulator. The fact
that the simulator can choose the CRS does not change anything in this respect. Indeed, as we
have discussed previously, the simulator must have additional power beyond that of a legitimate
party. (Recall that in the context of zero knowledge, if there is no additional power then the zero-
knowledge property will contradict the soundness property, since a cheating prover could run the
simulator strategy.) Until now, we have considered a simulator that can rewind the adversary. In
the CRS model, it is possible to construct a simulator that does not rewind the adversary, since its
additional power is in choosing the CRS itself.

There are two ways to define security in the CRS model. The first is to include the CRS in
the output distributions. Specifically, one can modify the real output distribution to include the
CRS generated by M , the output of the adversary A and the output of the honest party. Then, the
ideal output distribution includes the output of S (which include two parts – the CRS generated
by S and the output of the adversary) and the output of the honest party. Alternatively, it is
possible to define an ideal CRS functionality fcrs(1

n, 1n) = (M(1n),M(1n)). Then, one constructs
a protocol and proves its security in the fcrs-hybrid model. As we have already seen, in the f -hybrid
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model, the simulator S plays the role of f in the simulation of the protocol in. Thus, this means
that S can choose the CRS in the fcrs-hybrid model, as we have discussed.

Before proceeding to demonstrate the simulation technique in this model, we remark that the
sequential composition theorem of Section 6.3 only holds when each execution of the protocol is
independent. Thus, it is not possible to generate a single CRS and then run many sequential
executions of the protocol using the same CRS, while relying on the composition theorem. Rather,
it is either necessary to use a different CRS for each execution (not recommended) or it is necessary
to explicitly prove that security holds for many execution. This can be done by defining a multi-
execution functionality and then prove its security in the fcrs-hybrid model. For example, a multi-
execution functionality for oblivious transfer could be defined as follows:

The multi-execution oblivious transfer fm-ot works as follows: Until one of the
parties send end, repeat the following

1. Wait to receive (x0, x1) from P1, and σ from P2.

2. Send xσ to P2.

Typically, such functionalities are not defined in this way, since the CRS model is usually used in the
context of concurrent composition where executions are run concurrently and not sequentially. In
the concurrent setting, parties can send inputs whenever they wish. In order to match executions,
a session identifier sid is used; specifically, P1 sends (sid, x0, x1), P2 sends (sid, σ) and then the
functionality sends (sid, xσ) to P2. We discuss concurrent composition briefly in Section 10.1.

Oblivious transfer in the CRS model. In Section 8, we described an oblivious transfer pro-
tocol that was based on the protocol of Peikert et al. [34]. The original protocol in [34] was
designed in the CRS model, and achieves universal composability (see Section 10.1). We can mod-
ify Protocol 8.2 to a two-round protocol in the CRS model by simply defining the CRS to be
(G, q, g0, g1, h0, h1) where (g0, g1, h0, h1) is not a Diffie-Hellman tuple; see Protocol 9.1. We will
prove that Protocol 9.1 is secure for a single oblivious transfer (we do not prove security under
multiple executions since our aim is to demonstrate the use of the CRS and not to show the full
power of the protocol).

Theorem 9.2 Assume that the Decisional Diffie-Hellman problem is hard relative to the group
sampling algorithm used by fcrs. Then, Protocol 9.1 securely computes fot in the presence of mali-
cious adversaries in the fcrs-model.

Proof Sketch: The proof here is very similar to that of Theorem 8.2. In particular, the fact
that Protocol 9.1 computes fot follows from exactly the same computation.

In the case that P1 is corrupted, the simulator S in the proof of Theorem 8.2 chose (g1, h0, h1)
so that (g0, g1, h0, h1) is a Diffie-Hellman tuple. Given this fact, and given that it knows y such
that g1 = (g0)

y, simulator S was able to extract both x0, x1 from A. Now, in this case, S chooses
the CRS so that (g0, g1, h0, h1) is a Diffie-Hellman tuple. Also, since it chooses g1 it knows y such
that g1 = (g0)

y. Thus, S internally hands this (g0, g1, h0, h1) to A when A calls fcrs, as if it was
generated by fcrs. From then on, S uses the exact same strategy as the simulator in the proof of
Theorem 8.3. The proof of indistinguishability works in exactly the same way.

In the case that P2 is corrupted, the simulator S in the proof of Theorem 8.2 was able to extract
A’s input σ using the witness α (where h0 = (g0)

α). Simulator S obtained α from A’s message
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PROTOCOL 9.1 (Oblivious Transfer [34])

• Inputs: Party P1’s input is a pair (x0, x1) and Party P2’s input is a bit σ. We assume for
simplicity that x0, x1 ∈ G where G is defined in the CRS.

• Auxiliary input: Both parties hold a security parameter 1n.

• Hybrid functionality fcrs: A group G of order q (of length n) with generator g0 is
sampled, along with three random elements g1, h0, h1 ∈R G of the group. fcrs sends
(G, q, g0, g1, h0, h1) to P1 and P2.

• The protocol:

1. P2 chooses a random value r ∈R Zq, computes g = (gσ)r and h = (hσ)r, and sends
(g, h) to P1.

2. P1 computes (u0, v0) = RAND(g0, g, h0, h), and (u1, v1) = RAND(g1, g, h1, h).

P1 sends P2 the values (u0, w0) where w0 = v0 · x0, and (u1, w1) where w1 = v1 · x1.

3. P2 computes xσ = wσ/(uσ)r.

4. P1 outputs λ and P2 outputs xσ.

to fRL
zk . In this case, S chooses the CRS. Thus, it generates (g0, g1, h0, h1) as in the protocol

specification and takes α where h0 = (g0)
α. S then uses α exactly as the simulator in the proof

of Theorem 8.2 in order to extract σ. (Observe that in Protocol 8.2, h1 = (g0)
α+1. This makes

the tuple not a Diffie-Hellman tuple, but not a random one either. In contrast, here the tuple
is random. Nevertheless, any non-Diffie-Hellman tuple suffices, and the simulator in the proof of
Theorem 8.2 only needs the discrete log α of h0 to base g0 in order to extract. Specifically, if h = gα

then it determines that the input is σ = 0, and otherwise it is σ = 1. This remains the same when
h1 is taken to be a random element.) Based on the above, S chooses (g0, g1, h0, h1) as described
above, and hands it to A when it calls fcrs. Beyond that, S works in exactly the same way as S in
the proof of Theorem 8.3.

10 Advanced Topics

In this section, we briefly mention some advanced topics, and include pointers for additional reading.

10.1 Composition and Universal Composability

In this tutorial, we focused on the stand-alone model. As discussed in Section 6.3, this implies
security under sequential composition. However, in the real-world setting, many secure and insecure
protocols are run concurrently, and it is desirable to have security in this setting. The definition of
security presented in Section 6 does not guarantee security under concurrent composition. There
are a number of definitions that have been proposed that achieve this level of security. The most
popular is that of universal composability (UC) [9]. This definition expands upon the definition of
Section 6 by adding an environment machine which is essentially an interactive distinguisher. The
environment writes the inputs to the parties’ input tapes and reads their outputs. In addition, it
externally interacts with the adversary throughout the execution. The environment’s “goal” is to
distinguish between a real protocol execution and an ideal execution. One very important artifact
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of this definition is that the simulator can no longer rewind the adversary in the simulation. This is
because the real adversary can actually do nothing but fulfill the instructions of the environment.
Now, since the environment is an external machine that the real and ideal adversaries interact with,
this means that the simulator has to simulate for an external adversary. Due to this, rewinding is
not possible, and it actually follows that without an honest majority it is impossible to securely
compute a large class of functionalities in the UC framework in the plain model without any trusted
setup [13]. However, given a trusted setup, like a common reference string as in Section 9, it is
possible to securely compute any functionality for any number of corrupted parties under the UC
definition [14]. Indeed, the oblivious transfer protocol described in Section 9 has been proven secure
in the UC framework [34].

The general UC framework is rather complex, as it enables one to model almost any task and
any setting. In case one is interested in standard secure computation tasks, without guaranteeing
fairness, it is possible to use the simpler equivalent formalization described in [10].

10.2 Proofs in the Random Oracle Model

In many cases, the random oracle model is used to gain higher efficiency or other properties oth-
erwise unobtainable. The setting of secure computation is no exception. However, beyond its
inherent heuristic nature [12], there are some very subtle definitional issues here that must be con-
sidered. One issue that arises is whether or not the distinguisher obtains access to the random
oracle, and if yes, how. If the distinguisher does not have any access, then this is a very weak
definition, and sequential composition will not be guaranteed. If we provide the distinguisher with
the same randomly chosen oracle as the parties and the (real and ideal) adversary, then we obtain
a non-programmable random oracle [32] which may not be strong enough. A third alternative is to
provide the distinguisher with the random oracle, but in the ideal world to allow the simulator to
still control the oracle. This is a somewhat strange formulation, but something of this type seems
necessary in some cases.

In the UC framework, the random oracle can be modeled as an ideal functionality computing a
random function. This matches the third alternative in some sense, since the simulator controls the
oracle in the case of an ideal execution. It is somewhat different, however, since the environment –
who plays the distinguisher – cannot directly access the oracle.

We will not do more in this tutorial than point out that these issues exist and need to be
dealt with carefully if the random oracle is to be used in the context of secure computation. We
recommend reading [32] for a basic treatment of modeling random oracles in secure computation,
and [38, 39] for a treatment of the issue of oracle-dependent auxiliary input (and more). We
conclude by remarking that in [33], it is pointed out that other properties that are sometimes
expected (like deniability) are not necessarily obtained in the random oracle model. In many cases
of standard secure computation, this is not needed. However, this is another example of why the
random oracle model needs to be treated with great care in these settings.

10.3 Adaptive Security

In this tutorial we have considered only the case of static adversaries where the subset of corrupted
parties is fixed before the protocol execution begins. In contrast, an adaptive adversary can choose
which parties to corrupt throughout the protocol, based on the messages viewed. A classic example
of a protocol that is secure for static adversaries and not for adaptive adversaries is as follows.
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Consider a very large number of parties (say, linear in the security parameter n), and consider a
protocol which begins by securely choosing a random subset of the parties who then carry out the
computation for the rest. Assume that the adversary is limited to corrupting a constant fraction
of the parties, and assume that

√
n parties are chosen to compute the result. Then, except with

negligible probability, there will be at least one honest party in the chosen
√
n. Thus, as long

as a protocol that is secure for any number of corrupted parties is used, we have that security is
preserved. This is true for the case of static adversaries. However, an adaptive adversary can wait
until the

√
n parties are chosen, and then adaptively corrupt all of them. Since it only corrupts a

constant fraction (less than half for n > 6), this is allowed. Clearly, such an adversary completely
breaks the protocol, since it controls all the parties who carry out the actual computation.

In order to provide security for such adversaries, it is necessary to be able to simulate even when
an adversary corrupts a party midway. The challenge that this raises is that when an adversary
corrupts a real party in the middle of an execution, then it obtains its current state. Thus, the
simulator must be able to generate a transcript – without knowing a party’s input – and later be
able to “explain” that transcript as a function of an honest party’s instructions on its input, where
the input is provided later (upon corruption).

There are two main models that have been considered for the case of adaptive adversaries. In
the first, it is assumed that parties cannot securely erase data; this is called the no erasures model.
Thus, the adversary obtains the party’s entire view – its input, random tape and incoming messages
– upon corruption. This forces the simulator to generate such a view, after having generated (at
least part of) the protocol transcript. Amongst other things, this means that a transcript has to
match all possible inputs, and so it must be non committing. See [11] for a basic treatment and
constructions in the case of an honest majority, see [8] for a definitional treatment in the stand-alone
model, and see [14] for constructions in the case of no honest majority.

A weaker model of adaptive security is one which assumes that parties can securely erase data;
this is called the erasures model. In this case, it is possible for parties to erase some of their data.
This makes simulation easier since it is not necessary to generate the entire view, but only the
current state. See [3] for a very efficient solution for the case of an honest majority, and see [29]
for an example of a two-party protocol that is adaptively secure with erasures. These examples
demonstrate why the erasures model is easier to work with.11
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