An Introduction to LATEX

Ryan C. Daileda

Trinity University
Math Majors' Seminar
September 12, 2017

What is LTEX?

- ${ }^{A} T_{E} \mathrm{EX}$ is a typesetting system/language used for the production of technical (mathematical) documentation.
- In mathematics, statistics, computer science, engineering, chemistry, physics, economics, quantitative psychology, philosophy, and political science, $\operatorname{AT} T_{E X}$ is the standard for the preparation of presentations, publications, and other documents.
- Unlike WYSIWYG word processors like Microsoft Word, ATEX uses source files (.tex files) written in specialized syntax that are then translated by a $\angle T_{E} \mathrm{E}$ compiler into output documents (e.g. .pdf or .dvi files) suitable for publication.
- "Complicated" technical documents are much more easily produced using $\operatorname{AT}_{\mathrm{E}} \mathrm{EX}$ than a traditional word processor.

Obtaining ATEX

- ${ }^{A} T E X$ source files can be created using any text editor.
- MiKTeX and TeX Live are ${ }^{A T} T_{E X}$ compilers freely available online.
- There are also combined editor/compiler packages available:
* TeXShop and MacTeX for OS X, or proTeXt for Windows can be downloaded for free.
* Latexian for OS X, or WinEdt for Windows can be purchased for a small fee.
- For the price of an email address, an online editor/compiler is available through
www.overleaf.com.

A simple document

After logging in to overleaf.com, click on choose the "Blank Paper" template.

You'll then see the following code in the left-hand pane of your window:
s\{article\}\usepackage[utf8]\{inputenc\}\begin\{document\}}(Typeyourcontenthere.)\end\{document\}}undefined

A typeset version of this source code appears in the right-hand pane.

Entering mathematical expressions

Inline mathematical expressions are enclosed by a pair of $\$$.
Let $(G, *)$ be a group.

- Let $\$(G$, last) $\$$ be a group.

Suppose that $f(x)=e^{3 x}-x^{2}+3$.

- Suppose that $\$ \mathrm{f}(\mathrm{x})=\mathrm{e}^{\wedge}\{3 \mathrm{x}\}-\mathrm{x} \mathrm{x}^{\wedge}+3 \$$.

We claim that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$.

- We claim that \$x_n \to $0 \$$ as $\$ \mathrm{n}$ \to \infty\$.

For any $\mathbf{v} \in \mathbb{R}^{n},\langle\mathbf{v}, \mathbf{v}\rangle \geq 0$.

- For any $\$ \backslash$ mathbf $\{v\}$ \in $\backslash m a t h b b\{R\} へ n \$$, $\$ \backslash l a n g l e ~ \ m a t h b f\{v\} ~, ~ \ m a t h b f\{v\} ~ \ r a n g l e ~ \ g e ~ 0 \$. ~$

Remarks on math mode

- Macros and special characters have the form \symbolname.
- Whitespace is ignored.
- Curly braces \{..\} are used to group symbols, and are not typeset.
- The arguments to superscripts (${ }^{\wedge}$), subscripts (_) and other commands should be enclosed in curly braces:
$e^{\wedge} 2 x$ yields $e^{2} x$
$e^{\wedge}\{2 x\}$ yields $e^{2 x}$
- To display curly braces, use $\backslash\{$ and $\backslash\}$: $\$ A=\left\{(x, y) \mid e^{\wedge\{x y\}}=1\right\} \$$ yields

$$
A=(x, y) \mid e^{x y}=1
$$

$\$ A=\backslash\left\{(x, y) \mid e^{\wedge\{x y\}}=1 \backslash\right\} \$$ yields

$$
A=\left\{(x, y) \mid e^{x y}=1\right\}
$$

- To insert text in math mode, use \text or \mbox: $\$ \mathrm{E}=\backslash\{\mathrm{n}$ \in \backslash mathbb $\{\mathrm{Z}\} \backslash, \mid \backslash, \mathrm{n}$ \text $\{$ is even $\} \backslash\} \$$ yields

$$
E=\{n \in \mathbb{Z} \mid n \text { is even }\}
$$

Common symbols and functions

- The greek alphabet:
\$\alpha, \beta, \gamma, \Gamma, \delta, \Delta\$

$$
\alpha, \beta, \gamma, \Gamma, \delta, \Delta
$$

- Special functions:
$\$ \backslash \sin x, \backslash \cos x, \backslash \log x, \backslash \operatorname{sqrt}\{x\}, \backslash \operatorname{sqrt}[n]\{x\} \$$ $\sin x, \cos x, \log x, \sqrt{x}, \sqrt[n]{x}$
- Ellipsis: \$a_1, a_2, ···, a_n\$

$$
a_{1}, a_{2}, \ldots, a_{n}
$$

Large symbols

Expressions including summations, fractions, integrals, etc. can look "uncomfortable" when typeset inline.
$\$ \backslash$ sum_\{n=1\}^\{\infty\} \backslash frac $\{1\}\left\{n^{\wedge} 2\right\}=\backslash f r a c\{\backslash p i \wedge 2\}\{6\} \$$ yields $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. And
$\$ \backslash i n t _\{-2\}^{\wedge}\{10\} \backslash f r a c\left\{x^{\wedge} 3\right\}\{5\} d x \$$
yields $\int_{-2}^{10} \frac{x^{3}}{5} d x$.
There are two ways around this.

Option 1: Use display mode by enclosing expressions between $$
and
$$.

Option 2: Use \displaystyle.

An equation in display mode:
\
\sum_\{n=1\}^\{\infty\} \frac\{1\}\{n^2\} = \frac\{\pi^2\}\{6\}. \]

An equation in display mode:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

A large inline expression: \$\displaystyle \int_\{-2\}^\{10\} \frac\{x^3\}\{5\} dx\$.
A large inline expression: $\int_{-2}^{10} \frac{x^{3}}{5} d x$.

Templates

There's no need to start a document "from scratch" every time: it's usually more efficient to modify an existing file.

- overleaf.com offers a number of document templates and examples of papers, presentations, etc.
- Your professors probably have templates or sample .tex files they may be willing to share...

Today we will be using the file in-class.tex.

Uploading a project to overleaf.com

- Download the file in-class.zip from Dr. Daileda's website: http://gotu.us/drgq2
- From the "My Projects" page on overleaf.com, click the upload button \uparrow (next to NEW PROJECT) and select "Upload Zip" from the drop down menu.
- Locate in-class.zip and drag it into the pop-up window (or click the "Choose File" button to do it the old fashioned way).
- After a few moments, the editing (left) and preview (right) panes should open automatically.

In-class exercises

After changing the author's name to your own, scroll to the appropriate regions and code the following:
(a) $f(x)=\sqrt[3]{x^{3}+1}$

- $\$ \mathrm{f}(\mathrm{x})=\backslash \operatorname{sqrt}[3]\left\{\mathrm{x}^{\wedge} 3+1\right\} \$$
(b) $\frac{d y}{d x}=\tan x+x^{4 / 3}$
- \$\displaystyle \frac\{dy\}\{dx\} = \tan $x+x \wedge\{4 / 3\} \$$
(c) $\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1} d x$
- \$\displaystyle \Gamma(s) = \int_0^\{\infty\} $e^{\wedge}\{-x\} \quad x \wedge\{s-1\} \backslash, d x \$$

Parentheses

Consider the expression

$$
\left(\frac{x}{2}+\frac{y}{3}\right)^{2} .
$$

$$
\frac\{x\}\{2\} + \frac\{y\}\{2\})~2
$$ yields

$$
\left(\frac{x}{2}+\frac{y}{2}\right)^{2}
$$

which is clearly unsatisfactory.
Use \left and \right to scale parentheses (and other delimiters):

\[\left } (\backslash f r a c \{ x \} \{ 2 \} + \backslash f r a c \{ y \} \{ 3 \} \backslash r i g h t) \wedge 2 \backslash]

Matrices

A matrix can be built using the array environment.
\
\left(\begin\{array\}\{cc\} }
0 \& 1 \}
$1 \&-q$
\end\{array\} \right) } \]

yields

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & -q
\end{array}\right)
$$

The \& is an alignment tab, and $\backslash \backslash$ indicates the end of a row.

Another exercise

Code the following

$$
A=\left[\begin{array}{lll}
1 & 2 & -3 \\
0 & 0 & a_{23}
\end{array}\right]
$$

$$
\(\mathrm{A}=\backslash \operatorname{left}[\backslash\) begin\{array\}\{ccc\}
\(1 \& 2 \&-3 \backslash\)
0 \& 0 \& a_\{23\}
\end\{array\} \right] }
$$

Theorem environments

Theorem (Bézout's Identity)

Let $m, n \in \mathbb{Z}$. There exist $r, s \in \mathbb{Z}$ so that

$$
\operatorname{gcd}(m, n)=r m+s n
$$

\begin\{thm\}[B\'ezout's Identity] }
Let \$m, n \in \mathbb\{Z\}\$. There exist \$r,s \in
\mathbb\{Z\}\$ so that

$$
\(\backslash \operatorname{gcd}(m, n)=r m+s n\).
$$

\end\{thm\} }

Another exercise

Code the following.

Theorem (Triangle Inequality)

For any $a, b \in \mathbb{C}$, we have $|a+b| \leq|a|+|b|$.
\begin\{thm\}[Triangle Inequality] }
For any $\$ \mathrm{a}, \mathrm{b}$ \in \backslash mathbb\{C\}\$, we have $\$|a+b| ~ \backslash l e ~|a|$ $+|b| \$$.
\end\{thm\} }

Inserting figures

Here's a figure:

Figure: A surface in \mathbb{R}^{3}
\begin\{figure\} }

\caption\{A surface in \$\mathbb\{R\}^3\$\}
\end\{figure\} }

Final exercise

Use the file dirichlet.eps to produce the following output.

Figure: A generic Dirichlet problem in \mathbb{R}^{2}
\begin\{figure\} }

\caption\{A generic Dirichlet problem in $\$ \backslash$ mathbb $\left.\{\mathrm{R}\}^{\wedge} 2 \$\right\}$ \end\{figure\} }

Multiline equations

The split environment is one way to align multiple display mode equations.

$$
\begin{aligned}
\frac{x^{3}-1}{x-1} & =\frac{(x-1)\left(x^{2}+x+1\right)}{x-1} \\
& =x^{2}+x+1
\end{aligned}
$$

\
\begin\{split\} }
$\backslash f r a c\left\{x^{\wedge} 3-1\right\}\{x-1\} \&=\backslash \operatorname{frac}\{(x-1)(x \wedge 2+x+1)\}\{x-1\} \backslash \backslash$

$$
\&=x^{\wedge} 2+x+1
$$

\end\{split\} }
\]

Equation references

Suppose we'd like to number and later refer to an inset equation.

$$
\begin{equation*}
g(n)=\sum_{d \mid n} f(d) \tag{1}
\end{equation*}
$$

Here's a reference to equation (1).
\begin\{equation\}\label\{divisorsum\} }
$\mathrm{g}(\mathrm{n})=\backslash$ sum_ $\{\mathrm{d} \mid \mathrm{n}\} \mathrm{f}(\mathrm{d})$
\end\{equation\} }
Here's a reference to equation \eqref\{divisorsum\}.

ATEX automatically keeps track of and increments equation labels.
If g is defined by (1) then

$$
\begin{equation*}
f(n)=\sum_{d \mid n} \mu(d) g\left(\frac{n}{d}\right) \tag{2}
\end{equation*}
$$

Equation (2) is called the Möbius inversion formula.
If $\$ \mathrm{~g} \$$ is defined by \eqref\{divisorsum\} then
\begin\{equation\}\label\{inversion\} }

\end\{equation\} }
Equation \eqref\{inversion\} is called the \em\{M\"\{o\}bius inversion formula.\}

Beamer

- Beamer is a $\mathrm{AT}_{\mathrm{E}} \mathrm{EX}$ document style used to create presentations.
- Each slide is enclosed by \begin\{frame\} and \end\{frame\}. }
- Items can be subsequently revealed on a slide in various ways, e.g. \pause, \onslide, \only, etc.
- One can also easily include figures using \includegraphics.

Sample beamer slide

 with a subtitleThis is a slide.

- First item
- Second item

Sample slide code

\begin\{frame\} }
\frametitle\{Sample beamer slide\}
\framesubtitle\{with a subtitle\}

This is a slide. \pause
\begin\{itemize\} }
- First item \pause
- Second item
\end\{itemize\} }
\end\{frame\} }

Need more help?

We've only scratched the surface of $\operatorname{LT} T_{E} X$'s capabilities. If you need additional help:

- Online: try googling "latex (command name)."
- In person: ask your peers or any math professor!

Anything you're trying to do with $A \mathrm{~A} T_{E} X$ someone else has probably already done. Don't reinvent the wheel!

