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Abstract
We present a hybrid approach for scaling distributed train-

ing of neural networks by combining Gradient Threshold Com-
pression (GTC) algorithm - a variant of stochastic gradient de-
scent (SGD) - which compresses gradients with thresholding and
quantization techniques and Blockwise Model Update Filtering
(BMUF) algorithm - a variant of model averaging (MA). In this
proposed method we divide total number of workers into smaller
subgroups in a hierarchical manner and limits frequent commu-
nication within each subgroup. We update local model using
GTC within a subgroup and global model using BMUF across
different subgroups. We evaluated this approached by training
deep long short-term memory (LSTM) recurrent neural network
for automatic speech recognition (ASR) problem on a 2000 hour
audio dataset, and comparing to BMUF training with 128 GPUs,
the proposed approach delivers 1.25x relative speed up (~100x
speed up comparing to single GPU) and reduces relative WER
degradation by 100%.
Index Terms:Speech recognition, Two Tiered Algorithm, dis-
tributed stochastic gradient descent, gradient threshold compres-
sion, BMUF

1. Introduction
The recent trend has shown that accuracy of the deep learning
models can be improved significantly by increasing the size of
training data or increasing the capacity of the model[1], [2], [3].
But as the model size and data size increase, it also causes an
increase in training time. SGD is the most widely used training
algorithm for training all kinds of neural networks (e.g. [4], [5]).
Even if other techniques have been proposed such as alternating
direction method of multipliers (ADMM) [6][7] or 2nd order
Hessian free optimization [8][9], SGD is still an important part
of the recipe and consumes most of the time[10]. Hence, we have
seen much efforts have been put into improving its efficiency and
speed.

It is common practice to compute sub-gradients using mini-
batches of samples rather than updating weights after each train-
ing sample and this generally gives significant boost in perfor-
mance. The training time then can be further reduced by using
multiple CPUs and/or GPUs and performing data parallel train-
ing. However, there are several challenges in scaling SGD to
a large number of workers. First, by increasing the number of
compute nodes the effective (aggregated) mini-batch size is in-
creased linearly, which has shown to produce lower accuracy on
test data [11], [12]. Several techniques can be employed such
as adjusting learning rate [13], [11], using a warmup phase, etc.
however these techniques increase the upper bound on workable
minibatch sizes, but do not remove it. Also, increasing mini-
batch size may not be possible due to limited GPU memory. Sec-
ond, communicating gradients or model weights among workers
is an expensive operation and its time increases rapidly as model

size and number of workers are increased. This also depends on
whether workers are on the same host or on a different, since
communication bandwidth between different hosts is usually
much lower than on the same host.

Several techniques have been proposed which addresses
these fundamental limitations of increased communication time,
e.g. gradient sparsification using gradient thresholding and com-
pression using quantization techniques [14], [15], [16], [17] re-
duces the amount of data communicated between workers where
as efficient communication algorithms have been proposed such
as ring-allreduce [18], hierarchical ring-allreduce [19] to uti-
lize bandwidth efficiently. Asynchronous variants of SGD [20]
have been used which mask communication latency and improve
throughput, however we will focus on synchronous variants of
SGD which offers excellent reproducibility. Model parallel dis-
tributed training is another attractive option for very large mod-
els [10], however in this paper we are focused on large scale
distributed data parallel training.

Model Averaging (MA) [21] is another promising technique
that has been used to scale distributed training. In this approach
each worker updates their local model independently using sub-
set of dataset and then obtains global model by simply averag-
ing independent local models. This approach can scale almost
linearly to large number of workers, however achieves lower
accuracy on test data and it is further affected by increasing
number of workers [22][23]. There have been variants of MA
proposed such as natural gradient SGD [24], BMUF [22] which
improves model accuracy over simple MA. BMUF algorithm
in particular has shown to achieve near linear scaling without
affecting accuracy. However, from our results (shown in section
3.3.1 and 3.3.2), we noticed that as the number of workers are in-
creased, the frequency of communication needs to be increased
to achieve comparable accuracy on test dataset and this affects
the scalability of the algorithm.

In this paper we introduce a hybrid algorithm which com-
bines GTC and BMUF in a two-tiered architecture which
achieves better trade-offs between accuracy and scalability.

2. Methods
2.1. Gradient Threshold Compression

This method leverages SGD with gradient thresholding and gra-
dient quantization algorithm proposed by Strom [15]. We refer
to this algorithm as GTC for brevity. In this approach, instead
of sending entire gradient tensor for each trainable weight, only
gradients whose absolute magnitude is greater than a predefined
value, here referred as gradient-threshold (τ ) are sent to other
workers. This results in a sparse gradient update reducing total
update size by couple of orders of magnitude. Each worker sends
its sparse update to rest of the workers and receives their sparse
updates. The received sparse gradient updates are aggregated
and weights are updated with these gradients. The gradients



which are not sent to other workers are stored for later iterations.
In naive implementation, sparse update can be represented by
two numbers, an integer element index and floating point num-
ber which is either +τ or −τ . However this can be compressed
further by quantizing gradient and packing quantized gradient
and integer index into single 32-bit integer field. In this work, we
use 1-bit quantization. Thus each worker simply send gradient
deltas of±τ and remaining 31-bits are used for element index. It
achieves further 2x compression of the data to be sent. This tech-
nique can be applied to synchronous as well as asynchronous
variant of SGD, however we select synchronous variant because
of its reproducible nature. This algorithm is described in more
details in [15].

The synchronous variant of this algorithm achieves accu-
racy comparable to synchronous SGD till 64 number of GPUs
as shown in 3.3.1. The gradient-threshold as well as quantiza-
tion technique can be further fine tuned to achieved best trade-off
between accuracy and scalability. Even though this approach im-
proves the performance significantly over uncompressed SGD,
the frequent synchronization between workers becomes a bot-
tleneck as number of workers are increased. This bottleneck is
magnified even more due to recent advancements in GPUs which
takes far less computation time.

2.2. Blockwise Model Update Filtering

The BMUF algorithm [22] is a variant of MA where simple mod-
els averaging is augmented by considering model from previous
step. This algorithm is split into two steps. Before the first step,
the initial global model (Wg) is broadcasted to each worker. In
the first step, each worker updates its local model (W ) in parallel
with its portion of data for a specified number of mini-batches,
here referred as block-size. This step is referred as intra-block
parallel optimization. In this implementation, each worker sim-
ply updates its local model using mini-batch SGD independently.
In the second step, the global model is updated using following
procedure which is referred as BMUF step.

W (t) =
1

N

N∑
i=1

W (t)i (1)

G(t) = W (t)−Wg(t− 1) (2)

∆(t) = ηt∆(t− 1) + ζtG(t) (3)

Wg(t) = Wg(t− 1) + ∆(t) + ηt+1∆(t) (4)

where hyper-parameters η and ζ are called block momentum
and block learning rate respectively. We used following formula

ζ

N(1− η)
= C (5)

to set η and ζ hyper-parameters, whereC ≥ 1 is constant andN
is number of workers. We use nesterov block momentum (NBM)
scheme proposed in [22].

2.3. Proposed Two Tiered Training Algorithm

The synchronous GTC described in 2.1 suffers from scalability
issues when number of workers are increased. This is especially
evident in cases where ratio of compute-to-communication time
is low. The primary bottleneck in this method is increasing
amount of time spent in communicating gradient updates at
every mini-batch. This is discussed in section 3.3.1. On the
other hand, BMUF can scale almost linearly, at least in terms of
throughput, with adjustment of block-size. However, as shown

in the section 3.3.2, global model needs to be updated more
frequently to achieve acceptable accuracy at large number of
workers, which then affects the scalability of the algorithm. One
of the reason of lower accuracy in BMUF algorithm is due to
errors introduced from simple averaging of model weights in
eq. (1) and this error increases with more number of distinct
models as well as with larger block-size (less frequent commu-
nication among workers). So we hypothesize that if we reduce
total number of distinct models resulting in intra-block parallel
optimization step, we can achieve better accuracy without sacri-
ficing scalability. To test this hypothesis, we propose two tiered
training algorithm which combines GTC algorithm with BMUF.
We refer this algorithm as BMUFGTC for brevity.

Figure 1: 2-Tiered Training Algorithm where N=16, P=4
1(a) workers in each sub-group performs GTC within themselves.
1(b) one worker from each group participates in BMUF step
and updates global model. 1(c) The updated global model is
broadcasted to rest of the workers in each subgroup.

(a) (b) (c)

In this method, we divide total number of workers into M
subgroups where each group contains P = N

M
workers, here

referred as group-size. We refer to these subgroups as lower-
tier. We then select one worker from each subgroup and form
another subgroup, thus forming a 2-tiered hierarchy. We refer
to this new subgroup as an upper-tier and it will contain M
workers. All workers are initialized with same global model,
however each worker processes non-overlapping subset of train-
ing dataset. Training is performed in three steps. In the first step,
workers from each subgroup from lower-tier updates their model
using GTC for specified number of mini-batches, here referred
as block-size. Each subgroup updates their model independent
to other subgroups in parallel and communication is restricted
within each subgroup only. This step is also called as intra-block
parallel optimization[22]. This is shown in fig. 1(a). At the end
of this step workers will have updated their local models and
will result intoM different models, one from each sub-group. In
the second step, The workers in upper tier now performs BMUF
step with these M models and computes new global model us-
ing BMUF-NBM procedure mentioned in section 2.2. This step
is shown in fig. 1(b). And finally in the last step, The updated
global model is then broadcasted to rest of the workers in each
sub-group in lower tier as shown in fig. 1(c). These three steps
are repeated till all workers have completed training on their
subset of dataset which is equivalent to training for 1 epoch. The
training then can be continued for multiple epochs with fine-
tuned hyper-parameters until a final model is obtained.

Usually workers in the same sub-group in lower tier reside
on the same host to utilize faster communication channels such
as shared memory (for CPUs) or peer-to-peer communication
(for GPUs) needed for frequent synchronization for SGD. Work-
ers in upper tier reside on separate hosts which only synchro-
nizes at end of the block. This approach drastically reduces the
overall communication time by restricting communication to
subgroups instead of all workers. This is especially noticeable



Table 1: Effect of number of GPUs on relative WER reduction
(in %) with respect to 1-GPU SGD and relative speedup (as a
factor) achieved in total frames/second and total training time
until convergence. Note: block-size 50 is used for BMUF and
BMUFGTC .

Training
Method

Number
of

GPUs

Speedup
in

Frames/Sec

Speedup
in Total
Training

Time

Relative
WER Re-
duction

(%)

GTC

16 12.5 21 0.4
32 23.51 26.3 -1.4
64 21.66 17.4 -2.8
128 10.93 10.8 -15.6

BMUF

16 15.7 20.5 -0.8
32 28.1 36.6 -3.5
64 58.2 56.9 -8.9
128 101.5 80.4 -9.6

BMUFGTC

16 13.9 18.2 -0.5
32 24.2 31 0.1
64 49.2 42.3 -3.2
128 97.8 97.4 -4.7

on clusters which do not provide high bandwidth interconnects
such as infiniband.

3. Experiments
3.1. Hardware and Infrastructure

The experiments are carried out on Amazon Web Services
(AWS) cloud infrastructure. The compute nodes used are of
p3.16xlarge instance type provided by AWS Elastic Compute
Cloud (EC2) service. Each compute node is equipped with 8
NVIDIA Tesla V100 GPUs and each of these GPUs offer 5,120
CUDA cores and 16 GB of device memory. The Amazon AWS
EC2 P3 instances also include NVLink for ultra-fast GPU to
GPU communication. Standard 25 Gbps network bandwidth is
available between two compute nodes. AWS Simple Storage
Service (S3) is used as data storage for external data, such as
feature vectors and supervision targets.

We implemented these algorithms on in-house deep learning
toolkit written in C++. The toolkit uses MPI[25] and NCCL[26]
libraries for performing communication among workers. It
also leverages CUDA and CuDNN libraries when running on
NVIDIA devices. The 2-tiered hierarchy of workers is achieved
by using communicator abstraction provided by MPI library.
The datasets are pre-partitioned into multiple files and each
worker fetches its portion of dataset directly from S3 in parallel.
We adopt one GPU per worker strategy and spin up number of
workers equivalent to total number of GPUs in the cluster.

Experiment time also includes time taken for fetching data
from S3, staging mini-batch data to device along with training.
Also, the single-GPU SGD baseline do not perform any gradi-
ent thresholding and quantization where as distributed version
performs these extra computations and it’s time is included in
total training time along with cost of communication.

3.2. Experimental Setup

We benchmark proposed method on automatic speech recogni-
tion (ASR), however it can also be applied to other areas as well.
Our experiments were conducted with context dependent hybrid

DNN-HMM where the DNN models the posterior probabilities
of phonetic states given an observation vector. We evaluate end-
to-end performance in terms of Word Error Rate (WER).

For training data, we use 2000 hours of transcribed in-house
Amazon Speech data. The average training utterance is about 2
seconds. First we extract 64 dimensional log filter bank energy
(LFBE) feature with 10ms time shift. We then stack 3 adjacent
frames to form 192 dimensional features and then down sample
it by factor of 3 to form low frame rate feature setup. Frame
error rates after every epoch is calculated using validation dataset
where we use 1 hour of audio data and extract features using
similar setup to training data. We use additional test data of 24
hours to compute WER.

The model used in current experiments consists of 5 layers
of LSTM where each hidden layer is of 768 dimension, followed
by an affine transform layer and a softmax layer of 3183 dimen-
sions for predicting senone posterior probabilities. The neural
network consists of approximately 24M trainable parameters
which translates to approximate 93 MB model size. We feed in
third frame from future to predict current output label which we
found empirically to give best WER performance on training
data.

To initialize model, pre-training is done on smaller dataset
of 250 hours of audio data on single-GPU SGD until reason-
able accuracy is achieved. For consistency, we used same pre-
trained model for each experiment. We experimented with dif-
ferent mini-batch sizes and found that mini-batch size of 2048
frames to be optimal in terms of accuracy and GPU utilization.
For learning rate scheduler, we use ”min-rate newbob” scheduler
in which fairly large learning rate is used initially, and model is
trained until reduction in loss between two consecutive epochs
is less than 5%. The learning rate is then halved for every epoch
thereafter and training is stopped when learning rate reaches min-
imum set value. The learning rate and other hyper-parameters
are carefully tuned to give the best accuracy and best results have
been presented here.
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Figure 2: Convergence of GTC, BMUF and BMUFGTC relative
to 1-GPU SGD on 64 and 128 GPUs. Note: block-size of 50 is
used for BMUF as well as BMUFGTC , process-group-size of 8
is used for BMUFGTC .

ForSGDGTC trainer, we used gradient-threshold of 8 along
with 1-bit quantization which achieved best trade-off between
scalability and accuracy. For standalone BMUF as well as
BMUF used in proposed method, we used Nesterov block mo-
mentum scheme for all the experiments. For hyper-parameters



Table 2: Effect of varying block-size on relative WER reduc-
tion (in %) and training speedup (as a factor) for BMUF and
BMUFGTC compared to 1-GPU SGD trainer on 128 GPUs.

Training
Method

Block
Size

Speedup
in

Frames/Sec

Speedup
in

Training
Time

Relative
WER Re-
duction

(%)

BMUF

25 91.3 91.2 -8.1
50 101.5 80.4 -9.6
100 106.5 64.5 -13.7
200 110.3 57.4 -16.6

BMUFGTC

25 77.9 101.3 -4.4
50 97.8 97.4 -4.7
100 99.6 80.5 -6.4
200 105.5 73.5 -7.5

related to BMUF, we set ζ andC to 1.0 and calculate η as per (5).
In proposed method, N is equated to number of subgroups (M )
in (5), gradient-threshold of 2 is used along with 1-bit quantiza-
tion. In all experiments group-size of 8 is used except in section
3.3.3 where effect of group-size is studied.

3.3. Results

To produce a baseline result, we trained model using single-
threaded SGD on the same hardware and infrastructure. For
reference, the elapsed training time of the first epoch was 290
minutes when run on single GPU. The ASR accuracy achieved
by this model serves as the baseline by which we measure rela-
tive WER reduction in all other results below.

3.3.1. Effect of scaling worker nodes

To study the scaling properties of BMUFGTC and compare it
with other methods, the number of workers were varied from
16 to 128. All other hyper-parameters are kept constant. The re-
sults of relative WER, speedup in frames/second and speedup
in total training time to achieve final converged model of three
methods are tabulated in table 1. Please note that different meth-
ods achieved convergence after different number of epochs and
this is factored into total training time. The GTC achieves WER
within 3% relative to baseline till 64 number of workers how-
ever then degrades significantly when run on 128 workers. The
degradation in WER at large number of workers is mostly due
to increase in effective mini-batch size. This algorithm scales
satisfactorily till 32 GPUs however does not scale well beyond
that. This is largely due to increased cost of communication due
to increase in number of workers. The increased communication
cost is mainly due to limited network bandwidth available be-
tween two separate hosts (25Gbps) as compared to high network
bandwidth within same host (300Gbps) on current infrastructure.
This scaling is also affected due to increased cost of decompress-
ing gradient updates but not significantly.

BMUF on the other hand scales almost linearly in terms
of frames/second processed when number of workers are in-
creased and when adequate block-size is selected such that com-
munication time is much lower than computation time. How-
ever, we noticed significant WER degradation beyond 32 GPUs.
BMUFGTC algorithm tries to achieve trade-off between WER
performance and scalability. The algorithm scales satisfactorily
till 64 GPUs with achieving WER within of 3% relative to base-
line. WER is degraded at 128 GPUs slightly however, is ob-

Table 3: Effect of varying group-size on WER reduction (in %)
relative to 1-GPU SGD on 128 GPUs for block-size 25.

Group Size Relative WER
Reduction (%)

1 -8.1
2 -7.9
4 -5.8
8 -4.4

served to be much more stable than BMUF as well as GTC.
Figure 2 shows the frame error rate on 64 and 128 GPUs relative
to single-GPU baseline after every epoch on validation dataset
until model is converged.

3.3.2. Effect of varying block-size

The results in Table 1 and fig. 2 were observed using block-size
50. To study the effect of different block-sizes on BMUF and
BMUFGTC , we reran the experiments with different block-sizes
on 128 GPUs and results have been tabulated in Table 2. For
smaller block-size, we observe better WER performance which
is expected since we’re updating global model more frequently.
Also it can be seen from Table 2, even when small block-size
give lower speedup in terms of frames/second, the speedup in to-
tal time to converge is highest. And when block-size is increased,
we see better speedup in frames/second but training continues
for longer number of epochs to achieve convergence. We no-
tice that BMUF is more sensitive to block-size parameter when
compared to BMUFGTC . The WER achieved by BMUFGTC

at block-size 400 still outperforms WER achieved by BMUF at
block-size 25.

3.3.3. Effect of varying process group size

In all the previous experiments, group-size of 8 was used in
BMUFGTC algorithm. To see the effect on varying group-
size we re-ran the experiments with different group-size on 128
GPUs and its results are tabulated in Table 3. When group-size
is equal to 1, algorithm becomes equivalent to BMUF. It can be
seen that WER performance of the BMUFGTC increases as the
group-size is increased. As group-size is increased, number of
distinct models are reduced which needs to be averaged as part
of BMUF step (1). This reduces errors introduced due to averag-
ing models. In our implementation we group together workers
equal to number of GPUs on available on the same host and
leverages fast GPU-to-GPU data transfers, however this can be
further extended to multi-host scenario which can increase WER
performance further.

4. Conclusion
We have presented a 2-tiered algorithm which leverages GTC
and BMUF algorithms and showed that proposed method can
indeed achieves better accuracy and scalability trade-off when
number of workers are high. Here, the 2-tiered architecture ad-
dresses communication bottleneck issue as well as errors intro-
duced by model averaging step in BMUF and have found to be
useful where high bandwidth interconnect such as infiniband is
not available. We show that, we are able to scale till 128 GPUs
with 4% relative degradation after converging model. In future,
we will experiment with higher group-size to scale to 128 and
higher number of GPUs.
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