Classification, Parameter Estimation and State Estimation

Classification, Parameter Estimation and State Estimation: An Engineering Approach using MATLAB F. van der Heijden, R.P.W. Duin, D. de Ridder and D.M.J. Tax © 2004 John Wiley & Sons, Ltd ISBN: 0-470-09013-8

Classification, Parameter Estimation and State Estimation

An Engineering Approach using MATLAB®

F. van der Heijden Faculty of Electrical Engineering, Mathematics and Computer Science University of Twente The Netherlands

R.P.W. Duin Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology The Netherlands

D. de Ridder Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology The Netherlands

D.M.J. Tax Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology The Netherlands

John Wiley & Sons, Ltd

Copyright © 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging in Publication Data

Classification, parameter estimation and state estimation : an engineering approach using MATLAB/F. van der Heijden . . . [et al.].

p. cm.
Includes bibliographical references and index.
ISBN 0-470-09013-8 (cloth : alk. paper)
1. Engineering mathematics—Data processing. 2. MATLAB. 3. Mensuration—Data processing. 4. Estimation theory—Data processing. I. Heijden, Ferdinand van der. TA331.C53 2004
681'.2—dc22

2004011561

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-09013-8

Typeset in 10.5/13pt Sabon by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by TJ International Ltd, Padstow, Cornwall This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Pr	eface		xi		
Fo	rewor	rd	XV		
1	Intro	oduction	1		
	1.1	The scope of the book	2		
		1.1.1 Classification	3		
		1.1.2 Parameter estimation	4		
		1.1.3 State estimation	5		
		1.1.4 Relations between the subjects	6		
	1.2	Engineering			
	1.3	The organization of the book			
	1.4	References	12		
2	Detection and Classification				
	2.1	Bayesian classification			
		2.1.1 Uniform cost function and minimum error rate	23		
		2.1.2 Normal distributed measurements; linear			
		and quadratic classifiers	25		
	2.2 Rejection		32		
		2.2.1 Minimum error rate classification with			
		reject option	33		
	2.3	Detection: the two-class case			
	2.4	Selected bibliography			
	2.5	Exercises			
3	Parameter Estimation				
	3.1	Bayesian estimation	47		
		3.1.1 MMSE estimation	54		

		3.1.2 MAP estimation	55	
		3.1.3 The Gaussian case with linear sensors	56	
		3.1.4 Maximum likelihood estimation	57	
		3.1.5 Unbiased linear MMSE estimation	59	
	3.2	Performance of estimators	62	
		3.2.1 Bias and covariance	63	
		3.2.2 The error covariance of the unbiased linear		
		MMSE estimator	67	
	3.3	Data fitting	68	
		3.3.1 Least squares fitting	68	
		3.3.2 Fitting using a robust error norm	72	
		3.3.3 Regression	74	
	3.4	Overview of the family of estimators	77	
	3.5	Selected bibliography	79	
	3.6	Exercises	79	
4	Stat	tate Estimation		
	4.1	A general framework for online estimation	82	
		4.1.1 Models	83	
		4.1.2 Optimal online estimation	86	
	4.2	Continuous state variables	88	
		4.2.1 Optimal online estimation in linear-Gaussian		
		systems	89	
		4.2.2 Suboptimal solutions for nonlinear		
		systems	100	
		4.2.3 Other filters for nonlinear systems	112	
	4.3	Discrete state variables	113	
		4.3.1 Hidden Markov models	113	
		4.3.2 Online state estimation	117	
		4.3.3 Offline state estimation	120	
	4.4	Mixed states and the particle filter	128	
		4.4.1 Importance sampling	128	
		4.4.2 Resampling by selection	130	
		4.4.3 The condensation algorithm	131	
	4.5	Selected bibliography	135	
	4.6	Exercises	136	
5	Supervised Learning			
	5.1	Training sets	140	
	5.2	Parametric learning	142	
		5.2.1 Gaussian distribution, mean unknown	143	

CONTENTS

		5.2.2	Gaussian distribution, covariance matrix		
			unknown	144	
		5.2.3	Gaussian distribution, mean and covariance		
			matrix both unknown	145	
		5.2.4	Estimation of the prior probabilities	147	
		5.2.5	Binary measurements	148	
	5.3	Nonp	arametric learning	149	
		5.3.1	Parzen estimation and histogramming	150	
		5.3.2	Nearest neighbour classification	155	
		5.3.3	Linear discriminant functions	162	
		5.3.4	The support vector classifier	168	
		5.3.5	The feed-forward neural network	173	
	5.4	Empir	rical evaluation	177	
	5.5	Refere	ences	181	
	5.6	Exerc	ises	181	
6	Feat	ature Extraction and Selection			
	6.1	Criter	ia for selection and extraction	185	
		6.1.1	Inter/intra class distance	186	
		6.1.2	Chernoff-Bhattacharyya distance	191	
		6.1.3	Other criteria	194	
	6.2	Featur	re selection	195	
		6.2.1	Branch-and-bound	197	
		6.2.2	Suboptimal search	199	
		6.2.3	Implementation issues	201	
	6.3 Linear feature extraction		r feature extraction	202	
		6.3.1	Feature extraction based on the		
			Bhattacharyya distance with Gaussian		
			distributions	204	
		6.3.2	Feature extraction based on inter/intra		
			class distance	209	
	6.4	Refere	ences	213	
	6.5	Exerc	ises	214	
7	Uns	Insupervised Learning			
	7.1 Feature reduction			216	
		7.1.1	Principal component analysis	216	
		7.1.2	Multi-dimensional scaling	220	
	7.2	Cluste	ering	226	
		7.2.1	Hierarchical clustering	228	
		7.2.2	K-means clustering	232	

		7.2.3	Mixture of Gaussians	234	
		7.2.4	Mixture of probabilistic PCA	240	
		7.2.5	Self-organizing maps	241	
		7.2.6	Generative topographic mapping	246	
	7.3	Refere	ences	250	
	7.4	Exerc	ises	250	
8	State	State Estimation in Practice			
	8.1	System	n identification	256	
		8.1.1	Structuring	256	
		8.1.2	Experiment design	258	
		8.1.3	Parameter estimation	259	
		8.1.4	Evaluation and model selection	263	
		8.1.5	Identification of linear systems with		
			a random input	264	
	8.2	Obser	vability, controllability and stability	266	
		8.2.1	Observability	266	
		8.2.2	Controllability	269	
		8.2.3	Dynamic stability and steady state solutions	270	
	8.3	8.3 Computational issues			
		8.3.1	The linear-Gaussian MMSE form	280	
		8.3.2	Sequential processing of the measurements	282	
		8.3.3	The information filter	283	
		8.3.4	Square root filtering	287	
		8.3.5	Comparison	291	
	8.4	8.4 Consistency checks			
		8.4.1	Orthogonality properties	293	
		8.4.2	Normalized errors	294	
		8.4.3	Consistency checks	296	
		8.4.4	Fudging	299	
	8.5	Exten	sions of the Kalman filter	300	
		8.5.1	Autocorrelated noise	300	
		8.5.2	Cross-correlated noise	303	
		8.5.3	Smoothing	303	
	8.6	6 References		306	
	8.7	7 Exercises			
9	Worked Out Examples				
	9.1 Boston Housing classification problem			309	
		9.1.1	Data set description	309	
		9.1.2	Simple classification methods	311	

	9.1.3	Feature extraction	312
	9.1.4	Feature selection	314
	9.1.5	Complex classifiers	316
	9.1.6	Conclusions	319
9.2	Time-	of-flight estimation of an acoustic tone burst	319
	9.2.1	Models of the observed waveform	321
	9.2.2	Heuristic methods for determining the ToF	323
	9.2.3	Curve fitting	324
	9.2.4	Matched filtering	326
	9.2.5	ML estimation using covariance models	
		for the reflections	327
	9.2.6	Optimization and evaluation	332
9.3	Onlin	e level estimation in an hydraulic system	339
	9.3.1	Linearized Kalman filtering	341
	9.3.2	Extended Kalman filtering	343
	9.3.3	Particle filtering	344
	9.3.4	Discussion	350
9.4	Refere	ences	352
Append	ix A	Topics Selected from Functional Analysis	353
A.1	Linea	r spaces	353
	A.1.1	Normed linear spaces	355
	A.1.2	Euclidean spaces or inner product spaces	357
A.2	Metri	ic spaces	358
A.3	Ortho	onormal systems and Fourier series	360
A.4	Linea	r operators	362
A.5	Refer	ences	366
Append	ix B	Fonics Selected from Linear Algebra	
rippena		and Matrix Theory	367
B.1	Vecto	and matrices	367
B.2	Conv	olution	370
B.3	Trace	and determinant	372
B.4	Differ	rentiation of vector and matrix functions	373
B.5	Diago	onalization of self-adjoint matrices	375
B.6	Singu	lar value decomposition (SVD)	378
B. 7	Refer	ences	381
Annond	iv C	Probability Theory	202
	Proba	ability theory and random variables	282
0.1	C 1 1	Moments	386
	\bigcirc .1.1	wioinchits	200

ix

	C.1.2 Poisson distribution	387
	C.1.3 Binomial distribution	387
	C.1.4 Normal distribution	388
	C.1.5 The Chi-square distribution	389
C.2	Bivariate random variables	390
C.3	Random vectors	395
	C.3.1 Linear operations on Gaussian random	
	vectors	396
	C.3.2 Decorrelation	397
C.4	Reference	398
Append	ix D Discrete-time Dynamic Systems	399
D.1	Discrete-time dynamic systems	399
D.2	Linear systems	400
D.3	Linear time invariant systems	401
	D.3.1 Diagonalization of a system	401
	D.3.2 Stability	402
D.4	References	403
Append	ix E Introduction to PRTools	405
E.1	Motivation	405
E.2	Essential concepts in PRTools	406
E.3	Implementation	407
E.4	Some details	410
	E.4.1 Data sets	410
	E.4.2 Classifiers and mappings	411
E.5	How to write your own mapping	414
Append	ix F MATLAB Toolboxes Used	417
Index		419