
Performance Evaluation of Gang Scheduling forParallel and Distributed MultiprogrammingFang Wang1 Marios Papaefthymiou2 Mark Squillante31 Yale University, New Haven CT 06520, USA2 University of Michigan, Ann Arbor MI 48109, USA3 IBM Research Division, Yorktown Heights NY 10598, USAAbstract. In this paper we explore the performance of various aspectsof gang scheduling designs. We developed an event-driven simulator of avanilla gang scheduler that relies on the Distributed Hierarchical Control(DHC) structure. We also developed three variations of the vanilla gangscheduler that rely on a push-down heuristic and on two job-migrationschemes to decrease response times by reducing processor idle time. Weevaluated the gang schedulers on a compiled, one-month long history ofjobs from the Cornell Theory Center that was scheduled by EASY-LL,a particular version of LoadLeveler with back�lling. Our results demon-strate the signi�cant performance improvements that can be achievedwith gang scheduling. They also show the performance impact of variousaspects in the design of gang schedulers. We identify and discuss thepotential bene�ts of several approaches for addressing a number of gangscheduling issues that, under certain workload conditions, become im-portant in practice. Our techniques include heuristics for mapping jobsto processors and for choosing time quanta, block paging for reducingmemory overheads, and the allocation of multiple time-slices to smallerjobs per timeplexing cycle.1 IntroductionResource management schemes have become essential for the e�ective utiliza-tion of high-performance parallel and distributed systems that are shared amongmultiple users. The main objective of resource schedulers is to achieve high over-all system throughput, while at the same time providing some guarantee for theperformance of individual jobs in the system. This is a particularly challengingtask, given that typical workloads of multiprogrammed multicomputers includea large number of jobs with diverse resource and performance requirements.The two basic mechanisms used in multicomputer schedulers are time-sharingand space-sharing. Time-sharing ensures that no job monopolizes the system'sresources and can be suitable for scheduling jobs with relatively small processingrequirements. A job may not require the attention of the entire system, however.Moreover, abundant empirical evidence indicates that program dependenciesand communication costs may limit the degree of achievable parallelism (e.g., [2,16]). In these situations, space-sharing can increase throughput by partitioningresources and reducing the underutilization of system partitions.



Gang scheduling is a exible scheduling scheme that combines time-sharingand space-sharing with the goal of providing the advantages of both approaches,including high system throughput and low response times for short-running jobs.The roots of gang scheduling can be traced back to the coscheduling conceptdescribed in [18]. This two-dimensional division (in time and space) of resourcesamong jobs can be easily viewed as having the resource allocations governedby a scheduling matrix, where each column represents a speci�c processor andeach row represents a particular time-slice, or quantum. Each non-empty matrixentry (i,j) contains a job (or set of jobs), which represents the allocation of thejth processor to this job during the ith quantum. The set of entries containingthe same job (or set of jobs) on a given row is called a partition. The number ofpartitions and the size of each partition can vary both within and across rows.When a job is submitted, it is assigned to a partition on a particular row. Eachpartition is allocated a speci�c time quantum associated with its row, with thepossibility of having the partitions on a given row use di�erent quantum lengths.When the time quantum for a partition expires, the resources are reallocated andthe job(s) of the partition(s) on the next row are scheduled to execute on thesystem. Within each partition, resources may be dedicated or time-shared. Thus,gang scheduling supports time-sharing at the partition level and at the individualjob level.Gang scheduling encompasses a very broad range of schedulers depending onthe particular schemes used for partitioning resources and for sharing resourceswithin each partition. One particular approach is based on the distributed hier-archical control structure [4, 5, 6]. Within the context of the above description,this scheme can be logically viewed as having a scheduling matrix with logP +1rows, where the ith row contains 2i partitions each of size P=2i, 0 � i � logP ,and P denotes the number of system processors. A somewhat di�erent approach,which can be conceptually viewed as a generalization of Ousterhout's originalglobal scheduling matrix, has also been considered [13, 14].Due to its promising characteristics, gang scheduling has attracted consider-able attention in recent years. Gang schedulers based on the distributed hierar-chical control structure [4, 5, 6] have been implemented for the IBM RS/6000SP2 [8, 30] and for clusters of workstations [9, 29]. Similarly, another formof gangscheduling has been implemented on both the IBM SP2 and a cluster of worksta-tions [13, 14]. The performance of gang scheduling schemes that use distributedhierarchical control has been analyzed from a queueing-theoretic perspective [21,22]. Moreover, the performance of several gang scheduling algorithms has beenstudied by simulation on synthetically generated workloads [3, 7].In this paper we present an empirical evaluation of various gang schedul-ing policies and design alternatives based on an actual parallel workload. Ourfocus is on the distributed hierarchical control approach to gang scheduling, al-though many of the principles and trends observed in this study are relevant toother forms of gang scheduling. Our study includes an examination of a vanillagang scheduling scheme [4, 21] and two variations of this scheme that use push-down and job-migration heuristics to increase system throughput and decrease



response times by minimizing idle partitions. These scheduling strategies are sim-ulated under a workload that we obtained by post-processing a trace of the work-load characteristics for one month at the Cornell Theory Center [10, 11, 12]. Theoriginal workload was scheduled on 320 processors of the IBM SP2 at Cornell'sTheory Center using EASY-LL, an enhanced version of the basic LoadLevelerscheduler that uses back�lling to reduce the response times of jobs with smallresource requirements [20].The objectives of our evaluation study were to assess the e�ectiveness ofdi�erent aspects of gang scheduling designs under a variety of heuristics forassigning jobs to processors and across a range of memory overheads. We inves-tigated a greedy scheme for the vanilla and the push-down scheduler and twopriority-based policies for migrating and redistributing jobs. In our experiments,both job-migration policies perform better than the vanilla and the push-downschemes. Our �rst job-migration scheme favors jobs with small resource require-ments and achieves signi�cantly shorter response times than EASY-LL for mostjob classes in the system. Our other job-migration policy favors large jobs andperforms better than either EASY-LL or any of our gang scheduling schemes inmost job classes with large resource requirements. For jobs with small resourcerequirements, however, EASY-LL outperforms this particular gang scheduler.As context-switch costs increase due to factors such as memory and communica-tions overheads, the performance of the three gang scheduling policies degradessigni�cantly, especially for short quanta. We propose an approach to e�ectivelyreduce the performance impact of such memory overheads as part of our study.The remainder of this paper is organized as follows. We begin in Section 2with a more detailed description of EASY-LL and the gang scheduling policiesconsidered. In Section 3 we present the mechanisms examined for mapping jobsto processors. A brief overview of our simulator engine is given in Section 4.We describe the workload used in our study in Section 5, and continue withthe presentation of our experimental results in Section 6. We then discuss inSection 7 some of the practical implications of our results, as well as approachesto improve gang scheduling performance and current ongoing aspects of ourstudy. Our concluding remarks are presented in Section 8.2 Scheduling policiesIn this section we describe the scheduling policies examined in our study. We �rstpresent the notation and terminology used throughout this paper. We then givea brief overview of the EASY-LL scheduling scheme, followed by a descriptionof the gang scheduling policies we considered.2.1 PreliminariesThe basic parameters associated with serving any given job j is the arrival time�j, the dispatch time �j , and the completion time �j of the job. When this job issubmitted to the system at time �j, it is placed into a particular queue based on



the scheduling policy. At time �j , the job is moved from this queue to a speci�cpartition and receives service for the �rst time. At time �j the job �nishes itsexecution and exits the system. The (cumulative) amount of time for which jobj actually receives service is its service time Sj .A number of important performance measures are used to compare the di�er-ent scheduling policies considered in our study. In particular, the job parameters�j; �j ; �j and Sj can be used to de�ne the following performance metrics for theexecution of job j:{ response time Rj , where Rj = �j � �j{ queueing time Qj , where Qj = �j � �j{ execution time Ej , where Ej = �j � �j{ sharing time Hj , where Hj = Ej � Sj{ waiting time Wj, where Wj = Rj � SjIn these de�nitions, we have split \waiting time" (respectively, \service time")into two separate components Wj and Qj (respectively, Ej and Hj) to take thetime sharing into account. Thus, the total waiting timeWj is the sum Qj +Hjof the time spent waiting on the queue (Qj) and the time that job j is swappedout (Hj). Also, the execution time Ej is the sum Sj+Hj of the service time (Sj)and the sharing time during which job j is swapped out (Hj).2.2 EASY-LLOur consideration here of the LoadLeveler and EASY-LL schedulers is basedupon the use of the versions of these schedulers at the Cornell Theory Centerwhen the workload traces used in our experiments were collected. This version ofLoadLeveler schedules jobs in the order of their arrival times. The job at the headof the queue is dispatched and begins its execution as soon as su�cient resourcesbecome available in the system. LoadLeveler does not support preemption. Oncea job begins its execution, it continues until it terminates. Thus, in LoadLevelerwe have Wj = Qj and Ej = Sj . This LoadLeveler scheme may not be suitablefor interactive execution, as system access is blocked for every job that arrivesimmediately after any single job with large resource requirements.The EASY-LL scheduler is a variation of this version of the LoadLevelerscheme that uses a back�lling heuristic to improve response time for short-running tasks. When submitting their jobs to the system queue, users request aspeci�c number of processors and provide an estimate of the execution times oftheir jobs on the requested resources. Whenever new resources become availableor a new job is submitted, EASY-LL schedules the �rst job in the queue that�ts within the available resources and whose execution does not delay the dis-patching of any job ahead of it in the queue. Thus, small jobs can bypass largerjobs, provided they do not delay the execution of the larger jobs.2.3 Vanilla gang schedulingGeneric gang scheduling under distributed hierarchical control views a parallelcomputing system as a collection of P identical processors and a hierarchy of



L = logP + 1 di�erent classes of jobs. At any time, the system is serving jobsfrom a speci�c class. When serving jobs of class i, the system is divided intoP=2i partitions where each partition consists of 2i processors. For example, a256-processor system has 9 classes, where class 0 has 256 partitions each withone processor, class 1 has 128 partitions each with two processors, and so on.A �rst-come �rst-served queue is associated with each class from which the cor-responding partitions select jobs for execution. An example of this hierarchical,binary-tree view of the gang scheduling system is illustrated in Fig. 1. Jobs areallocated to partitions in their corresponding classes according to a speci�c jobassignment policy (described in Section 3).
class 3

class 2

class 1

class 0Fig. 1. Binary-tree view of an 8-processor multicomputer system under the distributedhierarchical control structure.During the operation of the system, each class i is allocated a time-slice ofcertain length. Processors are dedicated to each of the L classes in a time-sharedmanner by rotating the time allocated to the job classes. The time intervalbetween successive time-slices of the same class is called the timeplexing cycle ofthe system, which we denote by T . A system-wide switch from the current classi to the next class i � 1 (modulo L) occurs when at least one of the followingtwo events becomes true:{ The time-slice of class i has expired.{ There are no jobs of class i in the system.In the vanilla gang scheduling scheme, when the number of partitions in a classexceeds the number of jobs assigned to it, the excess partitions remain idle duringthe time-slice. Therefore, the system may be signi�cantly underutilized in lightload situations.2.4 Gang scheduling with push-downA simple variation of the vanilla gang scheduling scheme uses a push-downheuristic to reduce the number of idle partitions at any time. In push-downgang scheduling, every partition that is idle during its designated time-slice is



recon�gured into two partitions for the class below it, each of which is half thesize of the original partition. The partitions are recon�gured recursively untilthey �nd a job(s) from a class below that is allocated to the same set of pro-cessors. Thus, a fraction of the original partition's time-slice is allocated to jobsbelonging to the class(es) below (i.e., it is \pushed down" to the lower parti-tions), and at any time the system may be serving jobs from more than oneclass. With push-down, the actual length of the timeplexing cycle is workloaddependent. Assuming that no job �nishes before the expiration of its quantum,the actual timeplexing cycle is equal to the maximum number of busy nodes inany path from the root to the leaves of the distributed hierarchical control tree.2.5 Gang scheduling with job migrationThe third gang scheduling policy we consider borrows characteristics from boththe vanilla and the push-down schedulers. Under this policy, all jobs waiting inthe queue of a class are scheduled to execute in the beginning of the correspond-ing time-slice. As is the case with push-down gang scheduling, idle partitionsare assigned jobs from other classes according to some job assignment priorityscheme. These jobs are free to execute on any idle partition, however. Therefore,gang scheduling with migration is more exible and may result in fewer idle par-titions than gang scheduling with push-down. In a manner similar to the vanillagang scheduler, switches are system-wide and occur when the time-slice of theclass expires. Thus, even though the system may not be serving any job fromthe class that corresponds to the active time-slice, jobs are reallocated in logicalsynchrony, and the timeplexing cycle remains �xed.The overhead of such a migration scheme can be quite large. In our cur-rent study, we ignore this overhead and thus use the job-migration policy inour experiments to explore the upper bound on gang scheduling performanceunder distributed hierarchical control. A few methods for attempting to achievethe performance of this migration scheme in practice, such as tree-packing, arediscussed in Section 7.2.6 Processor counts that are not powers of 2It is straightforward to embed the scheduling schemes described in the previoussubsections in systems with 2i processors. When processor counts are not powersof 2, however, there are several ways to implement the distributed hierarchicalcontrol structure. Fig. 2 illustrates the general approach that we adopted inour scheduling policies. For one time-slice during each timeplexing cycle, systemresources are con�gured as a single 320-processor system. Subsequently, the 320processors are partitioned into a 64-processor and a 256-processor system, eachof which is viewed as a binary tree. With the push-down scheduling policy, thetwo trees proceed independently. With the job-migration policies, however, theswitches in the two trees are synchronized. Due to their di�erent heights, thetwo trees may be serving di�erent classes at a time. In our implementations,when the 256-processor subtree is serving class 8 or 7, the 64-processor subtree



is serving class 1 or 0, respectively. From class 6 and below, both trees serve thesame class during each time-slice.
320

64 256Fig. 2. Distributed hierarchical control structure for a 320-processor system.3 Job assignment policiesAn important component of every gang scheduling approach is the policy thatit uses to assign dispatched jobs to partitions. This policy can have a profoundimpact on the performance of a gang scheduler, as we have found in our nu-merous experiments, and these performance issues are highly dependent uponthe workload characteristics. So far, we have experimented with three policies forassigning jobs within each class. The �rst two policies are used together with thevanilla and the push-down scheduler. Under these policies, each job is assignedto a partition when it starts to execute for the �rst time and remains assignedto the same partition for the duration of its execution time. The third policyis used together with the migration scheduler and assigns jobs to partitions onevery switch via di�erent priority schemes.Our �rst job assignment policy is a greedy, �rst-�t strategy that always startsfrom the leftmost branch of the tree and assigns each new job to the �rst availablepartition in that class. In a lightly loaded system, this scheme will load the leftbranch of the tree, while leaving the partitions on the right branch idle. Underthese circumstances, the degree to which push-down can be applied on the rightbranch is limited, and thus it can become ine�ective for the right branch.The second policy we investigate is a very simple, \weight-oriented" alloca-tion scheme. Every node in the tree is associated with a weight equal to thesum of the jobs allocated to that node and all its descendents in the tree. Nodeweights are updated whenever a job �nishes or is dispatched to a partition inthe tree. When assigning a job to a partition in class i, we select the one withthe lightest weight node in the level i of the tree. Such a partition can be foundby a straightforward tree traversal that recursively looks for the lightest branchat each level until it reaches level i. The lightest partition in the class has thesmallest number of jobs allocated in level i and below. This scheme is a local op-timization procedure that does not take into account the remaining service timesof the currently dispatched jobs or future job arrivals. Moreover, the details of itsde�nition are meant to work in unison with the push-down scheduler. Under adi�erent approach, such as a push-up scheme, the weights and traversals shouldbe modi�ed to match the corresponding properties of the approach employed.



For gang schedulers that support job migration, we experimented with a sim-ple job assignment policy that maps jobs to idle partitions in a greedy manner.During each time-slice, jobs waiting to execute in the queue of the correspondingclass are dispatched. If processors remain idle, they are assigned jobs from otherclasses. Each time a job is dispatched, it may run on a di�erent set of processors.Since it is assumed that there is no overhead for migrating jobs to di�erent par-titions (see Section 2.5), there is no loss of generality while obtaining the bestgang scheduling performance. A straightforward job assignment strategy wouldbe to impose a priority on the system's classes and to assign idle processors tojobs of other classes by considering these classes in decreasing priority. In ourexperiments, we investigated two extremes of this simple priority scheme. Welooked at a top-down order that starts from the root and proceeds to the leaves,thus favoring jobs with large resource requirements. Conversely, we also studieda bottom-up approach that traverses classes from the leaves to the root, thusfavoring jobs with small resource requirements.4 SimulatorWe developed an event-driven simulator engine to experiment with the variousgang scheduling policies described above. Our simulator has four di�erent events:job arrival, job completion, time-slice expiration, and context switch. All eventsare inserted into an event queue, and the earliest event in the queue is triggered�rst. In this section we outline the operation of our simulation and explain thedesign choices we made in order to simplify its implementation.In general, when a class i job arrives, if class i is currently being served andhas partitions available, the job is dispatched to an available partition accordingto one of the schemes described in Section 3. If no partition in class i is available,the job is inserted into the queue for class i.If class i is currently not being served, the job is handled according to thespeci�cs of the gang scheduling policy under consideration. In the vanilla policy,the job is simply inserted into the waiting queue for class i. With the push-downand job-migration policies, if there are available partitions in another class j thatcan have their class j time-slice pushed down to host the newly arrived class ijob, the new job will be dispatched accordingly. If there is no available partitionor no time can be pushed down, the job will be added to the class i queue.When a job completes, its partition becomes available, and the weight asso-ciated with each node is updated. If there are jobs waiting in the queue of thecurrent class, the available partition may be assigned to a new job according toone of the mechanisms described in Section 3. Otherwise, under the push-downand migration policies, the time-slice of the available partition is allocated to ajob of another class in a manner similar to that described above for an arrivalthat �nds the system serving another class while processors are idle.When the time-slice of a class expires, every job that is currently executingis stopped and its remaining execution time is updated. Subsequently, a contextswitch event occurs. A context switch also occurs when all the partitions in a



class become idle, and there are no jobs waiting in the queue. Thus, the timeremaining in the quantum is not wasted idling.The context switch event starts the execution of the jobs in the next class thatare ready to run. Preempted jobs resume their execution, and jobs in the queueare dispatched if there are still partitions available. With push-down scheduling,if any partitions remain idle, their time-slices are pushed down for jobs in lowerclasses. In a similar manner, with the job-migration policy, idle partitions willbe assigned jobs from the queues of higher or lower classes in the system.In order to avoid a complex software implementation, we made a few sim-plifying assumptions in the simulation of the migration scheduler. First, oursimulator dispatches new jobs only in the beginning of each time-slice. Thus,whenever jobs arrive or �nish in the middle of a time-slice, our simulator doesnot take advantage of the possibly idle processors in the system. Second, oursimulator does not account for the various overheads (e.g., communication, datatransfer, system state, etc.) incurred for migrating jobs among processors. Inview of the relatively light loads we experimented with, dispatching jobs onlyin the beginning of time-slices should not signi�cantly change the trends of ourperformance results. Moreover, our second assumption yields an upper bound onthe performance of gang scheduling under distributed hierarchical control, andwe wanted to quantify this potential bene�t under an actual workload. This andother related issues, including several mechanisms that can be used to reducethe cost of data transfers, are discussed further in Section 7.5 Workload characteristicsWe experimented with a collection of jobs that were submitted to the CornellTheory Center SP2 during the month of August 1996. The execution of these jobson the SP2 was managed by the EASY-LL scheduler described in Section 2.2.Our workload comprised 6,049 jobs that requested up to 320 processors and hadnonzero CPU times. We categorized these jobs into ten classes according to theirresource requirements. Each job requesting p processors was assigned to class i,where 2i�1 < p � 2i. This classi�cation scheme facilitated the direct performancecomparison of the gang scheduling policies with the EASY-LL scheduler on a320-processor system.The statistics of this workload are given in the table of Fig. 3. The �rst twocolumns of the table give the class number and the job counts in each class.The third column gives the average service time for the jobs in each class. Thisnumber is intrinsic to each job and the number of processors it executes on. Thefourth and �fth columns give the average waiting and response time that wasachieved for each class using the EASY-LL scheduler. The last column gives thenormalized average response time for the jobs in each class. An interesting pointabout these data is that, with the notable exception of the uniprocessor class0, the average response times increase almost monotonically with the numberof processors in the class. Also, with the exception of class 8, the normalizedresponse times increase monotonically with the number of processors.



class jobs Sj Wj Rj R=Sj0 2,408 16,854 9,105 25,959 1.51 515 18,100 12,122 30,222 1.72 669 9,571 10,315 19,885 2.13 582 3,563 13,946 17,510 4.94 848 8,822 24,947 33,768 3.85 465 9,008 69,157 78,165 8.76 420 93,189 93,040 102,359 11.07 74 12,168 128,895 141,062 11.68 45 300 146,141 146,441 488.49 23 5,912 147,240 153,153 26.0Fig. 3. Job counts, service times, waiting times, response times, and normalized re-sponse times for the one-month workload from the Cornell Theory Center underEASY-LL. Service, waiting, and response times are measured in seconds.6 Simulation resultsInitially, we experimented with the vanilla gang scheduling policy. It soon be-came evident that this scheme was performing consistently and signi�cantlyworse than EASY-LL under the Cornell Theory Center workload. Since thevanilla scheduler switches all partitions in the same class synchronously, this rel-atively light parallel workload resulted in several idle partitions. We thus turnedour attention to the other gang schedulers, due to their promising handling ofidle partitions. In this section we discuss the results we obtained by simulatingthe push-down scheduler and our two job-migration policies on the one-monthworkload from the Cornell Theory Center. For the push-down policy, we onlypresent the results we obtained with the weight-oriented job assignment policy,since it consistently outperformed the �rst-�t policy, as expected.Figs. 4, 5, 6, and 7 give the performance of the gang scheduling schemes forcontext-switch costs of 1 second and 16 seconds. In each of these graphs, they-axis gives the mean response time for the jobs in the corresponding class nor-malized by the mean service time for that class. The timeplexing cycle, whichis given on the x-axis, is divided uniformly among the system's ten classes. Wearrived at the worst-case context-switch cost of 16 seconds by assuming that thejobs have a 64MB working set on each processor [11] which must be loaded inits entirety at the rate of 1 page/millisecond for a page size of 4KB, given thecharacteristics of many parallel scienti�c applications [19] and the (potentially)large degree of multiprogramming with ten classes. Note that EASY-LL is nota�ected by the context-switch overheads of gang scheduling, and the correspond-ing curves in Figs. 4 { 7 represent the last column in the table of Fig. 3.Our results show that the scheduling policy with migration from the leavesachieves shorter response times than EASY-LL for eight out of the ten classes.Recall that this migration policy favors jobs with smaller resource requirements.This results in better performance for the small job classes than that provided



1

1.5

2

2.5

3

3.5

4

4.5

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
0
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

1

1.5

2

2.5

3

3.5

4

4.5

500 1000 1500 2000 2500 3000 3500 4000
N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
1
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

1

1.5

2

2.5

3

3.5

4

4.5

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
2
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

1

2

3

4

5

6

7

8

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
3
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

0

2

4

6

8

10

12

14

16

18

20

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
4
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

0

2

4

6

8

10

12

14

16

18

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
5
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_migFig. 4. Normalized response times of classes 0{5 for the push-down gang sched-uler, the migration scheduler with jobs assigned from the root, and the migrationscheduler with jobs assigned from the leaves. Quanta are allocated uniformly, andthe context-switch cost for each class is 1 sec.



0

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
6
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

0

5

10

15

20

25

30

35

40

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
7
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

0

50

100

150

200

250

300

350

400

450

500

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
8
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

25

30

35

40

45

50

55

60

65

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
9
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_migFig. 5. Normalized response times of classes 6{9 for the push-down gang sched-uler, the migration scheduler with jobs assigned from the root, and the migrationscheduler with jobs assigned from the leaves. Quanta are allocated uniformly, andthe context-switch cost for each class is 1 sec.under EASY-LL, which also attempts to improve performance for jobs withsmaller resource requirements via back�lling. In some cases, these performanceimprovements are quite signi�cant, with a reduction in the normalized responsetimes by factors that typically range between 2 and 4. Some of the larger jobclasses also receive improved performance under migration from the leaves incomparison to EASY-LL; e.g., the normalized response time of class 8 decreasesby almost a factor of 10. However, the favoring of smaller job classes undermigration from the leaves degrades the performance of classes 7 and 9 relativeto EASY-LL, where our results show a decrease in normalized response time byabout a factor of 3.The job-migration policy that gives higher priority to the jobs closer to theroot of the control tree outperforms EASY-LL for classes 5 through 8. Moreover,for su�ciently large timplexing cycles, this policy performs as well as EASY-LLfor classes 3 and 4. In comparison with the migration policy that favors jobs atthe leaves, this policy breaks even for class 5 and performs better for classes 6 andabove. As expected, both job-migration policies achieve the same performance



1

2

3

4

5

6

7

8

9

10

11

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
0
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

1

2

3

4

5

6

7

8

9

10

11

500 1000 1500 2000 2500 3000 3500 4000
N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
1
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

1

2

3

4

5

6

7

8

9

10

11

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
2
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

1

2

3

4

5

6

7

8

9

10

11

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
3
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

0

5

10

15

20

25

30

35

40

45

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
4
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

0

5

10

15

20

25

30

35

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
5
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_migFig. 6. Normalized response times of classes 0{5 for the push-down policy, thejob-migration policy from the root, and the job-migration policy from the leaves.Quanta are allocated uniformly, and a worst-case context-switch cost of 16 secis assumed for each class.



0

10

20

30

40

50

60

70

80

90

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
6
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

0

10

20

30

40

50

60

70

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
7
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

0

50

100

150

200

250

300

350

400

450

500

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
8
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_mig

20

30

40

50

60

70

80

90

500 1000 1500 2000 2500 3000 3500 4000

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
C
l
a
s
s
 
9
)

Timeplexing Cycle (sec)

EASY-LL
push_down
root_mig
leaf_migFig. 7. Normalized response times of classes 6{9 for the push-down policy, thejob-migration policy from the root, and the job-migration policy from the leaves.Quanta are allocated uniformly, and a worst-case context-switch cost of 16 secis assumed for each class.on class 9, since the timplexing cycle is �xed and the jobs in that class cannot �tin any smaller partition of the system. The gains achieved for the large classesby migrating jobs from the root come at a sometimes signi�cant performancehit for the smaller classes, however. For classes 0 through 2, migration from theroot performs worse than all the scheduling policies we considered.As these results show, there is an important tradeo� with respect to thepriority order used to �ll otherwise idle slots in the control tree (via migrationor other methods). This priority order should be reected in the job assignmentand other aspects of the gang scheduling policies. Moreover, performance bene�tsmay be realized in various cases by exploiting adaptive (dynamic) schemes thatadjust the priority order based upon the state of the system (as well as changesto this state). As a simple example, an adaptive migration scheme based on theextremes considered in this paper could consist of determining whether migrationis performed from the root or the leaves on each timeplexing cycle based on thestate of the system at the start of the cycle.The push-down policy almost always performs worse than EASY-LL and



the two migration policies. The disappointing performance of this scheme isprimarily due to processors left idle during certain time-slices when it is notpossible to push these processors down to jobs in classes below. While the simplejob assignment policy attempts to balance the allocation of jobs to the controltree upon arrival, it does not take job service times into account and thereforethe tree can become unbalanced on departures. This characteristic coupled withthe relatively light workload resulted in idling partitions while jobs were waitingin the queues of busy servers.
0 1 2 3 4 5 6 7 8 9

0

10

20

30

AAAAAAAAAAAAAA
AAA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AAA
AAA
AA
AA
AA
AA
AAA
AAA
AAAAAAAA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

EASY-LL

AA
AAleaf_mig
AAroot_mig

50

62.5
480

Class

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e

T = 1000 sec

A
A
AA
AA
A
A
AA
AA
A
A
A
A
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
AA
AA
AA
AA

A
A
AA
AA
A
A
A
A

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A
A
A
A
A
A

0 1 2 3 4 5 6 7 8 9

10

20

30

EASY-LL

AAA
AAAleaf_mig
AAA
AAA

root_mig

Class

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e

T = 1000 sec

55

480

70
75

65

Fig. 8. Normalized response times for EASY-LL and the two migration policies witha timeplexing cycle equal to 1,000 sec. The context-switch costs are 1 sec for the leftchart and 16 sec for the right chart.
0 1 2 3 4 5 6 7 8 9

0

10

20

30

AA
AA
A
A
AA
AA
AA
AA
AA
AA
A
A
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
A
A
AA
AA
AAA
AAA
AA
AA
AA
AA
AAA
AAA
AAA
AAA

A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

EASY-LL

A
leaf_mig

Aroot_mig

50

62

480

Class

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e

T = 3000 sec

A
A
A
A
AA
AA
A
A
A
A
A
A
A
A
A

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A

A
A
A

AA
AA
AA

AA
AA
AA

AA
AA
AA

AA
AA
AA

AA
AA
AA
AA
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

0 1 2 3 4 5 6 7 8 9

10

20

30

EASY-LL
A
A

leaf_mig

A
A

root_mig

Class

N
o
r
m
a
l
i
z
e
d
 
R
e
s
p
o
n
s
e
 
T
i
m
e

T = 3000 sec

480

39

68

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA70

Fig. 9. Normalized response times for EASY-LL and the two migration policies witha timeplexing cycle of 3,000 sec. The context-switch costs are 1 sec for the left chartand 16 sec for the right chart.



Our simulations also show the performance degradation of the gang schedul-ing policies when the context-switch costs increase. For both values of context-switch overheads that we tried, however, the qualitative trends of our results aresimilar. The bar charts in Figs. 8 and 9 illustrate the e�ects of context-switchoverheads on the performance of the job-migration schedulers. For low switchcosts, the two job migration schemes underperform EASY-LL in several classes.When switch costs increase, however, the performance of both policies degrades,and the number of classes in which they outperform EASY-LL decreases. Per-formance degradation is more evident for short timeplexing cycles, since in thiscase context-switch costs become a signi�cant fraction of each time-slice. Weaddress in Section 7.1 ways to e�ectively reduce some of the dominant causes ofthis overhead.7 DiscussionOur simulation results based on the Cornell Theory Center workload data haveseveral important implications on gang scheduling strategies in practice. In thissection, we discuss various aspects of these practical implications, as well ascurrent ongoing aspects of our study.7.1 Memory and paging overheadsBased on the simple analysis in Section 6 to estimate the context-switch memoryoverhead, as well as the corresponding response time results, memory and pag-ing overheads can have a considerable impact on the performance of large-scaleparallel systems that time-share their resources. We now discuss a particularstrategy to signi�cantly reduce and e�ectively eliminate these overheads for ageneral class of large-scale parallel applications. Our approach is based in parton the concept of block paging, which was introduced in the VM/SP HPO oper-ating system [1, 25, 26] and extended in the VM/ESA operating system [23, 24].A few other systems have since adopted some of these concepts, and relatedforms of prefetching have recently appeared in the research literature [15, 17].We �rst provide a brief overview of the block paging mechanisms used in VM;the interested reader is referred to [1, 23, 24, 25, 26, 27, 28] for additional tech-nical details. We then discuss our approach for addressing memory and pagingoverheads in large-scale parallel time-sharing systems, which is based on the VMmechanisms and extensions tailored to the parallel computing environments ofinterest.The basic idea behind block paging is quite simple: the system identi�es setsof pages that tend to be referenced together and then pages each of these setsinto memory and out to disk as a unit. This strategy generalizes previous pagingand swapping methods in that de�ning the block size to be 1 page yields demandpaging and de�ning the block size to be the entire working set yields swapping.Block sizes in between these two extremes provide additional degrees of freedomto optimize various performance objectives.



The primary motivation for the block-paging mechanisms in VM was to im-prove the response times of interactive jobs by amortizing the cost of accessingdisk over several pages, thus reducing the waiting time and processor overheadof demand paging techniques and reducing the number of times the paging pathsneed to be executed. For example, it is shown in [23, 24] that the delay to fetcha single page from a particular IBM 3380 disk con�guration is 29ms, whereasthe delay to fetch 10 pages from a simpler 3380 con�guration is 48ms.The VM paging system gathers various data and employs a number of algo-rithms exploiting these data for the creation and dynamic adjustment of pageblocks. These algorithms attempt to identify pages that are referenced together.To identify such pages with temporal (and address) a�nity, the VM algorithmsare applied locally to each address space rather than globally across all addressspaces. The page replacement algorithms therefore work on a per address-spacebasis to select pages of similar age and last-reference for similar treatment andeventual placement on disk. In this manner, the time (and space) a�nity ofpages is used to create blocks of pages that will be written to and read fromdisk as a unit, subject to the constraint that the block size is tailored to thecharacteristics of the particular disk(s) employed in the system. As a speci�cexample, the average block size on VM systems is between 9 and 12 pages witha range of 2 to 20 pages [23, 24]. When a page is fetched from disk as part of ablock and is never referenced during the block's residence in memory, then theVM algorithms subsequently eliminate the page from the block. In certain cases,the system also chains together related page blocks for additional optimizations.When a page fault occurs and the page is part of a block, the VM systemissues the I/O request(s) in a manner that attempts to bring this particular pageintomemory as fast as possible. A program controlled interrupt is associated withthe frame assigned to this faulting page, which signals when the required pageis in memory. Once this interrupt occurs, the system makes the faulting processready, therefore allowing it to be immediately scheduled. The remainder of thepage block continues to be fetched in parallel with the (possible) execution of theprocess, thus overlapping the I/O and computation within an application. Allpages in the block are initiallymarked as not referenced, with the exception of theone causing the original page fault. This page status information together withother temporal (and address) a�nity information are used to minimize failuresin accurately predicting future page co-reference and to dynamically maintainpage blocks. The analysis in [28] shows that the VM paging algorithms are verye�ective in maintaining appropriate page blocks (e.g., a page is incorrectly placedin a block { in the sense that it is brought in as part of the block but neverreferenced { less than 13% of the time in practice) and extremely e�ective atminimizing the impact of disk performance on interactive response times.There are two basic approaches to address the performance issues related tothe memory management component of large-scale parallel environments in gen-eral [19], and especially in systems that time-share their resources. One approachconsists of allocating jobs to partitions such that the memory requirements of alljobs on each node of the partition �t within the memory available on that node,



thus avoiding the memory overhead problem. This approach can severely limit(or eliminate altogether) the degree of time-slicing, however, and for large-scaleparallel computing environments such as the Cornell Theory Center workloadconsidered in our study, it is impossible within the context of the distributed hier-archical control schemes described in Section 2. Another basic approach consistsof developing memory management schemes to reduce the performance impactof these memory overheads. In the remainder of this section, we sketch one suchapproach based in part on block paging.For each application being executed on a node, the operating system gathersdata and employs algorithms much like those in VM for the creation and dy-namic adjustment of page blocks. When there is a context-switch to a previouslyexecuting job and that job encounters a page fault, the operating system issuesan I/O request to bring in the faulting page as quickly as possible and sets aprogram controlled interrupt4 on the page frame allocated to the faulting page.As soon as the page is brought into memory, the system returns to the execu-tion of this job and the remaining pages of the block are brought into memoryin parallel with the execution of the job. Given the memory reference character-istics of many scienti�c applications [19], the operating system can continue tobring into memory a number of page blocks that are chained to the faulting pageblock based on time (and space) a�nity. The optimal number of additional pageblocks that should be brought into memory depends upon the quantum lengthallocated to the job (and estimates of the program behavior that could be pro-vided by the compiler). Since the scheduling system controls this parameter,it can work together with the memory management system (possibly togetherwith additional compiler support) to employ a reasonable estimate of the bestnumber of chained blocks to fetch into memory for the current time-slice. Thesepage blocks will replace page blocks already in memory. Once again, since thescheduling system controls the time-slice ordering of the execution of the jobs,it can convey this information to the memory management system so that thepage replacement policies displace page blocks that are guaranteed to not bereferenced for the longest period of time, thus minimizing the amount of pagefaults encountered by the system. In this manner, the memory management sys-tem can e�ectively set up a pipeline in which the fetching of the set of pagesrequired by a job during its current time-slice and the corresponding writingof memory-resident page blocks to disk (when necessary) are overlapped withuseful computation for the job.7.2 Quanta allocationA key parameter of any time-sharing policy is the quantum length assigned toeach class of jobs. We have used, and continue to use, an analytic approach [21,22] to gain insights into this problem with which heuristics can be developedfor practical gang scheduling policies. A simple resulting heuristic is based on4 The system could also have the job spin on an event associated with the page fault be-ing satis�ed, depending upon which is more e�cient for the given hardware platform.



the relative utilization of the resources by each class. More formally, we de�nethe relative utilization for class i over a particular interval of interest as �i �(�i2i)=(�iP ), where �i and �i are the mean arrival and service rates for class iover the interval, respectively. We then de�ne the simple heuristic of allocatingquanta lengths of (�i=�)T to each class i, where T is the timeplexing cycle and� � Pi �i. Note that this approach assumes that time-slices assigned to eachclass i are primarily consumed by jobs of class i over the time period of interest.To examine the bene�ts and limitations of this approach, we ran a number ofsimulations comparing the above heuristic with the uniform approach (i.e., thequantum length for each class is T divided by the number of classes) where theperiod of one day was used (a �ner granularity of four hours was also examined).In order to estimate the expected per-class relative utilization, we adjusted thequantum of each class every day based on the class' utilization the day before.The simple intuition behind this allocation policy is that system utilization mayexhibit some form of \temporal locality" in which partitions that are used moreheavily than others over a given time interval are likely to continue to do so overthe next interval. In fact, comparisons between this approach and using the ac-tual relative utilization for each day (obtained by an o�-line analysis of the tracedata) demonstrated only small di�erences in the mean response times realizedfor each class. In our preliminary simulations, we therefore set the quantum ofclass i for day d equal to (�i(d)=�(d))T , where these parameters are as de�nedabove with the addition of the parameter d.Our preliminary simulation results suggest that this quanta allocation heuris-tic can work quite well for heavier load situations in which each class has a non-negligible amount of work, as the system resources are being allocated to equalizethe work brought to the system by each class. On the other hand, this approachis not appropriate for (nor is it intended for) migration-based gang schedulers(and to a lesser extent, push-down schemes) under lighter loads, since in thiscase the classes are grabbing resources assigned to each other and the relativeutilization is not very representative of the actual allocation of resources. Hence,one possible solution is to have the system use the �-based heuristic during heav-ier load situations, and then switch to a uniform quanta length policy when theload drops below certain thresholds. We are currently studying such approachesin more detail.Another important aspect of quanta allocation was also observed based uponour queueing-theoretic gang scheduling analysis [21, 22]. In particular, the set-ting of these policy parameters in gang scheduling systems must address thecomplex tradeo� between providing preferential treatment to short-running jobsvia small quanta lengths at the expense of larger delays for long-running jobs.By allocating multiple quanta to shorter-running job classes for each quantumallocated to longer-running job classes, the system can generalize the optimiza-tion problem at hand and provide additional exibility to optimize various per-formance objectives. We are currently working on variations of the basic gangscheduling policy in which certain classes are allocated more than one timeslice during each timeplexing cycle and they are executed out of order. For ex-



ample, instead of visiting classes in the order < class-0, class-1, . . . , class-8 >,the scheduler could execute a timeplexing cycle order < class-0, class-1, class-2,class-0, class-3, class-4, class-0, . . . , class-8 >. We believe that such policies canbe used to signi�cantly improve the performance of job classes with smaller pro-cessing requirements while not degrading considerably the performance of jobswith larger processing requirements.7.3 Job assignment schemesAs previously noted, the migration scheme considered in our experiments pro-vides an upper bound on gang scheduling performance for the actual workloadconsidered. We have been working on a tree-packing scheme that exploits par-asite allocations (somewhat similar to the alternative scheduling in [3]) by as-signing jobs to partitions in the tree that maximize the number of processorskept busy throughout the timeplexing cycle. Much like the migration scheme,this approach uses a priority-based mechanism for choosing among multiple as-signments that are equal with respect to keeping processors busy. We are alsodeveloping a push-up gang-scheduling policy that is similar to our push-downpolicy. When two sibling partitions are idle during their designated time-slices,they can be combined to serve jobs in the higher class. When both push-up andpush-down scheduling is used, the idle time-slice may be passed either up ordown, depending on which class has the largest number of outstanding jobs. Ofcourse, a broad variety of other criteria can be applied depending on the speci�cperformance objectives that are set forth for the scheduling policy. We are inthe process of adding these schemes to our simulator and will be evaluating howwell they perform relative to the job-migration method.Another area we are currently investigating concerns di�erent mechanismsfor assigning jobs to partitions in a balanced manner. Di�erent functions oralgorithms may be required for the di�erent policies (vanilla, push-up, push-down). Moreover, during the assignment of a job in class i, the values at level ias well as its parents and immediate children could be used to determine whichhalf of the tree the job should be allocated on. Finally, it would be interestingto prove the optimality of job assignment mechanisms under simple service timeand arrival time assumptions for the jobs in the system.8 ConclusionsIn this paper we evaluated the performance of various aspects of several gangscheduling approaches and compared them with EASY-LL. We developed anevent-driven simulator of the various policies and evaluated their performanceby applying them on an actual parallel workload from the Cornell Theory Cen-ter. Our experimental results demonstrate the performance bene�ts, trade-o�s,and limitations of alternative gang scheduling designs under the speci�c work-load conditions we considered. We proposed several approaches for addressingdi�erent aspects of gang scheduling in practice and presented evidence for the



potential bene�ts of some of these approaches. We are continuing to explorethese and other issues related to di�erent forms of gang scheduling in large-scaleand/or distributed parallel computing environments.AcknowledgmentsWe gratefully acknowledge and thank the Cornell Theory Center (CTC), andespecially Steve Hotovy, Joseph Skovira and Joseph Riordan, for providing uswith the workload data from its SP2; we also thank Steve Hotovy for severalfruitful discussions about this data. We thank Pratap Pattnaik from the IBMT. J. Watson Research Center (WRC) for several helpful discussions; we alsothank Russ Miller and Bill Tetzla� from WRC for fruitful discussions on thedetails of VM's block paging mechanisms, and we thank Liana Fong from WRCfor information on the LoadLeveler and EASY-LL schedulers.References1. T. Beretvas and W. H. Tetzla�. Paging enhancements in VM/SP HPO 3.4. Tech-nical Report TB GG22-9467, IBM Washington Syst. Center, May 1984.2. D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus e�ciency in parallelsystems. IEEE Trans. Comp., 38:408{423, March 1989.3. D. G. Feitelson. Packing schemes for gang scheduling. In Job Sched. Strategies forParallel Processing, D. G. Feitelson and L. Rudolph (eds.), pages 89{110. Springer-Verlag, 1996. LNCS Vol. 1162.4. D. G. Feitelson and L. Rudolph. Distributed hierarchical control for parallel pro-cessing. Computer, pages 65{77, May 1990.5. D. G. Feitelson and L. Rudolph. Mapping and scheduling in a shared parallel envi-ronment using distributed hierarchical control. In Proc. International Conf. ParallelProcessing, volume I, pages 1{8, August 1990.6. D. G. Feitelson and L. Rudolph. Gang scheduling performance bene�ts for �ne-grain synchronization. J. Parallel and Distr. Comp., 16(4):306{318, December 1992.7. D. G. Feitelson and L. Rudolph. Evaluation of design choices for gang schedulingusing distributed hierarchical control. J. Parallel and Distr. Comp., 35:18{34, 1996.8. H. Franke, P. Pattnaik, and L. Rudolph. Gang scheduling for highly e�cient dis-tributed multiprocessor systems. In Proc. Frontiers'96, 1996.9. A. Hori, H. Tezuka, Y. Ishikawa, N. Soda, H. Konaka, and M. Maeda. Implementa-tion of gang-scheduling on workstation cluster. In Job Sched. Strategies for ParallelProcessing, D. G. Feitelson and L. Rudolph (eds.), pages 126{139. Springer-Verlag,1996. LNCS Vol. 1162.10. S. G. Hotovy. Workload evolution on the Cornell Theory Center IBM SP2. In JobSched. Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),pages 27{40. Springer-Verlag, 1996. LNCS Vol. 1162.11. S. G. Hotovy. Personal communication. 1997.12. S. G. Hotovy, D. J. Schneider, and T. O'Donnell. Analysis of the early workloadon the Cornell Theory Center IBM SP2. In Proc. ACM SIGMETRICS Conf. Mea-surement and Modeling of Comp. Syst., pages 272{273, May 1996.



13. N. Islam, A. Prodromidis, M. S. Squillante, L. L. Fong, and A. S. Gopal. Extensi-ble resource mangement for cluster computing. In Proc. International Conf. Distr.Comp. Syst., May 1997.14. N. Islam, A. Prodromidis, M. S. Squillante, A. S. Gopal, and L. L. Fong. Exten-sible resource scheduling for parallel scienti�c applications. In Proc. Eighth SIAMConf. Parallel Processing for Scienti�c Comp., March 1997.15. T. Kimbrel, A. Tomkins, R. H. Patterson, B. Bershad, P. Cao, E. W. Felten, G. A.Gibson, A. R. Karlin, and K. Li. A trace-driven comparison of algorithms for par-allel prefetching and caching. In Proc. USENIX Symp. Operating Syst. Design andImplementation (OSDI), pages 19{34, October 1996.16. V. M. Lo. Heuristic algorithms for task assignment in distributed systems. IEEETrans. Comp., 37(11):1384{1397, November 1988.17. T. C. Mowry, A. K. Demke, and O. Krieger. Automatic compiler-inserted I/Oprefetching for out-of-core applications. In Proc. USENIX Symp. Operating Syst.Design and Implem. (OSDI), pages 3{17, October 1996.18. J. K. Ousterhout. Scheduling techniques for concurrent syst.. In Proc. ThirdInternational Conf. Distr. Comp. Syst., pages 22{30, October 1982.19. V. G. Peris, M. S. Squillante, and V. K. Naik. Analysis of the impact of memoryin distributed parallel processing systems. In Proc. ACM SIGMETRICS Conf.Measurement and Modeling of Comp. Syst., pages 5{18, May 1994.20. J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY-LoadLeveler API project.In Job Sched. Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph(eds.), pages 41{47. Springer-Verlag, 1996. LNCS Vol. 1162.21. M. S. Squillante, F. Wang, and M. Papaefthymiou. An analysis of gang schedul-ing for multiprogrammed parallel computing environments. In Proc. Annual ACMSymp. Parallel Algorithms and Architectures (SPAA), pages 89{98, June 1996.22. M. S. Squillante, F. Wang, and M. Papaefthymiou. Stochastic analysis of gangscheduling in parallel and distributed syst.. Perf. Eval., 27&28:273{296, 1996.23. W. H. Tetzla�. Paging in the VM/XA system product. CMG Trans., 66:55{64,1989.24. W. H. Tetzla�. Paging in VM/ESA. In Proc. CMG'91 Conf., pages 723{734, 1991.25. W. H. Tetzla� and T. Beretvas. Paging in VM/370 operating systems. CMGTrans., 53:65{76, 1986.26. W. H. Tetzla�, T. Beretvas, W. M. Buco, J. Greenberg, D. R. Patterson, and G. A.Spivak. A page-swapping prototype for VM/HPO. IBM Syst. J., 26:215{230, 1987.27. W. H. Tetzla� and R. Flynn. A comparison of page replacement algorithms. InProc. CMG'92 Conf., pages 1136{1143, 1992.28. W. H. Tetzla�, M. G. Kienzle, and J. A. Garay. Analysis of block-paging strate-gies. IBM J. Res. and Devel., 33(1):51{59, January 1989.29. F. Wang. Multiprogramming for parallel and distributed systems. PhD thesis,Computer Science Department, Yale University, 1997.30. F. Wang, H. Franke, M. Papaefthymiou, P. Pattnaik, L. Rudolph, and M. S. Squil-lante. A gang scheduling design for multiprogrammed parallel computing environ-ments. In Job Sched. Strategies for Parallel Processing, D. G. Feitelson and L.Rudolph (eds.), pages 111{125. Springer-Verlag, 1996. LNCS Vol. 1162.This article was processed using the LATEX macro package with LLNCS style


