MECHANICAL ENGINEERING SERIES

Wodek K. Gawronski

Advanced Structural Dynamics and Active Control of Structures

Mechanical Engineering Series

Frederick F. Ling Series Editor

Springer New York

New York Berlin Heidelberg Hong Kong London Milan Paris Tokyo This page intentionally left blank

Wodek K. Gawronski

Advanced Structural Dynamics and Active Control of Structures

With 157 Figures

Wodek K. Gawronski Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109, USA wodek.k.gawronski@jpl.nasa.gov

Series Editor Frederick F. Ling Ernest F. Gloyna Regents Chair in Engineering, Emeritus Department of Mechanical Engineering The University of Texas at Austin Austin, TX 78712-1063, USA and William Howard Hart Professor Emeritus Department of Mechanical Engineering, Aeronautical Engineering and Mechanics Rensselaer Polytechnic Institute Troy, NY 12180-3590, USA

Library of Congress Cataloging-in-Publication Data Gawronski, Wodek, 1944– Advanced structural dynamics and active control of structures/Wodek Gawronski. p. cm. — (Mechanical engineering series) ISBN 0-387-40649-2 (alk. paper) 1. Structural dynamics. 2. Structural control (Engineering) I. Title. II. Mechanical engineering series (Berlin, Germany) TA654.G36 2004 624.1'71—dc22 2003058443

Based on *Dynamics and Control of Structures: A Modal Approach*, by Wodek K. Gawronski, © 1998 Springer-Verlag New York, Inc.

ISBN 0-387-40649-2

Printed on acid-free paper.

© 2004 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 10943243

www.springer-ny.com

Springer-Verlag New York Berlin Heidelberg A member of BertelsmannSpringer Science+Business Media GmbH

To my friends—

Jan Kruszewski and Hans Günther Natke —scholars of dedication and imagination

Although this may seem a paradox, all exact science is dominated by the idea of approximation. —Bertrand Russell This page intentionally left blank

Mechanical Engineering Series

Frederick F. Ling *Series Editor*

The Mechanical Engineering Series features graduate texts and research monographs to address the need for information in contemporary mechanical engineering, including areas of concentration of applied mechanics, biomechanics, computational mechanics, dynamical systems and control, energetics, mechanics of materials, processing, production systems, thermal science, and tribology.

Advisory Board	
Applied Mechanics	F.A. Leckie University of California, Santa Barbara
Biomechanics	V.C. Mow Columbia University
Computational Mechanics	H.T. Yang University of California, Santa Barbara
Dynamical Systems and Control	K.M. Marshek University of Texas, Austin
Energetics	J.R. Welty University of Oregon, Eugene
Mechanics of Materials	I. Finnie University of California, Berkeley
Processing	K.K. Wang Cornell University
Production Systems	GA. Klutke Texas A&M University
Thermal Science	A.E. Bergles Rensselaer Polytechnic Institute
Tribology	W.O. Winer Georgia Institute of Technology

This page intentionally left blank

Preface

Science is for those who learn; poetry for those who know. —Joseph Roux

This book is a continuation of my previous book, *Dynamics and Control of Structures* [44]. The expanded book includes three additional chapters and an additional appendix: Chapter 3, "Special Models"; Chapter 8, "Modal Actuators and Sensors"; and Chapter 9, "System Identification." Other chapters have been significantly revised and supplemented with new topics, including discrete-time models of structures, limited-time and -frequency grammians and reduction, almostbalanced modal models, simultaneous placement of sensors and actuators, and structural damage detection. The appendices have also been updated and expanded. Appendix A consists of thirteen new Matlab programs. Appendix B is a new addition and includes eleven Matlab programs that solve examples from each chapter. In Appendix C model data are given.

Several books on structural dynamics and control have been published. Meirovitch's textbook [108] covers methods of structural dynamics (virtual work, d'Alambert's principle, Hamilton's principle, Lagrange's and Hamilton's equations, and modal analysis of structures) and control (pole placement methods, LQG design, and modal control). Ewins's book [33] presents methods of modal testing of structures. Natke's book [111] on structural identification also contains excellent material on structural dynamics. Fuller, Elliot, and Nelson [40] cover problems of structural active control and structural acoustic control. Inman's book [79] introduces the basic concepts of vibration control, while Preumont in [120] presents modern approaches to structural control, including LQG controllers, sensors, and actuator placement, and piezoelectric materials with numerous applications in aerospace and civil engineering. The Junkins and Kim book [87] is a graduate-level textbook, while the Porter and Crossley book [119] is one of the first books on modal control. Skelton's work [125] (although on control of general linear systems) introduces methods designed specifically for the control of flexible structures. For example, the component cost approach to model or controller reduction is a tool frequently used in this field. The monograph by Joshi [83] presents developments on

dissipative and LQG controllers supported by numerous applications. Genta's book [65] includes rotor dynamics; the book by Kwon and Bang [92] is dedicated mainly to structural finite-element models, but a part of it is dedicated to structural dynamics and control. The work by Hatch [70] explains vibrations and dynamics problems in practical ways, is illustrated with numerous examples, and supplies Matlab programs to solve vibration problems. The Maia and Silva book [107] is a study on modal analysis and testing, while the Heylen, Lammens, and Sas book [71] is an up-to-date and attractive presentation of modal analysis. The De Silva book [26] is a comprehensive source on vibration analysis and testing. Clark, Saunders, and Gibbs [17] present recent developments in dynamics and control of structures; and Elliott [31] applies structural dynamics and control problems in balanced coordinates. The recent advances in structural dynamics and control can be found in [121].

This book describes comparatively new areas of structural dynamics and control that emerged from recent developments. Thus:

- State-space models and modal methods are used in structural dynamics as well as in control analysis. Typically, structural dynamics problems are solved using second-order differential equations.
- Control system methods (such as the state-space approach, controllability and observability, system norms, Markov parameters, and grammians) are applied to solve structural dynamics problems (such as sensor and actuator placement, identification, or damage detection).
- Structural methods (such as modal models and modal independence) are used to solve control problems (e.g., the design of LQG and H_∞ controllers), providing new insight into well-known control laws.
- The methods described are based on practical applications. They originated from developing, testing, and applying techniques of structural dynamics, identification, and control to antennas and radiotelescopes. More on the dynamics and control problems of the NASA Deep Space Network antennas can be found at http://tmo.jpl.nasa.gov/tmo/progress report/.
- This book uses approximate analysis, which is helpful in two ways. First, it simplifies analysis of large structural models (e.g., obtaining Hankel singular values for a structure with thousands of degrees of freedom). Second, approximate values (as opposed to exact ones) are given in closed form, giving an opportunity to conduct a parametric study of structural properties.

This book requires introductory knowledge of structural dynamics and of linear control; thus it is addressed to the more advanced student. It can be used in graduate courses on vibration and structural dynamics, and in control system courses with application to structural control. It is also useful for engineers who deal with structural dynamics and control.

Readers who would like to contact me with comments and questions are invited to do so. My e-mail address is <u>Wodek.K.Gawronski@jpl.nasa.gov.</u> Electronic versions

Preface

of Matlab programs from Appendix A, examples from Appendix B, and data from Appendix C can also be obtained from this address.

I would like to acknowledge the contributions of my colleagues who have had an influence on this work: Kyong Lim, NASA Langley Research Center (sensor/actuator placement, filter design, discrete-time grammians, and H_{∞} controller analysis); Hagop Panossian, Boeing North American, Inc., Rocketdyne (sensor/actuator placement of the International Space Station structure); Jer-Nan Juang, NASA Langley Research Center (model identification of the Deep Space Network antenna); Lucas Horta, NASA Langley Research Center (frequencydependent grammians for discrete-time systems); Jerzy Sawicki, Cleveland State University (modal error estimation of nonproportional damping); Abner Bernardo, Jet Propulsion Laboratory, California Institute of Technology (antenna data collection); and Angel Martin, the antenna control system supervisor at the NASA Madrid Deep Space Communication Complex (Spain) for his interest and encouragement. I thank Mark Gatti, Scott Morgan, Daniel Rascoe, and Christopher Yung, managers at the Communications Ground Systems Section, Jet Propulsion Laboratory, for their support of the Deep Space Network antenna study, some of which is included in this book. A portion of the research described in this book was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

> Wodek K. Gawronski Pasadena, California January 2004

This page intentionally left blank

eries Prefac	e	
reface .	ix	
st of Symbo	ols	
Introducti	on to Structures	
1.1 Exa	mples	
1.1.1	A Simple Structure	
1.1.2	A 2D Truss	
1.1.3	A 3D Truss	
1.1.4	A Beam	
1.1.5	The Deep Space Network Antenna	
1.1.6	The International Space Station Structure 6	
1.2 Def	inition	
1.3 Proj	perties	
Standard	Models	
2.1 Mo	dels of a Linear System	
2.1.1	State-Space Representation	
2.1.2	Transfer Function	
2.2 Sec	ond-Order Structural Models	
2.2.1	Nodal Models	
2.2.2	Modal Models	
2.3 Stat	e-Space Structural Models	
2.3.1	Nodal Models	
2.3.2	Models in Modal Coordinates	
2.3.3	Modal Models	
	reface st of Symbol Introducti 1.1 Exa 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.2 Def 1.3 Proj Standard 2.1 Moo 2.1.1 2.2.2 2.3 Stat 2.3.1 2.3.2 2.3.3	prices Prefaceviirefaceixist of SymbolsxixIntroduction to Structures11.1Examples11.1.1A Simple Structure11.1.2A 2D Truss21.1.3A 3D Truss21.1.4A Beam31.1.5The Deep Space Network Antenna31.1.6The International Space Station Structure61.2Definition61.3Properties7Standard Models142.1.1State-Space Representation142.1.2Transfer Function152.2Second-Order Structural Models162.2.1Nodal Models172.3State-Space Structural Models292.3.1Nodal Models292.3.2Models in Modal Coordinates312.3.3Modal Models35

3	Special Models	. 41	
	3.1 Models with Rigid-Body Modes	. 41	
	3.2 Models with Accelerometers	. 45	
	3.2.1 State-Space Representation	. 45	
	3.2.2 Second-Order Representation	. 48	
	3.2.3 Transfer Function	. 49	
	3.3 Models with Actuators	50	
	3 3 1 Model with Proof-Mass Actuators	50	
	3.3.2 Model with Inertial Actuators	53	
	3.4 Models with Small Nonproportional Damping	54	
	3.5 Generalized Model	58	
	3.5.1 State-Snace Representation	. 50	
	3.5.2 Transfer Function	. 59	
	3.6 Discrete-Time Models	. 57	
	3.6.1 State-Snace Representation	. 00	
	3.6.2 Transfer Function	. 63	
		. 05	
4	Controllability and Observability	. 65	
-	4.1 Definition and Properties	65	
	4.1.1 Continuous Time Systems	. 05	
	4.1.1 Continuous-Time Systems $1.1.1$ Continuous-Time Systems $4.1.2$ Discrete-Time Systems	. 00	
	4.1.2 District Time Systems	. 08	
	4.1.5 Relationship Between Continuous- and Discrete Time Grammians	60	
	4.2 Delenard Depresentation	. 09	
	4.2 Datanced Representation	. /1	
	4.5 Balanced Structures with Rigid-Body Modes	. /3	
	4.4 Input and Output Gains		
	4.5 Controllability and Observability of a Structural Modal Model	. /0	
	4.5.1 Diagonally Dominant Grammians		
	4.5.2 Closed-Form Grammians	. /9	
	4.5.3 Approximately Balanced Structure in Modal Coordinates	. 80	
	4.6 Controllability and Observability of a Second-Order Modal Model .	. 85	
	4.6.1 Grammians \dots 1.6. \dots 1.6. \dots 1.6.	. 85	
	4.6.2 Approximately Balanced Structure in Modal Coordinates	. 8/	
	4./ Three Ways to Compute Hankel Singular Values	. 91	
	4.8 Controllability and Observability of the Discrete-Time	0.1	
		. 91	
	4.9 Time-Limited Grammians	. 94	
	4.10 Frequency-Limited Grammians	. 99	
	4.11 Time- and Frequency-Limited Grammians	103	
	4.12 Discrete-Time Grammians in Limited-Time and -Frequency Range	107	
5	Norms	109	
5	5.1 Norms of the Continuous Time Systems	100	
	5.1 The H-Norm	109	
	$5.1.1 \text{The H}_2 \text{ Norm}$	109	
	5.1.2 The Hambel Name	111	
	3.1.3 The Hankel Norm	112	

xiv

6

5.2 Nor	ms of the Discrete-Time Systems	. 113
5.2.1	The H_2 Norm	. 113
5.2.2	The H_{∞} Norm	. 114
5.2.3	The Hankel Norm	. 114
5.3 Nor	ms of a Single Mode	. 115
5.3.1	The H_2 Norm	. 115
5.3.2	The H_{∞} Norm	. 117
5.3.3	The Hankel Norm	. 118
5.3.4	Norm Comparison	. 119
5.4 Nor	ms of a Structure	120
5.4.1	The H_2 Norm	121
5.4.2	The H_{∞} Norm	. 121
5.4.3	The Hankel Norm	. 123
5.5 Nor	ms of a Structure with a Filter	. 124
5.5.1	The H_2 Norm	. 124
5.5.2	The H_{∞} Norm	. 126
5.5.3	The Hankel Norm	. 127
5.6 Nor	ms of a Structure with Actuators and Sensors	. 127
5.6.1	The H_2 Norm	. 128
5.6.2	The H_{∞} Norm	. 130
5.6.3	The Hankel Norm	. 132
5.7 Nor	ms of a Generalized Structure	. 135
5.8 Nor	ms of the Discrete-Time Structures	. 137
5.8.1	The H_2 Norm	. 138
5.8.2	The H_{∞} Norm	. 139
5.8.3	The Hankel Norm	. 140
5.8.4	Norm Comparison	. 140
Model De	duction	1/2
Model Ke		. 143
6.1 Red	luction Through Truncation	. 143
6.2 Red		. 145
6.2.1	H_2 Model Reduction	. 145
6.2.2	H_{∞} and Hankel Model Reduction	. 146
6.3 Red	luction in the Finite-Time and -Frequency Intervals	. 147
6.3.1	Reduction in the Finite-Time Interval	. 148
6.3.2	Reduction in the Finite-Frequency Interval	. 150
6.3.3	Reduction in the Finite-Time and -Frequency Intervals	. 151
6.4 Stru	ictures with Rigid-Body Modes	. 155
6.5 Stru	ictures with Actuators and Sensors	. 159
6.5.1	Actuators and Sensors in a Cascade Connection	. 159
6.5.2	Structure with Accelerometers	. 101
6.5.3	Structure with Proof-Mass Actuators	. 162
6.3.4	Structure with inertial Actuators	. 165

7	Actuator and Sensor Placement	167
	7.1 Problem Statement	168
	7.2 Additive Property of Modal Norms	168
	7.2.1 The H_2 Norm	169
	7.2.2 The H_{∞} and Hankel Norms $\dots \dots \dots$	169
	7.3 Placement Indices and Matrices	170
	7.3.1 H ₂ Placement Indices and Matrices	170
	7.3.2 H ₂ and Hankel Placement Indices and Matrices	172
	7.3.3 Actuator/Sensor Indices and Modal Indices	173
	7.4 Placement for Large Structures	180
	7.4.1 Actuator Placement Strategy	182
	7.4.2 Sensor Placement Strategy	182
	7.5 Placement for a Generalized Structure	187
	7.5.1 Structural Testing and Control	187
	7.5.2 Sensor and Actuator Properties	189
	7.5.3 Placement Indices and Matrices	192
	7.5.4 Placement of a Large Number of Sensors	193
	7.6 Simultaneous Placement of Actuators and Sensors	197
		177
8	Modal Actuators and Sensors	203
	8.1 Modal Actuators and Sensors Through Modal Transformations	204
	8.1.1 Modal Actuators	204
	8.1.2 Modal Sensors	208
	8.2 Modal Actuators and Sensors Through Grammian Adjustment	213
9	System Identification	219
	9.1 Discrete-Time Systems	220
	9.2 Markov Parameters	221
	9.3 Identification Algorithm	221
	9.4 Determining Markov Parameters	224
	9.5 Examples	226
	9.5.1 A Simple Structure	226
	9.5.2 The 2D Truss	230
	9.5.3 The Deep Space Network Antenna	232
10	Collocated Controllers	235
	10.1 A Low-Authority Controller	236
	10.2 Dissipative Controller	237
	10.3 Properties of Collocated Controllers	239
	10.4 Root-Locus of Collocated Controllers	241
	10.5 Collocated Controller Design Examples	245
	10.5.1 A Simple Structure	245
	10.5.2 The 2D Truss	246
		_
11	LQG Controllers	249
	11.1 Definition and Gains	250
	11.2 The Closed-Loop System	253

xvi

11.3 The Balanced LQG Controller						254
11.4 The Low-Authority LQG Controller						255
11.5 Approximate Solutions of CARE and FARE						257
11.6 Root-Locus						260
11.7 Almost LQG-Balanced Modal Representation						262
11.8 Three Ways to Compute LQG Singular Values .						264
11.9 The Tracking LQG Controller						264
11.10 Frequency Weighting						266
11.11 The Reduced-Order LQG Controller						269
11.11.1 The Reduction Index						269
11.11.2 The Reduction Technique						271
11.11.3 Stability of the Reduced-Order Controller .						272
11.11.4 Performance of the Reduced-Order Controller		•				274
11.11.5 Weights of Special Interest						275
11.12 Controller Design Procedure						276
11.13 Controller Design Examples						277
11.13.1 A Simple Structure						277
11.13.2 The 3D Truss						279
11.13.3 The 3D Truss with Input Filter						281
11.13.4 The Deep Space Network Antenna						283
12 H_{∞} and H_2 Controllers $\ldots \ldots \ldots \ldots \ldots$	•	•	 •	•	•	287
12.1 Definition and Gains						288
12.2 The Closed-Loop System						291
12.3 The Balanced H_{∞} Controller						292
12.4 The H_2 Controller						294
12.4.1 Gains						294
12.4.2 The Balanced H_2 Controller						296
12.5 The Low-Authority H_{∞} Controller						296
12.6 Approximate Solutions of HCARE and HFARE						298
12.7 Almost H_{∞} -Balanced Modal Representation						300
12.8 Three Ways to Compute H_{∞} Singular Values						301
12.9 The Tracking H_{∞} Controller						301
12.10 Frequency Weighting						301
12.11 The Reduced-Order H_{∞} Controller						304
12.11.1 The Reduction Index						304
12.11.2 Closed-Loop Poles						304
12.11.3 Controller Performance						306
12.12 Controller Design Procedure						307
12.13 Controller Design Examples						308
12.13.1 A Simple Structure						308
12.13.2 The 2D Truss						310
12.13.3 Filter Implementation Example						312
12.13.4 The Deep Space Network Antenna with						
Wind Disturbance Rejection Properties						313

Ap	opendi	ces	317
A	Matl	ab Functions	319
	A.1	Transformation from an Arbitrary State-Space Representation to	
		the Modal 1 State-Space Representation	320
	A.2	Transformation from an Arbitrary State-Space Representation to	
		the Modal 2 State-Space Representation	322
	A.3	Transformation from Modal Parameters to the Modal 1 State-Space	
		Representation	324
	A.4	Transformation from Modal Parameters to the Modal 2 State-Space	
		Representation	325
	A.5	Transformation from Nodal Parameters to the Modal 1 State-Space	
		Representation	326
	A.6	Transformation from Nodal Parameters to the Modal 2 State-Space	
		Representation	328
	A.7	Determination of the Modal 1 State-Space Representation and the	
		Time- and Frequency-Limited Grammians	329
	A.8	Open-Loop Balanced Representation	331
	A.9	$H_2 \text{ Norm of a Mode} \qquad \dots \qquad $	332
	A.10	$H_\infty \text{ Norm of a Mode} \qquad \dots \qquad $	333
	A.11	Hankel Norm of a Mode	333
	A.12	LQG-Balanced Representation	334
	A.13	H_{∞} -Balanced Representation	335
B	Matl	ab Examples	337
	B.1	Example 2.5	337
	B.2	Example 3.3	341
	B.3	Example 4.11	342
	B.4	Example 5.3	344
	B.5	Example 6.7	347
	B.6	Example 7.2	348
	B. 7	Example 8.1	353
	B.8	Example 9.1	356
	B.9	Example 10.4.2	359
	B.10	Example 11.13.1	361
	B.11	Example 12.13.2	365
С	Struc	ctural Parameters	371
	C 1	Mass and Stiffness Matrices of the 2D Truss	371
	C_{2}	Mass and Stiffness Matrices of the Clamped Beam Divided into	571
	0.2	15 Finite Elements	373
	C.3	State-Space Representation of the Deep Space Network Antenna	376
R¢	ferenc	Pes	379
			517
In	dex		389

xviii

List of Symbols

Each equation in the book ... would halve the sales. -Stephen Hawking

General	
A^T	transpose of matrix A
A^*	complex-conjugate transpose of matrix A
A^{-1}	inverse of square nonsingular matrix A
tr(A)	trace of a matrix A, $tr(A) = \sum_{i} a_{ii}$
$\left\ A\right\ _{2}$	Euclidean (Frobenius) norm of a real-valued matrix A:
	$\left\ A\right\ _{2} = \sqrt{\sum_{i,j} a_{ij}^{2}} = \sqrt{\operatorname{tr}(A^{T} A)}$
$diag(a_i)$	diagonal matrix with elements a_i along the diagonal
eig(A)	eigenvalue of a square matrix A
$\lambda_i(A)$	<i>i</i> th eigenvalue of a square matrix A
$\lambda_{\max}(A)$	maximal eigenvalue of a square matrix A
$\sigma_i(A)$	<i>i</i> th singular value of a matrix A
$\sigma_{\max}(A)$	maximal singular value of a matrix A
I_n	identity matrix, $n \times n$
$0_{n \times m}$	zero matrix, $n \times m$

Linear Systems

(A,B,C,D)	quadruple of the system state-space representation
(A,B,C)	triple of the system state-space representation
(A_d, D_d, C_d)	LOC controller state space representation
$(A_{lqg}, D_{lqg}, C_{lqg})$	EQG controller state-space representation
$(A_{\infty}, B_{\infty}, C_{\infty})$	H_{∞} controller state-space representation
(A_o, B_o, C_o)	closed-loop state-space representation
G	transfer function
G_d	discrete-time transfer function
H_1	Hankel matrix
H_2	shifted Hankel matrix
h_k	kth Markov parameter
U	input measurement matrix
Y	output measurement matrix
x	system state
x_e	system estimated state
<i>u</i>	system (control) input
y z	performance output
w	disturbance input
B_1	matrix of disturbance inputs
<i>B</i> ₂	matrix of control inputs
C_1	matrix of performance outputs
C_2	matrix of measured outputs
$\left\ G\right\ _{2}$	continuous-time system H ₂ norm
$\ G\ _{\infty}$	continuous-time system $H_{\! \infty}$ norm
$\left\ G\right\ _h$	continuous-time system Hankel norm
$\left\ G_d\right\ _2$	discrete-time system H ₂ norm
$\left\ G_d\right\ _{\infty}$	discrete-time system H_{∞} norm
$\left\ G_d\right\ _h$	discrete-time system Hankel norm
\mathcal{C}	controllability matrix
\mathcal{O}	observability matrix
W_c	controllability grammian
W_o	observability grammian
γ_i	<i>i</i> th Hankel singular value
$\gamma_{\rm max}$	the largest Hankel singular value of a system
Γ	matrix of Hankel singular values
CARE	controller algebraic Riccati equation
FARE	filter (or estimator) algebraic Riccati equation
HCARE	H_{∞} controller algebraic Kiccati equation

HFARE	H_{∞} filter (or estimator) algebraic Riccati equation
S_c	solution of CARE
S_e	solution of FARE
$S_{\infty c}$	solution of HCARE
$S_{\infty e}$	solution of HFARE
μ_i	<i>i</i> th LQG singular value
$\mu_{\infty i}$	<i>i</i> th H_{∞} singular value
М	matrix of the LQG singular values, $M = diag(\mu_i)$
M_{∞}	matrix of the H_{∞} singular values, $M_{\infty} = \text{diag}(\mu_{\infty i})$
ρ	parameter of the $H_{\!\infty}$ controller
K _c	controller gain
K _e	estimator gain
ε	tracking error
t	time sequence
Δt	sampling time
N	number of states
S	number of inputs
r	number of outputs

Structures

D	damping matrix
Κ	stiffness matrix
М	mass matrix
D_m	modal damping matrix
K_m	modal stiffness matrix
M_m	modal mass matrix
q	structural displacement (nodal)
q_m	structural displacement (modal)
q_{ab}	structural displacement (almost-balanced)
q_i	displacement of the <i>i</i> th degree of freedom
q_{mi}	displacement of the <i>i</i> th mode
q_{abi}	displacement of the <i>i</i> th almost-balanced mode
ϕ_i	<i>i</i> th structural mode
ϕ_{abi}	almost-balanced ith structural mode
Φ	modal matrix
Φ_{ab}	almost-balanced modal matrix
ω_i	<i>i</i> th natural frequency
Ω	matrix of natural frequencies

ζ_i	<i>i</i> th modal damping
Ζ	matrix of modal damping coefficients
B_o	nodal input matrix
C_{oq}	nodal displacement output matrix
C_{ov}	nodal velocity output matrix
B_m	modal input matrix
C_{mq}	modal displacement output matrix
C_{mv}	modal velocity output matrix
C_m	modal output matrix, $C_m = C_{mq} \Omega^{-1} + C_{mv}$
b _{mi}	input matrix of the <i>i</i> th mode, <i>i</i> th row of B_m
C _{mi}	output matrix of the <i>i</i> th mode, <i>i</i> th column of C_m
$\left\ B_{m}\right\ _{2}$	modal input gain
$\left\ C_{m}\right\ _{2}$	modal output gain, $\ C_m\ _2^2 = \ C_{mq}\Omega^{-1}\ _2^2 + \ C_{mv}\ _2^2$
$\left\ b_{mi}\right\ _{2}$	input gain of the <i>i</i> th mode
$\left\ c_{mi}\right\ _{2}$	output gain of the <i>i</i> th mode
$\Delta \omega_i$	<i>i</i> th half-power frequency, $\Delta \omega_i = 2\zeta_i \omega_i$
σ_{2ij}	H_2 placement index for the <i>i</i> th actuator (sensor)
	and the <i>k</i> th mode
$\sigma_{\scriptscriptstyle{\infty}ij}$	H_{∞} placement index for the <i>i</i> th actuator (sensor)
	and the <i>k</i> th mode
Σ_2	H ₂ placement matrix
Σ_{∞}	H_{∞} placement matrix
I(k)	membership index of the <i>k</i> th sensor
eta_i	pole shift factor
n _d	number of degrees of freedom
n	number of modes
IV S	number of states
r	number of outputs
S	number of candidate actuator locations
R	number of candidate sensor locations