

Intel® Technology Journal | 1

Intel® Technology Journal | Volume 13, Issue 2, 2009

Intel Technology Journal

Publisher
Richard Bowles

Program Manager
Stuart Douglas

Managing Editor
David King

Technical Editor
Marian Lacey

Content Architect
David Durham

Technical Illustrators
Richard Eberly
Margaret Anderson

Ernie Brickell
Joe Cihula
David Durham
Howard Herbert
Eric Mann
Prasanna Mulgaonkar
Ravi Sahita
Jessie Walker
Rasheed Yasser

Technical and Strategic Reviewers

Intel Technology Journal

Intel® Technology Journal | Volume 13, Issue 2, 2009

2 | Intel® Technology Journal

Copyright © 2009 Intel Corporation. All rights reserved.
ISSN: 1535-864X
ISBN 978-1-934053-22-5
Intel Technology Journal
Volume 13, Issue 2

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher,
or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
750-4744. Requests to the Publisher for permission should be addressed to the Publisher, Intel Press, Intel Corporation, 2111 NE 25th Avenue, JF3-330, Hillsboro, OR
97124-5961. E mail: intelpress@intel.com.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is
not engaged in professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter.
The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks,
copyrights, or other intellectual property rights.

Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

Third-party vendors, devices, and/or software are listed by Intel as a convenience to Intel’s general customer base, but Intel does not make any representations or warranties
whatsoever regarding quality, reliability, functionality, or compatibility of these devices. This list and/or these devices may be subject to change without notice.

Fictitious names of companies, products, people, characters, and/or data mentioned herein are not intended to represent any real individual, company, product, or event.
Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel, the Intel logo, Celeron, Intel Centrino, Intel Core Duo, Intel NetBurst, Intel Xeon, Itanium, Pentium, Pentium D, MMX, and VTune are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

†Other names and brands may be claimed as the property of others.

This book is printed on acid-free paper.

Publisher: Richard Bowles
Managing Editor: David King

Library of Congress Cataloging in Publication Data:

Printed in the United States

10 9 8 7 6 5 4 3 2 1

First printing June 2009

Articles

Table of Contents | 3

Intel® Technology Journal | Volume 13, Issue 2, 2009

Enhanced Detection of Malware ..6

Protecting Critical Applications on Mobile Platforms ...16

Providing a Safe Execution Environment ... 36

New Processor Instructions for Accelerating Encryption and Authentication Algorithms 52

https://everywhere! Encrypting the Internet ... 66

Recent Contributions to Cryptographic Hash Functions ... 80

Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices 96

Network Security: Challenges and Solutions .. 112

The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware 130

Decentralized Trust Management for Securing Community Networks ... 148

INTEL® TECHNoLogY JoURNAL
ADVANCES IN INTERNET SECURITY

4 | Foreword

Intel® Technology Journal | Volume 13, Issue 2, 2009

FoREWoRD
David Durham
Principal Engineer
Security & Cryptography Research
Intel Labs

The Internet remains full of promise but also peril. As the world becomes
increasingly interconnected, barriers are breaking down: information can travel
virtually anywhere in the blink of an eye and be accessible to almost anyone.
However, as commerce, content, and personal information move en masse on-line,
the motives for malice follow. The Internet now faces threats that are fundamentally
unique to the virtual world. While the physical world of brick and mortar deals
effectively with malicious individuals who have to abide by the constraints of space
and time, in the virtual world, botnets are forming vast overlay networks of zombie
machines ready to do the bidding of a single master. Blended threats combine the
best-known methods for individual attacks into entirely new composite forms,
constantly changing to stay a step ahead of security solutions. Meanwhile, the
inherent need for information replication, search, and dissemination creates ample
opportunities for eavesdropping and identity theft. The vastness of the Internet
requires an equally vast solution, one that makes the old archetypes of the past seem
quaint in comparison. This issue of the Intel Technology Journal describes some of
the steps Intel is taking to help stem the tide of attack.

The first task before us is redefining the network endpoint itself. No longer just a
machine at the other end of the wire, the network endpoint becomes a composition
of independently measured and protected software services, establishing a basis of
good citizens in the online community. By leaving nowhere for malware to hide,
security solutions can detect the stealthy rootkits and viruses that would otherwise
infect and then lie dormant, waiting for commands to distribute spam, spread
malware, steal information, or launch denial-of-service attacks. New models for
attestation can directly validate individual programs thereby enabling remote
entities to trust the specific software services with whom they are communicating.
Finally, like a series of airlocks, partitioning and compartmentalizing software
components reduces exposure to a single failure, helping to fundamentally contain a
point of compromise.

“The Internet now faces threats that

are fundamentally unique to the

virtual world.”

“Like a series of airlocks, partitioning

and compartmentalizing software

components reduces exposure

to a single failure, helping to

fundamentally contain a point of

compromise.”

Foreword | 5

Intel® Technology Journal | Volume 13, Issue 2, 2009

Intel is also aggressively improving the power and performance of computing in
general and cryptographic operations and algorithms in particular. Securing every
network connection is becoming a real possibility. Data can be cost-effectively
protected in transit and while at rest. New cryptographic instructions, simultaneous
multithreading, and optimized cryptographic algorithms help to make the choice
between no security and security obvious.

Another challenge is scaling trust within the vastness of the Internet. Intel is
developing new algorithms that provide anonymous attestation, preserving an
individual’s privacy while still establishing trust at a distance. Revocable group
identities can vouch for systems and software anonymously, scaling trust by
removing the need for establishing individual identities for everything in the
Internet. Also, even as attacks become increasingly distributed, so can the solutions.
Intel’s research demonstrates that enlisting a broad array of endpoints to detect,
report, and analyze anomalies in traffic patterns may be the answer to botnets in
the Internet. Finally, community-based security solutions improve awareness and
establish reputations in ad hoc infrastructures, absent of central administration.

While the vision of a completely safe Internet will likely remain elusive, much
progress is being made. Steps are being taken in hardware to break the cycle and
end the arms race between malware and security solutions, finally giving the
good guys the upper hand. Endpoints are becoming more robust, enabling better
software practices. Information can be kept private, even when distributed broadly,
without the performance penalties of the past. Finally, scalable security solutions are
being designed to work across the vast scale of the Internet, providing trust of and
for the masses. It is my real pleasure to work with Intel Labs with a great team of
researchers creating innovative solutions to the Internet’s security challenges, now
on display in this issue of the Intel Technology Journal.

“Securing every network connection

is becoming a real possibility.”

“Steps are being taken in hardware

to break the cycle and end the arms

race between malware and security

solutions, finally giving the good

guys the upper hand.”

6 | Enhanced Detection of Malware

Contributors

Intel® Technology Journal | Volume 13, Issue 2, 2009

Index Words

ENHANCED DETECTIoN oF MALWARE

Carlos Rozas
Intel Corporation

Hormuzd Khosravi
Intel Corporation

Divya Kolar Sunder
Intel Corporation

Yuriy Bulygin
Intel Corporation

Abstract
A significant development in the malware landscape in recent years is the ability of
hackers to monetize compromised platforms by (1) gathering valuable information
that can be sold, (2) using the platform’s resources to aid in an illicit or unwanted
activity, or (3) holding information contained on the platform for ransom. Since
the attacker’s potential monetary reward is increased the more the malware is
undetected, a re-emergence of malware that can mask its presence from traditional
security agents has occurred. This type of malware is referred to as stealth malware.

Researchers and industry have found novel uses for cloud computing to detect
malware. In this article, we present an overview of these uses and identify their
shortcomings. We present a cloud-computing-based architecture that improves
the resiliency of the existing solutions, and we describe our prototype that is based
on existing Intel platforms. We examine the new firmware that makes the existing
architecture more robust. Our new platform-based tool can be utilized by security
providers to help them keep pace with stealthy malware.

Introduction
Over the last three years, malware has evolved to support the new goal of malware
writers and developers: to profit from their exploits. This for-profit goal has sparked
the development of malware that can mask its presence on a platform. Some
malware will go so far as to remove less stealthy malware from an infected computer
to help avoid detection of that malware.

The cost of malware to businesses worldwide has been estimated to be in the tens of
billions of dollars each year: 14.3 billion dollars in 2006 alone [1].

IT security faces a number of different challenges in combating the threat of
malware. First of all there has been an explosion in malware samples. Panda Security
reported that an average of 35,000 malware samples were detected each day in
2008, with the total count exceeding 15 million samples [2]. McAfee Inc. reported
that the number of malware samples in their collection doubled from 10 million
in March 2008 to 20 million in March 2009 [3]. This explosion in the number of
samples underscores the reality that no client can have an up-to-date list of known
malware at any given time. Moreover, security agents are required to spend ever
more resources to test files against the multitude of known malware signatures. In
certain situations, security agents consume 50-60 percent of the CPU resources [4].

“This for-profit goal has sparked the
development of malware that can
mask its presence on a platform.”

Cloud Computing
Anti-Virus
Malware
Rootkits
Virtualization
Runtime Integrity

Enhanced Detection of Malware | 7

Intel® Technology Journal | Volume 13, Issue 2, 2009

Considering the ubiquity of malware samples, academia and industry have
identified opportunities to use cloud computing to detect malware [5, 6]. There
are a number of possible cloud-computing solution models. Figure 1 shows a
generic system architecture for a cloud-based, anti-virus service. One model is a
service model, where a host runs a lightweight process that collects relevant samples
(such as files) and sends them to a network service. The network service performs
the analysis to determine if the sample contains malware, and if so, it directs the
lightweight process to quarantine the sample. Another approach is where the
host agent maintains only a subset of the known malware signatures and a list of
common software applications.

Cloud computing provides a number of benefits to malware detection. It reduces
the amount of storage and computational resources on the client, and it simplifies
the management of signature files, as it is centrally located. Moreover, whenever a
previously unidentified malware sample is presented to the cloud, the security
vendor can apply much more sophisticated and computationally expensive
heuristics to determine the threat profile of the software.

Cloud computing, however, does not protect host agents from malware. Host
agents need mechanisms to prevent or detect the agents that have been disabled or
subverted. A number of proposals have been put forth to provide a better protection
mechanism for host agents [7, 8, 9, 10, 11, and 12]. A number of these approaches
center on the use of virtualization to provide an isolated execution environment
for security agents. In this article, we examine platform features that can be used to
isolate the host agent in order to provide protection against different threat vectors.

Organization of this Article
We start out by discussing threats to host agents. We then outline a generic
architecture for malware detection, based on enhanced cloud computing. We
continue with a description of how Intel platform technologies can be used to
enhance computing solutions, and we end with a threat analysis of the approaches
discussed.

Threats to Host Agents
The host agent on the platform must provide reliable information to the cloud
service to be effective, just as host-only malware detection systems have to do to
be effective. If malware is able to exploit vulnerability in the system (for example,
a buffer overflow in a browser plug-in) and subvert the host agent, it can execute
undetected.

These are some ways the host agent can be subverted:

•	 Tampering	with	the	host	agent.	The	host	agent	executable	is	modified	so	
that it no longer poses a threat to the malware sample. Such tampering can
be as simple as no longer sending files to the cloud service, or as elaborate
as allowing the malware agent to filter the files that are sent to the cloud
service.

Cloud Anti-virus Server

Physical
Disk

Client

OS File

Report

Forensics
Archive

Host Agent

Analysis Engine

AV-1 AV-2 AV-3

Figure 1: Cloud-based Anti-virus Service
Source: Intel Corporation, 2009

“If malware is able to exploit

vulnerability in the system and

subvert the host agent, it can execute

undetected.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

8 | Enhanced Detection of Malware

•	 Disabling the host agent. The malware modifies the system configuration to
either no longer launch or to suspend execution on the agent.

•	 Input filtering. The malware filters the information provided to the host
agent by hooking the invocation of the system API and inserting malicious
code to filter the results. Well-known hook points include the import table
and the system call table. However, many more hook points exist; Wang et
al. identified 41 potential file-hiding kernel hook points for the Red Hat
Fedora core [10, 13].

In the last few years, malware has evolved to focus on more subversive methods of
breaching system security. One such method was used by Shadow Walker wherein
the interrupt descriptor table (IDT), page-fault handler was hooked. This caused
the processor to return certain values when reading memory as data and other
values when reading memory as code [14]. Another method discussed by security
researchers is to install a malicious virtual machine monitor (VMM) to hyperjack an
operating system (OS) [15]. The VMM affords the researcher the ability to observe
the system without requiring any modification or hooking of the OS.

Enhancing Cloud-based Malware Detection
We illustrate a system architecture to enhance cloud-based, anti-virus services in
Figure 2.

Cloud Anti-virus Server

Physical
Disk

Client

Secure
Channel

Forensics
Archive

Isolated Host Agent Analysis Engine

AV-1 AV-2 AV-3

Native Disk Driver

Host Agent
(Disk Scan Driver)

Host

Application

OS Kernel

File System

Enhanced Disk Driver

Application

Figure 2: Enhanced Cloud-based, Anti-virus Solution
Source: Intel Corporation, 2009

By isolating the host agent from the host environment and by providing direct
access to platform resources, such as storage and memory, malware in the host
can no longer attack or manipulate the host agent directly. It must instead attack
the host agent partition. Since the host agent partition does not need to support
general-purpose computing, it can be configured to be more secure resulting in a
more robust solution. A description of the architectural components follows:

•	 Isolated host agent environment. An isolated execution environment contains
the host agent. It supports an interface from which the host can send
requests. It provides direct access to host storage, and host access; disk I/O
requests can be directed to this environment.

“Another method discussed by security

researchers is to install a malicious

virtual machine monitor (VMM) to

hyperjack an operating system.”

“Since the host agent partition does
not need to support general-purpose
computing, it can be configured to be
more secure.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Enhanced Detection of Malware | 9

•	 Isolated host agent. The host agent maintains a secure, authenticated channel
with the cloud-anti-virus service. The host agent monitors the host-disk
I/O, and if necessary, sends the files over the secure channel to the cloud-
anti-virus network service for evaluation. The host agent contains the file
system logic, corresponding to the host file system, and the agent can
periodically scan the physical disk to find out what files have changed; it
can then send the changed files over to the cloud-anti-virus network service.

•	 Enhanced disk driver. An enhanced disk driver can also be used to forward
disk IO requests by the file system, from the primary partition to the host
agent, running in the secure container, for further processing.

•	 Native disk driver. The native disk driver provides direct access to the host
disk hardware from the isolated partition.

Figure 3 illustrates how a cloud-anti-virus service can be extended to provide kernel
rootkit detection capabilities, in addition to disk/file scan capabilities for malware.
A description of the architectural components follows:

Cloud Anti-virus ServerClient

Secure
Channel

Kernel
Manifests

Rootkit Detection
Application

Isolated Host Agent

Native Memory Driver

Kernel Rootkit Detector

Host

Application

OS Kernel

System Memory

Application

Kernel Data
Structures

Kernel
Code

Figure 3: Cloud-based Kernel Rootkit Detection
Source: Intel Corporation, 2009

•	 Kernel rootkit detector. A local rootkit detector [9], running inside the client
isolated partition, exposes secure remote interfaces to the rootkit detection
application that is running on the cloud-anti-virus software. In this way, the
rootkit application is able to access kernel memory pages and perform basic
hash comparison operations on kernel memory regions that can be used
to perform integrity checks. The integrity validation operations are run
on the remote server. The kernel hashes are also stored in the cloud-anti-
virus server and provided to the kernel rootkit detector on the client PC, if
needed.

•	 Native memory driver. The native memory driver running in the isolated
partition provides secure access to the area of system memory containing
the kernel memory regions of the host OS.

The two issues that come up in remote memory integrity operations are security
and network latency. We address the network security concerns by using the secure
channel between the client PC and the cloud-anti-virus service, by providing
interfaces for memory hash comparisons, and by restricting remote memory
accesses. Network latency issues for memory validation are mitigated by the fact
that most of the kernel memory sections that are checked for integrity reside in
non-pageable memory on the client platform.

“The two issues that come up in
remote memory integrity operations
are security and network latency.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

10 | Enhanced Detection of Malware

The kernel rootkit detector helps mitigate unknown threats or in-memory threats
by detecting commonly used attack methods such as import table hooking, kernel
code and static data modifications, IDT, system call table hooking, and direct
kernel object manipulation.

Prototype Architectures for Combating Stealth Malware
We developed two prototypes of the system just described to validate the system
design. Prototype 1 is based on the Intel® Management Engine (Intel® ME) and
Prototype 2 is based on a virtual machine monitor (VMM), both of which provide
additional isolation from the OS. Because they are secluded from the host OS, it is
harder for an attacker to compromise these environments.

Prototype 1: Based on the Intel® Management Engine
When Intel® Active Management Technology (Intel® AMT) [16, 17], and platforms
running Intel® vPro™ technology were introduced, the platforms contained an
embedded microcontroller, called Intel ME. Intel ME appears as a separate
integrated device on the PCI bus. It integrates different hardware engines such
as bus controllers, crypto accelerators, DMA engines, and so on. Intel ME runs
firmware that consists of a real-time operating system (RTOS), drivers operating
the hardware engines, and manageability applications. In our prototype we take
advantage of this DMA engine to access memory regions.

We first implemented an agent to scan the memory in the firmware. This agent
is the traditional blacklist-based scanning agent. Because of the restrictions in
Intel ME, both in terms of compute power and storage, we could only implement
a limited scanning agent in Intel ME firmware. We were limited in the size of the
blacklist that could be securely stored (192KB) and in the frequency of scanning
operations. Considering these restrictions, we implemented a host agent in the host
OS to scan the blacklist-based memory. In our prototype, we add to the Intel ME
agent integrity firmware to verify the integrity of this host agent. Additionally, the
Intel ME out-of-band (OOB) interface can communicate with any remote cloud-
anti-virus service to notify the software if the host agent is modified at run time.
Intel ME maintains the hash of the host agent in its storage area, and at regular
intervals, it verifies the integrity of the run-time image of the host agent. In our
paper, Runtime Kernel Rootkit Detection [9], we describe the manifest generation
process and the 3-phase algorithm deployed to verify the run-time integrity of the
host agent. For our prototype, we measured the integrity of the host agent by using
Intel ME: the process was completed in the order of milliseconds. In future work,
we propose to explore event-driven, host-agent scanning to address any timing
attacks. Our prototype architecture is shown in Figure 4.

“We take advantage of this DMA

engine to access memory regions.”

“At regular intervals, it verifies the

integrity of the run-time image of the

host agent.”

“In future work, we propose to explore

event-driven, host-agent scanning to

address any timing attacks.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Enhanced Detection of Malware | 11

Cloud Anti-virus ServerClient

Secure Channel

Signature
Database

Intel®
Chipset

OOB Channel

Cloud
Anti-virus
Service

Host Memory

Host Agent

Intel®
Management
Engine

Agent
Integrity

Firmware

DMA

Figure 4: Intel® Management Engine Architecture
Source: Intel Corporation, 2009

Prototype 2: Based on the Virtual Machine Monitor
In this, the second of our prototypes, we considered a virtual machine (VM) as
an isolated environment and also utilized the extension of our first prototype to
measure the integrity of a VMM.

In order to understand why we chose VMM as an isolated environment, we
first present a brief overview of a virtualization-based system that uses hardware
virtualization. We utilized Intel® Virtualization Technology (Intel® VT) on our
platform. Virtualization refers to the technique of partitioning the physical
resources of a processor or a chipset into VMs and inserting a higher privilege
executive under the OS. This executive is known as a VMM. The privilege level is
called as VMX-root mode in Intel® Virtualization Technology (Intel® VT) for IA-32,
Intel® 64 and Intel® Architecture (Intel® VT-x). A control transfer into the VMM is
called a VMExit, and the transfer of control to a VM is called a VMEntry. A VM
can explicitly force a VMExit by using a VMCALL instruction. A guest OS runs in
VMX non-root mode that ensures that critical OS operations cause a VMExit. This
allows the VMM to enforce isolation policies. We enhanced the prototype described
in [9] by adding a light-weight VMM to this prototype. This VMM provides us the
capabilities to monitor system events as required and to create shadow page tables
as needed, in order to intercept paging events and modifications to data structures.
System components, manifest generation, and an integrity verification algorithm
are discussed in detail in [9]. We added additional Intel ME firmware to our
research prototype to verify the integrity of the VMM itself [11]. The architecture is
shown in Figure 5.

“Virtualization refers to the technique

of partitioning the physical resources of

a processor or a chipset into VMs and

inserting a higher privilege executive

under the OS.”

“This VMM provides us the

capabilities to monitor system events

as required and to create shadow page

tables as needed.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

12 | Enhanced Detection of Malware

Cloud Anti-virus ServerClient

Signature
Database

Intel®
Chipset

OOB Channel

Cloud
Anti-virus
Service

Host Memory

DMA

VMM

User VM
Isolated VM

Host Agent

Intel®
Management
Engine

VMM
Integrity

Firmware

Secure
Channel

BIOS

SMI
Handler

SMBUS

Figure 5: Virtualized Environment Architecture
Source: Intel Corporation, 2009

The key architectural components of our second prototype based on Deep Watch,
as described in [11], are the Intel ME firmware with an integrity verification
module and a VMM integrity application service inside the cloud-anti-virus
service. With simple support from the BIOS system management interrupt
(SMI) handler, the processor state and register information can be ascertained,
and from these, Intel ME can reconstruct the virtual memory page tables for the
VMM. System management mode (SMM) is a special-purpose operating mode
that handles system-wide functions such as power management, system hardware
control, or proprietary OEM-designed code. The main benefit of SMM is that it
offers a distinct and easily isolated processor environment that is transparent to the
OS or to the executive and software applications. When SMM (SMI handler) is
invoked through an SMI, the processor saves the current state of the processor (the
processor’s context), then switches to a separate operating environment contained
in system management RAM (SMRAM). This processor state can be gathered
in the SMI handler and communicated to Intel ME via a hardware interface.
The processor state obtained by Intel ME can be utilized to reconstruct memory
page tables to verify the run-time integrity of the VMM. Additionally, Intel ME
can communicate all the information (processor state and memory pages) to the
cloud-anti-virus service. The remote anti-virus service can then verify the run-time
integrity of the VMM, thus overcoming the computational limitations of Intel ME.
We also built a similar research prototype to measure the integrity of host OS
drivers from the PCI DMA device as described in [12].

Threat Analysis
We assume that the attacker has full access to and control of the OS, including the
kernel, and is able to insert, modify, or delete kernel drivers; however, we assume
the attacker is not able to modify Intel ME firmware or SMRAM. Our assumption
implies that the attack space is large in scope and ranges from simple user-space
attacks to the kinds of attacks that seek to modify critical kernel data structures so
as to compromise the user OS or VMM itself. Examples of some of these kinds
of attacks include hooking of the import table, IDT, or system call table, kernel
code and static data modifications, and direct kernel object manipulation. For an
overview of kernel rootkit techniques please refer to [18].

“SMM offers a distinct and easily

isolated processor environment that

is transparent to the OS or to the

executive and software applications.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Enhanced Detection of Malware | 13

Following are the threat vectors we address in Prototype 1:

•	 Threats to the host agent. Kernel code modifications, import tables, IDT,
and system call-table hooking are mitigated by the kernel rootkit detector
in Intel ME. Intel ME has an OOB interface to read memory through
its DMA interface, and thus it guarantees that the rootkit detector has an
unobstructed and unmodified view of memory.

•	 Unknown kernel attacks. If the kernel rootkit detector in Intel ME detects
any suspicious behavior or pattern, then it can communicate with the
cloud-anti-virus server for a detailed scan.

In Prototype 2 we address the same threats as in Prototype 1 as well as VMM
attacks:

•	 Threats to the host agent. The host agent is protected against attacks from
malware by the VMM.

•	 Unknown kernel attacks. The host agent, enhanced with our kernel root
detector, provides the ability to detect any suspicious behavior or pattern.

•	 VMM attacks. With direct access to memory and the Runtime Kernel
Rootkit Detection (RKRD) system in Intel ME, a compromised VMM can
be detected.

Summary
In this article we describe the motivation for using cloud computing in the fight
against malware, as proposed by both academia and industry. We examine the
threats against cloud-based, anti-virus services, which are primarily directed towards
the host agents running on the clients that provide input to the cloud-anti-virus
engine. We then propose some platform-based features, based on Intel architecture,
that can be used to mitigate threats against host agents. Our research prototypes
use a combination of Intel virtualization technology and Intel chipset technologies,
such as Intel ME, to effectively mitigate most of the threats against host agents in
cloud-anti-virus service environments. Thus, these new usages of our technologies
can help bring the benefits of cloud-anti-virus services to our end customers.

“These new usages of our technologies
can help bring the benefits of
cloud-anti-virus services to our end
customers.”

“Our assumption implies that the

attack space is large in scope.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

14 | Enhanced Detection of Malware

References
[1] “The Economic Impact of Viruses, Spyware, Adware, Botnets and other

Malicious Code.” Computer Economics, 2007 Malware Report.

[2] Annual Report PandaLabs 2008. At http://www.pandasecurity.com

[3] F. Paget. “Avert Passes Milestone: 20 Million Malware Samples.” March ;10,
2009. At http://www.avertlabs.com

[4] T. Watson. “Antivirus Vendors Push Toward Cloud Computing.” Dark
Reading, September 17, 2008. At http://www.darkreading.com

[5] J. Oberheide et al. “Cloud AV: N-Version Anti-virus in the Network
Cloud.” In Proceedings of the 17th Usenix Security Symposium, pages 91-206,
July 2008.

[6] McAfee, Inc. “Artermis Technology—Always–on, Real–Time Protection.”
Whitepaper, 2008. At http://www.mcafee.com

[7] N. Petroni Jr. et al. ”Copilot–a coprocessor–based kernel runtime integrity
monitor.” In Proceedings of the 13th Usenix Security Symposium,
pages 179-194, August 2004.

[8] VMware, Inc. “VMsafe Security Technology.” A set of web pages.
At http://www.vmware.com

[9] S. Grover et al. “RKRD: Runtime Kernel Rootkit Detection.” SECRYPT,
2008. To be published by Springer.

[10] X. Zhao et al. “Towards Protecting Sensitive Files in a Compromised
System.” In Proceedings of the Third IEEE international Security in Storage
Workshop, December 13, 2005.

[11] Y. Bulygin et al. “Chipset based detection and removal of virtualization
malware.” Black Hat USA, 2008.

[12] R. Sahita et al. “OS Independent Run-Time System Integrity Services.“
Intel Corporation 2005. Whitepaper. At http://www.intel.com

[13] Z. Wang et al. “Countering Persistent Kernel Rootkits Through Systematic
Hook Discovery.” 11th International Symposium on Recent Advances in
Intrusion Detection (RAID), Boston, MA, September 15–17, 2008.

[14] S. Sparks and J. Butler. ”Shadow Walker: Raising the bar for rootkit
detection.” Black Hat Japan, 2005.

[15] J. Rutkowska. “Subverting Vista Kernel for fun and profit.”
Black Hat USA, 2006.

[16] Intel Corporation. “Built-in Manageability and Proactive Security.”
Whitepaper, 2006. At http://www.intel.com

[17] O. Levy et al. “Advance Security Features of Intel® vPro Technology.”
Intel Technology Journal, Volume 12, Issue 04, December 2008.

[18] Skape and Skywing. “A Catalog of Windows Local Kernel-mode Backdoor
Techniques.” Uniformed Journal, Volume 8, September 2007.
At http://www.uniformed.org

Intel® Technology Journal | Volume 13, Issue 2, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Enhanced Detection of Malware | 15

Acknowledgments
We acknowledge our reviewers and contributors, among them Yasser Rasheed,
Ernie Brickell, and David Durham.

Author Biographies
Carlos Rozas is a Senior Staff Security Researcher at Intel Labs in Hillsboro,
Oregon. Carlos has 13 years research and development experience in the security
area, including content protection, tamper resistant software, and software integrity.
For the last four years, he has led research efforts in trustworthy virtualization that
combines trusted computing technologies and virtualization. Carlos has a B.S.
degree in Computer Engineering and Mathematics and a M.S. degree in Computer
Engineering from the University of Michigan. His e-mail is carlos.v.rozas at intel.
com.

Hormuzd Khosravi joined Intel in 1999 and currently works as a Software
Architect at Intel Labs in Hillsboro, Oregon. His areas of specialization are
security, networking, and manageability, and he has been involved with Intel®
Active Management Technology (Intel® AMT) architecture since 2005. He holds
seven patents in this area and has more pending. Hormuzd holds a B.S. degree
in Electronics Engineering from Mumbai University, India and an M.S. degree
in Computer Engineering from Rutgers University, New Jersey. His e-mail is
hormuzd.m.khosravi at intel.com.

Divya Kolar Sunder is a Network Software Engineer at Intel Labs in Hillsboro,
Oregon. Her research interests are in the areas of platform security, networking,
and manageability. She joined Intel Corporation in 2005 and has been an active
researcher in various security and manageability technologies such as Intel® Active
Management Technology. Her current research focus is in chipset- and platform-
based security technologies, and she has played an integral role in building proof-
of-concept demonstrations from research concepts. She received her M.S. degree
in Computer Science from Portland State University in 2006. Her e-mail is divya.
kolar at intel.com.

Yuriy Bulygin is a Technical Lead in Intel’s Security Center of Excellence. He is
responsible for vulnerability analysis of Intel processor and chipset technologies.
His primary interests are vulnerability analysis, exploit development, reverse
engineering, and cryptography. Yuriy’s education is in cryptography and applied
math and physics from Moscow Institute of Physics and Technology. His e-mail is
yuriy.bulygin at intel.com.

16 | Protecting Critical Applications on Mobile Platforms

Contributors

Intel® Technology Journal | Volume 13, Issue 2, 2009

Index Words

PRoTECTINg CRITICAL APPLICATIoNS oN MoBILE PLATFoRMS

Ravi Sahita
Intel Corporation

Ulhas Warrier
Intel Corporation

Prashant Dewan
Intel Corporation

Abstract
The size and complexity of the privileged kernel of current operating systems (OSs)
have been increasing at an alarming rate. Moreover, there is a direct correlation
between vulnerability and the size and complexity of the software base on a PC
platform. Stealth malware takes advantage of this complexity in the way it attacks
PCs. Recently, malware has been increasingly used for automated and targeted
attacks that steal user data from applications. Anti-virus software is limited to well-
known signatures and does not address low-level rootkits that subvert the OS and
all the services that security software depends on.

In this article, we describe our research prototype, P-MAPS, a processor-measured
service layer that dynamically reduces the trusted computing base (TCB) and
verifiably improves the runtime security of user’s applications, without interrupting
the typical operation of the user OS. We describe the P-MAPS architecture that
was built using current Intel processors. Our dynamic usage approach reduces the
execution footprint of P-MAPS, making it feasible to protect critical applications
on power-sensitive mobile platforms. We also discuss some security usages that can
benefit from P-MAPS.

Introduction
We first discuss the critical user applications that need to be protected; next, we
describe the threat vectors by which malware can install itself, and we then outline
our research goals, looking at them from a security and usability perspective.

Motivation
Regular reports from security vendors reveal that malware is becoming increasingly
stealthier and more polymorphic. Most malware countermeasures are reactive,
such as anti-virus scanning. These measures are no longer very effective in today’s
computing environment. Intrusion prevention systems address some threats, but
also are susceptible to attacks themselves, since these software systems operate at
the same privilege level as that of the attacks. Our approach to mitigating this
present-day scourge is to protect the critical user applications, such that malware,
while still continuing to execute, will not have any negative impact on the security
of the application.

“Malware is becoming increasingly
stealthier and more polymorphic.”

Application Isolation
Virtualization
Anti-Malware
Remote Attestation
TCB
Runtime Integrity

Protecting Critical Applications on Mobile Platforms | 17

Intel® Technology Journal | Volume 13, Issue 2, 2009

Threat Vector
The threat vector we address with this research is software-based, automated
malware attacks. Malware can install itself on the platform via any of the following
vectors:

•	 Internet downloads. Unsuspecting users can be motivated into installing
user-space or kernel-space malware on their platforms under the pretext of
other useful software. An example of such malware is scare-ware. Scare-
ware can spoof anti-malware software, software that masquerades as a
custom codec for custom video formats. This type of malware is typically
downloaded from the Internet. Web drive-by attacks are a subset of this
attack vector where an infected web server can infect a client that visits it.

•	 Buffer overflow. A buffer overflow can be used to execute malware in the
context of a supervisor or user process. The root cause of this infection
vector is software vulnerabilities.

•	 Network-based infection. Automated worms propagate malware payloads via
instant messaging, peer-to-peer networks, shared drives, and e-mail services.

•	 Dropped by other malware. Malware toolkits allow malware to extend its
behavior by allowing the installation of variants or other malware payloads
on an already infected computer.

Note that once malware is installed on the platform, it can use a combination of the
following methods to attack PCs:

•	 Code tampering. Malicious software can tamper with application code thus
changing the behavior of the application; for example, not encrypting
sensitive data before sending them to the network.

•	 Unauthorized data access. Malware can snoop data from the application’s
memory or may modify data without authorization.

•	 Screen scraping. Malware can read the application screen buffer, extracting
information from it.

•	 Key logging. Malware can hook kernel keyboard handlers thus allowing it to
access user input.

•	 Man-in-the-middle. Malware can replace a valid application or a valid
library with a malicious version thereby launching a man-in-the-middle
between the user and a remote server.

•	 Circumvention attacks. Malware can obfuscate an application’s resources
thus ensuring the application does not run securely. This class of attack is
called a circumvention attack, since the attack does not tamper with the
application directly, but instead it attacks the environment the application
interacts with.

•	 DOS attacks. Malware can prevent an application from running at all,
or can prevent access to key resources the application may need, such as
network I/O.

“The threat vector we address is

software-based, automated malware

attacks.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

18 | Protecting Critical Applications on Mobile Platforms

Research Goals
Our goal is to protect applications from software-based attacks that may originate
from the infection vectors just listed. The types of attacks that P-MAPS can
mitigate are application code tampering, unauthorized access of application data,
screen scraping (protected in a limited manner where the application renders
the screen buffer itself), and man-in-the-middle (for example, by running a
secure network connection from the protected application). P-MAPS can address
circumvention attacks if the library used by the application is also protected. Any
use of untrusted libraries by an application are not protected by P-MAPS. Note that
P-MAPS does not address DOS attacks on the application. Malware can prevent a
P-MAPS-protected application from running, but the unprotected application will
not be able to access the resources that P-MAPS has control over; for example, the
unprotected application will not have access to secrets provisioned on the platform
by a trusted third party (TTP).

Security Goals
Our security goals center on the following activities being carried out:

•	 Runtime authentication of applications. To ensure that only valid
(authenticated) applications are protected, we perform runtime
measurement of the application to verify its integrity before affording it any
protection. This goal is not specific to the application being protected but it
ensures that the P-MAPS capability cannot be used by rogue software.

•	 Runtime, in-place protection of applications. Once the application is
authenticated, we protect its code and data memory in-place within the
OS. This approach is in contrast to approaches that isolate the applications
into a separate OS or virtual machine [1].

•	 Reduction of trusted computing base (TCB). The OS is a general-purpose
environment where users can install unknown and potentially malicious
kernel modules that can attack a user’s applications. Hence, we reduce
the large TCB [2] that trusted third parties depend on by a significant
factor by removing the OS services from the protected application’s TCB.
The applications that can restrict their use of system services to memory
allocation and de-allocation benefit the most from this TCB reduction.

•	 Remote verification of protected execution. The platform should be able to
report the state of protected applications. An independent remote verifier
should be able to verify the authenticity of the attestation report and its
contents.

Usability Goals
Any security capability that conflicts with usability is typically not used. Hence, we
have the following set of usability goals:

•	 The existing programming model should not be changed. It should be possible
to use P-MAPS on existing applications making only minor changes to the
application.

•	 Low-power and performance impact when protection is active. In order to use
P-MAPS on low-power platforms, such as notebooks and mobile Internet
devices (MIDs), the expected power overhead of P-MAPS must be minimal
and must not impact the power performance of the device when protection
is not active.

“The types of attacks that P-MAPS
can mitigate are application code
tampering, unauthorized access of
application data, screen scraping, and
man-in-the-middle.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Protecting Critical Applications on Mobile Platforms | 19

•	 No impact on application interaction with the OS. P-MAPS should not
impact the OS-scheduled execution of protected and unprotected
applications that are executing on the OS. Note that protected applications
can still use system services, and the services will have access to only the
data that the protected application exposes. However it is important to note
that such interaction should be limited to operations that are expected to be
untrusted.

•	 Co-existence with other hardware-based security solutions. P-MAPS can
co-exist with other software components that use the hardware capabilities
it uses—Intel® Virtualization Technology (Intel® VT) and Intel® Trusted
Execution Technology (Intel® TXT). P-MAPS uses these capabilities in a
dynamic manner: it uses Intel VT controls while an application is being
protected, and it relinquishes Intel VT controls when the application is
turned off.

Software Architecture
Overview
At a high level, the two stable states of the platform, when using P-MAPS, are
shown in Figure 1. The platform starts with a commodity OS (currently the host)
running on hardware, as shown in state A in Figure 1. P-MAPS is instantiated via
user launch of an application that requires P-MAPS services. The resulting state of
the platform is as shown in state B in Figure 1: only the P-MAPS core, the CPU,
the verified chipset, and BIOS are in the TCB. Note that the OS is running in guest
mode.

In the rest of this section we describe how the architecture of P-MAPS achieves the
smaller TCB, shown in state B, as well as how the application is added to this TCB
at runtime. The primary contribution of our research is on-demand reduction of
the TCB to one or more independently protected applications that execute without
interrupting the operation of other unprotected applications or services executing
on a commodity OS.

State A State B

Host OS

CPU

P-MAPS Loader

Platform BIOS

CPU

Protected Application

P-MAPS Core

Platform (Verified) BIOS

Guest OS
(non-VMX-root)

Application
Launch

Application
Shutdown

T
C

B

T
C

B

Figure 1: TCB States Before and After P-MAPS Launch
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

20 | Protecting Critical Applications on Mobile Platforms

Components
Intel® Trusted Execution Technology
Intel TXT is a set of CPU and platform extensions that provide a measured
and controlled launch of system software that can then establish a protected
environment for the system software and any additional software that it may
execute. The Intel TXT use of the term trusted denotes a successful measurement
of the provided software module to a reference measurement that is protected by a
hardware trusted platform module (TPM) and is pre-provisioned on the platform.
The software environment that is measured and launched is called the measured
launch environment (MLE). MLEs may be system software, such as an OS kernel
or a virtual machine monitor (VMM). MLEs can use different launch mechanisms
and therefore use different types of measurement schemes. One measurement is
made when the platform boots, by using a root of trust for measurement (RTM)
that executes on each platform reset; the RTM creates a chain of trust that extends
from platform reset to the measured environment. As the measurement always
executes at platform reset, this type of RTM is called a static RTM (SRTM).
Maintaining a chain of trust for a length of time may be challenging for an MLE
that operates in an environment that is, under normal operation, exposed to
unknown software entities, such as device drivers. P-MAPS relies on a small, static
code base and runs the OS in a de-privileged mode. Running an MLE, an extra
layer of code on power-sensitive platforms, incurs extra overhead and therefore is
not a desirable means of addressing this issue. Intel TXT provides another RTM
called a dynamic root of trust for measurement (D-RTM), also called a late launch.
Using D-RTM, the launch of the measured environment can occur at any time
without a platform reset. An Intel-signed, chipset-verified code module (known as
an authenticated code module or ACM) is used to verify the state of the CPU and
chipset, to ensure a secure state of the platform when an attempt is made to launch
the MLE. It is therefore possible to launch an MLE, execute it for some time,
terminate the MLE, and then launch the same or a different MLE again. An Intel
TXT chipset and a Trusted Computing Group standards-based TPM (available
from various vendors) are required to ensure correct operation of the D-RTM
model. The chipset, enabled with Intel TXT, implements TXT Heap memory,
which is a region of physically contiguous memory set aside by BIOS for the use
of Intel TXT hardware and software. The software that launches the MLE passes
data to the SINIT ACM and to the MLE by using the Intel TXT Heap memory.
This heap region allows for secure handoffs to occur between the BIOS and the OS,
between the OS and the SINIT ACM, between the SINIT ACM and the MLE,
and finally between the OS and the MLE. The structure of the data passed between
the OS and the MLE is system software specific. We shall describe the format
used for P-MAPS later in this article. The other protection aspect of the Intel TXT
chipset comes from DMA devices via Intel® Virtualization Technology (Intel® VT)
for Directed I/O (Intel® VT-d)[3]. The key aspects of the TPM used by Intel TXT
are also described later on in this article.

“Using D-RTM, the launch of the
measured environment can occur at
any time without a platform reset.”

“Trusted denotes a successful

measurement of the provided software

module to a reference measurement

that is protected by a hardware trusted

platform module.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Protecting Critical Applications on Mobile Platforms | 21

Trusted Platform Module
The trusted platform module (TPM) [4] provides the hardware root of trust for
storage (RTS) and the D-RTM. The TPM contains the following capabilities that
allow secure MLE measurement and recording of the MLE measurement:

Locality of access. TPM localities are essentially access levels that can be mapped to
the privilege level of the software or hardware entity by using the TPM. Localities
can also be used in access control lists for objects managed by the TPM. For
example, trusted software, such as the MLE, is assigned a higher locality than
untrusted software, whereas hardware is assigned a higher locality than the MLE
(which is measured by the hardware). P-MAPS uses TPM Locality 2 to associate
operations with the P-MAPS core. This binding is used for remote attestation of the
applications protected by the P-MAPS. This operation is described in detail later in
this article.

Platform configuration registers (PCR). PCRs are registers maintained in the TPM
hardware that capture the software state of the system. The TPM exposes an extend
operation on PCRs, which is an order-sensitive, one-way cryptographic hash
operation. Additionally PCR state can be quoted via the TPM (that is, signed by
the TPM with a key that is only known to the TPM) such that the PCR quotes
can be verified by a remote verifier that can then attest to the software state of the
system. Intel TXT uses PCR 17 and PCR 18, where PCR 17 holds the hash of
the ACM (along with other static fields, explained in the MLE Writers Guide [5],
section 1.9.1), and PCR 18 holds the hash of the MLE.

Endorsement key. The endorsement key is the root key pair provisioned in the TPM.
It can be used to identify the TPM as a hardware TPM and also to derive additional
key-pairs that can be used for attestation operations.

Storage root key. The TPM has a separate storage root key to protect its local
non-volatile memory. This key can be used to seal (and subsequently unseal) data to
the platform and the platform’s software state (via TPM PCRs). P-MAPS uses the
root key to bind data to the integrity of the application it is protecting.

Launch control policy (LCP). LCP is a local verification mechanism that is used
to ensure that the MLE to be launched meets specific measurement criteria. The
measurement criteria, or policy, may be defined by the platform owner, or as a
default set by the platform supplier. LCP is enforced by the chipset ACM and the
policies are stored in the TPM. A simple policy is a list of valid MLEs. When the
ACM is executed (via the GETSEC[SENTER] CPU instruction), the LCP engine
in the ACM reads the LCP from the TPM and compares the measurement of the
MLE whose launch is being requested against the platform policy. If the policy
matches, the measured environment is then launched.

Intel® Technology Journal | Volume 13, Issue 2, 2009

22 | Protecting Critical Applications on Mobile Platforms

Hardware Virtualization
Intel VT-x provides hardware support to virtualize the CPU and it allows a VMM
to configure the events that transfer control to the VMM, via a VMexit control
field. This capability is used by the P-MAPS core to virtualize the CPU translation
lookaside buffer (TLB), which caches the virtual-to-physical address mappings. The
VMM can use the Intel VT-x hardware capability to selectively transfer control to
the VMM, when the OS performs memory management operations such as loading
control registers, flushing the TLB (invlpg/invd), as well as page fault exceptions.
Please refer to Intel software developers’ manuals [6] for more information on
Intel VT and Intel TXT.

P-MAPS Architecture
The P-MAPS module consists of the OS-specific P-MAPS loader and an
OS-independent P-MAPS core (Figure 2). The P-MAPS loader uses the Intel TXT
dynamic launch capability to authenticate and bootstrap the P-MAPS core (the
MLE). The P-MAPS core then uses Intel VT to extend the protected environment
that the P-MAPS MLE executes within. Thus, the P-MAPS core executes in the
highest privilege mode (VMX root mode), which ensures hardware separation
between the protected (target) applications and itself. The P-MAPS core provides
three local properties for the application it protects. The P-MAPS core:

•	 isolates	the	program’s	memory	from	other	software	executing	on	the	
platform, even software with a higher privilege level, such as the OS;

•	 ensures	encapsulation	of	application	data	memory	such	that	only	code	in	
measured application pages can access application data; and

•	 prevents	circumvention	of	any	function	entry	points	exposed	by	an	
application (such as a shared library).

P-MAPS Loader (OS-specific)—Intel® TXT Specific

Untrusted—Runs in VMX non-root mode

P-MAPS Core (OS-independent)—Intel® VT Specific

PROCESSOR-MEASURED—Runs in VMX root mode

Memory
Measurement

Memory
Protection

Memory
Eventing

Figure 2: P-MAPS Architecture
Source: Intel Corporation, 2009

The runtime protection for the application is important not just for the three local
properties just listed, but also because it must be able to attest to the protection
state of the application to a remote verifier. Intel TXT uses the TPM that provides
us with the necessary storage and reporting mechanisms to ensure that the P-MAPS
core that is loaded, is the one that was provisioned by the platform owner into the
TPM LCP (that is, the whitelist of MLEs). Additionally, the hardware platform
must ensure that virtualization is turned on only when virtualization is used after
a successful measured launch. Moreover, the hardware platform ensures that the

“Runtime protection must be able
to attest to the protection state of the
application to a remote verifier.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Protecting Critical Applications on Mobile Platforms | 23

P-MAPS core is measured and verified before it can enable Intel VT. By building
the P-MAPS core to be run on-demand for protection of applications, we can
leverage this approach on power-sensitive devices. The additional power used to run
P-MAPS is not consumed until the application protection is needed.

P-MAPS Memory Services
The P-MAPS core provides memory services for measurement, protection, and
eventing. The capabilities of each of these submodules are as follows:

Memory measurement. The P-MAPS core applies memory measurement to identify
applications, based on an application integrity manifest. In essence, the application
integrity manifest provides a signed list of integrity check values over the contents
of the application’s code and data. If there are relocation symbols in the pplication
(for example, a dynamically loadable library) then those are captured in the manifest
to aid in runtime measurement. The integrity manifest can be created for both
executable and linkable format (ELF) and Windows* Portable Executable (PE)
format applications. The software measurement schemes are described in detail in
[7].

Memory protection. P-MAPS applies Intel VT hardware to virtualize OS page-
table management. We have implemented OS-independent memory protection
by forcing VMexit control events in order to be able to access control registers,
invalidate page instruction usage, and page fault exception occurrences. We have
designed a shadow page-table partitioning algorithm to gain access control to the
application’s memory in order to prevent it from being tampered with. Our shadow
page-table partitioning approach is called virtualization-enabled integrity services
(VIS) and is described in more detail in [8, 9].

The P-MAPS core manages two sets of page tables:

•	 Active page table (APT). This is the page table created and managed by the
P-MAPS core in response to the creation and manipulation of the guest
page table (owned and managed by the OS).

•	 Protected page table (PPT). This is the page table created and managed
by the P-MAPS core in response to a registration by a software module
running in the guest OS. In response to the registration, the software
module is measured as described in the “P-MAPS Memory Services” section
of this article, and a PPT is created for the software application such that
the rest of the OS code (running via the APT mappings) cannot execute
within the address space defined by the PPT. The setup of the PPT is shown
in Figure 3. (The interaction between the APT and PPT for protecting
a particular application during its execution is described later in the
“P-MAPS Steady State: Application Protection” section of this article.)

Intel® Technology Journal | Volume 13, Issue 2, 2009

24 | Protecting Critical Applications on Mobile Platforms

(Guest) OS
CR3

PD

PT

PTGuest
Page
Table

P-MAPS Core

CR3 CR3

PD PD

PT

PTActive
Page Table

Protected
Page Table

P

P

RO RW
Protected

Page PT

PT

VMX-non-root mode

VMX-root mode

Figure 3: APT and PPT Managed by the P-MAPS core
Source: Intel Corporation, 2009

Memory eventing. The page-based access control system is used to report memory
access events to a protected auditing agent that, in turn, may be used to apply
policies to application memory accesses or to record events for audit log purposes.

P-MAPS Initialization and Launch
A high-level view of a trusted launch process is shown in Figure 4. Note that in that
figure, on the left, the OS is first in host mode, that is, running natively. The OS is
then temporarily quiesced when the P-MAPS core loader runs. Finally, the OS is in
guest mode, and the applications interact with the P-MAPS core for protection. The
pseudo code for the launch is described in detail in this section.

CPU

TPM

OS

IOCTL

GETSEC.
SENTER

Extend
PCRs

Application

P-MAPS Loader

ACM P-MAPS Core

PCR 17

CPU

TPM

OS

VMXON
GETSEC.
SENTER
Return

Extend
PCRs LCP

P-MAPS Core

PCR 17 PCR 18 TPMPCR 17 PCR 18

CPU

P-MAPS Core (VMX-root)

OS (Non-VMX-root)

VMLAUNCH

Application

PROTECT

ACM

TPMPCR 17 PCR 18

CPU

P-MAPS Core (VMX-root)

REGISTER

OS (Non-VMX-root)

Application

Figure 4: Trusted Launch Process of P-MAPS
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

Protecting Critical Applications on Mobile Platforms | 25

The top-level pseudo code for the P-MAPS core launch is shown in Table 1.

//OS is in “host” mode

//current mode of operation of this code is untrusted

1. Disable Interrupts

2. Save Segment Registers

3. Save Stack Pointer

4. Save all GPRs

5. Save EFlags

6. Launch P-MAPS (pseudo code for this step is described in detail in the next
section)

//Execution should resume at point 7 after launch with

//OS in “guest” mode and Active and Protected Page

//Tables managed by P-MAPS core.

7. Restore EFlags

8. Restore all GPRs

9. Restore Stack Pointer

10. Restore Segment Registers

11. Restore Interrupts

Table 1: Top-level Pseudo Code for Launch of P-MAPS Core
Source: Intel Corporation, 2009

The P-MAPS loader loads the chipset SINIT ACM together with the P-MAPS core
into memory, along with the supporting components. The P-MAPS loader also
restores MTRRs that are saved in the os_mle_data (which is a data structure located
in the TXT Heap). The os_mle_data used for P-MAPS core operation is shown in
Table 2.

Intel® Technology Journal | Volume 13, Issue 2, 2009

26 | Protecting Critical Applications on Mobile Platforms

OS_MLE_DATA (Data used from OS by P-MAPS loader and core)

//os state saved (untrusted)

MTRR STATE

MSR STATE

OS CR3

OS STACK

OS RETURN VIRTUAL ADDRESS

OS RETURN PHYSICAL ADDRESS

OS GDT VIRTUAL ADDRESS

OS GDT PHYSICAL ADDRESS

OS TSS VIRTUAL ADDRESS

OS TSS PHYSICAL ADDRESS

//p-maps setup

POST-SENTER PAGE TABLE MEMORY (scrubbed before use)

P-MAPS CORE ENTRY PAGE PHYSICAL (measured code)

P-MAPS CORE ENTRY PAGE VIRTUAL (retained from OS)

P-MAPS GDT (measured data)

P-MAPS STACK PHYSICAL BASE (retained from OS)

P-MAPS STACK VIRTUAL BASE (retained from OS)

P-MAPS CORE PHYSICAL BASE (scrubbed before use)

P-MAPS CORE EXIT PAGE PHYSICAL (measured code)

P-MAPS CORE EXIT PAGE VIRTUAL (retained from OS)

Table 2: The os_mle_data Structure
Source: Intel Corporation

The memory allocated via OS services is not trusted. The P-MAPS loader allocates
additional memory to stage the launch of the P-MAPS core. This includes memory
for the following elements:

•	 MLE page table. Used by the processor to map the memory elements that
will be measured by the GETSEC[SENTER] instruction.

•	 MLE header. Holds the P-MAPS code entry-point linear address (as
interpreted by the MLE page table). After measurement of the P-MAPS
core, the ACM transfers control into this entry-point, in protected
non-paged mode.

•	 Post-SENTER trampoline code and data. This code is measured as part of
the MLE and is responsible for switching to the measured global descriptor
table (GDT), restoring the memory type range registers (MTRRs), and
setting up the post-SENTER page table.

•	 Post-SENTER page table. The P-MAPS core is relocated in memory to
execute from an identity memory map that is created via the post-SENTER
page table. This page table is created by the measured relocator code. The
mapped memory area is pre-allocated by the P-MAPS loader and is passed
in the os_mle_data.

Intel® Technology Journal | Volume 13, Issue 2, 2009

Protecting Critical Applications on Mobile Platforms | 27

•	 Post-SENTER GDT. This GDT is used in the post-SENTER trampoline
code. The GDT is prepared and measured in memory as part of the launch
measurement performed by the processor.

•	 Post-SENTER relocator code. This (measured) code scrubs the memory
into which it relocates the P-MAPS core. The base address of the P-MAPS
core is passed to this relocator via the os_mle_data. This code library
is pre-compiled at a well-known (static) virtual address base. The post-
SENTER code that creates the post-SENTER page table maps this code at
the well-known virtual address.

•	 Un-relocated P-MAPS core. This measured code is the P-MAPS core that
is relocated and executed in VMX root mode to provide the application
protection service.

•	 Pre-allocated memory. The memory for the P-MAPS core, the P-MAPS core-
managed heap, and the P-MAPS stack are all pre-allocated and are cleared
by the trusted P-MAPS loader before usage.

The P-MAPS core (MLE) memory layout is shown in Figure 5.

Aligned at
2 MB

Boundary

Entry Point

Accesses

P-MAPS Core MLE Page Table

P-MAPS Core MLE Page Header

Post-Senter
Trampoline Code, Data

Post-Senter
Page Table Creator

(Position Independent Code)

Memory used for
P-MAPS Core Heap
(Zeroed before use)

Post-Senter GDT

P-MAPS Entry Page Table

P-MAPS Relocator Code
(Pre-determined Position Code)

Un-relocated P-MAPS Core,
Static Data

Memory used for
P-MAPS Core Stack

SINIT ACM

Memory used for
relocated P-MAPS Core

(Zeroed before use)

Processor
Measured

Scrubbed
By Code
Before Use

Figure 5: P-MAPS Physical Memory Layout
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

28 | Protecting Critical Applications on Mobile Platforms

The Launch P-MAPS step is described in more detail in Table 3. At launch time, the system is considered to be untrusted.

//current mode of operation is untrusted

1. Allocate memory to stage P-MAPS for measurement.

2. Load chipset SINIT ACM.

3. Load P-MAPS (unrelocated) core binary image.

4. Create MLE page table that maps part of P-MAPS loader and P-MAPS core that is to be measured and compared against platform
launch control policy (LCP).

5. Issue processor instruction GETSEC[SENTER].

//the above instruction causes the processor to verify the ACM, which then verifies the P-MAPS loader and unrelocated P-MAPS core
//against the LCP in the TPM

//control resumes at item 6 after GETSEC[SENTER] in protected non-paging mode following operations are trusted (that is, measured)

6. P-MAPS loader loads measured GDT.

7. Clear TXT error and status registers.

8. Restore MTRRs from state saved in os_mle_data (located on the TXT Heap).

9. Create post-SENTER page table that will be used to enter P-MAPS core. (Note: paging is not turned on yet). The mapping created
in this page table is described in detail below.

10. Switch to post-SENTER page table.

11. Establish stack from (scrubbed) allocated memory.

12. Invoke relocator module to relocate measured P-MAPS core to scrubbed memory (allocated and passed via os_mle_data).

13. Push data needed for OS resume on stack. This includes the OS’s original CR3, stack, and return EIP. These data are retrieved from
the os_mle_data in the TXT Heap.

14. Push reference to P-MAPS handoff structure in memory on stack (P-MAPS handoff memory mapped in Step 9).

15. Invoke P-MAPS core entry. The P-MAPS core initialization is described in Figure 7(a).

//After Step 15, the P-MAPS core activates VMX and transitions the “host” OS into a “guest” configuration OS.

//Execution resumes at Step 16 (with any error information in GPRs). If successful, the CR3 used by the guest references an active page
//table managed by the P-MAPS core.

16. Check GPRs for any error information.

17. If no error, restore OS resume data from stack.

18. Switch to OS guest CR3. Note that this action now causes a VMexit that is handled by the P-MAPS core that creates an active page
table corresponding to the guest page table used by the OS. This APT ensures that the OS mapping cannot tamper with any of the
P-MAPS core memory. The P-MAPS core memory includes the active and protected page tables.

19. Jump to the OS return EIP (virtual address mapped in guest page table, and therefore in active page table).

Table 3: Launch P-MAPS Pseudo Code
Source: Intel Corporation

Intel® Technology Journal | Volume 13, Issue 2, 2009

Protecting Critical Applications on Mobile Platforms | 29

The sequence of operations for the creation of the post-SENTER page table is
shown in Table 4.

1. Map (measured) entry trampoline pages as an identity and an OS-mirrored virtual address range.

2. Map (measured) relocator module pages to static (well-known) virtual address.

3. Map (measured) unrelocated P-MAPS core (identity mapped).

4. Map (scrubbed) P-MAPS core stack pages (identity mapped).

5. Map OS GDT and IDT. These are used only for creating the guest VMCS. The P-MAPS core uses its own (memory protected)
GDT and IDT.

6. Map OS TSS. These are used only for creating the guest VMCS.

7. Map (measured) exit trampoline pages as an identity and an OS-mirrored virtual address range.

8. Map (scrubbed) memory where P-MAPS core is relocated into (identity mapped).

Table 4: Create Post-SENTER Page
Source: Intel Corporation

P-MAPS Steady State: Application Protection
Once the P-MAPS core is in place (shown by the P-MAPS steady state in
Figure 6), applications can register with it for protection. The registration interface
is implemented via a parameterized VMCALL into the P-MAPS core, where
VMCALL is an Intel VT instruction. The initial registration received by the
P-MAPS core is untrusted. The P-MAPS core verifies the measurement of the
runtime memory state of the application, based on the integrity manifest provided
by the application. Once the application memory passes the measurement checks,
the P-MAPS core creates a PPT for the application. All page tables managed by the
P-MAPS core are in the P-MAPS heap, which is allowed to be mapped in any APT
or PPT created for OS execution.

P-MAPS Steady State

P-MAPS Core
loaded,

measured, and
installed by
processor

1. Application
starts in

untrusted
mode

2. Application
measured and
protected by
P-MAPS Core

3. Application
executes in
protected

mode

4. Application
terminates

P-MAPS Core
uninstalls

OS Start
(Untrusted)

Time

OS

HW HW

P-MAPS

OS

HW

OS

HW

P-MAPS

OS

Application

HW

P-MAPS

OS

Application

HW

P-MAPS

OS

Application

HW

P-MAPS

OS

Figure 6: Application Usage of P-MAPS
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

30 | Protecting Critical Applications on Mobile Platforms

The pages for the application that are successfully measured are isolated by the
P-MAPS core into a PPT. The protected application may allocate new memory
that can be inserted by the P-MAPS core into the PPT after scrubbing. When the
protected application is executed, it is not necessary to mask interrupts or interfere
with OS operation of other unprotected or unknown applications. If an interrupt
occurs, the OS interrupt service routine execution causes the execution to fault
into the P-MAPS core; the P-MAPS core verifies if a protected application was
executing (via a PPT), and if so, transfers control to the active page table to let the
(unprotected) OS interrupt service routine complete. Additionally, the P-MAPS
core records the interrupt point of the application so that it can verify that it is
being resumed from the correct point.

Further, paging of the application pages is not affected; any access to P-MAPS
protected pages from the OS is considered equivalent to an attack, so the affected
pages are subjected to an integrity check (in the P-MAPS fault routine), and they
are un-linked from the PPT. When the page is swapped back in, and code from the
protected code page is executed, the fault is internal to the PPT, and the P-MAPS
core verifies the integrity check value on the page contents before linking the page
to the PPT. This allows the OS operation to continue unhindered but does not
affect the security of the protected application.

The P-MAPS core allows the following policies to be enforced for a protected
application:

•	 Code	pages	cannot	be	written.
•	 Code	or	data	pages	may	be	entirely	hidden.
•	 Data	pages	may	be	read/write	or	hidden.
•	 Specific	data	pages	may	be	shared	between	trusted	and	untrusted	code.
•	 The	code	page	can	be	executed	only	from	specific	entry	points.

The events handled by the P-MAPS core for memory management of the protected
application are best shown in flowcharts shown in Figure 7(a) and 7(b).

Page FaultMOVCR 3

Paging ON/OFF

New Registration

Event that
affects application

protection?

Create the Active
(Shadow) Page

Table for the
current OS
Page Table

Map OS
GDT, IDT
into Active
Page Table

If Paging turned on,
create an Active Page

Table for CR 3 and
transition guest to

P-MAPS created CR 3

If Paging turned off,
use flat Page Table for

guest OS

Flush all Active and
Protected Page Tables

Edit APT for
guest CR 3 to

create PPT for
measured pages

Inject to
Guest if
it is a

native PF

Measure
pages in
memory
based on
manifest

Sync APT to
ensure new page is

unlinked from APT and
linked into PPT

Inject to Guest if it is
native PF in PPT

APT PPT

In PPT or
APT?

Walk GPT to validate
PF does not violate

any P-MAPS
protection or PPT

Walk GPT to validate
PF does not violate

any P-MAPS
protection or other PPT

Figure 7(b): P-MAPS Core Memory Management Events
Source: Intel Corporation, 2009

Transition Control into the Guest OS via
VMLAUNCH of Guest VMCS

Turn on Hardware Virtualization

Create the Active (Shadow) Page Table for the
Current OS Page Table based on

CR 3 passed in os_mle_data

Create Guest VM control structure and
initialize Virtual TLB data structures

Create Root VM control structure and
initialize VMExit Handlers

Create Guest VM control structure for OS and
import CPU state into it from os_mle_data

Clear Heap and create own Page Table to
map all memory using Identity Page Table
Ensure P-MAPS Memory unmapped from

Identity Page Table

Figure 7(a): P-MAPS Core Initialization
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

Protecting Critical Applications on Mobile Platforms | 31

P-MAPS Teardown
The P-MAPS teardown is achieved as shown in Figure 8. Before issuing a VMXOFF
VT instruction that exits VM root mode, the P-MAPS core ensures that there are
no more applications being protected by P-MAPS and that the teardown request
arrived from the protected service that launched the P-MAPS core.

CPU

TPMTPMTPMPCR 17 PCR 18

CPUCPU CPU

OS (Non-VMX-root)

UNPROTECT

TPMPCR 17 PCR 18

P-MAPS Core (VMX-root)

DE-REGISTER

OS (Non-VMX-root)

Application

CLEAR

SEXIT

P-MAPS Core (VMX-root)

VMCALL (Teardown)

VMXOFF

P-MAPS Core (VMX-root)

RETURN

P-MAPS Loader

OS

P-MAPS Loader

OS

Figure 8: P-MAPS Teardown
Source: Intel Corporation, 2009

If these conditions are satisfied, the P-MAPS core scrubs any secrets that were held
in protected memory, caps TPM PCRs, issues a VMXOFF to relinquish Intel VT
hardware control, and issues a GETSEC[SEXIT] to exit trusted mode (to allow
a subsequent measured launch to take place). The P-MAPS core transfers control
back into the untrusted portion of the P-MAPS loader, which in turn de-allocates
the P-MAPS memory (if required). The P-MAPS loader may also keep the memory
allocated until system shutdown to allow subsequent launches, if such an action
is required. As shown in Figure 8, the OS resumes in host mode after P-MAPS
teardown.

Remote Attestation
A protected application typically involves the handling of secret data that are
provisioned by an entity (provisioning server) in the network. The protected
application must assure the remote entity that the application is indeed executing in
the specified protected environment before receiving the secret data. A set of trusted
entities participate to enable this mechanism.

Trusted Entities and Their Roles
Here are some of the trusted entities and their roles.

•	 Trusted platform module (TPM) and its owner (e.g., an end user or an IT
administrator). The owner sets the TPM authentication password and is
responsible for password protection.

“A protected application typically
involves the handling of secret data
that are provisioned by an entity in
the network.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

32 | Protecting Critical Applications on Mobile Platforms

•	 Endorsement certificate authority (CA). The TPM device is provisioned with
the endorsement key (EK) and an EK certificate from the endorsement CA
at manufacture and ship time. The certificate provides attestation for the
TPM manufacturer, signed by a TTP, such as VeriSign*.

•	 Privacy CA server. This is a TTP used by the provisioning server to verify the
EK certificate from a TPM with an assurance of keeping the identity of the
TPM host confidential.

•	 Intel TXT components (CPU/Chipset, ACM). The ACM works in concert
with the CPU and chipset to verify hardware conformance; for example,
it verifies that the TPM being used is physically attached to the platform.
The ACM also extends the TPM PCR registers to record the measurement
of the P-MAPS core—this property is used during the operation of the
P-MAPS core to associate application credentials to the local TPM.

•	 P-MAPS	core.	The	core	enforces	protection	via	page	table	changes.	The	
P-MAPS core uses TPM to generate attestation identity keys (AIKs). These
keys are used to sign (appropriately tagged) application-specific data and to
sign the TPM’s current PCR values (TPM_Quote). The provisioning server
verifies the TPM quote (based on PCRs and locality) to ensure the platform
has the necessary software posture before sharing confidential data.

As part of the Intel TXT dynamic launch, PCR 17 is updated with the identity of
the ACM, and the P-MAPS core measurement is recorded in PCR 18. When the
P-MAPS core is launched, it protects (virtualizes) TPM access and denies host OS
access to TPM at locality 2. The P-MAPS core requests the TPM to generate an
AIK pair and to associate this AIK with PCRs 17 and 18 and locality 2. It provides
the TPM’s EK certificate to the privacy CA and requests a certificate for this AIK.
When the P-MAPS core needs to attest its state to a remote server it provides a
TPM quote signed by the AIK and includes values of PCRs 17 and 18.

OS

P-MAPS

HW

TPM

Keys

2. 3a.

Server

Remote
Attestation

4.

Trusted
Third Party

PCR
2.

3.

4.

AIK Credential Request

Quote Request N

Quote Response
SigAIK (PCR, N)

Validate

1.

1a.

1b.

3b.

Attestation
Service

Figure 9: Remote Attestation of Protected Applications
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

Protecting Critical Applications on Mobile Platforms | 33

The remote server can use the privacy CA to verify the AIK. The AIK can be used
by the P-MAPS core to send the public portion of an RSA key pair. The above
mechanism follows a standard protocol recommended by the TCG. The remote
server can use the public key to encrypt a secret before sending it to the P-MAPS
core for provisioning. This interaction is illustrated in Figure 9.

Seal and Unseal Secrets
Once provisioning is complete, an application may need to store a secret (which
may be a key) that is subsequently required during steady-state operation. The
application sends the secret to the P-MAPS core for protection, and the core uses
the TPM to seal the secret to PCRs 17 and 18 and locality 2. The encrypted secret
is given back to the application to store as it pleases. When the secret is needed,
the application requests the P-MAPS core to unseal the secret and deposit it into
protected memory.

Usages
The P-MAPS core can be used to protect critical applications. Applications are
deemed critical, either from a user-data perspective or from a security perspective:
for example, banking applications, security software, such as anti-virus or rootkit
prevention, are all critical applications. Additionally, P-MAPS can be used to extend
hardware services to integrity-verified drivers thus creating protected hardware
extensions in software.

Performance Evaluation
We implemented P-MAPS on an Intel mobile platform enabled with Intel VT
and Intel TXT. Our Intel TXT loader is written for Windows* XP* and is based
on the Trusted Boot Project [10]. The platform hardware configuration, previously
codenamed Montevina [11], consists of an Intel® GM45 Express Chipset, an
Intel® Core™2 Duo Processor P8600 (3M Cache, 2.40 GHz, 1066 MHz FSB),
2GB RAM, and an Infineon* TPM [12]. We measured the time required to launch
the P-MAPS core, via a Windows XP kernel service, to be 300 msec on average.
This includes the time taken from the GETSEC[SENTER] instruction to the
instruction run after control comes back into the OS-specific launcher (from the
measured P-MAPS core). A large portion of the time is spent in interaction with
the TPM over the serial LPC bus, and in reconfiguring the MTRRs. Table 5 breaks
out the time spent in the different activities that occur during the launch and
teardown processes.

Launch: from GETSEC[SENTER] to resume 300 msec

GETSEC[SENTER]: ACM verification, execution (entry
to trampoline)

Trampoline: execution (entry to P-MAPS core)

P-MAPS core: setup, guest creation and resume

Tear Down: from VMCALL to resume 0.54 msec

Table 5: Initialization and Teardown for P-MAPS Core
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

34 | Protecting Critical Applications on Mobile Platforms

For further details on Intel TXT, the reader is referred to the Intel technical
reference book for Intel TXT [13].

Conclusion
We have demonstrated via a research proof-of-concept how Intel TXT and
Intel VT hardware can be used to reduce the TCB of current PC systems,
on-demand (dynamically), from the full OS software to a substantially smaller
P-MAPS core module that provides runtime protection for applications. We
describe how this system can be used to provide protection without interfering
with the typical scheduling and operation of the OS, including unprotected
applications. We can use this application protection mechanism to make a whitelist
of critical applications and thus mitigate 0-day software attacks on these protected
applications. We continue to analyze different applications of the P-MAPS core.

References
[1] R. S. Cox et al. “A Safety-Oriented Platform for Web Applications.” In

Proceedings of the 2006 IEEE Symposium on Security and Privacy. 2006.

[2] Source lines of code. At http://en.wikipedia.org

[3] “Intel® Virtualization Technology for Directed I/O.”
At http://download.intel.com

[4] TPM Specification, Version 1.2. At http://www.trustedcomputinggroup.org

[5] Intel® Trusted Execution Technology—Measured Launched Environment
Developer’s Guide. At http://www.intel.com

[6] Intel® 64 and IA-32 Architectures Software Developer’s Manual.
At http://www.intel.com

[7] “OS Independent Run-Time System Integrity Services.” IT Innovation and
Research, November 2005, Intel Corporation. At http://blogs.intel.com

[8] Ravi Sahita et al. “Mitigating the lying endpoint problem in network access
control frameworks.” IEEE/IFIP DSOM, 2007.
At http://www.springerlink.com

[9] Ravi Sahita et al. “Towards a Virtualization-based Framework for
Information Traceability.” Advances in Information Security—Insider Attack
and Cyber Security ISBN 978-0-387-77321-6.
At http://www.springerlink.com

[10] Joseph Cihula et al. “Trusted Boot project on sourceforge.net.”
At http://sourceforge.net

[11] Intel Montevina Platform. At http://ark.intel.com

[12] Infineon Trusted Platform Module. At http://www.infineon.com

[13] David Grawrock. “The Intel Safer Computing Initiative.”
ISBN-10: 0976483262. At http://www.intel.com

“We describe how this system can be

used to provide protection without

interfering with the typical scheduling

and operation of the OS, including

unprotected applications.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Protecting Critical Applications on Mobile Platforms | 35

Acknowledgments
We thank our colleagues who contributed to various facets of this research project
and the proof-of-concept development: David Durham, Joseph Cihula, Andy
Anderson, Michael Kinney, Ranjit Narjala, and Ansuya Negi.

Author Biographies
Ravi Sahita is a Senior Researcher at Intel Labs. His research interests are
software and systems security, network security, and distributed systems. Ravi has
contributed to Intel NetStructure® products, the open-source Intel Common Open
Policy Services (COPS) client SDK, and Intel® AMT System Defense Manager.
Ravi is a contributing member of the Internet Engineering Task Force (IETF)
and the Trusted Computing Group (TCG) standards bodies. He received his B.E.
degree in Computer Engineering from the University of Bombay and an M.S.
degree in Computer Science from Iowa State University. His e-mail is ravi.sahita at
intel.com.

Ulhas Warrier is a Senior Architect in Intel’s Mobile Platforms Group, working on
architecture definition for next-generation mobile platforms. He works in the areas
of platform security, manageability, virtualization, and architectural support for
services. Ulhas has contributed to in-circuit emulator products, Intel® ProShare®
related products, platform partitioning, and consumer networking projects. He was
the chair of the Internet Gateway Working Group in the Universal Plug and Play
(UPnP) Forum. He received his M.S. degree in Computer Science from Oregon
State University. His e-mail is ulhas.warrier at intel.com.

Prashant Dewan is a Security Research Scientist at Intel Labs. His research interests
are network and platform security, virtualization, and decentralized networks. He
has a Ph.D. degree in Computer Science from Arizona State University and has
been working at Intel since 2004. His e-mail is prashant.dewan at intel.com.

36 | Providing a Safe Execution Environment

Contributors

Intel® Technology Journal | Volume 13, Issue 2, 2009

Index Words

PRoVIDINg A SAFE ExECUTIoN ENVIRoNMENT

Kirk Brannock
Intel Corporation

Prashant Dewan
Intel Corporation

Frank McKeen
Intel Corporation

Uday Savagaonkar
Intel Corporation

Abstract
Providing a safe execution environment for an application requires meeting a
number of complex requirements.

In today’s connected computer environment, it is necessary to provide a trusted
environment to a wide variety of applications. This article describes research
on creating a secure execution zone (SEZ) for executing software agents in a
secure manner on a computer system. Security in this case includes integrity,
confidentiality, access control, as well as other domain-specific requirements, all
of which are described in this article. We also discuss the creation of an SEZ and
outline some examples.

Introduction
The purpose of a secure execution zone (SEZ) on a computing platform is to
provide a place where software can execute as intended without being effected by
malicious external agents. Providing such isolation on an open platform, such as an
x86-64 platform, is a challenging task. A typical x86-64 system consists of multiple
hardware, firmware, and software components, a large number of which are capable
of altering the computational outcome of software executing on that platform.
The trusted computing base (TCB) is “a small amount of software and hardware
that security depends on and that we distinguish from a much larger amount that
can misbehave without affecting security” [1]. Any vulnerability in the TCB of a
software component can potentially be exploited by an attacker to alter the behavior
of the software in an unexpected fashion. Consequently, it is extremely important
that an SEZ provide an execution environment that has a small and manageable
TCB.

Organization of this Article
We first provide an overview of the problems associated with an SEZ. We then
describe the current computer ecosystem and the need for an SEZ. We further
explain the issues with the current ecosystem and continue with a description of the
requirements of an SEZ. We then look at some of the current solutions and discuss
the advantages and disadvantages of those, and we end with a description of an
ideal SEZ.

“It is extremely important that

an SEZ provide an execution

environment that has a small and

manageable TCB.”

Attestation
Security
Software
Integrity
Virtualization

Providing a Safe Execution Environment | 37

Intel® Technology Journal | Volume 13, Issue 2, 2009

Ecosystem Description
The Internet and the connected environment have brought substantial changes
to the nature of applications. Applications are evolving to bring valuable data to
the client platform. Applications can be distributed across many platforms. Each
platform performs a particular task of the application. The application interacts
with the user of a computer and other applications. Applications today can
dynamically download information, and information can be forwarded from one
computer to another without any user intervention. This allows applications to take
advantage of remote and local computational resources.

Many applications contain intellectual property (IP) that may be valuable to
outside parties or even the owner of the machine (for example, getting a look at
an earnings report before it is released). In some cases this IP is not sold to the
computer owner but rather rented (for example, when you rent a movie). When IP
is rented, the computer user does not own the rights to it, but rather is provided
access for some defined period.

In addition, database applications provide the ability to distribute records to many
machines. These databases store millions of records, such as financial and medical,
as well as other valuable and important records, and keeping track of this
information has proved to be problematic. There are many reports of lost laptops
containing thousands of records.

There are also numerous reports of servers being overrun with malware that
removes many files that contain personal information.

Ecosystem Issues
The computer ecosystem today is dominated by open platforms. These platforms
are constructed with a myriad of software components from different vendors, and
all of the components vary in quality. A computer may include components from as
many as a dozen manufacturers. Many of these components use privileged drivers
that are inside the TCB of the application; they have access to the application’s data.

Computer platforms contain hundreds of settings and parameters that affect the
security and integrity of the platform. It takes a panel of experts to understand how
to secure such a platform, given the implications of all the various settings; yet, for
the most part, platform users are untrained in software or security. The result is that
platforms are often mis-configured with respect to security protection.

“Applications today can dynamically
download information, and
information can be forwarded from
one computer to another without any
user intervention.”

“Database applications provide the

ability to distribute records to many

machines.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

38 | Providing a Safe Execution Environment

Moreover, the current ecosystem encourages the download of both code and data.
There is no way for users to tell if the files they download contain only the code
they expect. For instance, many users are deceived by a download that purports to
provide a service but at the same time deposits other code in their system—code
that is in effect malware. Today’s platforms allow remote download of code that
executes at privileged levels. A user can accidentally download code that will alter
the operating system (OS) configuration.

All of these factors make machines vulnerable to attacks that can result in the release
of confidential data.

Why a Secure Execution Zone is Needed
As the Internet has evolved, innovation has resulted in new applications that require
the ability to securely store data and protect them from unauthorized usage and
tampering. The value of data has risen in recent years. For example, the theft of files
containing personal information leads to identity theft. Data are also a company’s
or a manufacturer’s intellectual property (IP); these data contain trade secrets of
the application. Data in applications, such as those shown in Table 1, require
protection. Many applications have legal requirements to protect data. For instance,
medical records must meet protection standards imposed by the Health Insurance
Portability and Accountability Act (HIPPA). The Sarbanes-Oxley Act of 2002
imposes protection of corporate financial data to prevent insider trading and the
compromise of a company’s integrity.

Application Category Protected Items

Premium content Content provided by physical or digital
distribution

Medical records Patient information, HIPPA compliance
E-commerce Credit card information
Device authorization Theft protection, computer leasing
Military applications Targets, threat locations, resource location
Enterprise digital rights
management

Document protection and control

Network subscriptions Network access, 3G, WiMAX
Network keys Protocol protection
Context-aware applications Targeted ads, user location

Table 1: Applications That Require Data Protection
Source: Intel Corporation, 2009

In all cases, the application or data owner requires that core portions of
the application (i.e., the code and data) be kept secret and the data not be
compromised.

“A computer may include

components from as many as a dozen

manufacturers.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Providing a Safe Execution Environment | 39

Secure Execution Zone Requirements
In this section we delve into the requirements and properties of an SEZ. We first
discuss how the security properties of an SEZ depend on the types of attack; we
look at the required properties of an SEZ as well as the properties that make an SEZ
more effective. We also touch on SEZ technology and how it works with mutually
distrusting applications. We end the section by evaluating a system management
mode (SMM) and a virtual machine monitor (VMM) as candidates for an SEZ.

Attack Models
The security properties desired of an SEZ heavily depend on the attack model.
In the least severe of all the attack models, the adversary only has access to the
platform via a network port. In such a model, the process separation provided by
the OS typically provides a sufficiently secure place to execute, and no special SEZ
is required. It should, however, be noted that such models typically have very large
TCBs, and any vulnerability in any component inside the TCB can compromise
the software trust model. The insufficiency of such an attack model is amply
demonstrated by frequent security advisories affecting the major operating systems;
consequently, system architects must consider more advanced attack models.

The second attack model assumes that the attacker has compromised the software
stack on the platform and has access to the most privileged ring available to
commercial software. However, the attacker does not have any direct access to the
hardware. In such situations, hardware-based access control (for example, range-
register-based access control and paging-structure-based access control) can provide
a sufficiently trusted SEZ. The hardware, firmware, or software inside the TCB
can cryptographically protect code and data as they leave the access-controlled
environment. However, no special (cryptographic or otherwise) protection is
needed on code or data living inside the access-controlled environment, while they
travel on the system buses.

The most severe attack model assumes that the attacker can not only compromise
the software stack, but also has some level of physical access to the platform
hardware and is capable of launching simple hardware attacks, such as DIMM-
removal and/or snooping the buses. This attack model is applicable in situations
where the computer platform is stolen, or where the platform user might be
interested in circumventing the security of the system (for example, to circumvent
digital rights management (DRM) protections). This kind of attack represents one
of the most challenging security problems and requires cryptographic protections
on internal buses, in addition to various access-control mechanisms.

Cloning and Replay Attacks
A special kind of attack model is the cloning and replay attack. Such an attack
involves a corrupted software stack that attacks an in-band SEZ. The attack involves
recording the state of the SEZ and restarting the SEZ repeatedly with the same
state. An attacker can change the input data to the SEZ and record the output of
the SEZ. We use the term replay attack to indicate that a partial portion of the SEZ
is being replayed. A cloning attack refers to attacks that replay the entire SEZ space.

A cloning or replay attack is more easily mounted against an in-band SEZ, where

“The cloning and replay attack

involves a corrupted software stack

that attacks an in-band SEZ.”

“In the least severe of all the attack

models, the adversary only has access to

the platform via a network port.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

40 | Providing a Safe Execution Environment

the SEZ is dependent on the software stack to provide resources. In order to prevent
this sort of attack the SEZ must have special protections against replay. Replay
and cloning attacks can be mounted remotely, if the software stack contains an
exploitable vulnerability.

Required Properties of an Effective Secure Execution Zone
An SEZ environment has to have many properties to make it effective. We describe
in detail these properties in this section.

Code Integrity
Code integrity refers to the ability of an SEZ environment to prevent the software
running inside an SEZ container from being modified by entities outside the
TCB of that container. Code integrity is an absolute requirement of any SEZ
environment—any SEZ environment must protect software code running inside a
container from malicious tampering by an attacker outside the container, under the
applicable attack model.

Control-flow Integrity
Just as code integrity is an important property of an SEZ environment, so
is control flow integrity. Therefore, any SEZ environment must provide this
property under the applicable attack model. It should be noted that, in an x86-64
programming environment, protecting the binary code image of the software
component from malicious modification is not sufficient—there are a number of
other factors that can affect the outcome of the execution. For example, an x86-64
execution environment does not enforce any alignment restrictions on executable
instructions. Consequently, jumping into the same binary page at an offset different
from the intended offset can lead to a completely different set of instructions
being executed. Additionally, x86-64 platforms allow multiple levels of address
indirections, including segments, page tables, extended page tables (EPTs), and
QPI-based routing/decoding. Typically, these address indirections are controlled by
more than one firmware and software entity. If the attacker is allowed to control
any of these levels of translation in an unrestricted fashion, then the attacker can
deterministically change the outcome of the software execution. For example, the
attacker can jump into unspecified offsets (by modifying the segment base), or
the attacker can completely change the execution order (by changing page tables
or EPTs). Thus, the SEZ must enforce controlled entry points into the protected
environment. Additionally, the SEZ must protect software executing inside it
by either disabling the translation, controlling the translation, checking the final
translation, or any combination of these.

Data Integrity

“The SEZ must enforce controlled

entry points into the protected

environment.”

“Code integrity is an absolute

requirement of any SEZ

environment.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Providing a Safe Execution Environment | 41

Data integrity, another required property of an SEZ environment, refers to the
ability of the SEZ environment to prevent modifications of the static and dynamic
data belonging to the SEZ container from entities outside the container. Every SEZ
environment must be able to protect the data belonging to an SEZ container from
malicious tampering by an attacker outside the container, under the applicable
attack model. It should be noted however, that under some usage models, SEZ
containers need to ensure data integrity on a portion of their data only—the
attacker may be allowed to modify the remainder of the data belonging to the SEZ
container. For example, in the case of integrated graphics devices, the attacker is
allowed to modify the intermediate-surface data for protected surfaces that belong
to the graphics device, without affecting the trust properties, such as the high-
definition digital content protection (HDCP), of the graphics device.

Data-flow Integrity
Data-flow integrity refers to the property that stipulates that the data belonging
to an SEZ container always serve their intended purpose within that container.
For example, most of the executable programs developed in native runtime
environments such as C/C++/assembly associate their data with the logical
address of the data. However, as explained earlier, the logical addresses go through
multiple layers of address translation and redirection before being consumed by the
hardware. Consequently, if an attacker controls any of the intervening translation
layers, it can point the logical address of one data block to a completely different
physical data block belonging to the same container, causing the data to be used
in an unintended fashion. For example, consider a small web server running inside
an SEZ container that maintains lists of hosts that are allowed and disallowed to
establish a connection. If the attacker can modify the logical-to-physical address
translations without any oversight from the SEZ, then the attacker might be able
to persuade the web server to interpret the list of disallowed hosts as the list of
allowed hosts, thereby circumventing the intended purpose of these lists. An SEZ
environment may be required to provide a binding between the logical address
and the actual data. The binding can either be provided cryptographically or by
disabling, controlling, or checking the translation (or a combination of all three).

Semantic Data Integrity

“Data integrity refers to the ability

of the SEZ environment to prevent

modifications of the static and

dynamic data belonging to the SEZ

container.”

“If an attacker controls any of the

intervening translation layers, it can

point the logical address of one data

block to a completely different physical

data block.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

42 | Providing a Safe Execution Environment

Semantic data integrity is a weaker property than data-flow integrity. In data-flow
integrity, data are tied to their addresses within the SEZ container and can only
be accessed by that container at those addresses. In semantic data integrity, the
data are grouped into semantically equivalent sets. The SEZ permits substitution
within a semantically equivalent set. However, substitution across semantically
different sets is not permitted. For example, on the integrated graphics device,
the intermediate protected surfaces generated by the graphics device that belong
to the same application context are semantically equivalent, and an attacker can
substitute one surface for another. However, protected surfaces belonging to
different application contexts cannot be substituted for one another. It should be
noted that the substitution of semantically equivalent surfaces does not compromise
the graphics trust model; although such substitution may result in the graphics
device displaying garbage on the screen. For many protection models, semantic data
integrity is sufficient and can be implemented at a much lower cost than full data-
flow integrity.

Data Confidentiality
Data confidentiality refers to the ability of an SEZ to prevent attackers from
accessing the designated data in the clear. The measures required to protect the
data depend on the level of access the attacker has to the system. Typically, if the
attacker does not have physical access to the system, then data confidentiality can be
guaranteed via access control at the hardware level, and via software and firmware
managed encryption when the data are moved out of the access-controlled region.
However, if the attack model allows the attacker to have physical access to the
platform, then the SEZ may require hardware-based encryption on the platform
buses.

Code Confidentiality
Code confidentiality is where the attacker is denied access to the executing code.
Again, the exact mechanism depends on the level of access the attacker has. In
simple situations, mode-based access control might be sufficient. In more involved
cases, SRAM-level protection, or memory encryption, might be necessary. Code
confidentiality might be desired when the code contains intellectual property, such
as a trade-secret algorithm or copyrighted software.

Attestation
Attestation refers to the ability of the software running inside an SEZ container to
prove to external entities that it is in fact running inside the SEZ container. This
property is extremely important for most SEZ environments, and attestation is
used for establishing trust with remote entities after the platform has been shipped
to the user. Without an attestation framework, the SEZ cannot provide provable
protection to software that was not provisioned at the time the platform was
shipped to the user.

“If the attack model allows the

attacker to have physical access to the

platform, then the SEZ may require

hardware-based encryption on the

platform buses.”

“Attestation is used for establishing

trust with remote entities after the

platform has been shipped to the user.”

“The SEZ permits substitution within

a semantically equivalent set.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Providing a Safe Execution Environment | 43

Resistance to Denial of Service
Some platform services require guaranteed platform resources such as memory,
CPU cycles, network access, and so on. Without these resources, the services could
be starved and therefore unable to perform their basic intended functions. Examples
of such services include anti-virus or malware detection and battery management
services, among others. Such services need an SEZ that can either protect the
platform services from denial of service attacks or detect that a denial of service
attack is occurring and signal an external agent.

Mutually Suspicious Applications
The same SEZ technology could be used to create multiple simultaneous instances
of an SEZ environment running on the same platform. Such instances are typically
mutually distrusting, and the SEZ should assure the isolation between the different
instances. Each instance of an SEZ is called an SEZ container.

Other Properties
As well as required properties, an SEZ will be much more effective if it also has
these properties:

•	 Friendly	to	operating	environments
•	 Scalable	threading,	expandable	memory,	scalable	CPU	resources
•	 Access	to	system	resources	such	as	network	stack,	display,	system	services

System Management Mode as a Secure Execution Zone
We now examine system management mode (SMM) and its viability as an SEZ.

Background
The SMM of the CPU has a number of attributes that make it an interesting
candidate for an SEZ. When running in a properly configured platform, SMM
code enjoys isolation from the host OS and from DMA agents in the platform.
Furthermore, SMM code has access to all host-accessible hardware resources in the
machine. Figure 1 shows an architectural layout of SMM with respect to the rest of
the system software.

SMM is entered via a system management mode interrupt (SMI), which can be
generated by a platform’s chipset hardware or by the CPU itself. The SMI is serviced
by the SMI handler, which is typically the exclusive domain of the BIOS and is
configured early in pre-boot BIOS execution. The associated configuration bits
are normally locked to prevent non-BIOS code from changing the configuration
once it is set. The SMI handler executes in a region of sequestered memory known
as SMRAM. All memory cycles from the CPU are tagged in a manner to indicate
whether the cycle originated from code running in SMM or not. Therefore, when
memory cycles reach the memory controller they can be distinguished between
SMM and non-SMM operation of the processor. The memory controller will route
cycles to SMRAM, only if they originate from a CPU that is running in SMM.
Additionally, all DMA cycles to SMRAM are denied.

Application

VM VM VM

Hypervisor

Hardware

System
Management

Mode

Figure 1: System Management Mode Diagram
Source: Intel Corporation, 2009

“Some platform services require

guaranteed platform resources.”

“When memory cycles reach the

memory controller they can be

distinguished between SMM and non-

SMM operation of the processor.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

44 | Providing a Safe Execution Environment

SMM is typically used to provide platform-specific runtime services (for example,
enabling ACPI mode during OS boot), to implement BIOS workarounds for
hardware issues, and in some cases to emulate hardware (for example, PS/2 mouse
and keyboard emulation for USB devices).

System Management Mode as an SEZ Host
Hardware locks prevent software from changing configuration in a way that would
expose SMRAM or inhibit SMIs from occurring. Therefore, if implemented
properly, the SMI handler is resistant to tampering from ring 0 host software and
seems like a natural place to implement SEZ applications.

All SEZ applications have a confidentiality requirement (protection of some secret)
and an integrity requirement (tamper resistance); otherwise, they would simply be
written in the context of a normal OS. Furthermore, assurance or attestation of
the environment is commonly required. Any candidate SEZ environment must be
evaluated based on its ability to provide these properties.

Upon careful analysis, with these requirements in mind, there are a number of
issues with SMM as an SEZ host:

•	 The	SMI	handler	is,	by	definition,	platform	specific.	Each	platform	may	
have several BIOS revisions, and each BIOS revision may change the SMI
handler. Therefore, the total number of SMI implementations is very
large. Gaining any reasonable level of assurance that an arbitrary SMM
implementation provides sufficient confidentiality or is tamper resistant is
problematic, if not intractable.

•	 Secret	protection	and	assurance	of	secret	destruction	is	incomplete,	even	
with a correctly implemented SMI handler. While it may be possible to
devise schemes that can defend secrets from a software attack with BIOS
inside the SEZ TCB, these schemes are clearly insufficient for some classes
of reasonably trivial physical attacks that are a concern for many SEZ
applications.

•	 SMM	does	not	scale	well.	OS	environments	tend	to	be	very	sensitive	to	the	
amount of time spent in SMM. If the time spent servicing an SMI exceeds
about 300 microseconds, OS visible artifacts may become a problem. This
short duration leaves very little time for any meaningful work to be done.
To work around this time problem, any SMM-hosted SEZ environment
would need to be scheduled by the OS. This is still likely to be insufficient,
because SMM runs with all interrupts inhibited, which significantly
complicates OS scheduling algorithms. Furthermore, basing SEZ time
on an OS scheduler permits ring 0 denial of service attacks on SEZ
applications. Finally, if the SEZ application needs access to system resources
(for example, the network stack, display, storage), the device must be either
dedicated to SMM or arbitrated with the OS.

“SMM does not provide sufficient

scalability, attestability, or assurance

to meet the security demands of SEZ

applications.”

“The SMI handler is resistant to

tampering from ring 0 host software

and seems like a natural place to

implement SEZ applications.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Providing a Safe Execution Environment | 45

•	 While	SMM	runs	X86	code,	no	common	software	environment	or	services	
exist to support SEZ applications. While the Unified Extensible Firmware
Interface (UEFI) may partially address this issue (heap management, for
example), UEFI is far from universal, nor does it include a sufficient set of
services to provide a base for SEZ applications [2]. This lack of a common
software support environment implies that an SEZ application must itself
implement all of the platform support it requires. This is an ecosystem
problem that has no clear solution.

While SMM provides BIOS a robust environment to implement runtime functions
and services and has proven many times to be a valuable tool, it is not sufficient for
SEZ usage. SMM does not provide sufficient scalability, attestability, or assurance to
meet the security demands of SEZ applications.

An SEZ Based on a Virtual Machine Monitor
Since virtual machine monitors (VMMs) that use hardware support run at a higher
privilege level than the OS, VMMs can be used to create in-band SEZs. VMMs
are used to isolate the memory and I/O of the SEZ from the OS, by trapping
on certain operations. Intel® Virtualization Technology (Intel® VT) can be used
to virtualize OS page-table management, for example. OS independent memory
isolation can be provided by inserting a layer of software under the OS, called a
VMM. The VMM runs at a higher privilege level. As a result, it can force the OS to
fault into the VMM and to control access to the memory ranges the OS is allowed
to access. Intel® Trusted Execution Technology (Intel® TXT) provides a mechanism
for a trusted boot of the VMM. Intel VT allows the VMM to trap on various
paging events (for example, control-register accesses, translation look-aside buffer
invalidation, and so on), which enables the VMM to install its own page tables
that also conform to the OS’s context-separation requirements. There are a number
of variants of such VMM-based, page-table-management algorithms. They are
commonly referred to as page-table shadowing algorithms. Intel’s shadow page table
partitioning approach is called virtualization-enabled integrity services (VIS) and is
described in more detail in [3, 4, 5, and 6].

In summary, the VIS core manages two sets of page tables:

•	 Active page table (APT). This is the page table created and managed by the
P-MAPS core in response to the OS’s creation and manipulation of the
guest page table (owned and managed by the OS).

•	 Protected page table (PPT). This is the page table created and managed
by the P-MAPS core in response to a registration by a software module
running in the guest OS. In response to the registration, the software
module is measured, and a PPT is created for the SEZ, such that the rest
of the OS code (running via the APT mappings) cannot execute within the
address space defined by the PPT.

“VMMs are used to isolate the

memory and I/O of the SEZ from

the OS, by trapping on certain

operations.”

“There are a number of variants

of such VMM-based, page-table-

management algorithms.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

46 | Providing a Safe Execution Environment

The setup of VIS is shown in Figure 2.

Page Frame 1

Page Frame 2

Page Frame 3

Page Frame 4

Page Frame 5

Page Frame 6

Protected
Agent

Shared

Guest Page
Table

Page Frame 1

Page Frame 5

Page Frame 6

Protected
Agent

Shared

Active Page
Table

Page Frame 2

Page Frame 3

Page Frame 4

Page Frame 5

Protected
Agent

Shared

Protected Page
Table

Not Present

Not Present

Not Present

Not Present

Not Present

Figure 2: APT and PPT Managed by the P-MAPS Core
Source: Intel Corporation, 2009

The Ideal Secure Execution Zone
There has been considerable research into creating an SEZ for executing software
agents in a secure manner on a PC.

The ideal SEZ is a measurable, tamper-resistant environment that executes code and
returns the result to entities outside the SEZ, together with a proof that the result
was actually generated inside the SEZ. The fundamental trade-offs for an SEZ are
these:

•	 Threat	models	and	spectrum	of	addressed	use	cases
•	 Size	of	the	TCB—the	enforcement	entity
•	 Complexity	of	implementation,	validation,	deployment,	and	support
•	 Liability

SEZs can be divided into three main categories: in-band, out-of-band executing on
the host, and those executing at a remote site.

In-band Secure Execution Zone
An in-band SEZ on a PC is created within the confines of the host OS. The SEZ is
essentially a compartment that runs inside the linear address space of the OS
processes. The SEZ selectively uses OS services but it is immune to interference
from agents running at the OS privilege levels or the user privilege levels. The SEZ
is enforced by entities on the platform that run at a higher privilege level than the
OS itself. These enforcement entities may be CPU subsystems that have the
privilege to access CPU resources that are not directly available to the OS (for
example, CPU subsystems have access to internal CPU states that are not accessible
to the OS) or software entities that run at higher (than OS) privilege modes as
provided by the CPU (for example, a micro-vmm in VMX-root mode). Figure 3
shows a typical SEZ in an open execution environment.

Application Address Space Secure Execution Zone

Data

Code

OS

Secure
Execution

Zone

Data

Code

Figure 3: In-band Secure Execution Zone
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

Providing a Safe Execution Environment | 47

The SEZ runs within the confines of the OS; that is, the SEZ is in the linear
address space of the OS (or its processes) and is scheduled by the OS. Since the
SEZ generally sends a signal to its enforcement entity when the computation is
completed, a DoS attack can be detected (but cannot be prevented) in most cases.

Out-of-band Secure Execution Zone
An out-of-band SEZ is a zone that is created in parallel with the OS. It may execute
on the main CPU or on a processor adjacent to the main CPU. The IBM* 4758
Cryptographic Coprocessor [7] is an example of such an out-of-band SEZ. It may
run at the same privilege level as the OS, but it enjoys higher trustworthiness than
the main OS by virtue of its limited usage and its tightly access-controlled agents
that run inside these SEZs. Some of these SEZs also include enhanced hardware
protection. In other words, since this kind of SEZ executes only trusted code in a
controlled fashion, it enjoys higher trustworthiness than the OS. Like an in-band
SEZ, an out-of-band SEZ is also created by an entity running at a higher privilege
level than the host OS. Figure 4 shows a typical out-of-band SEZ.

Open Platform Secure Execution Zone

Application Application Application

Kernel Drivers
3rd Party

Applications

Operating System

Application Application

Operating System

VMM

Hardware

Figure 4: out-of-band Secure Execution Zone
Source: Intel Corporation, 2009

One advantage of an out-of-band SEZ is that it is less susceptible to DoS attacks
than an in-band SEZ, since the out-of-band SEZ does not have to depend on the
host OS for any of its functionality. In addition, since this kind of SEZ runs on bare
metal hardware or over an entity that emulates bare metal hardware, it runs its own
OS, and as a result, is not dependent on the host OS. Running an OS inside an
SEZ also has its pros and cons. In its favor, the OS can be suitably modified for the
needs of the agents inside the SEZ and can be stripped down to a bare minimum, as
a result enabling the agents to trust the OS services. Running against it, however, is
the fact that any OS is likely to be greater than 10K lines of code, and as such, will
have a larger attack surface than an in-band SEZ running over an untrusted OS.
The out-of-band SEZ can still be functional when the host OS is not running.

“Any OS is likely to be greater than

10K lines of code, and as such, will

have a larger attack surface than an

in-band SEZ running over an

untrusted OS.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

48 | Providing a Safe Execution Environment

An out-of-band SEZ can also be hardened against hardware attacks to whatever
extent is deemed necessary to protect valuable data, such as keying material. This
can be done without the expense of hardening the entire system.

The disadvantage of an out-of-band SEZ is that it is restricted to the limited
performance and functionality offered in the SEZ environment. Most out-of-band
SEZs do not provide a general environment for third-party applications to run their
code.

Out-of-band Remote Site SEZ
With the advent of cloud computing, out-of-band, remote-site SEZs are likely to
come to the fore. These kinds of SEZs follow a client-server model, wherein the
client packages code and initialization data for computation to a remote entity in
the cloud (after mutual authentication) and receives the result of the computation
with a proof that the computation was done in an SEZ in the cloud with the
attributes of an SEZ. Since this SEZ is off the platform, a mutual trust relationship
has to exist between the client and the cloud that can subsequently be enforced
by using various cryptographic mechanisms. A remote site-based SEZ also has
advantages and disadvantages.

The advantage is that clients do not need additional hardware or system software for
creating SEZs; the SEZ does not eat into the client’s resources, and the client can
access the latest resources (for example, fixed function blocks, algorithms, and so
forth) available in the cloud but not available in the client hardware.

The disadvantages of a remote site-based SEZ are that the underlying trust
relationships are hard to create and even harder to enforce. These kinds of SEZs
can be a liability when something does not end up as expected. A sub-problem of
remote site-based SEZ trust relationships is privacy protection: the client, the user,
or both might be identifiable with certain provable attributes. It is often hard to
protect the remote SEZ without a local SEZ. Without protected authentication
and data transfer, the remote SEZ is subject to attacks from client software. Further,
performance limitations may preclude some applications due to the bandwidth
limitations.

Secure Execution Zone Interfaces
All SEZs need a bidirectional set of interfaces to interact with the entities outside
the SEZ in order to receive workloads, deliver results, and use services that are
not available inside the SEZ. The design of these interfaces is one of the most
challenging aspects of SEZ design. An SEZ has to provide a proof of execution to
the requestor. Ideally an SEZ will communicate directly with some other trusted
entity such as another SEZ or a trusted hardware device. If the requestor runs in an
unprotected environment, generally in the host OS, then the ability of the requestor
to validate the proof of execution before trusting the results of the execution is very
limited.

“Since this SEZ is off the platform, a

mutual trust relationship has to exist

between the client and the cloud.”

“The ability of an agent to access a

certain resource on the platform is

proof of the fact that it is running

inside an SEZ.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Providing a Safe Execution Environment | 49

Therefore, each SEZ needs an off-platform entity to be able to validate the proof of
execution provided by the SEZ. Since servers running in data centers are considered
to be more trustworthy by virtue of strict physical and digital access control, they
offer the appropriate environment needed for this verification. Consequently, the
platform has to be provisioned with a secret that is only usable by an SEZ and
possession of which can be validated by a remote entity (attestation). Alternatively,
an SEZ can control the resources on a platform, and the ability of an agent to
access a certain resource on the platform is proof of the fact that it is running inside
an SEZ. For example, if the SEZ controls a network interface device (NID) and
a remote entity receives a packet from the NID, the remote entity automatically
assumes that the packet has been either sent by an agent running in the SEZ or by
its delegate.

Provisioning and Attestation
As shown in Figure 5, an SEZ needs a mechanism for provisioning a secret into the
SEZ and a mechanism for proving the possession of a secret to an off-platform
verifier (attestation). Provisioning and attestation [8] are two tightly-bound
problems. Remote provisioning needs a platform to report its identity to its
membership in a group before it can receive a secret. As a result, the platform has to
be provisioned with a root secret during the time of manufacture, assembly, or by a
trusted entity that has physical possession of the platform.

The root secret provisioned in the platform is likely to get compromised in the
field. The compromised root secret of one instance of a platform should not reveal
the root secret of another instance: it should not lead to a break once run anywhere
(BORE) attack.

Summary
SEZs protect critical applications from various attacks. The selection of an SEZ is
dependent on a number of factors including the threat protection requirement, the
type of execution environment, and the resources available to the application.

Secure
Execution

Zone

Local
Storage

Internet

Content
Provider

Figure 5: Remote Attestation Diagram
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

50 | Providing a Safe Execution Environment

References
[1] B. Lampson, M. Abadi, M. Burrows and E. Wobber. “Authentication in

Distributed Systems: Theory and Practice.” ACM Transactions on Computer
Systems, page 6, 1992.

[2] “Unified Extensible Firmware Interface (UEFI).”
At http://www.uefi.org/home

[3] Ravi Sahita and Uday Savagaonkar. “Towards Virtualization-based
Framework for Information Traceability.” In Insider Attack and Cyber
Security: Beyond the Hacker. Springer Book Company, USA, pages 113-132,
August 2008.

[4] Ravi Sahita, Uday Savagaonkar, Prashant Dewan, and David Durham.
“Mitigating Lying Endpoint Problem in Virtualized Network Access
Frameworks.” Lecture Notes in Computer Science: Managing Virtualization
of Networks and Services, Volume 4785/2007, Springer Book Company,
Berlin, Germany, pages 135-146, September 2007.

[5] Ravi Sahita, Ulhas Warrier, and Prashant Dewan. “Protecting Critical
Applications on Mobile Platforms.” Intel Technology Journal, Volume 13,
Issue 1, 2009.

[6] David Grawrock. “Dynamics Of A Trusted Platform: A Building Block
Approach.”

[7] At http://www-03.ibm.com/

[8] US Patent 6990579. “Platform and method for remote attestation of a
platform.” Inventors: Howard C. Herbert, David W. Grawrock, Carl M.
Ellison, Roger A. Golliver, Derrick C. Lin, Francis X. McKeen, Gilbert
Neiger, Ken Reneris, James A. Sutton, Shreekant S. Thakkar, and Millind
Mittal. Assignee: Intel Corporation.

Acknowledgments
The authors thank Joe Cihula and David Grawrock for their feedback and input in
preparing this article.

Intel® Technology Journal | Volume 13, Issue 2, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Providing a Safe Execution Environment | 51

Author Biographies
Kirk Brannock is a Principal Engineer in the Mobile Platforms Group and is
focused primarily on platform security concerns. He began his career at Intel in
1994 after graduating from the Computer Science program at Portland State
University. He has focused on BIOS and platform-level software interactions
throughout his career, including BIOS engineering and architecture in desktop,
workstation products, software and services group, and mobile products. His work
on BIOS included the creation of two completely new BIOS bases, one of which
became UEFI, in wide usage today. More recently, Kirk has been involved with the
security community contributing to TXT and other related technologies. His e-mail
is kirk.brannock at intel.com.

Prashant Dewan is a Research Scientist at Intel Labs. His research interests are
in the area of network and system security, distributed systems, and reputation
management. He received a Ph.D. degree in Computer Science in 2004 and an
M.S. degree in Computer Science in 2002 from the Department of Computer
Science, Arizona State University. His e-mail is prashant.dewan at intel.com.

Frank McKeen is a Research Scientist at Intel Labs. His research interests are in the
area of system security and microprocessor architecture. He received a BSEE degree
in 1978 from Northeastern University. His e-mail is frank.mckeen at intel.com.

Uday Savagaonkar received a Master of Technology degree in Electrical Engineering
from the Indian Institute of Technology, Mumbai, in 1998, and he received a
Ph.D. degree in Electrical Engineering from Purdue University, Indiana, in 2002.
Since 2002, Dr. Savagaonkar has been working for Intel Corporation. Currently
he is a Sr. Research Scientist at Intel Labs. Dr. Savagaonkar has published several
research articles in refereed journals and conferences, has applied for several patents,
and has contributed book chapters in a variety of areas, among which are applied
game theory, network pricing, and platform security. His current research interests
include network endpoint security, secure execution environments, cryptographic
memory protections, and applied cryptography. His e-mail is uday.r.savagaonkar at
intel.com.

52 | New Processor Instructions for Accelerating Encryption and Authentication Algorithms

Contributors

Intel® Technology Journal | Volume 13, Issue 2, 2009

Index Words

NEW PRoCESSoR INSTRUCTIoNS FoR ACCELERATINg ENCRYPTIoN
AND AUTHENTICATIoN ALgoRITHMS

Shay Gueron
Intel Corporation

Michael E. Kounavis
Intel Corporation

Abstract
We present a new set of processor instructions for accelerating Advanced
Encryption Standard (AES) encryption and decryption, and for accelerating
AES-Galois Counter mode (AES-GCM) authenticated encryption. Four
instructions are used for accelerating AES, and a fifth instruction that computes the
carry-less product of 2 64-bit operands is used for accelerating the GCM mode of
operation. In addition to performance acceleration, these instructions help protect
the implementations from software side-channel attacks. In this article, we describe
the instructions and how they are used for speeding up AES-GCM encryption.

Firstly, we examine modes of operation, such as counter mode (CTR), that can be
sped up by processing multiple data blocks in parallel. Then, we present a novel
technique for efficiently computing Galois hashes whereby a reduction method
in the Galois field GF (2128) can be used in cases where the field’s reduction
polynomial is sparse. The use of the new instructions, combined with algorithms
and software techniques, offer a comprehensive solution for speeding up AES-GCM
authenticated encryption.

Introduction
Message confidentiality and integrity are key to the security of applications,
operating systems, and the network infrastructure of the Internet in the future. As
a result, improving the performance and security of encryption and authentication
has significant benefits for today’s computer platforms. In this article we describe
new tools that Intel offers in this area.

First, we focus on instructions and software techniques for supporting high-
performance encryption and decryption (for confidentiality) by using the Advanced
Encryption Standard (AES), and for supporting the Galois Counter Mode (GCM),
which is used (for integrity) in the AES-GCM authenticated-encryption protocol.

AES is the Federal Information Processing Standard for symmetric encryption and
is defined by FIPS Publication #197 (2001). It is widely used in a large variety of
security applications.

GCM is a message authentication protocol that was endorsed by the US
Government in April 2006, and it is typically used, together with AES, for
authenticated encryption. The GCM is also used by the IEEE 802.1ae standard,
where its usage is recommended for forwarding rates higher than 10 Gbps. Other
usage models of GCM include IPsec (IPsec RFC 4106), the storage standard
P1619, and security protocols over fiber channels (ISO-T11 standard).

“Improving the performance

and security of encryption and

authentication has significant benefits

for today’s computer platforms.”

Authenticated Encryption
Advanced Encryption Standard (AES)
galois Counter Mode (gCM)
New Processor Instructions

New Processor Instructions for Accelerating Encryption and Authentication Algorithms | 53

Intel® Technology Journal | Volume 13, Issue 2, 2009

We describe how AES can be accelerated with the new processor instructions
that Intel is introducing to the ISA, and we look at how GCM can be accelerated
with another new instruction that computes the carry-less product of two 64-bit
operands. This new instruction is used by a reduction algorithm that takes
advantage of the fact that in GCM, the reduction polynomial of the associated
GF (2128) Galois field is sparse [2]. This algorithm uses carry-less multiplications,
implemented by this new instruction, and due to its efficiency, there is no need to
add field-specific reduction logic to the processor architecture: the generic carry-less
multiplication primitive can do the computation.

The AES Instructions
What is AES?
AES is a block cipher that encrypts a 128-bit block (plaintext) to a 128-bit block
(ciphertext), or decrypts a 128-bit block (ciphertext) to a 128-bit block (plaintext).
AES uses a cipher key whose length can be 128, 192, or 256 bits, respectively.
Hereafter, encryption/decryption with a cipher key of 128, 192, or 256 bits is
denoted as AES-128, AES-192, AES-256, respectively. AES-128, AES-192, and
AES-256 process the data block in 10, 12, or 14 iterations of pre-defined sequences
of transformations, which are also called AES rounds (hereafter referred to simply as
rounds). The rounds are identical except for the last one, which slightly differs from
the others (by skipping one of the transformations). They operate on two 128-bit
inputs: state and round key. Each round from 1 to 10/12/14 uses a different round
key. The 10/12/14 round keys are derived from the cipher key by the key expansion
algorithm. This algorithm is independent of the processed data, and can therefore
be carried out independently of the encryption/decryption phase. (Typically, the
key is expanded once and is thereafter used for many data blocks by using some
cipher mode of operation). The data block is processed serially; initially, the input
data block is XOR’d with the first 128 bits of the cipher key to generate the state
(an intermediate cipher result). Subsequently, the state passes, serially, through
10/12/14 rounds, with each round consisting of a sequence of transformations
operating on the state and using a different round key. Code 1 illustrates the
AES encryption flow, for a single 16-byte block, by using the terminology of the
FIPS197 document, which defines AES (see also [1] for details).

“AES-128, AES-192, and AES-
256 process the data block in 10,
12, or 14 iterations of pre-defined
sequences of transformations, which
are also called AES rounds.”

“The input data block is XOR’d with
the first 128 bits of the cipher key to
generate the state.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

54 | New Processor Instructions for Accelerating Encryption and Authentication Algorithms

AES encryption flow

Input:

Data: 16 bytes to encrypt
Round_Key_Encrypt: array of 11-15 16-byte blocks which are the expanded
cipher key

Tmp = AddRoundKey (Data, Round_Key_Encrypt [0])
For round = 1-9 or 1-11 or 1-13:
 Tmp = ShiftRows (Tmp)
 Tmp = SubBytes (Tmp)
 Tmp = MixColumns (Tmp)
 Tmp = AddRoundKey (Tmp, Round_Key_Encrypt [round])
end loop
Tmp = ShiftRows (Tmp)
Tmp = SubBytes (Tmp)
Tmp = AddRoundKey (Tmp, Round_Key_Encrypt [10 or 12 or 14])

Output:
Tmp : (16 bytes)

Code 1: AES Encryption of a Single Block
Source: Intel Corporation, 2009

Instruction Specification

A new set of instructions will be introduced in the next generation of the
Intel® processor family to facilitate secure and high-performance AES encryption
and decryption. The instructions are described by using the terminology found
in FIPS197; in this document, the details of the transformations, the encryption/
decryption flows, and key expansions are provided in full. See also [1] for details on
the AES instructions and their usages.

Intel® Technology Journal | Volume 13, Issue 2, 2009

New Processor Instructions for Accelerating Encryption and Authentication Algorithms | 55

AESENC xmm1, xmm2/m128
Tmp := xmm1/m128
RoundKey :=xmm2/m128
Tmp := ShiftRows (Tmp)
Tmp := SubBytes (Tmp)
Tmp := MixColumns (Tmp)
xmm1:= Tmp xor RoundKey

AESENCLAST xmm1, xmm2/m128
Tmp := xmm1/m128
RoundKey := xmm2 /m128
Tmp := ShiftRows (Tmp)
Tmp := SubBytes (Tmp)

xmm1:= Tmp xor RoundKey

AESDEC xmm1, xmm2/m128
Tmp:=xmm1/m128
RoundKey := xmm2/m128
Tmp := InvShiftRows (Tmp)
Tmp := InvSubBytes (Tmp)
Tmp := InvMixColumns (Tmp)
xmm1:= Tmp xor RoundKey

AESDECLAST xmm1, xmm2/m128
Tmp:= xmm1/m128
RoundKey := xmm2/m128
Tmp := InvShiftRows (Tmp)
Tmp := InvSubBytes (Tmp)

xmm1:= Tmp xor RoundKey
AESKEYGENASSIST xmm1, xmm2/m128, imm8
Tmp := xmm2/m128
RCON[31-8] := 0; RCON[7 -0] := imm8;
X3[31-0] := Tmp[127 -96]; X2[31-0] := Tmp[95-64];
X1[31-0] := Tmp[63 -32]; X0[31-0] := Tmp[31-0];
xmm1 := [RotWord (SubWord (X3)) XOR RCON, SubWord (X3),
 Rotword (SubWord (X1)) XOR RCON, SubWord (X1)]
AESIMC xmm1, xmm2/m128
RoundKey := xmm2/m128;
xmm1 := InvMixColumns (RoundKey)
Examples:
xmm1 = 7b5b54657374566563746f725d53475d
xmm2 = 48692853686179295b477565726f6e5d
AESENC result: a8311c2f9fdba3c58b104b58ded7e595
AESENCLAST result: c7fb881e938c5964177ec42553fdc611
AESDEC result: 138ac342faea2787b58eb95eb730392a
AESDECLAST result: c5a391ef6b317f95d410637b72a593d0

xmm2 = 7b5b54657374566563746f725d53475d
AESIMC result: 627a6f6644b109c82b18330a81c3b3e5

xmm2 = 3c4fcf098815f7aba6d2ae2816157e2b; imm8 = 1
AESKEYGENASSIST result: 01eb848beb848a013424b5e524b5e434

Table 1: The Six New AES Instructions
Source: Intel Corporation, 2009

The AES architecture offers six instructions to support AES (see Table 1 and
Code 2). AESENC and AESENCLAST support encryption. AESDEC and
AESDECLAST are building blocks suitable for decryption that use the Equivalent
Inverse Cipher (see FIPS197 for definition). AESIMC and AESKEYGENASSIST
support the key expansion. AESIMC facilitates the conversion of the
encryption round keys to a form suitable for the Equivalent Inverse Cipher.
AESKEYGENASSIST uses an immediate byte as part of the input (used as
RCON).

Intel® Technology Journal | Volume 13, Issue 2, 2009

56 | New Processor Instructions for Accelerating Encryption and Authentication Algorithms

 AES encryption flow
(using the new AES instructions)

Input:
Data: 16 bytes to encrypt
Round_Key_Encrypt: array of 11-15 16-byte blocks
which are the expanded cipher key

Tmp = XOR128 (Data, Round_Key_Encrypt [0])
For round = 1-9 or 1-11 or 1-13:
 Tmp = AESENC (Tmp, Round_Key_Encrypt [round])
end loop
Tmp = AESENCLAST (Tmp, Round_Key_Encrypt [10 or 12 or 14])

Output:
Tmp: (16 bytes)

Code 2: AES Encryption with New AES Instructions
Source: Intel Corporation, 2009

The AES processor instructions are designed based on the structure of AES, a
structure that includes transformations in a GF(28) Galois field and byte shuffling
transformation. The instructions execute the AES transformations efficiently by
holding the operands in the SIMD registers of the IA architecture, and by using
dedicated hardware.

Protection against Software Side-Channel Vulnerabilities
An important security advantage of using AES instructions is the protection
it provides against software side-channel attacks (by other Ring 3 malicious
applications).

Software side channels are vulnerabilities in the software implementation of
cryptographic algorithms, and they emerge in multiple processing environments
(cores, threads, and operating systems).

Cache-based software side-channel attacks exploit the fact that it takes time for a
particular piece of data to be accessed, if the data are not in the cache. Because of
this time lag, malicious code can potentially detect the memory addresses that are
being accessed during encryption or decryption. In software implementations of
AES, based on look-up tables, these addresses can reveal sensitive information about
the keys.

On the other hand, the AES instructions are implemented via combinatorial logic,
and their latency is data-independent. Therefore, software implementations of AES
that use these instructions are not susceptible to any of the known software side-
channel attacks [1].

“The instructions execute the AES
transformations efficiently by holding
the operands in the SIMD registers
of the IA architecture, and by using
dedicated hardware.”

“Software side channels are
vulnerabilities in the software
implementation of cryptographic
algorithms.”

“Because of this time lag, malicious
code can potentially detect the memory
addresses that are being accessed
during encryption or decryption.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

New Processor Instructions for Accelerating Encryption and Authentication Algorithms | 57

The Carry-less Multiplication Instruction
What is Carry-less Multiplication?
Carry-less multiplication, also known as binary polynomial multiplication, is
the mathematical operation of computing the product of two operands without
generating or propagating carries. Such multiplications are an essential step in
computing multiplications in binary Galois fields.

Carry-less multiplication is defined as follows. Let A and B be two n-bit operands

A = [an− 1 an− 2 ··· a0] (1)

and

B = [bn− 1 bn− 2 ··· b0] (2)

If the carry-less product of A and B is denoted by C = A · B, and C is the bit array
C = [c2n − 1 c2n − 2 ··· c0], then, the bits of C are defined as the following functions of
the bits of the inputs A and B:

ci =
i

j=0
⊕ ajbi − j (3)

for 0 ≤ i ≤ n − 1, and

ci =
n−1

j=i−n+1
⊕ ajbi − j (4)

for n − 1 ≤ i ≤ 2n − 1.

See illustration in Figure 1.

As an example, if A = 0x63746f725d53475d and B = 0x5b477565726f6e5d, the
carry-less product is C = A · B = 0x1d4d84c85c3440c0929633d5d36f0451.

The PCLMULQDQ Instruction
Together with the AES instructions, Intel also introduces PCLMULQDQ, an
instruction for computing the carry-less multiplication of two 64-bit halves
(hereafter referred to as quadwords) that are selected from the instruction’s two
operands (two xmm registers or one xmm register and one memory location),
according to an immediate byte value (imm8), defined in Table 2:

PCLMULQDQ xmm1, xmm2/m128, imm8

 imm8[7:0] Operation
 0x00 xmm2/m128[63:0] · xmm1[63:0]
 0x01 xmm2/m128[63:0] · xmm1[127:64]
 0x10 xmm2/m128[127:64] · xmm1[63:0]
 0x11 xmm2/m128[127:64] · xmm1[127:64]

Table 2: PCLMULQDQ: Instruction for Carry-less Multiplication
Source: Intel Corporation, 2009

32 By 32 Bit
Carry-less Multiplication

Example With
Small Operands

c0 = a0b0

c1 = a0b1 a1b0

…

c31 = a0b31 a1b30 … a31b0

c32 = a1b31 a2b30 … a31b1

…

c62 = a31b31

110

110110

1101100

01011010

11011

Figure 1: Carry-less Multiplication
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

58 | New Processor Instructions for Accelerating Encryption and Authentication Algorithms

Efficient Implementation of AES-GCM

What is AES-GCM
AES-GCM is an authenticated encryption algorithm, which is built upon
AES encryption in counter (CTR) mode, and it is a computation of a Galois
hash. AES-GCM uses a single key to both encrypt and authenticate data. An
authenticated encryption algorithm is different from classical encryption and
authentication schemes, where two independent keys are required to make both
functions secure [2-8].

Figures 2 and 3 briefly describe the CTR mode of operation and the AES-GCM
algorithm. Figure 2 shows the AES encryption of multiple blocks, by using CTR
mode, and Figure 3 illustrates the AES-GCM algorithm.

Ciphertext 1

Block
Cipher

Galois
Counter
Mode

Etc…

Etc…
Ciphertext 2

Data 1 Data 2

Ciphertext 3

Data 3

Hash 0 Hash 1 Hash 2

Multiply With
Hash Key
In GF(2128)

Multiply With
Hash Key
In GF(2128)

Figure 3: AES-gCM Algorithm
Source: Intel Corporation, 2009

High Performance Implementation of AES in Counter
Mode
Significant performance optimization for encrypting (and decrypting) can be
achieved if software using the AES instructions is designed to process multiple data
blocks in parallel. This software pipelining technique is applicable for parallelizable
modes of operation such as Electronic Code Book (ECB), CTR, and decryption
with the Cipher Block Chaining (CBC-Decryption) mode.

DONE

NO

Increment Counter Register

Store Result Into Memory As Ciphertext Block

XOR With Next Plaintext Block

Do An AES Block Encrypt Operation

Get Counter Register

Initialize Counter Register With IV

YES
More Data

Figure 2: AES Encryption in Counter Mode
Source: Intel Corporation, 2009

“AES-GCM uses a single key to both
encrypt and authenticate data.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

New Processor Instructions for Accelerating Encryption and Authentication Algorithms | 59

In such modes, different data blocks can be encrypted (or decrypted) independently
of each other, and the hardware that supports the AES round instructions is
pipelined. This allows independent AES instructions to be dispatched, theoretically
every one to two CPU clock cycles, if data can be provided sufficiently fast. As a
result, the AES throughput can be significantly enhanced for parallel modes of
operation, if the software implementation itself is pipelined. Instead of completing
the encryption of one data block and then continuing to the subsequent block,
it is preferable to write software sequences that compute one AES round on
multiple blocks, using one round key, and only then continue to compute the
subsequent round for multiple blocks. This technique speeds up any parallelizable
mode of operation, in particular the CTR mode. Code 3 shows a code snippet
encrypting eight blocks in parallel as part of the CTR mode (where the counters are
encrypted).

mov rdx, OFFSET keyex_addr
; load Round key
movdqu xmm0, XMMWORD PTR [rdx]
pxor xmm1, xmm0
pxor xmm2, xmm0
pxor xmm3, xmm0
pxor xmm4, xmm0
pxor xmm5, xmm0
pxor xmm6, xmm0
pxor xmm7, xmm0
pxor xmm8, xmm0

mov ecx, 9
main_loop:
; load Round key
add rdx, 0x10
movdqu xmm0, XMMWORD PTR [rdx]
aesenc xmm1, xmm0
aesenc xmm2, xmm0
aesenc xmm3, xmm0
aesenc xmm4, xmm0
aesenc xmm5, xmm0
aesenc xmm6, xmm0
aesenc xmm7, xmm0
aesenc xmm8, xmm0
;continued to the next column

loop main_loop
add rdx, 0x10
movdqu xmm0, XMMWORD PTR [rdx]
aesenclast xmm1, xmm0
aesenclast xmm2, xmm0
aesenclast xmm3, xmm0
aesenclast xmm4, xmm0
aesenclast xmm5, xmm0
aesenclast xmm6, xmm0
aesenclast xmm7, xmm0
aesenclast xmm8, xmm0
; storing the encrypted blocks
movdqu XMMWORD PTR [dest], xmm1
movdqu XMMWORD PTR [dest+0x10], xmm2
movdqu XMMWORD PTR [dest+0x20], xmm3
movdqu XMMWORD PTR [dest+0x30], xmm4
movdqu XMMWORD PTR [dest+0x40], xmm5
movdqu XMMWORD PTR [dest+0x50], xmm6
movdqu XMMWORD PTR [dest+0x60], xmm7
movdqu XMMWORD PTR [dest+0x70], xmm8

Code 3: AES Encryption of Eight Blocks in Parallel
Source: Intel Corporation, 2009

“The AES throughput can be
significantly enhanced for parallel
modes of operation, if the software
implementation itself is pipelined.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

60 | New Processor Instructions for Accelerating Encryption and Authentication Algorithms

High Performance Implementation of Galois Counter
Mode

We now examine how GCM can be efficiently computed by using the
PCLMULQDQ instruction, in combination with some improved algorithms.

The most compute-intensive part of GCM is the computation of the Galois hash,
which is multiplication in the finite field GF(2128), defined by the reduction modulo
g = x128 + x7 + x2 + x + 1. The multiplication in this field is carried out in two steps:
the first step is the carry-less multiplication of two 128-bit elements, and the second
step is the reduction of the 256-bit carry-less product modulo
g = x128 + x7 + x2 + x + 1. We explain these steps in the rest of this section.

Computing a 256-bit Carry-less Product with the PCLMULQDQ
Instruction
The following algorithm steps can be viewed as one iteration of a carry-less
schoolbook multiplication:

1. Multiply carry-less by the following operands: A0 with B0, A1 with B1, A0
with B1, and A1 with B0. Let the results of the above four multiplications be
A0 • B0 = [C1 : C0], A1 • B1 = [D1 : D0], A0 • B1 = [E1 : E0], A1 • B0 = [F1 : F0]

2. Construct the 256-bit output of the multiplication [A1: A0]	•	[B1 : B0] as
follows:
[A1: A0]	•	[B1 : B0] = [D1 : F1 ⊕ E1 ⊕ D0 : F0 ⊕ E0 ⊕ C1 : C0] (5)

One can also trade off one multiplication for additional XOR operations. This
2-step alternative approach can be viewed as a carry-less Karatsuba multiplication
[9]:

1. Multiply carry-less by the following operands: A1 with B1, A0 with B0, and
A0 ⊕ A1 with B0 ⊕ B1. Let the results of the above three multiplications be
[C1 : C0], [D1 : D0], and [E1 : E0], respectively.

2. Construct the 256-bit output of the multiplication [A1: A0] * [B1 : B0] as
follows:
[A1: A0]	•	[B1 : B0] = [C1 : C0 ⊕ C1 ⊕ D1 ⊕ E1: D1 ⊕ C0 ⊕ D0 ⊕ E0 : D0] (6)

Both methods can be used for the first step of the computation of the Galois hash.

Efficient Reduction
To reduce a 256-bit carry-less product modulo g, we first split it into two 128-bit
halves. The least-significant half is simply XOR’d with the final remainder (since
the degree of g is 128). For the most-significant part, we develop an algorithm that
realizes division via two multiplications. This algorithm can be seen as an extension
of the Barrett reduction algorithm [10] to modulo-2 arithmetic, or as an extension
of the Feldmeier CRC generation algorithm [11] to dividends and divisors of
arbitrary size.

Since we do not need to take into account the least-significant half of the input (see
above), we investigate the efficient generation of a remainder p(x) defined as follows:

p(x) = c(x) · xt mod g(x) (7)

Intel® Technology Journal | Volume 13, Issue 2, 2009

New Processor Instructions for Accelerating Encryption and Authentication Algorithms | 61

Where c(x) is a polynomial of degree s-1, with coefficients in GF(2), representing
the most-significant bits of the carry-less product (for GCM, s =128).

t is the degree of the polynomial g. (for GCM, t = 128).

g(x) is the irreducible polynomial defining the final field
(for GCM, g = g(x) = x128 + x7 + x2 + x + 1).

For the polynomials p(x), c(x), and g(x) we write:

 c (x) = cs–1 x s–1+ cs–2 x s–2+ ... + c1 x + c0 , p(x) = pt–1 x t–1 + pt–2 x t–2 + ... + p1 x + p0,
and g(x) = gt x t + gt–1 x t–1 + ... + g1 x + g0 (8)

Hereafter, we use the notation Lu(v) to denote the coefficients of the u least-
significant terms of the polynomial v and M u(v) to denote the coefficients of its u
most-significant terms. The polynomial p(x) can be expressed as:

p(x) = c(x) · x t mod g(x) = g (x) · q (x) mod x t (9)

where q(x) is a polynomial of degree s – 1 equal to the quotient from the division
of c (x) · x t with g. The intuition behind equation (9) is that the t least-significant
terms of the dividend c (x) · xt equal zero. Further, the dividend c (x) · xt can be
expressed as the sum of the polynomials g · q and p:

c (x) · x t = g (x) · q (x) + p (x) (10)

where operator ‘+’ means XOR (‘⊕’). From equation (10) one can expect that
the t least-significant terms of the polynomial g · q are equal to the terms of the
polynomial p. Only if these terms are equal to each other, the result of the XOR
operation g · q ⊕ p is zero for its t least-significant terms. Hence:

p (x) = g (x) · q (x) mod x t = L t (g (x) · q (x)) (11)

Now we define:

g (x) = gt x t + g* (x) (12)

The polynomial g* represents the t least-significant terms of the polynomial g.
Obviously,

p (x) = L t (g(x) · q(x)) = L t (q(x) · g* (x) + q (x) · gt x t

 (13)

However, the t least-significant terms of the polynomial q · g t · x t are zero.
Therefore,

p (x) = L t (q (x) · g* (x)) (14)

From equation (14) it follows that in order to compute the remainder p we need
to know the value of the quotient q. The quotient can be calculated in a similar
manner as that of the Barrett reduction algorithm:

(9) ⇔ c (x) · x t +s = g (x) · q(x) · x s + p(x) · x s (15)

Intel® Technology Journal | Volume 13, Issue 2, 2009

62 | New Processor Instructions for Accelerating Encryption and Authentication Algorithms

Let:

x t + s = g (x) · q+ (x) + p+ (x) (16)

where q+ is an s-degree polynomial equal to the quotient from the division of x t+s
with g, and p+ is the remainder from this division. The degree of the polynomial p+
is t – 1. From equations (15) and (16) we get:

⇔ c (x) · g (x) · q+(x) + c (x) p+(x)
(15)
(16) {
= g (x) · q (x) · x s + p (x) · x s (17)

and

(17) ⇒ M s (c (x) · g (x) · q+(x) + c (x) p+(x))
= M s (g (x) · q (x) · x s + p (x) x s) (18)

One can see that the polynomials c · g · q+ and g · q · xs are of degree t + 2 · s – 1.
The polynomial c · p+ is of degree t + s – 2, and the polynomial p · x s is of degree
t + s – 1. As a result, the s most-significant terms of the polynomials in the left- and
right-hand side of equation (18) are not affected by the polynomials c · p+ and
p · x s. Hence,

(18) ⇒ M s (c (x) · g (x) · q+(x))
= M s (g (x) · q (x) · x s) (19)

Next, we observe that the s most-significant terms of the polynomial c · g · q+ are
equal to the s most-significant terms of the polynomial g · M s (c · q+) · x s. The
polynomial M s(c · q) · x s results from c · q+ by replacing the s least-significant terms
of this polynomial with zeros. The intuition behind this observation is that the s
most-significant terms of the polynomial c · g · q+ are calculated by adding together
the s most-significant terms of the polynomial c · q+ in as many offset positions
as defined by the terms of the polynomial g. Thus, the s most-significant terms of
c · g · q+ do not depend on the s least-significant terms of c · q+, and consequently,
this results in

(19) ⇒ M s (g (x) · M s (c (x) · q+ (x)) · x s)
= M s (g (x) · q (x) · x s) (20)

Equation (20) is satisfied for q given by:

q = M s (c (x) · q+ (x)) (21)

Since there is a unique quotient q satisfying equation (10) one can show that there
is a unique quotient q satisfying equation (20). As a result this quotient q must be
equal to M s (c (x) · q+ (x)).

It follows that the polynomial p is found by

p (x) = L t (g* (x) · M s (c (x) · q+ (x))) (22)

Intel® Technology Journal | Volume 13, Issue 2, 2009

New Processor Instructions for Accelerating Encryption and Authentication Algorithms | 63

Equation (22) can be translated to the following algorithm for computing the
polynomial p.

Preprocessing: Compute the polynomials g* and q+ for the given irreducible
polynomial g. The polynomial g* is of degree t – 1, consisting of the t least-
significant terms of g, and the polynomial q+ is of degree s, and is equal to the
quotient of the division of x t+s with the polynomial g.

1. Multiply the input c with q+. The result is a polynomial of degree 2 s – 1.

2. Multiply the s most-significant terms of the polynomial resulting from
Step 1 with g*. The result is a polynomial of degree t+s – 2.

3. Return the t least-significant terms of the polynomial resulting from Step 2.
This is the desired remainder.

One can see that the quotient from the division of x256 with g is g itself. The
polynomial g = g (x) = x128 + x7 + x2 + x + 1 contains only five non-zero coefficients
(therefore also called pentanomial). This polynomial can be represented as the bit
sequence [1:<120 zeros>:10000111]. Multiplying this carry-less with a 128-bit
value and keeping the 128 most-significant bits can be obtained by (i) shifting the
64 most-significant bits of the input by 63, 62, and 57 bit positions to the right; (ii)
XOR-ing these shifted copies with the 64 least-significant bits of the input. Next,
carry-less multiply this 128-bit result with g, and keep the 128 least-significant bits.
This can be done by (i) shifting the 128-bit input by 1, 2, and 7 positions to the left
and (ii) XOR-ing the results.

Special attention should be paid when implementing the GCM mode, because the
standard specifies that the bits inside their 128-bit double quadwords are reflected.
That is, the bit corresponding to the least-significant coefficient of the polynomial
representation of the entities that are multiplied is bit number 127, rather than
bit number 0. This also implies that the order of bits in the reduction polynomial
is [11100001:<120 zeros>:1] as opposed to [1:<120 zeros>:10000111]. Note that
this property is not merely the difference between Little Endian and Big Endian
notations.

To handle this peculiarity, we point out the following fundamental property of
carry-less multiplication, namely

reflected (A) reflected (B) = reflected (A · B) >> 1 (23)

Using the identity (23), and shifting-by-one of two registers containing the
carry-less product of two inputs, the Galois Hash can be computed using the
PCLMULQDQ instruction, regardless of the bit-order representation of the input
and the output operands (see [2] for details and code samples).

Intel® Technology Journal | Volume 13, Issue 2, 2009

64 | New Processor Instructions for Accelerating Encryption and Authentication Algorithms

Estimated Performance Benefits
Encryption in CTR mode can be accelerated by roughly an order of magnitude,
compared with some current and frequently used AES look-up tables that are based
on implementations of AES (for example, OpenSSL implementation). The 64-bit
carry-less multiplication helps speed up the computation of the GCM, and avoids
the potential security problems that are associated with the current implementation
that is based on look-up tables.

Conclusion
In this article, we describe Intel’s new instructions for high-performance
cryptographic processing, which also eliminate all currently known software side-
channel threats. Our main focus was on the use of these instructions for obtaining
a high-performing and secure implementation of AES-GCM authenticated
encryption.

Significant acceleration can be achieved when the new instructions are used
efficiently, by taking advantage of the parallelism in the CTR mode, and by using
the new techniques for carry-less multiplication and reduction modulo sparse
polynomials.

References
[1] S. Gueron. “Advanced Encryption Standard (AES) Instructions Set.”

At http://softwarecommunity.intel.com
[2] S. Gueron and M. Kounavis. “Carry-Less Multiplication and its Usage for

Computing The GCM Mode.” At http://softwarecommunity.intel.com
[3] M. Dworkin. “Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) for Confidentiality and Authentication.”
Federal Information Processing Standard Publication FIPS 800-38D, April
20, 2006. At http://csrc.nist.gov

[4] “IEEE 802.1AE - Media Access Control (MAC) Security.” IEEE 802.1
MAC Security Task Group Document. At http://www.ieee802.org

[5] J. Viega and D. McGrew. “The Use of Galois/Counter Mode (GCM).”
In IPsec Encapsulating Security Payload (ESP), IETF RFC 4106.
At http://www.rfc-archive.org

[6] “IEEE Project 1619.1 Home.” At https://siswg.net

[7] “The Fibre Channel Security Protocols Project.” ISO-T11 Committee
Archive. At http://www.t11.org

[8] J. Salowey, A. Choudhury and D. McGrew. “RSA-based AES-GCM Cipher
Suites for TLS.” At http://www1.ietf.org

[9] A. Karatsuba and Y. Ofman. “Multiplication of Multidigit Numbers on
Automata.” Soviet Physics. Doklady, Volume 7, pages 595-596, 1963.

[10] P. Barrett. “Implementing the Rivest, Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor.”
Master’s Thesis, University of Oxford, UK, 1986.

[11] D. Feldmeier. “Fast Software Implementation of Error Correcting Codes.”
IEEE Transactions on Networking, December, 1995.

“Significant acceleration can be
achieved when the new instructions
are used efficiently.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

New Processor Instructions for Accelerating Encryption and Authentication Algorithms | 65

Acknowledgments
We are indebted to all of our many colleagues who contributed to the design,
specification, and implementation of the new AES and PCLMULQDQ
instructions.

Author Biographies
Shay Gueron is an Intel Principal Engineer. He is the security architect for the
CPU Architecture Department in the Mobility Group, at the Israel Development
Center. His interests include applied security, cryptography, and algorithms. He
is also an Associate Professor at the Department of Mathematics in the Faculty of
Science at the University of Haifa in Israel. Shay is one of the co-recipients of the
Intel Achievement Award (2008) for his work on the AES instructions. His e-mail
is shay.gueron at intel.com.

Michael E. Kounavis is a Senior Research Scientist working at Intel Labs.
Michael is responsible for conducting research on novel digital arithmetic and
cryptographic algorithms with the aim of accelerating a wide range of client,
server, and networking applications. Michael is a co-inventor of the CRC32 SSE4
instruction of the Intel Core i7 architecture used for iSCSI CRC generation. He is
also a co-recipient of an Intel Achievement Award (2008) for his work on the AES
instructions. His e-mail is michael.e.kounavis at intel.com.

66 | https://everywhere! Encrypting the Internet

Contributors

Intel® Technology Journal | Volume 13, Issue 2, 2009

Index Words

https://everywhere! ENCRYPTINg THE INTERNET

Satyajit Grover
Intel Corporation

Xiaozhu Kang
Intel Corporation

Michael Kounavis
Intel Corporation

Frank Berry
Intel Corporation

Abstract
The evolution of the Internet has resulted in large quantities of information being
exchanged by businesses or private individuals. The nature of this information is
typically both public and private, and much of it is transmitted over the hyper
text transfer protocol (HTTP) in an insecure manner. A small amount of traffic,
however, is transmitted by way of the secure sockets layer (SSL) over HTTP, known
as HTTPS. HTTPS is a secure cryptographic protocol that provides encryption
and message authentication over HTTP. The introduction of SSL over HTTP
significantly increases the cost of processing traffic for service providers, as it
sometimes requires an investment in expensive end-point acceleration devices. In
this article, we present new technologies and results that show the economy of
using general-purpose hardware for high-volume HTTPS traffic. Our solution is
three pronged. First, we discuss new CPU instructions and show how to use them
to significantly accelerate basic cryptographic operations, including symmetric
encryption and message authentication. Second, we present results from a novel
software implementation of the RSA algorithm that accelerates another compute-
intensive part of the HTTPS protocol—public key encryption. Third, we show that
the efficiency of a web server can be improved by balancing the web server workload
with the public key cryptographic workload on a processor that is enabled with
simultaneous multi-threading (SMT) technology. In conclusion, we show that these
advances provide web services the tools to greatly reduce the cost of implementing
HTTPS for all their HTTP traffic.

Introduction
As of January 2009, it is estimated that the Internet connects six hundred
and twenty five million hosts. Every second, vast amounts of information are
exchanged amongst these millions of computers. These data contain public
and private information, which is often confidential and needs to be protected.
Security protocols for safeguarding information are routinely used in banking and
e-commerce. Private information, however, has not been protected on the Internet
in general. Examples of private information (beyond banking and e-commerce data)
include personal e-mail, instant messages, presence, location, streamed video, search
queries, and interactions on a wide variety of on-line social networks. The reason
for this neglect is primarily economic. Security protocols rely on cryptography, and
as such are compute-resource-intensive. As a result, securing private information
requires that an on-line service provider invest heavily in computation resources. In
this article we present new technologies that can reduce the cost of on-line secure
communications, thus making it a viable option for a large number of services.

“Private information has not been

protected on the Internet in general.”

Secure Communications
Cryptographic Algorithm Acceleration
AES-NI

https://everywhere! Encrypting the Internet | 67

Intel® Technology Journal | Volume 13, Issue 2, 2009

A lot of private information is transmitted over the HTTP in an insecure manner.
HTTP exists in the application layer of the TCP/IP protocol stack. The Secure
Sockets Layer (SSL) and its successor, Transport Layer Security (TLS) are security
technologies applied to the same layer. In this article, we specifically refer to SSL/
TLS over the HTTP application layer, known as HTTPS. The introduction
of HTTPS significantly increases the cost of processing traffic for web-service
providers, due to the fact that it is not possible for previous-generation, web-server
hardware to process high-volume HTTPS traffic with all the added cryptographic
overhead. In order to process this high-volume traffic, a web-service provider has to
invest in expensive end-point SSL/TLS acceleration devices. This added cost makes
HTTPS a selective or premium choice among web-service providers. Consequently,
a large amount of private information is transmitted over the web in an insecure
manner and can, therefore, be intercepted or modified en route. In this article
we provide a solution to this problem by presenting new technologies and results
that show that it is now possible to use general-purpose hardware for high-volume
HTTPS traffic.

Organization of this Article
Our solution to mitigating the overhead of an SSL-enabled HTTP session is
three pronged. First, we discuss new processor instructions and show how to use
them to accelerate basic cryptographic operations by factors. This substantially
reduces the server load during the bulk data transfer phase of HTTPS. Second,
we present results from a novel implementation of the Rivest Shamir Adleman
(RSA) asymmetric cryptographic algorithm [1] that accelerates the most compute-
intensive stage of the HTTPS protocol: that is, the stage in which the server has
to decrypt handshake messages coming from a large number of clients. Third, we
analyze a web server and show how its efficiency can be improved by balancing a
web-server workload with a cryptographic workload on a processor enabled with
simultaneous multi-threading (SMT) technology. By doing this, we show that the
cryptographic overhead can be hidden by performing it in parallel with memory
accesses that have long stall times.

We then elaborate on our motivation and vision of deploying HTTPS everywhere.
First, we present an in-depth study of an SSL session and its resource requirements.
We then describe our three-pronged strategy, together with our experiments and
results.

Motivation
The motivation behind our research is primarily to enable widespread use of, and
access to, HTTPS. It is important for service providers and users to be able to trust
each other for their mutual benefit. An important aspect of the trust comes from
knowing that private communications are kept confidential and adhere to the
policies established between providers and users. Users need to be educated and
informed about the benefits of HTTPS for privacy in on-line communications.
Providers need to adopt ubiquitous HTTPS offerings to ensure that they hold up
their end of the deal. Enabling HTTPS without expensive investment is important
in creating such a partnership.

“In order to process this high-volume
traffic, a web-service provider has to
invest in expensive end-point SSL/
TLS acceleration devices.”

“It is important for service providers
and users to be able to trust each other
for their mutual benefit.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

68 | https://everywhere! Encrypting the Internet

HTTPS provides an end-to-end solution to data privacy and authenticity. This
end-to-end solution ensures that when users transmit information from their device
to a provider, the information cannot be seen by man-in-the-middle spyware. This
is important due to the fact that packets travel over untrusted networks all the time
in the Internet. Although most routing devices are hidden from direct observation,
they are not impervious to motivated eavesdroppers. Even more observable are the
publicly accessible wireless access points that are in use all over the world. These
access points broadcast information to all devices managed by them. If there is not
an end-to-end solution for security, these communications can be easily observed
by network neighbors. There are other solutions to the security problem, such
as Layer 3 Virtual Private Networks (VPNs), but VPNs are typically limited to
networks where users communicate with other users within a centrally managed
network; that is, having multiple users but a single provider. In such cases, the
network provider already has strict policies about data privacy and security that are
communicated to users via training. For example, e-mails within an enterprise are
often allowed only over the enterprise-managed VPN. For the larger Internet, users
connect across the networks of multiple providers. In addition, in recent years we
have seen a reduction in the use of a wide variety of communication protocols (for
example, FTP) in favor of the HTTP protocol. In this environment, HTTPS is the
most viable solution to enabling private and secure communications amongst the
large and growing numbers of users and providers.

Future applications of HTTPS may include widespread e-mail encryption, secure
video streaming, secure instant messaging and encrypted web searching. These are a
few of the many applications of HTTPS that are not widely used today. Moreover,
with each passing year, users are putting more of their personal and private
information on-line. Cloud computing enables them to access their information
across all their devices everywhere. We believe that it is inevitable that users will
demand HTTPS support from their providers for all their communications. Being
prepared for that day led us to research and develop the technologies described
in this article. We envision that with these advancements, every HTTP-based
communication made by every device today will be HTTPS-based in the near
future. We refer to this as “https://everywhere!”.

Anatomy of a Secure Sockets Layer Session
Secure Sockets Layer
Secure sockets layer (SSL) (later versions known as Transport Layer Security, TLS)
includes a handshake phase and a cryptographic data exchange phase. The overall
SSL handshake is shown in Figure 1. In our diagram, in phase 1, the handshake
begins when a client sends a server a list of algorithms the client is willing to
support as well as a random number used as input to the key generation process.

“If there is not an end-to-end solution

for security, these communications

can be easily observed by network

neighbors.”

“HTTPS is the most viable solution

to enabling private and secure

communications amongst the large

and growing numbers of users and

providers.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

https://everywhere! Encrypting the Internet | 69

In phase 2, the server chooses a cipher and sends it back, along with a certificate
containing the server’s public key. The certificate proves the server’s identity. We
note that the domain name of the server is also verified via the certificate (which
helps eliminate phishing sites) and demonstrates to the user they are talking with
the correct server/service. In addition, the server provides a second random number
that is used as part of the key generation process. In phase 3, the client verifies the
server’s certificate and extracts the server’s public key. The client then generates a
random secret string called a pre-master secret and encrypts it by using the server’s
public key. The pre-master secret is sent to the server. In phase 4, the server decrypts
the pre-master secret by using RSA. This is one of the most compute-intensive
parts of the SSL transaction on the server. The client and server then independently
compute their session keys by using the pre-master secret to apply a procedure
called a key derivation function (KDF) twice. In phases 5 and 6, the SSL handshake
phase ends with the communicating parties sending authentication codes to each
other, computed on all original handshake messages.

Phase 4
Computation of keys

Authentication codes on
handshake messages

C
lie

n
t S

erver

Phase 1

Phase 2

Phase 3

Phase 5

Phase 6

Chosen cipher, random number, certificate

Supported ciphers, random number

Pre-master secret

Figure 1: Secure Sockets Layer (SSL) Handshake
Source: Intel Corporation, 2009

“In phases 5 and 6, the SSL

handshake phase ends with the

communicating parties sending

authentication codes to each other.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

70 | https://everywhere! Encrypting the Internet

In SSL, the data are transferred by using a record protocol. The record protocol
breaks a data stream into a series of fragments, each of which is independently
protected and transmitted. In other words, in IPsec, protection is supported on
an IP-packet-by-IP-packet basis, whereas in SSL, protection is supported on a
fragment-by-fragment basis. Before a fragment is transmitted, it is protected against
attacks by the calculation of a message authentication code on the fragment. The
fragment’s authentication code is appended to the fragment, thereby forming a
payload that is encrypted by using the cipher selected by the server. Finally, a record
header is added to the payload. The concatenated header and encrypted payload are
referred to as a record.

A secure web server is clearly a memory-intensive application. For an SSL
connection, the most significant type of overhead is the one related to cryptography.
This includes the operations of encrypting packets with a symmetric key, providing
message authentication support, and setting up the session by using RSA, as
mentioned previously. In the section that follows, we describe in more detail two
encryption algorithms that we accelerate with technologies described in this article:
the Advanced Encryption Standard (AES) and Rivest Shamir Adleman (RSA).

The Advanced Encryption Standard and the RSA
Algorithm
Advanced Encryption Standard
AES is the United States Government’s standard for symmetric encryption, defined
by FIPS Publication #197 (2001) [2, 3]. It is used in a large variety of applications
where high throughput and security are required. In HTTPS, it can be used to
provide confidentiality for the information that is transmitted over the Internet.
AES is a symmetric encryption algorithm, which means that the same key is used
for converting a plaintext to ciphertext, and vice versa. The structure of AES is
shown in Figure 2.

Input block + round key

0 1 2 13 14 15

Repeat
10, 12 or
14 times

(ShiftRows,
MixColumns

0 1 2 13 14 15

S-box S-box S-box S-box S-box S-box

Bytes…0 1 2 13 14 15

Figure 2: Structure of AES
Source: Intel Corporation, 2009

“In IPsec, protection is supported

on an IP-packet-by-IP-packet

basis, whereas in SSL, protection is

supported on a fragment-by-fragment

basis.”

“AES is a symmetric encryption

algorithm, which means that the same

key is used for converting a plaintext

to ciphertext, and vice versa.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

https://everywhere! Encrypting the Internet | 71

AES first expands a key (that can be 128, 192, or 256 bits long) into a key schedule.
A key schedule is a sequence of 128-bit words, called round keys, that are used
during the encryption process. The encryption process itself is a succession of a set
of mathematical transformations called AES rounds.

During an AES round the input to the round is first XOR’d with a round key from
the key schedule. The exclusive OR (XOR) logical operation can also be seen as
addition without generating carries.

In the next step of a round, each of the 16 bytes of the AES state is replaced
by another value by using a non-linear transformation called S-box. The AES
S-box consists of two stages. The first stage is an inversion, not in regular integer
arithmetic, but in a finite field arithmetic based on the set GF(28). The second stage
is an affine transformation. During encryption, the input x, which is considered an
element of GF(28); that is, an 8-bit vector, is first inverted, and then an affine map
is applied to the result. During decryption, the input (y) goes through the inverse
affine map and is then inverted in GF(28). The GF(28) inversions just mentioned
are performed in GF(28), defined by the irreducible polynomial
p(x) = x8 + x4 + x3 + x + 1 or 0x11B.

Next, the replaced byte values undergo two linear transformations called ShiftRows
and MixColumns. ShiftRows is just a byte permutation. The MixColumns
transformation operates on the columns of a matrix representation of the AES state.
Each column is replaced by another one that results from a matrix multiplication.
The transformation used for encryption is shown in Equation 1. In this equation,
matrix-times-vector multiplications are performed according to the rules of the
arithmetic of GF(28) with the same irreducible polynomial that is used in the AES
S-box, namely, p (x) = x8 + x4 + x3 + x + 1.

output =

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 · input Eq. 1

During decryption, inverse ShiftRows is followed by inverse MixColumns. The
inverse MixColumns transformation is shown in Equation 2.

output =

0xE 0xB 0xD 0x9
0x9 0xE 0xB 0xD
0xD 0x9 0xE 0xB
0xB 0xD 0x9 0xE

 · input Eq. 2

Note that while the MixColumns transformation multiplies the bytes of each
column with the factors 1, 1, 2 and 3, the inverse MixColumns transformation
multiplies the bytes of each column by the factors 0x9, 0xE, 0xB, and 0xD. The
same process is repeated 10, 12, or 14 times depending on the key size (128, 192,
or 256 bits). The last AES round omits the MixColumns transformation.

“The exclusive OR (XOR) logical

operation can also be seen as addition

without generating carries.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

72 | https://everywhere! Encrypting the Internet

The RSA Algorithm
RSA is a public key cryptographic scheme. The main idea behind public key
cryptography is that encryption techniques can be associated with back doors. By
back doors we mean secrets, known only to at least one of the communicating
parties, which can simplify the decryption process. In public key cryptography,
a message is encrypted by using a public key. A public key is associated with a
secret called the private key. Without knowledge of the private key it is difficult to
decrypt a message. Similarly, it is very difficult for an attacker to determine what the
plaintext is.

We further explain how public key cryptography works by presenting the RSA
algorithm as an example. In this algorithm, the communicating parties choose two
random large prime numbers p and q. For maximum security, p and q are of equal
length. The communicating parties then compute the product:

n = p · q Eq. 3

Then the parties choose the public key E, such that the numbers E and
(p – 1) · (q – 1) are relatively prime. The private key associated with the public key
is a number D, such that:*

E · D mod (p – 1) · (q – 1) = 1 Eq. 4

The encryption formula is simply:

C = M E mod n Eq. 5

where M is the plaintext and C is the ciphertext. The decryption formula is
similarly:

M = CD mod n Eq. 6

One can show that the decryption formula is correct by using elements of number
theory:

CD mod n = MED mod n = Mk·(p–1)·(q–1)+1 mod n = M · (Mk)(p–1)·(q–1) mod n
= M · (l · p · q + 1) mod p · q = M Eq. 7

The above calculation is correct since (p – 1)·(q – 1) is the Euler function of the
product p · q, and we know from number theory (by using the Little Fermat
Theorem) that:

(Mk) (p–1)·(q–1) = (l · p · q + 1) Eq. 8

for some l. D and E can be used interchangeably, meaning that encryption can be
done by using D, and decryption can be done by using E.

“By back doors we mean secrets,

known only to at least one of the

communicating parties, which can

simplify the decryption process.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

https://everywhere! Encrypting the Internet | 73

RSA is typically implemented using Chinese Remainder Theorem that reduces a
single modular exponentiation operation into two operations of half length. Each
modular exponentiation in turn is implemented, by using the square-and-multiply
technique that reduces the exponentiation operation into a sequence of modular
squaring and modular multiplication operations. Square-and-multiply may also be
augmented with some windowing method for reducing the number of modular
multiplications. Finally, modular squaring and multiplication operations can be
reduced to big number multiplications by using reduction techniques such as
Montgomery’s or Barrett’s [4, 5].

Acceleration Technologies
We are currently researching solutions to realize the vision of encrypting the
Internet so that HTTPS sessions are accelerated by factors. The next micro-
architecture generation adds new instructions for potentially speeding up symmetric
encryption by 3-10 times. These instructions not only provide better performance
but also protect applications against an important type of threat known as side-
channel attacks. Second, we have developed improved integer arithmetic software
that can speed up key exchange and establishment procedures by a factor of 40 to
100 percent.

Third, the Intel® Core™ i7 micro-architecture re-introduces the SMT feature into
the CPU. SMT is ideal for hiding the cycles of compute-intensive public key
encryption software under the stall times of network application memory lookups.

New Processor Instructions
In the next generation of Intel processors, a new set of instructions will
be introduced that enable high performance and secure round encryption
and decryption. These instructions are AESENC (AES round encryption),
AESENCLAST (AES last round encryption), AESDEC (AES round decryption),
and AESDECLAST (AES last round decryption). Two additional instructions are
also introduced for implementing the key schedule transformation, AESIMC and
AESKEYGENASSIST.

The design of these new processor instructions is based on the structure of AES.
Systems such as AES involve complex mathematical operations such as finite field
multiplications and inversions [6], as discussed earlier. These operations are time or
memory consuming when implemented in software, but they are much faster and
more power efficient when implemented by using combinatorial logic. Moreover,
the operands involved in finite field operations can fit into the SIMD registers
of the IA architecture. In this article, we discuss the concept of implementing an
entire AES round as a single IA processor instruction by using combinatorial logic.
An AES round instruction is much faster than its equivalent table-lookup-based
software routine and can also be pipelined, thereby allowing the computation of an
independent AES round result potentially every clock cycle.

“The next micro-architecture

generation adds new instructions for

potentially speeding up symmetric

encryption by 3-10 times.”

“These operations are much faster

and more power efficient when

implemented by using combinatorial

logic.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

74 | https://everywhere! Encrypting the Internet

The AESENC instruction implements these transformations of the AES
specification in the order presented: ShiftRows, S-box, MixColumns,
and AddRoundKey. The AESENCLAST implements ShiftRows, S-box,
and AddRoundKey but not MixColumns, since the last round omits this
transformation. The AESDEC instruction implements inverse ShiftRows, inverse
S-box, inverse MixColumns, and AddRoundKey. Finally, the AESDECLAST
instruction implements inverse ShiftRows, inverse S-box, and AddRoundKey,
omitting the inverse MixColumns transformation. More details about these AES
instructions can be found in [7].

Our AES instructions can be seen as cryptographic primitives for implementing
not only AES but a wide range of cryptographic algorithms. For example, several
submissions to NIST’s recent SHA-3 hash function competition use the AES round
or its primitives as building blocks for computing cryptographic hashes. Moreover,
combinations of instruction invocations can be used for creating more generic
mathematical primitives for finite field computations. Our new instructions out-
perform by approximately 3-10 times the best software techniques doing equivalent
mathematical operations on the same platform.

Together with the AES instructions, Intel will offer one new instruction supporting
carry-less multiplication, named PCLMULQDQ. This instruction performs carry-
less multiplication of two 64-bit quadwords that are selected from the first and
second operands, according to the immediate byte value.

Carry-less multiplication, also known as Galois Field (GF) multiplication, is the
operation of multiplying two numbers without generating or propagating carries.
In the standard integer multiplication, the first operand is shifted as many times
as the positions of bits equal to “1” in the second operand. The product of the two
operands is derived by adding the shifted versions of the first operand to each other.
In carry-less multiplication, the same procedure is followed, except that additions
do not generate or propagate carry. In this way, bit additions are equivalent to the
exclusive OR (XOR) logical operation.

Carry-less multiplication is an essential component of the computations done as
part of many systems and standards, including cyclic redundancy check (CRC),
Galois/counter mode (GCM), and binary elliptic curves, and it is very inefficient
when implemented in software in today’s processors. Thus, an instruction that
accelerates carry-less multiplication is important for accelerating GCM and all
communication protocols that depend on it [8].

Improved Key Establishment Software
We have also developed integer arithmetic software that can accelerate big number
multiplication and modular reduction by at least 2X. Such routines are used
not only in RSA public key encryption but also in Diffie Hellman key exchange
and elliptic curve cryptography (ECC). Using our software, we are able to
accelerate RSA 1024 from a performance of approximately 1500 signatures per
second (OpenSSL v.0.9.8g) or 2000 signatures per second (OpenSSL v.0.9.8.h),
to potentially 2900 signatures per second on a single Intel® Core i7 processor.
Similarly, we are able to accelerate other popular cryptographic schemes such as
RSA 2048 and Elliptic Curve Diffie-Hellman, based on the NIST B-233 curve.

“Our new instructions out-perform

by approximately 3-10 times the best

software techniques doing equivalent

mathematical operations on the same

platform.”

“An instruction that accelerates

carry-less multiplication is important

for accelerating GCM and all

communication protocols that depend

on it.”

“We are able to accelerate other

popular cryptographic schemes such as

RSA 2048 and Elliptic Curve Diffie-

Hellman, based on the NIST B-233

curve.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

https://everywhere! Encrypting the Internet | 75

The performance of RSA can be improved by accelerating the big number
multiplication that is an essential and compute-intensive part of the algorithm.
Our implementation uses an optimized schoolbook big number multiplication
algorithm. RSA is a compute-intensive operation consuming millions of clocks
on multiplying, adding, and subtracting 64-bit quantities. However, the state
which RSA accesses is small, typically consisting of key information as well as
16-32 multipliers that fit into the L1 cache of Intel CPUs. With our software, an
RSA 1024 decrypt operation consumes about 0.99 million clocks, whereas the
corresponding RSA 2048 decrypt operation consumes about 6.73 million clocks
on an Intel Core i7 processor. This is about 40 percent faster than corresponding
operations that use OpenSSL (v. 0.9.8h).

The code listed in Code 1 illustrates the main idea, which is to combine multiply
and add operations with a register recycling technique for intermediate values. In
Code 1, 'a' and 'b' hold the two large numbers to be multiplied, and the results
are stored in 'r'. These operations are repeated over the entire inputs to generate
intermediate values that are then combined with addition to produce the large
number multiplication result.

asm("mulq %3;\n"
 :"=a"(t0), "=d"(t1)
 :"a"(a[0]), "g"(b[0])
 :"cc");
 t2 = t0;
 t3 = t1;
 r[0] = t2;
 t2 = t3;
 t3 = t4;
 t4 = 0;
 asm("movq (%5), %%rax;\n\t"
 "mulq 8(%6);\n\t"
 "addq %3, %0;\n\t"
 "adcq %4, %1;\n\t"
 "adcq $0, %2;\n\t"
 "movq 8(%5), %%rax;\n\t"
 "mulq (%6);\n\t"
 "addq %3, %0;\n\t"
 "adcq %4, %1;\n\t"
 "adcq $0, %2;\n"
 :"+r"(t2), "+r"(t3), "+r"(t4), "=a"(t0), "=d"(t1)
 :"r"(a), "g"(b)
 :"cc");
r[1] = t2;
 asm("mulq %3;\n"
 :"=a"(t0), "=d"(t1)
 :"a"(a[1]), "g"(b[1])
 :"cc");
 asm("addq %2, %0;\n\t"
 "adcq %3, %1;\n"
 :"+r"(t0), "+r"(t1)
 :"r"(t3), "r"(t4)
 :"cc");
 r[2] = t0;
 r[3] = t1;

Code 1: RSA Implementation
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

76 | https://everywhere! Encrypting the Internet

We also investigated other techniques for big number multiplication, including
Karatsuba-like constructions, but we found this schoolbook algorithm
implementation to be the fastest [9, 10].

Simultaneous Multi-threading
The most recent Intel i7 core micro-architecture re-introduces the feature of hyper-
threading (now referred to as simultaneous multi-threading or SMT) into the
CPU. SMT represents a major departure from the earlier core micro-architecture,
where each core was single threaded. As part of our research, we have demonstrated
that SMT can result in substantial performance improvements for a certain class
of workloads. Such workloads are associated with secure web transactions. We
propose a new programming model where one compute-intensive thread performs
only RSA public key encryption operations, and another thread performs memory
access-intensive tasks. We show that RSA is an ideal companion thread for four
representative memory access-intensive workloads when SMT is used, resulting in a
10–100 percent potential efficiency increase.

The system benefits most when a thread performing dependent-memory lookups is
paired with an RSA thread. The throughput of the memory thread almost doubles,
reaching the value it would have had if it hadn’t been paired with RSA. Another
way to interpret the same result is that the RSA computation comes for free,
because of SMT. In reality the RSA computation is hidden under the very long
stall times of the memory thread. We also observe that the throughput of a single
memory thread is increased by approximately 30 percent when SMT is switched
on, and the memory thread is multiplexed with another memory thread. The same
throughput is almost doubled when the memory thread is paired with an RSA
thread. These results indicate that RSA is a much better companion thread than
a second memory thread, due to the fact that one workload is memory access-
intensive, and the other workload is compute-intensive. If an RSA thread is paired
with a memory thread, then RSA performance also increases by 21 percent when
SMT is switched ON as compared to OFF [11].

To further validate our position that SMT is beneficial especially to crypto
workloads, we built a test bed running SpecWeb* 2005. The test bed consisted of a
server machine using an Intel Core i7 processor connected to two client machines
running a total of four client engines. We measured the server’s capacity with SMT
turned on and off for the banking and support (regular HTTP) workloads. Our
experiments indicate that SMT improves the overall system performance by at least
10 percent—more for the banking workload than the support workload. This result
is in accordance with our earlier experiments, and it indicates that crypto workloads
can take advantage of SMT.

“One compute-intensive thread

performs only RSA public key

encryption operations, and another

thread performs memory access-

intensive tasks.”

“The RSA computation is hidden

under the very long stall times of the

memory thread.”

“This result is in accordance with our

earlier experiments, and it indicates

that crypto workloads can take

advantage of SMT.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

https://everywhere! Encrypting the Internet | 77

The overall impact of our cryptographic algorithm acceleration technologies is
shown in Figure 3. The first bar represents the crypto overhead of a 230 Kbyte SSL
transaction as it runs on an Intel Core i7 processor today. The encryption scheme
used is AES-256 in the counter mode. The next bar shows the acceleration gain if
AES is implemented with the new instructions. The third bar shows the incremental
gain by using our RSA software and SMT. Finally, the last bar shows the gain
associated with replacing SHA1 with GCM. GCM is a message authentication
scheme offering the same functionality as HMAC-SHA1. As is evident from the
figure, our acceleration technologies substantially reduce the crypto overheads
resulting in significant performance and efficiency improvement.

Other Other Other Other

SHA1 SHA1 SHA1

GCM

AES

RSA 1024

RSA 1024
RSA 1024

RSA 1024

Intel® Core™ i7 Processor with AES Instructions + SMT, Faster RSA + GCM, PCLMULQDQ

Figure 3: Impact of Crypto Acceleration Technologies
Source: Intel Corporation, 2009

Conclusion
In summary, Intel is researching new technologies that offer cryptographic
algorithm acceleration by factors. We described new processor instructions that can
accelerate AES symmetric encryption. This acceleration substantially reduces the
server load during the bulk data transfer phase of HTTPS. We also present results
from a novel implementation of the RSA asymmetric cryptographic algorithm.
This accelerates a very compute-intensive stage of the HTTPS protocol, a stage in
which the server has to decrypt handshake messages coming from a large number of
clients. Third, we analyze a web server and present some initial experimental results
indicating that the efficiency of the server can be improved by balancing a web
server workload with a cryptographic workload on an SMT-enabled processor. This
shows that the cryptographic overhead can be hidden by performing it in parallel
with memory accesses with long stall times. Our ultimate goal is to make general-
purpose processors capable of processing and forwarding encrypted traffic at very
high speeds so that the Internet can be gradually transformed into a completely
secure information delivery infrastructure. We also believe that these technologies
can benefit other usage models, such as disk encryption and storage.

“Our ultimate goal is to make general-

purpose processors capable of processing

and forwarding encrypted traffic at

very high speeds so that the Internet

can be gradually transformed into a

completely secure information delivery

infrastructure.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

78 | https://everywhere! Encrypting the Internet

References
[1] R.L. Rivest, A. Shamir, and L. M. Adleman. “A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems.” Communications of the
ACM, 21,2, pages 120–126, February 1978.

[2] V. Rijmen. “Efficient Implementation of the Rijndael S-box.”
At http://www.google.com

[3] “Advanced Encryption Standard.” Federal Information Processing Standards
Publication 197. At http://csrc.nist.gov

[4] P. Montgomery. “Multiplication without trial division.” Math.
Computation, Volume 44, pages 519—521, 1985.

[5] P. Barrett. “Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor.”
Masters Thesis, University of Oxford, UK, 1986.

[6] S. Gueron, O. Parzanchevsky and O. Zuk. “Masked Inversion in GF(2n)
Using Mixed Field Representations and its Efficient Implementation for
AES.” Embedded Cryptographic Hardware: Methodologies & Architectures.
Nadia Nedjah and Luiza de Macedo Mourelle (Editors), Nova Science
Publishers, Inc.(ISBN: 1-59454-012-8), 2004.

[7] S. Gueron. “Advanced Encryption Standard (AES) Instructions Set.”
At: http://software.intel.com/

[8] S. Gueron and M. Kounavis. “Carry-Less Multiplication and Its Usage for
Computing the GCM Mode.” At http://software.intel.com/

[9] A. Karatsuba and Y. Ofman. “Multiplication of Multidigit Numbers on
Automata.” Soviet Physics—Doklady, Volume 7, pages 595–596, 1963.

[10] M. E. Kounavis. “A New Method for Fast Integer Multiplication and its
Application to Cryptography.” In Proceedings 2007 International Symposium
on Performance Evaluation of Computer and Telecommunication Systems. San
Diego, CA, 2007.

[11] S. Grover and M. Kounavis. “On the Impact of Simultaneous Multi-
threading on the Performance of Cryptographic Workloads.”
Technical Report, available from the authors upon request.

Intel® Technology Journal | Volume 13, Issue 2, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

https://everywhere! Encrypting the Internet | 79

Author Biographies
Satyajit Grover is a Software Engineer working at Intel Labs. His duties involve
researching and prototyping new ideas in the area of system security and integrity.
He has been working in this area at Intel for over two years. Previous to that he was
a graduate student and research assistant at the Computer Science Department at
Portland State University. His e-mail is satyajit.grover at intel.com.

Xiaozhu Kang is a Research Scientist working at Intel Labs. Her research interests
include algorithm design and performance analysis. She obtained a Ph.D. degree
in Electrical Engineering from Columbia University in 2008, and she joined Intel
in January of 2009. Before that, she worked as an intern in Intel Corporation,
Mathworks Corporation, and NEC Labs. Her e-mail is xiaozhu.kang at intel.com.

Michael Kounavis is a Senior Research Scientist working at Intel Labs. Michael is
responsible for conducting research on novel digital arithmetic and cryptographic
algorithms with the aim of accelerating a wide range of client, server, and
networking applications. Michael is a co-inventor of the CRC32 SSE4 instruction
of the Intel® Core i7 architecture used for iSCSI CRC generation. He is also a co-
recipient of the 2008 Intel Achievement Award for his work on AES instructions.
His e-mail is michael.e.kounavis at intel.com.

Frank Berry is a Principal Engineer working at Intel Labs. His area of expertise
is the hardware/software interface where the hardware and software work closely
together. His expertise extends to operating system internals, device drivers, and
networking stacks. Frank has received two Intel Achievement Awards for his work
on the InfiniBand Architecture and AES Instructions. His e-mail is frank.berry at
intel.com.

80 | Recent Contributions to Cryptographic Hash Functions

Contributors

Intel® Technology Journal | Volume 13, Issue 2, 2009

Index Words

RECENT CoNTRIBUTIoNS To CRYPTogRAPHIC HASH FUNCTIoNS

Jesse Walker
Intel Corporation

Michael Kounavis
Intel Corporation

Shay Gueron
Intel Corporation

Gary Graunke
Intel Corporation

Abstract
Hash functions are cryptography’s most widely used primitives, in that they are a
fundamental building block used for a wide variety of constructions. The recent
attacks of Joux, Wang, and others against the current generation of hash functions
has stimulated a resurgence of research into these primitives as well as spawned an
international competition, sponsored by the U.S. Government agency, the National
Institute of Standards and Technology (NIST), to create a next-generation hash
function design.

In this article, we provide the background to understand what a hash function
is and what problems it addresses. We then describe and contrast two radically
different designs entered in the NIST competition, Skein and Vortex. Skein was
designed by a team assembled from across the industry and academia, while Vortex
was designed exclusively by Intel employees. We next go on to describe the design
rationale for each hash function, and we compare and contrast the basic design
decisions.

Introduction
Hash functions are one of cryptography’s most fundamental building blocks, even
more so than encryption functions. For example, hash functions are used for digital
fingerprinting and commitment schemes, such as message authentication and
random number generation, as well as for digital signature schemes, stream ciphers,
and random oracles.

Recently, Andre Joux, one of the leading cryptographers of our time, discovered
multi-collision attacks against the general framework in which hash functions are
constructed [1], and Xiaoyun Wang created an attack that breaks the collision-
resistance property of the most widely deployed hash functions [2], including
MD5 and SHA-1. In 2005, Arjen Lenstra and Wang demonstrated how to forge
two digital certificates, based on the MD5 hash function, by using different keys
but the same signature—something that was hitherto thought to be impossible
[3]. These attacks that were discovered, and other vulnerabilities that were exposed
by researchers have stimulated a resurgence of research into hash functions. This
research has also spawned an international competition, sponsored by the National
Institute of Standards and Technology (NIST), an agency responsible for standards
used by the U.S. Government, to create a next-generation hash function design.

“Hash functions are one of
cryptography’s most fundamental
building blocks.”

Hash Function
Compression Function
Cascade Construction
Merkle-Damgård
Block Cipher

Recent Contributions to Cryptographic Hash Functions | 81

Intel® Technology Journal | Volume 13, Issue 2, 2009

In this article we highlight some recent work in hash function development. We
begin by providing some background on hash functions and look at the problems
that hash functions address. We then sketch how to build a hash function. Moving
on, we outline recent seminal work in the field of hash functions. We describe two
radically different designs entered in the NIST competition, the Skein and Vortex
designs, created in part with Intel participation. This is followed by a discussion of
the design rationale for each where we also compare and contrast the basic design
decisions. We end with a summary of our findings.

Hash Functions
In this section, we first describe what a hash function is and then look at some
typical use cases.

What is a Hash Function?
A hash functions is usually defined as a function H satisfying three properties [4]:

•	 Collision resistance. It is computationally infeasible to find two distinct bit
strings s ≠ s' such that H (s) = H (s ').

•	 Pre-image resistance. Given a hash value t in the range of H, it is
computationally infeasible to find a string s for which H (s) = t.

•	 2nd Pre-image resistance. Given a string s and hash value t such that
H (s) = t, it is computationally infeasible to find a second string s ' such
that H (s') = t as well.

A hash function maps the set of all bit strings into a message digest of defined
length, called the hash function’s block size. Since there are many more strings than
message digests, at least one digest output by the hash function must be the image
of more than one input string. It is therefore remarkable that it is possible to build
a function h that has the three properties previously noted. These properties imply
that h essentially acts like a randomly selected compression function.

Use Cases
It is instructive to describe some typical use cases:

•	 Digital fingerprinting. Hash functions construct effective digital
fingerprints. If d represents a digital data structure, such as a document,
then the message digest h (d) is its fingerprint; the 2nd-pre-image-resistance
property says it is infeasible to find a second data structure d ' with the
same fingerprint h (d ') = h (d).

•	 Digital signatures. Digital signatures extend digital fingerprinting by
encrypting the hash value h (d) of a data structure d under a private key.

“These properties imply that h

essentially acts like a randomly selected

compression function.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

82 | Recent Contributions to Cryptographic Hash Functions

•	 Message authentication. A hash function h used with a secret key K can be
used to authenticate a message m. The idea is to create a tag t = h (K || m),
where “||” denotes string concatenation, which is sent with the message
and verified by the receiver. (This does not quite work in practice, because
the cascade construction introduces vulnerabilities hashing the last message
block. Instead the tag is essentially computed as h (K || h (K || m))).
Because of pre-image resistance, it is infeasible for an attacker to create
the same tag t unless he or she knows the key K, and because of collision
resistance, the tag could have been created only by concatenating the
message m to the key K.

•	 Pseudo-random number generation. One standard way to build a random
number generator is to take a key K, usually called a seed, and to compute
h (K || 0), h (K || 1), h (K || 2), with each digest representing a different
random number. If h and K are carefully selected, it is infeasible to
distinguish this, by any statistical test, from a stream of genuine random
numbers.

•	 Stream ciphers. A stream cipher can be built by taking a hash function h,
and encrypting message mi by mi → mi ⊕ h (K, i), where “⊕” denotes
XOR, and decryption is mi ⊕ h (K, i) → (mi ⊕ h (K, i)) ⊕ h (K, i) = mi.

•	 Random oracles. Random oracles can be thought of as specialized random
number generators. They are used widely in cryptography, such as for
randomizing public and private key encryption, in order to make them
secure from arcane attacks.

Designing Hash Functions
The standard approach to building a hash function is first to construct a compression
function that operates on the input strings of a fixed length, and then to use the
cascade construction to extend the compression function to strings of arbitrary length
[5, 6].

Compression functions are usually built out of block ciphers. Recall that a block
cipher is a pair of D and E functions, for decrypting and encrypting, respectively,
that operate on strings of a particular length, called the block size. If the block size
is n-bits, then the encryption of an n-bit string s is E (s), and its decryption is
D (s). Every string can be encrypted or decrypted, and E(D (s)) = D(E(s)) = s,
meaning E (and D), is a permutation of the set of all n-bit strings. Cryptographers
say a block cipher is secure if both s → E (s) and s → D (s) are indistinguishable
from a randomly selected permutation. To meet the indistinguishability property,
block ciphers are keyed, so a block cipher represents a family of permutations.
A particular block cipher instance is selected by choosing a key K. The resulting
encryption and decryption instances are denoted EK and DK. That is, for each
choice of a key K, s → EK (s) (and s → DK (s)) behave like different randomly
selected permutations.

“To meet the indistinguishability
property, block ciphers are keyed, so
a block cipher represents a family of
permutations.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Recent Contributions to Cryptographic Hash Functions | 83

Compression Functions
The compression functions for all the hash functions commonly used today are
built in the following way:

1. Select a block cipher scheme (E, D).
2. Define a compression function c (iv, s) = E s (iv) ⊕ iv.

Here s denotes a message of exactly n-bits, and iv denotes an initialization vector.
This recipe for c says to use s as the encryption key and iv as the data to be
encrypted, and then to use XOR s with the encrypted result Es (iv). The mapping
(iv, s) → Es (iv) ⊕ iv is called the Davies-Meyer construction [7] for E. It is easy
to show that a block cipher used in Davies-Meyer mode is collision-resistant,
pre-image resistant, and 2nd pre-image resistant. c is called a compression function
because it compresses <iv,s> into a new string iv' of exactly s’s length. Other
compression function constructions also exist: both Vortex and Skein use the
Matyas-Meyer-Oseas [8] construction, c (iv, s) → Eiv (s) ⊕ s, which is identical to
Davies-Meyer, except it reverses the role of iv and s.

The Cascade Construction
The cascade construction builds a hash function h from a compression function c
with block size n as follows:

cascade (s)
pad (s); s1 s2 … sb ← s; iv1 ← iv; do i = 1 to b ⇒ iv i+1 ← c (ivi , si) od;
output iv b+1

Every hash function based on a block cipher must define a padding scheme,
because compression functions only operate on strings s of length n bits exactly.
Most padding schemes pad s with a single 1 bit followed by as many 0 bits as are
necessary to bring the length to a multiple of n. The length of the unpadded string
s is then encoded as an n-bit integer and appended to defend against extension
attacks.

Once padded, partition s into b = |s|/n blocks, each consisting of n bits (|s| denotes
s' s length in bits): s1 s2 … sb ← s.

Finally, beginning with a hash-function-specific initialization vector iv, serially
compute c (ivi' si) for each block si.

The cascade construction extends the collision resistance, pre-image resistance, and
pre-image resistance properties from a compression function to a function operating
on strings of arbitrary length [9]. The cascade construction is sometimes called the
Merkle-Damgård construction after its inventors. This construction is intrinsically
serial, as it needs to be able to detect problems, such as two blocks being exchanged.

“Most padding schemes pad s with a

single 1 bit followed by as many 0 bits

as are necessary to bring the length to

a multiple of n.”

“The cascade construction is sometimes

called the Merkle-Damgård

construction after its inventors.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

84 | Recent Contributions to Cryptographic Hash Functions

Hashing Today
We just summarized the state of the art during the early part of this decade, prior
to two significant publications. The first was by Andre Joux, who introduced the
multi-collision attack. The second was by Xiaoyun Wang, where she described an
attack, based on differential cryptanalysis, against all of the hash algorithms broadly
used today.

Suppose a hash function is built out of a compression function by using the cascade
construction. Also suppose that someone has broken the collision resistance of
the hash function; that is, they have discovered two distinct strings s ≠ s' so that
h (s) = h (s'). Joux observed that it is easy to find many more collisions for little
additional cost [1]. The source of the problem is that the cascade construction
maintains too little state as it progresses from one invocation of the compression
function to the next. Joux’s result says that by itself the cascade construction is too
weak to serve as an adequate building block for constructing hash functions.

Wang’s attack [2], based on differential cryptanalysis, has a different flavor.
Differential cryptanalysis is a technique to analyze block ciphers. Essentially,
differential cryptanalysis follows a bit slice through the block cipher being analyzed,
to characterize how it gets diffused. The goal of differential cryptanalysis is to
identify bits leading to unusually high or low levels of diffusion. When such bits
are identified, they can be used to recover bits of the encryption key. This can
dramatically shrink the size of the key space, making brute force search realistic.
As an example, differential cryptanalysis reduced the cost of key recovery attacks
against the DES cipher from 256 encryptions to about 241.

Wang showed that a differential attack could produce collision in message digests,
thereby breaking the collision-resistance of the hash function producing them.
Wang first demonstrated her attack against MD4, MD5, RIPE-MD, and SHA-0.
This was viewed as a stunning result, but then she demonstrated that a collision can
be produced in SHA-1 at a cost of about 261 operations. This caused upheaval in the
cryptographic community, raising the question as to whether we even understand
what a hash function is.

The cryptographic community has vigorously debated hash design principles in the
intervening years. The only clear consensus emerging from this debate is that we
need a worldwide, focused project whose goal is to create a new generation of hash
functions that defend against the new attacks. A lesson previously learned by the
community is that contests have great efficacy in galvanizing technical consensus
building. In 2007, NIST initiated an international competition to create a new
hash standard [10]. Candidate submissions were due on October 31, 2008. Fifty-
five algorithms were entered. In February of this year, NIST whittled down the
list of candidates to 40, and from this it plans to select ten to fifteen first-round
candidates by August 2009. NIST plans to select a set of finalist algorithms in
2010, then to announce the winner(s) in 2011.

“Wang demonstrated that a collision
can be produced in SHA-1 at a
cost of about 261 operations. This
caused upheaval in the cryptographic
community.”

“A lesson previously learned by the
community is that contests have great
efficacy in galvanizing technical
consensus building.”

“Joux’s result says that by itself the

cascade construction is too weak to

serve as an adequate building block

for constructing hash functions.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Recent Contributions to Cryptographic Hash Functions | 85

NIST is widely influential in the creation of cryptographic standards worldwide,
so it is a good sponsor for the competition. One of NIST’s most important
contributions to cryptography standards has been the creation of requirements for
algorithms submitted to the competition. The competition requires that candidate
algorithms provide the collision-resistance, pre-image-resistance, and 2nd-pre-image-
resistance properties—and be free of any known intellectual property. Algorithms
must support output block sizes of 128, 160, 224, 256, 384, and 512 bits. The
rules encourage support for features outside the core properties, especially for
parallelization. Submissions must be accompanied by a security rationale, to help
establish confidence in the algorithms.

Some New Designs
Two of the candidates submitted to the NIST hash competition, Skein and
Vortex, include contributions by Intel personnel. Both are among the forty entries
remaining in the competition.

Skein
Skein was designed by Mihir Bellare (U.C. San Diego), Jon Callas (PGP Software),
Niels Ferguson (Microsoft), Tadayoshi Kohno (University of Washington), Stefan
Lucks (Bauhaus University-Mannheim), Bruce Schneier (British Telecom), Doug
Whiting (Hi-Fn), and Jesse Walker (Intel Corporation). Skein produces message
digests of any length from 1 to 296 bytes. Skein has three major components: a new
block cipher named Threefish, a replacement for the cascade construction named
Unique Block Iteration (UBI), and an argument system extending Skein’s domain
of use beyond hashing.

The First Skein Component: the Threefish Block Cipher
Threefish is a tweakable block cipher [11], which means that a randomizer called a
tweak is passed to the cipher with the key and data to encrypt. Skein uses the block
offset from the start of the message as the Threefish tweak. The tweak addresses
many deficiencies in the cascade construction and represents the major innovation
in Skein.

Threefish has three flavors: a 256-bit, a 512-bit, and a 1024-bit block size. The
Threefish encryption key is the same size as the block size. The tweak is always
128 bits.

Threefish is a product cipher, meaning it is composed of rounds. Each round is a
simple but weak encryption function. Threefish obtains security by piling round
upon round: 72 rounds for Threefish-256 and for Threefish-512 and 80 rounds for
Threefish-1024. The number of rounds represents a tradeoff between performance
and security.

“Candidate algorithms provide
the collision-resistance, pre-image-
resistance, and 2nd-pre-image-
resistance properties—and be free of
any known intellectual property.”

“A randomizer called a tweak is passed
to the cipher with the key and data to
encrypt.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

86 | Recent Contributions to Cryptographic Hash Functions

A Threefish round consists of a number of parallel MIX functions followed by a
permutation, so that different blocks are mixed for different rounds. The MIX
functions are made up of just three instructions—64 bit addition, left rotate, and
XOR—to combine two 64-bit words A and B, as depicted in Figure 1.

Threefish-256 splits its input into four 64-bit words, so each round consists of two
parallel MIXes: Threefish-512 uses eight words with four parallel MIXes, and
Threefish-1024 uses sixteen words with eight parallel MIXes. Figure 2 depicts the
Threefish round structure for Threefish-512. The parallel MIXes efficiently exploit
the super-scalar properties of modern processors. The rotation constants r were
selected by a hill-climbing algorithm that maximized diffusion over randomly
selected sets of rotation constants.

Threefish adds a round key every four rounds. Figure 2 depicts one of these
additions. The Threefish round keys come from a key schedule inspired by Skipjack’s
key schedule [12]. Each Threefish round key is the same size as the plaintext data
block, and each key depends on all the bits of both the encryption key and the
tweak.

The Second Skein Component: Unique Block Iteration
Unique Block Iteration (UBI) mode replaces the cascade construction in Skein.
UBI consists of four parts. First, UBI uses the Matyas-Meyer-Oseas construction,
(iv, s) → Eiv (s) ⊕ s, to build a compression function c out of any block cipher.
Second, UBI padding appends enough 0 bits to bring the length of the message
being hashed to a multiple of the block size. Third, UBI constructs and passes the
tweak to the block cipher. The UBI tweak is composed of two flags and of the
message block offset from the beginning of the message in bytes. One of the flags
is set on the first block, and the second flag is set for the final block. Finally, UBI
computes its output just like the cascade construction, the only difference being the
construction of the tweak:

UBI(iv, s)
pad(s)
t ← 0 ⊕ start-flag; iv2 ← c (iv, s1, t) ; t = block-size;
do i = 2 to b–1 ⇒ ivi+1 ← c (ivi' si , t); t t+block-size od;
t ← t ⊕ end-flag; output c (ivb , sb , t)

UBI uses the Matyas-Meyer-Oseas construction instead of Davies-Meyer. This
converts attacks against a hash function from related key attacks to chosen plaintext
attacks against the block cipher: the community understands more about defending
against the latter than it does about defending against the former.

The Third Skein Component: Skein Argument System
The Skein argument system extends the algorithm beyond normal hashing to
application-specific or personalized hashing, message authentication, key derivation,
pseudo-random number generation, stream ciphers, and tree (that is, parallelized)
hashing.

A

A'

B

B'

<<<r

XOR

64-Bit Left Rotate by r Bits

64-Bit Addition with Carry

64-Bit Words

E

N

C

R

Y

P

T

I

O

N

Figure 1: The Threefish MIX
Source: Intel Corporation, 2009

Round
Key

Permute

Mix Mix Mix Mix

Permute

Mix Mix Mix Mix

Figure 2: Two Rounds of Threefish-512
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

Recent Contributions to Cryptographic Hash Functions | 87

Putting it Together in Skein
Skein instantiates UBI mode with the Threefish block cipher. The design’s
initialization vector is computed as the UBI-Threefish output of the configuration
string “SHA-3.” Skein first hashes a string s under UBI mode and iv to obtain an
intermediate value. Skein uses the intermediate value as an iv to hash the integers
0, 1, 2, … under UBI, again to obtain the final output. Classical theory justifies
the claim that Skein-n (n = 256, 512, or 1024) achieves n/2 bits of security against
collisions, and n–1 bits of security against 1st and 2nd pre-image attacks—the best
that can be achieved, theoretically. The double hashing under UBI mode also allows
Skein to make additional, unusually strong claims, as follows:

•	 If	Threefish	is	a	pseudo-random	permutation,	then	Skein	can	be	used	as	a	
pseudo-random function, a secure key derivation function, a secure message
authentication code, a secure stream cipher, and a secure pseudo-random
number generator.

•	 If	Threefish	acts	like	an	ideal	cipher,	then	Skein	cannot	be	differentiated	
from a random oracle.

The first claim says that Skein can be used naively in a broad range of applications
that usually require great sophistication when constructed from classical hash
functions. The second claim is a non-trivial result: it claims that Skein is structurally
sound when Threefish is viewed as a black box; that is, the attacker is not allowed
to utilize any knowledge about the internals of Threefish. This structural property
means the security of Skein depends on the security of the underlying block cipher
only. The best known attack against Threefish at this time breaks a 34-round variant
(out of 72 rounds for full Threefish), which is superior to AES, whose 8-out of
10-round variant falls to attack.

In software Skein is one of the fastest unbroken algorithms ever devised: it runs at
6.1 clocks/byte on an Intel® Core™ Duo processor and requires no special hardware
acceleration, such as an AES round instruction. This is twice as fast as the best
software implementations of the current hashing standard. Skein also maintains
a very small footprint for its in-memory state, allowing implementation in even
constrained environments such as smart cards.

Vortex
Vortex is a family of hash functions developed by Michael Kounavis and Shay
Gueron of Intel. A main strength of the Vortex design is that this hash function
can achieve an ideal performance of 2.2-2.5 cycles per byte by using the AES
round [14] and carry-less multiply instructions [15]. Such instructions have been
announced for future Intel processors. Vortex is one of the fastest collision-resistant
hashes known when running on future IA processors, outperforming SHA-1
(approx. 7 cycles/byte) by 3.18X, and outperforming SHA256 (approx. 19 cycles/
byte) by 8.63X.

“The double hashing under UBI
mode also allows Skein to make
additional, unusually strong claims.”

“Vortex is one of the fastest collision-
resistant hashes known when running
on future IA processors.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

88 | Recent Contributions to Cryptographic Hash Functions

The Vortex family produces message digests of 224, 256, 384, and 512 bits,
respectively. The main idea behind Vortex is to use well-known algorithms with
very fast diffusion in a small number of steps. These algorithms also balance the
cryptographic strength, that comes from iterating block cipher rounds with S-box
substitution and diffusion, against the need to have a lightweight implementation
with as small a number of rounds as possible. Vortex is built upon the following
algorithms:

•	 The	Rijndael	round	function,	which	performs	very	fast	mixing	across	32	
bits, as a standalone operation, and 128 bits or 256 bits, if combined with
at least one more round.

•	 A	variant	of	Galois	Field	multiplication	that	mixes	bits	of	different	sets	
in a manner that is cryptographically stronger than many other simpler
schemes.

Vortex uses a variable number of Rijndael rounds with a stronger key schedule.
The number of rounds is a tunable parameter. Rijndael rounds are followed by a
variant of Galois Field multiplication to cross-mix between 128-bit or 256-bit sets.
This transformation is not simple carry-less multiplication; rather, it combines bit
reordering operations, XORs, and additions with carries. In this way, this variant
of Galois Field multiplication achieves better diffusion than the straightforward
carry-less multiplication between the 128-bit or 256-bit inputs; it is also a non-
commutative operation, protecting against chaining variable swapping attacks.

Vortex uses the Enveloped Merkle-Damgård (EMD) construction to lift collision
resistance, pre-image and 2nd pre-image resistance, pseudo-random oracle
preservation, and pseudo-random function preservation from the underlying
compression function to the hash function. To achieve its properties, the EMD
construction first hashes the input string s under one initialization vector to get
an intermediate value, and then it hashes the intermediate value under a second
initialization vector to obtain a final result.

For Vortex-256, Gueron and Kounavis demonstrate that the number of queries
required to find a collision with a probability greater or equal to 0.5 is at least
1.18 · 2122.55 [13].

In summary, the Vortex compression function uses the Rijndael round function.
Vortex-224 and Vortex-256 use Rijndael-128 rounds. Vortex-384 and Vortex-512
use Rijndael-256 rounds. AES uses the Rijndael-128 round function. For the
remainder of this section, ÃK (X) denotes a block cipher based on the Rijndael
round function that encrypts X by using key K. VM

(A)(A, B) is a multiplication-
based merging function.

“Vortex uses a variable number of
Rijndael rounds with a stronger key
schedule.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Recent Contributions to Cryptographic Hash Functions | 89

The Vortex-block algorithm is the Vortex compression function. This algorithm
incorporates two repetitions of an algorithm called Vortex-sub-block. The first
repetition of Vortex-sub-block accepts as input the chaining variable Ai || Bi and
two least-significant input block words W4i , W4i+1 of the message being hashed. It
returns an intermediate value for the chaining variable A || B. The second repetition
of Vortex-sub-block accepts as input the intermediate value of the chaining variable
A || B and two most-significant input block words W4i+2 , W4i+3. It returns an
update on the chaining variable Ai+1 || Bi+1.

With the exception of the last sub-block (discussed later), the algorithm for
processing a Vortex-sub-block is as follows:

Vortex sub-block (A, B, W0, W1)

 // W0 is the first word of the current sub-block to be processed
 A ← ÃA (W0) ⊕ W0 ; B ← ÃB (W0) ⊕ W0 ; A || B ← VM

(A)(A, B)

 // W1 is the second word of the current sub-block to be processed
 A ← ÃA (W1) ⊕ W1 ; B ← ÃB (W1) ⊕ W1 ; A || B ← VM

(A)(A, B)
 output A || B

The structure of the Vortex sub-block is shown in Figure 3. There are four instances
of the transformation ÃK (x) in the Vortex sub-block. Each instance is wrapped by
using a feed-forward provided by the Matyas-Meyer-Oseas construction to make
the transformation non-reversible. The first two instances process input word W0.
The other two instances process the input word W1. W0 is the least-significant word
of the current sub-block to be processed. Instances of ÃK (x) that accept the same
input word process a different variable from among A, B. Each instance treats its
input variable A or B as a key and treats its input word, which is one from W0 or W1
as plaintext, as that is the norm in a Matyas-Meyer-Oseas construction.

The Vortex merging function VM
(A)(A, B) operates as follows:

 VM
(A)(A, B)

 A1 A0 ← A ; B1 B0 ← B
 O ← A0 ⊗ B1 ; I ← A1 ⊗ B0

 I1 I0 ← I ; O1 O0 ← O
 output B1 ⊞ I1 || B0 ⊞ O0 || A1 ⊕ O1 || A0 ⊕ I0

where ⊞ is ordinary 64-bit addition, and ⊗ denotes carry-less multiplication.

A B

VM
(A) (A, B)

W1

VM
(A) (A, B)

W0
B

VM
(A) is the Vortex merging

function

W0 and W1 are subwords
of the block being hashed

 is an encryption that uses
the Rinjindael round function

 Denotes XOR

Figure 3: Vortex Sub-Block Structure
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

90 | Recent Contributions to Cryptographic Hash Functions

The Vortex merging function (as shown in Figure 4) ensures that the bits of A
impact the bits of B and vice versa. In fact, each bit of one variable affects a
significant number of the bits of the other variable in a non-linear manner. This
makes the design better than a straightforward XOR or other simple mathematical
operation.

Carry-less multiplication is the default configuration of Vortex. The reason why
Vortex uses carry-less multiplication by default is because it is easier to make
analytical assertions about the collision resistance and pre-image resistance of the
hash. In another configuration, Vortex uses integer multiplication. An integer
multiplier increases the performance of the hash (not all processor architectures
have a carry-less multiplier) and also increases the non-linearity of merging;
however, it also makes the security of the scheme more difficult to prove.

The last Vortex sub-block is different. It repeats the sequence of Matyas-Meyer-
Oseas transforms and merging several times. The total number of times every bit
is diffused over all bits of the hash is determined by the number of sequences of
Rijndael rounds and merging found in the last Vortex sub-block; this is another
tunable parameter of the hash.

Design Rationale and Comparison
In this section, we summarize and compare the design rationale for both
algorithms.

Skein Design Rationale
The Skein team had a number of goals:

•	 Design for simplicity. Simple designs, rather than complex ones, are easier to
optimize and analyze for security flaws.

•	 Maximize security per clock. Performance trumps security in practice, so
extract as much security as possible from each cycle. In particular, it is
important to use only the simplest instructions that have been highly
optimized on every platform. Exploit the super-scalar behavior of modern
processors and maximize the diffusion from each operation. Through
a series of experiments the Skein team discovered that simpler round
functions with more rounds optimize both performance and security.

•	 Achieve high performance and easy implementation on all processors. Building
in a performance advantage for one processor family over another is a
disadvantage in a public competition.

The Skein team made a number of critical design decisions when designing the
algorithm:

•	 Base the design on a block cipher. This is the most conservative security
choice. The community knows better how to analyze designs based on
block ciphers. Moreover, there is a well-established theory on how to turn a
block cipher into a hash function.

•	 Build your own block cipher. The Skein team obtained better performance
and a simpler security analysis with a new cipher of the correct block size
instead of adapting an existing narrow-block cipher.

new A1 new B1 new A0 new B0

A0, B0: least significant words of chaining variables A, B
A1, B1: most significant words of chaining variables A, B
I0: least significant word of inner product I
I1: most significant word of inner product I
O0: least significant word of outer product O
O1: most significant word of outer product O
 : add with carry
 : XOR
 : carry-less multiply

O0

A0 B0A1 B1

I0I1

O1

Figure 4: Vortex Merging Function
Source: Intel Corporation, 2009

“Vortex uses carry-less multiplication
because it is easier to make analytical
assertions about the collision resistance
and pre-image resistance of the hash.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Recent Contributions to Cryptographic Hash Functions | 91

•	 Make the block cipher tweakable. This introduces great flexibility in
designing a new mode at no cost.

•	 Replace the cascade construction with something better. The cascade
construction has many known defects; the tweak allows UBI to offer
provable security, and it suffers from none of the cascade construction’s
problems.

•	 Use Matyas-Meyer-Oseas construction instead of Davies-Meyer. Attacks against
Matyas-Meyer-Oseas-based compression functions are chosen plaintext
attacks; attacks against Davies-Meyer-based compression functions are
related key attacks. The community has more experience defeating chosen
plaintext attacks than related key attacks.

•	 Do not use table lookups. Most cipher designs use a table called an
S-box. Lookups in the S-box enable side-channel attacks on software
implementations, where the encryption key can be read by monitoring the
power, timing, or EMI of the processor. Threefish is not subject to these
attacks since it incorporates no table lookups.

•	 Build in three different internal state sizes and allow output of any size. This
allows flexibility in the level of security available across different use cases.

•	 Change the design when necessary. The design should be changed when doing
so allows for simpler security proofs.

Vortex Design Rationale
The Vortex team had a number of goals:

•	 Design for performance. Vortex uses algorithms that are implemented by
using dedicated instructions in future IA processors. These are instructions
for AES round computation (AES-NI) and carry-less multiplication
(GFMUL-NI). The Vortex team argues that such instructions will become a
trend in the industry.

•	 Maximize security per clock. Like Skein, Vortex extracts as much security
as possible from each cycle. In particular, it uses independent AES round
operations in each block. Such operations can potentially be completed in a
single clock in future processors. It also introduces parallelism in the design
of its compression function (two AES rounds and their key schedules can
be executed in parallel); and finally, it maximizes the diffusion from each
operation. Diffusion is supported by the AES round algorithms (S-box
substitution, ShiftRows, MixColumns) as well as by the multiplication
stage that follows.

•	 Achieve high performance and easy implementation on future processors.
The Vortex team believes that instructions for AES round computation
and carry-less multiplication will become a trend in the industry. This is
because (i) several hardware vendors including IBM and Sun are either
implementing or researching them; (ii) even processors for embedded
systems now include AES hardware; and (iii) there is a precedence in the
industry that good instruction sets are widely adopted (for example, SSE
instructions).

Intel® Technology Journal | Volume 13, Issue 2, 2009

92 | Recent Contributions to Cryptographic Hash Functions

The Vortex team made a number of critical design decisions when designing the
algorithm:

•	 Base the design on a well-known and secure block cipher. Vortex uses an AES
round as a building block. AES is a well-studied block cipher, and the AES
round operation offers very good mixing across 32 bits, as a standalone
operation, and 128 bits if repeated several times.

•	 Strengthen the AES key schedule. Hashing is a one-way operation so
additions with carries are permitted in the design of a hash function. Vortex
strengthens the AES key schedule by adding round constants with carries
and performing S-box substitution across all round key bytes.

•	 Combine the outputs of two parallel AES transformations by using carry-less or
integer multiplication. Multiplication is a highly non-linear operation and
can be used for destroying bit differentials.

•	 Replace the cascade construction with something better. Vortex uses the EMD
construction and a tweak value to preserve the pseudo-random function
and the pseudo-random oracle properties.

•	 Use Matyas-Meyer-Oseas construction instead of Davies-Meyer. This is similar
to the rationale of the Skein team. The community has more experience
defeating chosen plaintext attacks than related key attacks.

•	 Use Rijndael S-boxes instead of table lookups. Rijndael S-boxes have a special
structure that allows them to be implemented by using combinatorial logic
as opposed to table lookups. Thus, side-channel attacks can be averted.

Comparison of the Skein and Vortex Designs
It is now possible to highlight some similarities and differences between the Skein
and Vortex designs. We begin with the similarities.

Similarities Between the Skein and Vortex Designs
Both designs are based on block ciphers, and they both use the Matyas-Meyer-
Oseas construction to convert the related key attacks against the deployed hash
function designs into chosen plaintext attacks. The cryptographic community has
more experience defeating chosen plaintext attacks than related key attacks.

Both designs use a flavor of the cascade construction to paste together the hash
of different blocks output by a compression function, and they both double hash
the final output; that is, the output from the cascade construction is rehashed to
become the final output. Both do this to address vulnerabilities that arise from
processing the final block with a construction such as Davies-Meyer or Matyas-
Meyer-Oseas, within the cascade construction.

Differences Between the Skein and Vortex Designs
The differing design approaches reflect the differing skill sets of the two teams. The
Skein team members were skilled in designing block ciphers. In contrast, the Vortex
team members did not design a new block cipher, but instead used an existing
one. The Skein design allows its security claims to be derived from the security of
a block cipher. The Vortex design effort emerged from the need to demonstrate a
secure hash function by using the new AES round and carry-less multiplication
instructions for future IA processors, which the Vortex team members designed.

Intel® Technology Journal | Volume 13, Issue 2, 2009

Recent Contributions to Cryptographic Hash Functions | 93

Skein uses significantly more rounds (72/72/80) than Vortex, stemming from
the different design decisions made by each team. The Skein team’s experiments
indicated diffusion per clock is maximized by numerous simple rounds. The
Vortex designers instead were motivated by performance; they believed the best
performance is achieved by using fewer rounds, based on very powerful diffusion
primitives.

Skein’s support for a hash value of any length from 1 to 264 bytes allowed the
team to prove the property that Skein cannot be differentiated from a random
oracle if Threefish acts like an ideal cipher. There are two ways to think about any
algorithm: (1) as a monolithic black box, where you have no knowledge of any of
the algorithm’s internal parts, and (2) as presented in this article, where we know
the details of the algorithm’s internal structure. By saying that Skein cannot be
differentiated from a random oracle, therefore, we mean that it is impossible, even
in principle, for Skein to construct any statistical test that exploits differences in the
two views. This means that Skein is structurally sound and that its security depends
only on the security of Threefish. Vortex’s final output is of a fixed length, but the
second hash allows it to act like a fixed-length random oracle.

None of the Skein components use table lookups such as S-boxes, so it is more
difficult to launch side-channel attacks on Skein than on specific implementations
of Vortex. Vortex avoids these attacks by relying on a hardware logic
implementation for the AES S-boxes.

Summary
In this article we reviewed the theory of hash functions, the state of knowledge
about them, and some of Intel’s contributions to this field of research. Hash
functions are basic building blocks that are central to cryptography’s mission, but
recent attacks by Joux and Wang have undermined our confidence in classical
constructions. Because of this insecurity, there has been a wave of new research
into hash functions, and Intel has been at the forefront, with two independent and
radically different submissions to the international NIST hash competition.

“Intel has been at the forefront,
with two independent and
radically different submissions
to the international NIST hash
competition.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

94 | Recent Contributions to Cryptographic Hash Functions

References
[1] A. Joux. “Iterated Collisions on Iterated Hash Functions.” Crypto 2004,

Lecture Notes in Computer Science (LNCS) 3621, Springer-Verlag,
Berlin, 2005.

[2] X. Wang, Y. Yin, and H. Yu. “Finding Collisions in the full SHA-1.”
Crypto 2005, LNCS 2947, Springer-Verlag, Berlin, 2004.

[3] A. Lenstra, X. Wang, and B. de Berger. “Colliding X.509 Certificates.”
At http://eprint.iacr.org

[4] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[5] R. Merkle. “Secrecy, authentication, and public key systems.” Stanford
University Ph.D. thesis, 1979. Available as “Technical Report No. 1979-1,”
Information Systems Laboratory, Stanford University, Palo Alto, California,
1979.

[6] I. Damgård. “A Design Principle for Hash Functions.“ Crypto 1989, LNCS
435, Springer-Verlag, Berlin, 1989.

[7] R. Winternitz. “A secure one-way hash function built from DES.” In
Proceedings of IEEE Symposium on Security and Privacy, 1984.

[8] S. Matyas, C. Meyer, and J. Oseas. “Generating strong one-way functions
with cryptographic algorithms.” IBM Technical Bulletin, 27, 1985.

[9] J. Black, P. Rogaway, and T. Shrimpton. “Black box analysis of block-
cipher-based hash functions from PGV.“ Crypto 2002, LNCS 2442,
Springer-Verlag, Berlin, 2002.

[10] The National Institute of Standards and Technology. US Government
agency sponsor for competition on next-generation hash design.
At http://csrc.nist.gov

[11] M. Liskov, R. Rivest, and D. Wagner. “Tweakable Block Ciphers.” Crypto,
LNCS 2442, Springer-Verlag, Berlin, 2002.

[12] National Security Agency. Skipjack and KEA Specifications. May 29, 1998.
At http://csrc.nist.gov

[13] M. Kounavis and S. Gueron. “Vortex: A new Family of One-Way Hash
Functions Based on Rijndael Rounds and Carry-less Multiplication.”
At http://eprint.iacr.org

[14] S. Gueron. “Advanced Encryption Standard (AES) Instructions Set.”
At http://software.intel.com

[15] S. Gueron and M. Kounavis. “Carry-Less Multiplication and its Usage for
Computing the GCM Mode.” At http://software.intel.com

Intel® Technology Journal | Volume 13, Issue 2, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Recent Contributions to Cryptographic Hash Functions | 95

Author Biographies
Jesse Walker is an Applied Cryptographer in Intel’s Communication Technology
Laboratory. He first identified vulnerabilities in the 802.11 WEP protocol. He also
served as editor for the 802.11i standard. He joined Intel in the Shiva acquisition.
He has a Ph.D. degree in Mathematics from the University of Texas. Jesse received
a 2004 Intel Achievement Award for influencing China’s telecommunication policy.
His e-mail is jesse.walker at intel.com.

Michael E Kounavis is a Senior Research Scientist working with Intel Labs. Michael
is responsible for conducting research on novel digital arithmetic and cryptographic
algorithms with the aim of accelerating a wide range of client, server, and
networking applications. Michael is a co-inventor of the CRC32 SSE4 instruction
of the Intel® Core™ i7 architecture used for iSCSI CRC generation. He is also
a co-recipient of an Intel Achievement Award (2008) for his work on the AES
instructions. His e-mail is michael.e.kounavis at intel.com.

Shay Gueron is an Intel Principal Engineer. He is the security architect of the CPU
Architecture Department in the Mobility Group, at the Israel Development Center.
His interests include applied security, cryptography, and algorithms. He is also an
Associate Professor at the Department of Mathematics of the Faculty of Science
at the University of Haifa in Israel. Shay was one of the co-recipients of the Intel
Achievement Award (2008) for his work on the AES instructions. His e-mail is
shay.gueron at intel.com.

Gary Graunke is a Senior Staff Architect for cryptography at Intel, where he
has contributed to various content protection technologies for PCs and digital
television. Prior to Intel, he contributed to parallel programming languages and
their compilation, synchronization primitives, and scalable decision support
databases and sorting algorithms at Sequent Computer. His earlier work included
numerous compilers for various programming languages and one of the earlier
(1970) shell/editor programs for timesharing on Univac mainframe computers. He
holds 30 patents. Gary holds a B.S. degree in Computer Science with Distinction
from the University of Wisconsin at Madison. His e-mail is gary.graunke
at intel.com.

96 | Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices

Contributors

Intel® Technology Journal | Volume 13, Issue 2, 2009

Index Words

ENHANCED PRIVACY ID: A REMoTE ANoNYMoUS ATTESTATIoN SCHEME
FoR HARDWARE DEVICES

Ernie Brickell
Intel Corporation

Jiangtao Li
Intel Corporation

Abstract
Enhanced Privacy ID (EPID) is a cryptographic scheme that enables the remote
authentication of a hardware device while preserving the privacy of the device
owner. A hardware device with an EPID private key embedded can prove to a
remote party that it is a valid device, certified by the hardware manufacturer,
without revealing its identity and without the verifier being able to link
authentication attempts. In this article, we discuss hardware authentication and
present several usage examples, such as secure e-commerce and digital drivers’
licenses. We then show that EPID can be used for hardware authentication securely
and privately. We discuss several revocation capabilities of EPID that allow flexible
revocation in different scenarios. For instance, in signature-based revocation, it
is possible to revoke an EPID private key that signed a message, even though the
identity of the key is not known. We show how these revocation methods can be
used while protecting the rights of the user. We also compare EPID with other
possible privacy techniques.

Introduction
Consider the following problem. A hardware device (for example, a mobile device,
a graphics chip, a trusted platform module, a processor package, or a smart card)
wants to prove to a verifier that it is a genuine hardware device manufactured by
a certified hardware manufacturer. The easiest way to prove that it is the genuine
article is for the verifier to read the serial number to the hardware manufacturer
to verify that it is indeed the device in question. Each hardware device is assigned
a unique serial number that is inscribed on the body of the device by the
manufacturer. The problem with this solution is its limited application: the verifier
needs to physically have the device in order for this kind of authentication to work.
In many cases, a piece of hardware needs to be authenticated remotely. Remote
hardware authentication is the main focus of this article.

A possible solution to the problem of remote hardware authentication is for the
hardware manufacturer to assign each device a unique device certificate. More
specifically, each device could be assigned a unique public and private key pair. The
hardware manufacturer certifies the device by issuing a cryptographic certificate
to the device public key. When the hardware device needs to be verified, it sends
its device certificate to the verifier along with a signature signed with its private
key. The verifier can then use the hardware manufacturer’s public key to verify the
device certificate and then use the device’s public key in the certificate to verify the
signature. This solution is secure, as long as the device can protect its private key,
since only hardware devices made by the original manufacturer have valid device
certificates.

“Remote hardware authentication is

the main focus of this article.”

Anonymity
Privacy
Cryptography
Trusted Computing
Remote Attestation

“A hardware device wants to prove to

a verifier that it is a genuine hardware

device.”

Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices | 97

Intel® Technology Journal | Volume 13, Issue 2, 2009

This certificate approach is also scalable, as the device manufacturers can issue as
many device certificates as they want. However, issuing a device certificate raises
a privacy concern, because the device certificate is used to uniquely identify the
device. The verifier, therefore, can use the device certificate to trace a device and the
associated authentication activities.

In this article, we introduce a new cryptographic scheme called Enhanced Privacy
ID (EPID) for remote, anonymous authentication of a hardware device. Using
EPID, a hardware device can prove to a verifier remotely that it is a valid device,
certified by the hardware manufacturer, without revealing its identity and without
the verifier being able to link multiple authentication attempts made by the device.

Conceptually, an EPID scheme can be viewed as a special digital signature scheme.
Unlike traditional digital signature schemes, one public key in the EPID scheme
corresponds to multiple private keys. There are three types of entities in an EPID
scheme: issuer, members, and verifiers. In our context, the issuer is the hardware
manufacturer, the member is a hardware device made by the manufacturer, and the
verifier could be software on the host, a server on the Internet, or another hardware
device. The issuer creates an EPID public key and issues a unique EPID private key
to each member. Each member can use this private key to digitally sign a message,
and the resulting signature is called an EPID signature. The verifier can use the
public key to verify the correctness of a signature, that is, to verify that the EPID
signature was indeed created by a member in good standing with a valid private key.
The EPID signature, however, does not reveal any information about which unique
private key was used to create the signature.

In the rest of this article, we first present our design requirements. We then go on
to describe the application of remote hardware authentication. We continue with
an overview of EPID and explain how we construct the EPID protocol and how we
handle revocations. We conclude by comparing EPID with other related
techniques.

Prerequisites and Design Requirements
We first formalize the remote hardware authentication problem, then describe the
prerequisites for the problem, and end with our design requirements.

Remote Hardware Authentication Problem
To do remote authentication securely, cryptographic keys need to be used. There are
three entities involved in a remote authentication scenario: the issuer, members, and
verifiers. The issuer is a hardware manufacturer who creates a group. A member is a
hardware device manufactured by the issuer. A member can join or leave the group.

“The EPID signature does not reveal
any information about which unique
private key was used to create the
signature.”

“We introduce a new cryptographic
scheme called Enhanced Privacy ID
for remote, anonymous authentication
of a hardware device.”

“There are three types of entities in an
EPID scheme: issuer, members, and
verifiers.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

98 | Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices

When a member joins the group as it is manufactured, the issuer issues a private
key to the member. When the member leaves the group, the issuer revokes the
private key of the member. Leaving the group is a rare event. It occurs only when
the private key of the member (the hardware device) has been extracted from the
hardware device, and the issuer has to revoke the membership of the device, or in
other words, revoke the private key. A verifier is an entity that wants to know that
a hardware device is a member of the group. The remote hardware authentication
is an interaction between a member and a verifier. The member uses its private
key to prove to the verifier that it is a valid member of the group and has not been
revoked.

Prerequisite
To have a secure remote hardware authentication scheme, the member (that is, the
hardware device) must have a good protection system for its private key. In other
words, the member should have secure storage to store the private key and have a
trusted execution environment to use the key to perform the membership proof.

If an attacker can easily extract the key information from a member, then there is
no way to do remote hardware authentication securely, as the attacker can always
use the extracted private key to perform the membership proof before the key is
revoked. This means that the verifier cannot tell whether the proof comes from the
attacker or from a real hardware device.

Security Requirements
The basic security requirement is straightforward; that is, only a member in good
standing could perform the membership proof successfully. In other words, if
the prover is not a member of the group, then its proof of membership would
be rejected by the verifier. This property should hold unless a private key has
been removed from a member and has not yet been revoked, or unless a problem
considered computationally infeasible has been solved.

Privacy Requirements
In a remote hardware authentication scheme, the membership proof must be
anonymous and unlinkable. In addition, the private key of each member should be
unknown to the issuer. More specifically, these are the required privacy properties:

•	 Given	a	membership	proof,	the	verifier	or	the	issuer	cannot	identify	the	
actual prover, that is, cannot extract any identifiable information about the
member from the proof. This is known as the anonymity property.

•	 Given	two	membership	proofs,	the	verifier	or	the	issuer	cannot	tell	whether	
the proofs are generated by one member or by two different members. This
is known as the unlinkability property.

•	 The	issuer	does	not	know	any	of	the	private	keys	of	the	members.	
Therefore, the issuer does not have a database of all the members’ private
keys.

“The member should have secure

storage to store the private key and

have a trusted execution environment

to use the key to perform the

membership proof.”

“Only a member in good standing

could perform the membership proof

successfully.”

“The membership proof must be
anonymous and unlinkable.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices | 99

The unlinkability requirement is optional. In some applications, the verifier may
require the membership proofs from a member to be linkable. Linkable proofs
help to prevent a member from abusing the anonymity requirement. For example,
suppose a verifier is a key-provisioning server that provisions a key to each member
(that is, each hardware device). This verifier wants to make sure that each member is
provisioned with only one key. Suppose that an adversary is able to extract a private
key from a member device. If the remote hardware authentication scheme has the
property of anonymity but not unlinkability, then the verifier would issue many
keys to this adversary by using this one compromised member key. Then if the
verifier found that one of the provisioned keys had been abused, he or she would
be able to revoke it but would not be able to revoke all of the other keys that this
adversary had obtained from the one compromised member key. Privacy issues with
this use can be controlled, since the member needs to obtain the provisioned key
from this verifier only once, and this usage can be unlinkable to any usage with any
other verifier.

Revocation Requirements
A remote hardware authentication scheme must handle revocation. In general,
when a hardware device is manufactured, it joins the group. Even if the ownership
of the hardware device changes or the device is stolen, it is still a valid, authentic
hardware device; thus, it is still in the group and does not need to be revoked.

Only if the private key has been extracted from the secure storage of the hardware
device, does the member have to be revoked. Given the prerequisites mentioned
earlier, the issuer assumes that the member’s (the hardware device’s) private key
is well protected. Thus, the revocation of a member is a rare event. However, the
issuer needs to have the ability to revoke a member from the group if needed.

The first revocation requirement is that the revocation of a group member should
have minimum impact on the rest of the group members.

The second revocation requirement is that if an extracted private key is known to
the issuer, then the issuer should be able to revoke that private key.

The third revocation requirement is that if a private key is used in a transaction, and
it is later discovered that the key used in that transaction had been extracted, then
this key should be revocable, even if it is not known. An example of such a case
would be if a transaction was to provision a verifier key into a hardware device, and
this verifier key was later shown to be extracted, the issuer may conclude that the
private key of the hardware device has been corrupted and should be revoked.

Note that if an attacker extracts a private key from a hardware device and never uses
the key, the key can probably never be revoked. On the other hand, if the attacker
never uses the extracted private key to forge or emulate a hardware device, there is
no damage to the hardware authentication scheme.

“Revocation of a member is a rare
event.”

““When a hardware device is
manufactured, it joins the group.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

100 | Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices

Application of Hardware Authentication
In this article, we present a new cryptographic scheme called Enhanced Privacy
ID (EPID) that satisfies the security, privacy, and revocation requirements just
discussed. Before we discuss EPID, however, we first discuss two applications
of EPID. We first describe remote anonymous attestation and then discuss the
application in digital drivers’ licenses and identity cards.

Remote Anonymous Attestation
Why are we interested in the problem of remote hardware authentication? The
answer lies in the fact that in many scenarios a verifier wants to know whether a
request comes from an authentic hardware device or from a software emulator.

Consider the following remote attestation example, depicted in Figure 1 as a
conversation between a client and a service provider. A client platform is running
a hardware-based trusted execution environment, based on a smartcard, or on a
Trusted Platform Module (TPM). The trusted execution environment includes
functionalities, such as secure code execution, secure data storage, and secure key
generation. The platform requests a resource from a service provider, such as a
Digital Rights Management (DRM) key. The service provider needs to determine
whether the platform can protect its resource. The platform can do a remote
attestation by sending the service provider a measurement of its computation
environment, for example, the platform can send its hardware and software
configuration. The attestation needs to be combined with a remote hardware
authentication, that is, one signed by the hardware’s private key. The logic of such
an authentication is that an attacker can easily forge a measurement, but an attacker
cannot compute a valid signature without knowing a valid hardware private key. A
hardware authentication scheme satisfying the design requirements, outlined in the
previous section, can provide both security and privacy for the remote attestation.

Client
Service Provider

I need a Digital Rights
Management key.

Can I trust you to protect
 this key?

Yes. I am running a trusted
execution environment:
here is my attestation.

Your attestation is good.
 Here is your DRM key.

Figure 1: An Example of Remote Attestation
Source: Intel Corporation, 2009

“We first describe remote anonymous

attestation and then discuss the

application in digital drivers’ licenses

and identity cards.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices | 101

The remote attestation problem was first introduced in the domain of a TPM, a
small hardware module integrated into a platform, such as a laptop or a desktop. A
direct anonymous attestation (DAA) scheme was developed by Brickell, Camenisch,
and Chen [4] for remote authentication of a TPM, while preserving the privacy
of the TPM. The DAA scheme was adopted by the Trusted Computing Group, an
industry standardization body that aims to develop and promote an open industry
standard for trusted computing hardware and software building blocks, and it was
included in TPM specification version 1.2 [11].

Note that the EPID scheme presented here is an extension of the DAA scheme
but has more revocation capabilities. Our EPID scheme has broader applicability
beyond the remote attestation of a TPM. Let us look at two concrete applications of
anonymous attestation.

Secure E-Commerce and On-line Banking
We now describe how EPID can be used for secure on-line banking. On-line
banking is increasingly popular and provides great convenience to end users.
However, the security of on-line banking is a concern, not only to end users but
also to the banks. If the end user runs a platform that has a trusted execution
environment and trusted I/O, the end user can conduct business in a relatively
secure environment. However, the bank does not know whether the user is running
in a secure environment. An anonymous attestation from the user’s platform to the
bank would give the bank more confidence that the transaction is secure.

For example, if a bank user performs some high-volume transactions, the bank
wants to make sure that the transactions are properly authorized. If the user runs a
trusted execution environment, the user can use the EPID scheme to anonymously
attest to the bank so that the bank can give a token to the platform for future
transactions.

The bank would know that the token was being secured in a trusted execution
environment. In later transactions, the user enters a password into the trusted
execution environment that unlocks the token so that the bank can authenticate the
user’s environment. This assures the bank of the authenticity of the transaction.

Content Protection
Here we describe how EPID can be used to protect content. An on-line media
server provides high-definition media content to clients. In order to download
media content, each client needs to first download a Digital Rights Management
(DRM) key from the server in order to decrypt the content. Before sending a DRM
key to the client, the server wants to know whether the client can protect its DRM
key. If the client has a hardware-based trusted execution environment and has a
unique EPID private key embedded, it can use EPID to perform an anonymous
attestation to the media server. After the attestation, the media server is convinced
that the client is indeed running a trusted execution environment and is not in fact
running a software emulator.

“An anonymous attestation from the
user’s platform to the bank would give
the bank more confidence that the

transaction is secure.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

102 | Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices

Observe that in this example, if an attacker corrupts one EPID private key from
a hardware device, the attacker may not publish the private key publicly. Instead,
the attacker may use the compromised private key to obtain a DRM key from
the media server. If the DRM key is found to be compromised on the Internet
(for example, in ripper software), it can be traced back to the EPID private key
that links it to the transaction that was used for provisioning the DRM key.
Consequently, the issuer can revoke the compromised private key, based on the
transaction of the key. This is an example in which the media server may wish
to be assured that it issues only one DRM key for each EPID private key. This is
accomplished through making the requests for DRM keys linkable to each other.
But these requests would not be linkable to any other transactions.

Drivers’ Licenses and Identity Cards
Various governments are considering including machine-readable information on
drivers’ licenses and identity cards. In the case of drivers’ licenses, the machine-
readable portion (for example, the bar code or magnetic strip) of the license is
readable to anyone with a license reader. Unfortunately, such an approach raises
serious privacy concerns, as personal information in the magnetic strip or bar code
can be easily gathered and then sold without the owner’s consent—potentially
leading to identity theft.

Encrypting the machine-readable portion of the license has also been proposed.
Such a practice poses significant key management challenges; the decryption must
be available to authorized parties only.

We describe how EPID can be applied to drivers’ licenses. Each license has an
embedded smart card chip that can store and process information. A card reader
is used to communicate with the license. The license is assigned a unique private
key when it is issued by the government department that oversees the licensing of
automobile drivers. It can be used for various purposes without violating the user’s
privacy. The smart card license would be able to prove to the reader that it is a valid
license and that it has not been revoked, suspended, reported lost, and so forth. The
smart card accomplishes this by using the proof of membership protocol; in this
way the identity of the license is not revealed.

Each government agency would have multiple groups capable of issuing of licenses.
During the process of proving its validity to a reader, a license reveals which license
group it is in, and it reveals whether or not it is a valid license in good standing. It
does not, however, reveal which license it is within that license group.

Using the EPID scheme, the membership proof is unlinkable. This means that if a
license is used at a restaurant, for example, and it is valid and issued to someone of
legal age, when that same license is used again at the same restaurant the next night,
the restaurant owners would not be able to tell that it was the same license that was
being presented. The restaurant owner is only acquainted with certain information:
the validity of the license and that the patron is of legal age.

“If an attacker corrupts one EPID

private key from a hardware device,

the attacker may not publish the

private key publicly.”

“The media server may wish to be
assured that it issues only one DRM

key for each EPID private key.”

“During the process of proving its
validity to a reader, a license reveals
which license group it is in, and it
reveals whether or not it is a valid
license in good standing.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices | 103

Overview of EPID
In our EPID scheme, there are three types of entities: issuer, members, and verifiers.
There are two revocation lists: a list of corrupted private keys, denoted as PRIV-RL,
and a list of signatures made from suspected extracted keys, denoted as SIG-RL. An
EPID scheme has the following operations:

1. Setup. The issuer creates a public key and an issuing private key. The issuer
publishes and distributes the public key to everyone (that is, to every
member and every verifier).

2. Join. This is an interactive protocol between an issuer and a member, the
result of which is that the member obtains a unique private key.

3. Sign. Given a message m and a SIG-RL, a member creates an EPID
signature on m by using its private key.

4. Verify. The verifier verifies the correctness of an EPID signature by using
the public key. The verifier also checks that the key used to generate the
signature has not been revoked in PRIV-RL or SIG-RL.

Figure 2 depicts the interaction flows between the issuer, a member, and a verifier.

Zero-knowledge Proofs
In our EPID scheme, we use zero-knowledge proofs of knowledge [10] extensively.
In a zero-knowledge proof system, a prover proves the knowledge of some secret
information to a verifier such that (1) the verifier is convinced of the proof and yet
(2) the proof does not leak any information about the secret to the verifier. In this
article, we use the following notation for proof of knowledge of discrete logarithms.
For example,

PK { (x) : y1 = g1
x y y2 = g2

x}

denotes a proof of knowledge of integer x such that y1 = g1
x and y2 = g2

x hold, where
x is known only to the prover, and g1, y1, g2, y2 are known to both the prover and
verifier. In the above equation, ‘PK’ stands for proof of knowledge and ‘ ’ stands for
logical conjunction.

Proof of knowledge protocols can be turned into signature schemes by using the
Fiat-Shamir heuristic [9]. In our EPID scheme, we develop several efficient zero-
knowledge proof protocols for proving the knowledge of a valid EPID private
key. In addition, we use an efficient zero-knowledge proof protocol developed by
Camenisch and Shoup [8] for proving the inequality of discrete logarithms of two
group elements y1, y2 to base z1, and z2, respectively, denoted as

PK { (x) : y1 = z1
x y2 ≠ z2

x}.

Issuer

Verifier

Member

Join Protocol

Member obtains a
unique private key

Sign

Member signs a message
using its private key

Verify

Verify checks the
signature using
the public key

Figure 2: Basic EPID Scheme
Source: Intel Corporation, 2009

“There are two revocation lists: a list
of corrupted private keys and a list
of signatures made from suspected
extracted keys.”

“The verifier is convinced of the proof

and yet the proof does not leak any

information about the secret to the

verifier.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

104 | Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices

Overview of Our Construction
We begin with a high-level overview of our construction. In our scheme, each
member chooses a unique membership key f. The issuer then issues a membership
credential on f in a blind fashion such that the issuer does not acquire knowledge
of the membership key f. The membership key and the membership credential
together form the private key of the member. To sign a signature, the member
proves in zero-knowledge that it has a membership credential on f. To verify a group
signature, the verifier verifies the zero-knowledge proof.

In addition, each member chooses a base value B and computes K = Bf. This
(B, K) pair serves the purpose of a revocation check. We call B the base and K the
pseudonym. To sign a signature, the member needs not only to prove that it has
a valid membership credential, but also to prove that it constructs the (B, K) pair
correctly, all in zero-knowledge.

In EPID, there are two options to compute the base B: the random base option and
the name base option.

•	 Random base option. B is chosen randomly each time by the member. Under
the decisional Diffie-Hellman assumption, no verifier can link two EPID
signatures based on the (B, K) pairs in the signatures.

•	 Name base option. B is derived from the verifier’s basename; for example,
B = Hash (verifier’s basename). Note that in this option, the value
K becomes a pseudonym of the member with regard to the verifier’s
basename, as the member will always use the same K in the EPID signature
to the verifier.

We first explain how membership can be revoked based on a compromised private
key. Given a private key that has been revealed to the public, the issuer extracts
the membership key f from the private key and inserts f into the private-key-based
revocation list PRIV-RL. The issuer then distributes PRIV-RL to all the verifiers.
Given an EPID signature, any verifier can check whether it was created with the
corrupted private keys in PRIV-RL as follows:

Let (B, K) be the base-pseudonym pair in the EPID signature. The verifier can
check that K ≠ Bf ' for every f ' in PRIV-RL. If there exists an f ' in PRIV-RL, such
that K = Bf ', it means that the signature was created with a revoked private key.
Therefore the verifier can reject the signature.

“The member needs not only to
prove that it has a valid membership
credential, but also to prove that it
constructs the (B, K) pair correctly, all
in zero-knowledge.”

“Membership can be revoked based on
a compromised private key.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices | 105

We now explain how membership is revoked, based on a transaction that a member
was involved in. We call this kind of revocation signature-based revocation. Suppose
a member’s private key has been compromised by an attacker and has been used
in some transaction. If the issuer has collected enough evidence to show that the
private key used in the transaction was corrupted, the issuer can identify the EPID
signature in the transaction and revoke the key, based on the signature. To do this,
the issuer extracts the (B, K) pair from the signature and inserts the pair into the
signature-based revocation list SIG-RL. The issuer then distributes the SIG-RL
to all the verifiers. Before a member performs the membership proof, the verifier
sends the latest SIG-RL to the member, so that the member can prove that it did
not perform those transactions. More specifically, the member proves that it is not
revoked in SIG-RL, by proving that, in zero-knowledge,

PK {(f) : K = Bf K' ≠ B'f}

for each (B', K') pair in SIG-RL. If the zero-knowledge proof holds, the verifier
is convinced that the member has not conducted those transactions and that
membership has not been revoked.

Sketch of EPID Scheme
We have developed two EPID schemes, one from the strong RSA assumption [7]
and the other from bilinear maps [6]. In this article, we briefly sketch the EPID
scheme from bilinear maps. (The full scheme can be found in [6]).

Let us first review some background on bilinear maps. Let G1 and G2 be two
multiplicative cyclic groups of prime order p. Let g1 be a generator of G1, and g2
be a generator of G2. We say e: G1 × G2 → GT is an admissible bilinear map
function, if it satisfies the following properties:

For all u G1, v G2, and for all integers a, b, equation e (ua, v b) = e (u, v) ab

holds. The result of e (g 1, g 2) is a generator of GT. There exists an efficient
algorithm for computing e (u, v) for any u G1, v G2.

“We call this kind of revocation
signature-based revocation.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

106 | Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices

Our EPID scheme is derived from Boneh, Boyen, and Shacham’s group signatures
scheme [2] and has the following operations:

Setup: The issuer does the following:

1. Chooses G1 and G2 of prime order p and a bilinear map function
e : G1 × G2 → GT.

2. Chooses a group G3 of prime order p with generator g3.

3. Chooses at random g1, h1, h2 G1 and g2 G2.

4. Chooses a random r [1, p-1] and computes w = g2
r.

The public key is (g1, g2, g3, h1, h2, w) and the issuing private key is r.

Join: The join protocol is an interactive protocol between the issuer and a member
as follows:

1. The member chooses at random f and y'from [0, p-1] and computes
T = h1

f h2
y'.

2. The member sends T to the issuer and performs the following proof of
knowledge to the issuer: PK { (f, y') : T = h1

f h2
y'}.

3. The issuer chooses at random x and y" from [0, p-1] and computes
A = (g1 T h2

y") 1 / (x + r).

4. The issuer sends (A, x, y") to the member.

5. The member computes y = y' + y"(mod p).
The member’s private key is (A, x, y, f).

Note that given a valid private key (A, x, y, f), the following equation satisfies:

e (A, g2
x w) = e (g1h1

f h2
y, g2).

Sign: Let (A, x, y, f) be the member’s private key. The member does the following:

1. If the random base option is used, the member chooses B at random from
G3.

2. If the name base option is used, the member computes B = Hash (verifier’s
basename).

Intel® Technology Journal | Volume 13, Issue 2, 2009

Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices | 107

3. Computes K = B f.

4. Computes the following zero-knowledge proof
PK { (A, x, y, f) : e (A, g2

xw) = e (g1h1
f h2

y, g2) K = B f }
This essentially proves that the member has a valid EPID private key issued
by the issuer.

5. Computes the following zero-knowledge proof

PK { (f) : K = B f K' ≠ B' f }

for each (B', K') pair in SIG-RL. This step proves that the member has not
been revoked in SIR-RL; that is, the member did not create those (B', K')
pairs in SIG-RL.

6. Converts all the above zero-knowledge proofs into a signature by using the
Fiat-Shamir heuristic [9].

Verify: Given the public key, PRIV-RL, SIG-RL, and an EPID signature, the
verifier does the following:

1. If the random base option is used, the verifier verifies that B is an element
in G3.

2. If the name base option is used, the verifier verifies that B = Hash (verifier’s
basename).

3. Verifies that K is an element in G3.

4. Verifies the following proof

PK { (A, x, y, f) : e (A, g2
xw) = e (g1h1

fh2
y, g2) K = B f }

This step verifies that the member has a valid EPID private key.

5. Verifies that K ≠ B f 'for each f' in PRIV-RL. This step verifies that the
member has not been revoked in PRIV-RL.

6. Verifies the following zero-knowledge proof

PK{(f) : K = B f K '≠ B ' f }

for each (B', K') pair in SIG-RL. This step verifies that the member has not
been revoked in SIG-RL.

Intel® Technology Journal | Volume 13, Issue 2, 2009

108 | Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices

Comparison with Other Techniques
There are other techniques to remotely authenticate hardware, and in this section
we review these techniques and compare them with our EPID scheme.

Public Key Infrastructure (PKI)
Each hardware device has a unique public and private key pair as well as a device
certificate. To authenticate hardware by using PKI, the device simply shows its
certificate to the verifier along with a signature created by using the device’s private
key. As mentioned previously, this PKI approach does not satisfy the privacy
requirement.

Direct Anonymous Attestation (DAA)
DAA was designed for anonymous attestation of TPM [4, 5]. DAA satisfies all the
design requirements of remote hardware authentication; however, it has limited
revocation capabilities compared to those of EPID. In the DAA scheme, there
are two options for a balance between linkability and revocation. If the random
base option is used, that is, a different base is used every time a DAA signature is
performed, then any two signatures by a device are unlinkable, but revocation only
works if the corrupted device private key has been revealed to the public. If a device
has been compromised, but its private key has not been distributed to the verifiers
(for example, if the corrupted device’s private key is still under the control of the
adversary), the corrupted TPM cannot be revoked. If the name base option is used,
then any two signatures produced by a device, using the same base, are linkable.
Thus, if the verifier determines that a device private key, used in a signature, has
been compromised, that verifier can revoke that key locally; that is, the verifier can
reject all future signatures generated by that private key, without knowledge of the
compromised private key. However, the verifier cannot tell if a different verifier uses
a different name base to revoke that private key, because when a different name is
used, the revoked key cannot be identified. Furthermore, the name-based option
does not safeguard privacy, because the verifier can link the transactions.

Group Signatures (GS)
A group signature scheme [1, 2] has similar properties to those of the EPID scheme.
In a group signature scheme, an issuer creates a group public key and issues unique
private keys to each group member. Each group member can use the private key to
sign a message, and the resulting signature is called a group signature. The verifier
can verify a group signature by using the group public key. Unlike EPID, group
signature schemes have an additional property called traceability. This property
enables the issuer to open any group signature and identify the actual group
member who created the signature. In other words, a group signature is anonymous
to the verifiers but not to the issuer. Again, as compared to this scheme, EPID keeps
the identity of the group member from the issuer.

“In a group signature scheme, an

issuer creates a group public key and

issues unique private keys to each

group member.”

“This PKI approach does not satisfy
the privacy requirement.”

“DAA satisfies all the design

requirements of remote hardware

authentication; however, it has limited

revocation capabilities compared to

those of EPID.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices | 109

Pseudonym System (PS)
The pseudonym system [3], designed by Brands, can also be used for remote
hardware authentication. In the pseudonym system, the display of a credential is
anonymous by virtue of the fact that efficient zero-knowledge proof techniques
are used for proving relations among committed values. To use the pseudonym
system for hardware authentication, each hardware device obtains a credential
from the issuer and uses the pseudonym credential for proof of membership.
However, a credential in that system is linkable for multiple displays. To be
unlinkable, a hardware device has to get multiple credentials from the issuer and
use one credential at a time. This approach has limited application for hardware
authentication, as the hardware device may never be able connect back to the issuer
(the device manufacturer) once it has been produced. Thus, it cannot maintain the
unlinkable property by continuing to get new credentials from the issuer.

Summary
In Table 1, we summarize a comparison between different approaches to the remote
hardware authentication problem. The EPID scheme is the only scheme that
satisfies all the design requirements mentioned earlier.

Properties PKI DAA Group
Signatures

Pseudonym
System

EPID

Unique Public Key Yes No No No No
Unique Private Key Yes Yes Yes Yes Yes
Anonymous No Yes Yes Yes Yes
Unlinkable No Yes Yes No Yes
Issuer Untraceable No Yes No Yes Yes
Private-Key Revocation Yes Yes Yes Yes Yes
Signature Revocation Yes No No Yes Yes

Table 1: Approaches to Remote Hardware Authentication
Source: Intel Corporation, 2009

“To use the pseudonym system
for hardware authentication,
each hardware device obtains a
credential from the issuer and uses
the pseudonym credential for proof of
membership.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

110 | Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices

References

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. “A practical and
provably secure coalition-resistant group signature scheme.” In Advances
in Cryptology—Crypto, Volume 1880 of Lecture Notes in Computer Science,
pages 255–270, 2000.

[2] D. Boneh, X. Boyen, and H. Shacham. “Short group signatures.”
In Advances in Cryptology—Crypto, Volume 3152 of Lecture Notes in
Computer Science, pages 41–55, 2004.

[3] S. Brands. Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge, MA, 2000.

[4] E. Brickell, J. Camenisch, and L. Chen. “Direct Anonymous Attestation.”
In Proceedings of the 11th ACM Conference on Computer and
Communications Security, pages 132–145, 2004.

[5] E. Brickell, L. Chen, and J. Li. “A New Direct Anonymous Attestation
Scheme from Bilinear Maps.” In Proceedings of 1st International Conference
on Trusted Computing, Volume 4968 of Lecture Notes in Computer Science,
pages 166–178, 2008.

[6] E. Brickell and J. Li. “Enhanced Privacy ID from Bilinear Pairing.”
Cryptology ePrint Archive, Report 2009/095, 2009.

[7] E. Brickell and J. Li. “Enhanced Privacy ID: a Direct Anonymous
Attestation Scheme with Enhanced Revocation Capabilities.” In
Proceedings of the 6th ACM Workshop on Privacy in the Electronic Society,
pages 21–30, 2007.

[8] J. Camenisch and V. Shoup. “Practical Verifiable Encryption and
Decryption of Discrete Logarithms.” In Advances in Cryptology—Crypto,
Volume 2729 of Lecture Notes in Computer Science, pages 126–144, 2003.

[9] A. Fiat and A. Shamir. “How to Prove Yourself: Practical Solutions to
Identification and Signature Problems.” In Advances in Cryptology—Crypto,
Volume 263 of Lecture Notes in Computer Science, pages 186–194, 1987.

[10] O. Goldreich, S. Micali, and A. Wigderson. “Proofs that Yield Nothing but
their Validity.” Journal of the ACM, Volume 38(3), pages 690-728, 1991.

[11] Trusted Computing Group. “TCG TPM Specification 1.2,” 2003,
http://www.trustedcomputinggroup.org

Intel® Technology Journal | Volume 13, Issue 2, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices | 111

Author Biographies
Ernie Brickell is a Senior Principal Engineer and Chief Security Architect at Intel,
responsible for the design and analysis of Intel security architectures. He has
numerous designs for security and privacy features that have been incorporated
into Intel products. He is a co-inventor of the EPID protocol, which provides
privacy-preserving authentication. He has published many papers on cryptographic
protocols and cryptanalysis. He was the founding editor-in-chief of the Journal
of Cryptology. He has worked on privacy protocols, secret sharing, authentication
theory, electronic cash, fast implementations of cryptographic algorithms, and the
design and cryptanalysis of several public key cryptographic systems. He holds an
M.S. degree in Computer Science and a Ph.D. degree in Mathematics from the
Ohio State University. He previously worked at Sandia National Laboratories,
Bellcore, and CertCo. His e-mail is ernie.brickell at intel.com.

Jiangtao Li is a Security Architect at Intel. He obtained a Ph.D. degree in Computer
Science from Purdue University and a B.S. degree in Computer Science from the
University of Science and Technology of China. He joined Intel in 2006 and has
participated in designing several security features that have been incorporated into
Intel products. He is one of the inventors of the EPID protocol, which provides
privacy-preserving authentication. He has published more than twenty papers on
applied cryptography, information security, and privacy-enhancing technologies.
His e-mail is jiangtao.li at intel.com.

112 | Network Security: Challenges and Solutions

Contributors

Intel® Technology Journal | Volume 13, Issue 2, 2009

Index Words

NETWoRK SECURITY: CHALLENgES AND SoLUTIoNS

Linden Cornett
Intel Corporation

Ken Grewal
Intel Corporation

Men Long
Intel Corporation

Marc Millier
Intel Corporation

Steve Williams
Intel Corporation

Abstract
Virus and worm attacks are on the rise, along with the exploitation of equipment
vulnerabilities and the use of social engineering to attack corporate networks. The
resulting data breaches allow the theft and misuse of personal and corporate data at
a cost of millions of dollars. In addition, network traffic is increasing due to factors
such as high-speed networks, service-orientated cloud computing, remote storage,
and ever-increasing numbers of client devices. This increase in traffic, combined
with the increased demand for data accessibility, places a greater emphasis on the
need for network and protocol security. Industry-standard network admission
control (NAC) frameworks provide one-time authentication and authorization, but
fail to protect the subsequent data flows.

In this article we first explore the motivation for protocol security solutions, ones
that are capable of protecting data in transit. We describe several solutions, at
various layers of the open systems interconnection (OSI) stack, addressing several
key network and platform threats. We compare and contrast the benefits and
shortcomings of each. We then describe several new network security offerings
from Intel and discuss these in detail. We conclude with a summary of future
requirements for protocol security.

Introduction
Network security has become more important than ever in our lives as more and
more of our private and valuable information moves around on data networks.
These data include not merely our financial information, as in the case of an
on-line order that includes a credit card number, but they also, increasingly, include
medical information that travels among doctors, hospitals, and insurance providers;
and personal information that travels among friends and to or from our employers.
It is clear that unprotected networks leak data both out of the network as well as
into it. It is no longer enough to protect data only at the computer and while in
storage. We must protect data while in transit.

We are members of the community at Intel that is addressing the needs for security
in the network by actively researching new solutions to network security issues,
by participating in industry standardization efforts that allow network security
solutions to be adopted widely, and by introducing new products that implement
these solutions.

“Unprotected networks leak data both

out of the network as well as into it.”

Network
Protocol
Security
Offload
IPsec

Network Security: Challenges and Solutions | 113

Intel® Technology Journal | Volume 13, Issue 2, 2009

Why Network Security?
We are not saying anything new when we say that security in the information
technology (IT) infrastructure is a current and growing concern. By security we
mean preventing unauthorized access to data while ensuring accurate authorized
access to data, without interference. By IT infrastructure we mean the IT network
within the enterprise firewall, as well as the outreach from the enterprise IT network
across the Internet cloud.

The situation is stark. What started out ten and more years ago as hobby-hacking
into primitively protected IT assets has morphed into for-profit theft of information
from corporations, governments, and private citizens that threaten the real and
perceived reliability and safety of the Internet and all the networks connected to it.

It is not necessary to cite a list of network security breaches to make this point.
They are familiar to most readers of this article, as is the fact that these breaches can
cost victim enterprises tens of millions of dollars; moreover, they cause smaller-scale
but personally damaging losses to private Internet users.

This issue of the Intel Technology Journal focuses on data security, both at the
platform level and also at the network level. In this article we focus on network
and protocol security—specifically, the protection of bits in flight. There are several
families of network threats that should be stopped before they ever reach the data
and applications they are attacking. They include the following:

Eavesdropping, or unauthorized access to data as they flow through the network.
Before the advent of switches, networks were breached by monitoring Ethernet
traffic flowing through a hub. With the advent of switches, eavesdropping has
become only slightly more difficult. Many switches allow listening to network
traffic by putting one of the switch ports into monitor mode. Monitor mode is a
legitimate means of trouble-shooting a network, but it also makes the network
vulnerable to anyone with access to the switch. It is also possible to eavesdrop
on fiber networks by creating a bend in a multi-mode fiber carrying network
traffic. The bend allows enough light to escape the fiber, thus making it possible
to eavesdrop on the network. Wireless networks have become predominant in
accessing the Internet and intranet by using the wireless medium as the first hop.
Historically, wireless networks afforded little security and could easily be snooped
and spoofed by someone within range of the wireless access point (AP). In the
last few years, a whole suite of wireless security standards have been introduced
and widely deployed; they offer data authenticity as well as data confidentiality to
wireless connections, from a given device to immediate Layer 2 neighbors, such as
an AP. These standards are defined by IEEE. One of the most predominant wireless
security standards is 802.11i, with numerous other 802.11 derivative standards
already defined or in the process of being defined. These standards offer additional
security services on wireless networks.

“It is also possible to eavesdrop on
fiber networks by creating a bend in
a multi-mode fiber carrying network
traffic.”

“What started out ten and more years
ago as hobby-hacking has morphed
into for-profit theft.”

“We focus on network and protocol
security—specifically, the protection of
bits in flight.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

114 | Network Security: Challenges and Solutions

Inserting malicious software into the network communications stack. The software that
supports data communication in any of the several devices in any data path on the
Internet is typically organized into layers. Each layer performs a different function
or transforms the data as they pass through the layered software stack. If an attacker
can manage to get a piece of malicious software inserted amongst these layers,
the attacker may be able to eavesdrop or even inject malicious software into other
systems in the communications path.

Illegitimate access to data masquerading as legitimate access. Legitimate users access
data legitimately. If a hacker can trick a protected network into granting access, or
piggy-back onto otherwise legitimate access, the hacker can have the same access as
a legitimate user.

Network Defense
The defense against these threats is handled today by employing numerous security
technologies, including physical and network access control (NAC) and anti-virus
services on the platform and within the network. In the network, enterprises today
employ network appliances at some boundary of the enterprise IT infrastructure to
separate the outside untrusted area of the network, including the Internet, from the
inside, trusted, often physically secured, portion of the network. These appliances
detect and prevent intrusion from the Internet, scan incoming packets for viruses
and other malware, and defend against denial of service attacks. This defense by
appliance is working less effectively for several reasons. Firstly, many attacks come
from within the defensive perimeter, from sources that should be able to be trusted,
including internal employees and contractors. Secondly, it is more and more
common to open ports through the perimeter defenses to provide for access to
certain types of traffic streams, such as HTTP, FTP, and so on. Alas, attacks can be
designed to penetrate these holes in the wall.

As a result of these intrusions, the IT-protected perimeter is being moved closer to
the assets, that is, the servers and the storage that it is meant to protect. More and
more access, even from within the enterprise, is being routed through intrusion
detection and prevention appliances, and the unprotected portion of the network
between defense and assets is getting thinner. The logical extension of this is
to define the perimeter right at the sheet metal around the servers themselves.
This would mean mounting an in-depth defense of each and every server in the
enterprise. Such a solution is not practical in today’s computing world, given
the protection burden already on enterprises. Compute resources diverted from
productive work and into defensive work would place a bigger burden on each
server.

“Enterprises today employ network

appliances that separate the outside,

untrusted area of the network from the

inside, trusted portion of the network.”

“The unprotected portion of the

network between defense and assets is

getting thinner.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Network Security: Challenges and Solutions | 115

One alternative to reducing the defensive work burden on each server is to build
some level of protection into the communications protocols themselves, virtually
allowing the data to protect themselves as they move around the network within
the enterprise and across the Internet. In a sense, partial protection of this type
is in wide use today. Virtual private networks (VPNs), for example, create a
protective tunnel in which data are encrypted as they move between enterprise
sites and between enterprise sites and remote hosts operating in the Internet. VPNs
have been used effectively for years, but they still do not protect data flowing
unprotected within the IT defensive perimeter, and they are often inconvenient to
use for users of remote hosts.

End-to-End Network Security
In this article we discuss protocol-based protection mechanisms that can provide
end-to-end (E2E) protection of the data connections. Protection can be designed
to terminate at various levels of the open systems interconnection (OSI) stack,
depending on the requirements and scope of the protection and the value of the
assets to be protected in flight. Some of these mechanisms are already in use, if not
necessarily wide use, today. These include SSL/TLS protocols, commonly used to
protect remote banking and commerce applications. All of these protocol security
mechanisms also have their issues. These uses, benefits, and issues are the focus of
this article.

Protocol Security
Protocol security is a generic term that is used to describe cryptographic services
offered to network data packets. Data flow within a given network can take many
forms and can be differentiated by the services being provided within the network.
These can range from communications protocols that manage the network services,
ad-hoc messaging between different nodes in the network, establishing distinct
sessions and flows between two or more nodes within the network for the purposes
of communicating pieces of data between these nodes, as well as a number of other
network or end-host tasks. Many of these services can be mapped to different layers
in the OSI reference model.

The OSI model abstracts out the network architecture into multiple layers where
each layer performs a logical function and interacts with layers below and above it.
The higher layers in this model rely on the services provided by the lower layers,
with a guarantee of what these services are, without having to understand how these
services may be provided. An example of this model is seen in how the transport
layer TCP protocol provides connection-orientated services to a higher layer, while
relying on network services from the IP layer below it. The IP layer, in turn, relies
on the data link layer and physical layers below it to provide further services. These
services may be dependent on the underlying communications medium, without
needing any information on that underlying medium.

“Protection can be designed to
terminate at various levels of the open
systems interconnection (OSI) stack.”

“One alternative to reducing the

defensive work burden on each server

is to build some level of protection

into the communications protocols

themselves.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

116 | Network Security: Challenges and Solutions

In the context of protocol security, we describe three specific examples of the
security offered at different layers of the OSI model. These are link layer security
(Linksec) operating at Layer 2, IP layer security (IPsec) operating at Layer 3, and
transport layer security (TLS) operating at Layer 5 and above. Although other
security standards, such as 802.11i, are also available to offer protection to wireless
connections, these are not described in detail in this article, as we primarily focus
on higher layer E2E security offerings, such as IPsec.

What these protocol security solutions, or simply security protocols, have in
common is that they are typically divided into two components: control channel
and data channel. The control channel provides the negotiation and agreement
on using a given security protocol, together with the associated attributes for
that protocol. The data channel employs the negotiated attributes in the control
channel to protect any subsequent communications, dependent on the scope
of the negotiated policy and the security protocol employed, between the set of
nodes that negotiated the security protocol. The control channel negotiates various
attributes, including which data to protect: Layer-2 MAC addresses, Layer-3 IP
addresses, or Layer-4+ sessions based on ports. The control channel also provides
information on how to protect these data. Included in this information are the
version of a given protocol to use that can impact packet formatting, the agreed-
upon mode of operation, the different modes that may be supported by different
security protocols (for example, encapsulating security protocol (ESP) [1] versus
authentication header (AH) [2] in IPsec), the cryptographic algorithms to employ,
and some miscellaneous attributes, such as replay protection, lifetime of the security
association (SA), and identifiers that are carried in the packet to allow the recipient
to map the security provided in the packet to a given negotiated policy. In contrast,
the data path provides an implementation of how to provide the negotiated services,
such as packet formatting and the cryptographic services.

The cryptographic services typically fall into these categories: data confidentiality
and data authenticity (also known as data integrity). Optionally, replay protection
may also be provided (which is protocol dependent) to ensure that previously
processed packets are not processed again, due to retransmissions or resubmissions
by an adversary who is trying to disrupt communications and realize malicious
intent. These cryptographic services in the data path typically leverage symmetric
cryptographic algorithms for efficiency. Some examples of such algorithms include
the advanced encryption standard (AES), HMAC-SHA1, 3DES, and GMAC. Each
specific algorithm may have different attributes for the security services provided,
the performance criteria, as well as for associated cost, all of which need to be
considered when using these algorithms within different security protocols.

With these commonalities in mind, we look at some examples of the different
security protocols employed today. The relative positions of the various network
security protocols are shown in Figure 1.

Node 1 Security
Protocol

Application

Presentation

Session

Transport

Network

Data Link

Physical

TLS/SSL

IPsec

LinkSec

Encrypted Data Flow

Node 2

Application

Presentation

Session

Transport

Network

Data Link

Physical

Implementation

Application
HTTP, FTP,

etc.

TCP, UDP,
etc.

IP

MAC

PHY

Figure 1: Security Protocols, the oSI Model, and
Implementations
Source: Intel Corporation, 2009

“Security protocols are typically

divided into two components: control

channel and data channel.”

“Three examples are link layer security
(Linksec) operating at Layer 2, IP
layer security (IPsec) operating at
Layer 3, and transport layer security
(TLS) operating at Layer 5 and
above.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Network Security: Challenges and Solutions | 117

Linksec Protocol
Linksec is employed at Layer 2 of the OSI stack and protects Layer-2 frames.
Linksec is an IEEE standard, as defined by IEEE 802.1AE [3] and 802.1X-Rev [4].
802.1AE (also known as Media Access Control Security or MACsec) provides the
data path protection, while 802.1X-Rev (at least part of it) provides the control
channel handshake for 802.1AE. Linksec is used to provide protection in wired
networks and is logically and functionally equivalent to the IEEE wireless standard
802.11i, as well as other associated 802.11 specifications. Because this is a Layer-2
(MAC) security protocol, it provides security services on a hop-by-hop (HxH)
basis, thereby protecting the Layer-2 MAC header and the associated payloads. This
means that Linksec cannot provide any E2E guarantees for data traffic, but instead
protects access to a given network for each hop.

At each hop of the data path, a secured Linksec session must terminate, at which
point the packet is validated for integrity and deciphered, before it is allowed to go
on to the next hop. The next hop may or may not offer Linksec protection, based
on the negotiated policy for that particular hop. Because Linksec is HxH, it can
be independently and incrementally deployed within the network for each hop,
without it having an impact on what is happening at a previous or subsequent
hop. Furthermore, because this is a Layer-2 HxH protocol, it allows intermediate
network appliance devices, such as a firewall, an intrusion detection and intrusion
prevention system (IDS/IPS), and any network monitoring, diagnostic and auditing
tools to function unhindered, by connecting between adjacent hops of a Linksec
secured connection. These devices need not be aware of the security provided on
the previous or subsequent hops, and they can operate on clear text data within
two adjacently secured nodes to offer valuable network service—as they do today.
On any given hop, Linksec may be employed between two adjacent nodes or in a
group scenario, where multicast and broadcast communication are employed. The
data channel attributes of a Linksec session (MACsec) are negotiated via the control
channel handshake, by using 802.1X-Rev (or alternatively, the attributes may be
configured manually or communicated via a separate proprietary protocol).

IPsec
In contrast to Linksec, IPsec is an E2E security protocol. IPsec operates at Layer 3
(IP layer) of the OSI model and provides E2E data authenticity and optional
data confidentiality. IPsec is an IETF-defined set of specifications and supports
two protocols, ESP and AH. ESP provides data authenticity and, optionally, data
confidentiality. AH provides data authenticity only. Other optimizations, such as
data compression (IPCOMP), may also be negotiated and employed with IPsec to
reduce the amount of data transmitted over the network. ESP and AH provide the
data channel functions for IPsec, and the control channel handshake is provided by
a separate protocol called the Internet Key Exchange (IKE) [5]. Today, AH is rarely
used, due to the requirement of providing data integrity protection for a whole IP
packet, including the IP header. Such a requirement results in the integrity value
being invalidated in a network address translation (NAT) [6, 7] environment,
where IP and ports (or IP or ports) may be mapped to externally visible values that
differ from those employed internally within a given domain and host, or within a
given domain or host.

“Because this is a Layer-2 HxH
protocol, it allows intermediate
network appliance devices, such as a
firewall, to function unhindered.”

“Linksec is used to provide protection
in wired networks and is logically
and functionally equivalent to the
IEEE wireless standard 802.11i,
as well as other associated 802.11
specifications.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

118 | Network Security: Challenges and Solutions

In addition to supporting the two protocols, IPsec also supports two modes of
operation: tunnel and transport. Tunnel mode is typically used in VPNs and remote
access scenarios, where a given device can tunnel into a given network (such as
the corporate network), while physically residing outside of that network. VPNs
are typically constructed from a client to a VPN gateway, or by connecting one
VPN gateway to another VPN gateway in order to securely connect two physically
separate network domains and make them appear as a single, logical network. For
network communication purposes, the VPN allows remote nodes to appear as if
they are physically located on the target network.

Because IPsec operates at Layer 3 of the OSI model, it is media independent and
can therefore be employed over any underlying physical media, from wireless
networks to traditional Token Ring networks, to Ethernet networks, and to future
optical networks. The main benefit of employing IPsec is that it provides E2E data
authenticity assurances for any upper-layer protocol built on top of IP, thus making
it generic in protecting all network layer traffic. The IPsec specifications support
both IPv4- and IPv6-based security.

The Secure Sockets Layer and Transport Layer Security Protocol
Secure sockets layer (SSL) and transport layer security (TLS) are other E2E security
protocols, but they are limited to providing security services to TCP payloads only.
SSL is the first generation of this protocol, and TLS is the second generation. For all
intents and purposes, the two protocols are synonymous, and all future references
will be to TLS only. As the majority of Internet traffic today is TCP based, TLS
was architected to simply provide protection for TCP-based communications. The
creation of higher-layer protocols, such as HTTP, to convey rich data between
producers and consumers of these data, resulted in a desire to further protect these
data from casual eavesdropping and modification; this resulted in the creation
of TLS. When TLS is used in conjunction with HTTP, it is typically denoted as
secure HTTP or simply HTTPS. TLS has also been natively embedded into most
web servers and clients, further increasing its use and popularity, such that it is the
predominant security protocol employed today.

These three security protocols are complementary in nature, and all of them can
be employed at different, or at the same, network nodes to offer different security
services. For example, Linksec may be employed to control network access, perhaps
at a device level (although it can be also pertinent to authenticate the user) in order
to ensure that an authorized device is connecting to a given network. IPsec may
be employed on top of the Linksec connection to either connect back to a private
domain (for example, by using a VPN) or to directly connect back to a server
being accessed. This provides access control at the domain or machine (server)
level to ensure that only authorized devices and users are connecting to authorized
resources. Additionally, TLS may be employed on top of IPsec (and Linksec) to
provide application-level guarantees for authorized access control from a given user
or machine. As these protocols are at different layers of the network stack, they
are complementary in nature and may be employed simultaneously (even if each
service is being offered by a different service provider) to ensure that cryptographic
guarantees are provided independently for each level of access within the network
stack (even though these may physically terminate at different network points).
Figure 1 illustrates how these protocols reside in a simplified OSI stack.

“The main benefit of employing

IPsec is that it provides E2E data

authenticity assurances for any upper-

layer protocol built on top of IP.”

“TLS was architected to simply

provide protection for TCP-based

communications.”

“IPsec also supports two modes of
operation: tunnel and transport.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Network Security: Challenges and Solutions | 119

How Protocol Security is Implemented and Provisioned
It is our belief that in most production network stacks, protocol security will be
provisioned independently for each layer of the OSI stack. For example, link layer
(Layer-2) security will be implemented in the network controller (that is, in the
Ethernet network adapter). In contrast, network layer (Layer-3) encryption and
authenticity will likely be provisioned either in the hardware or in the software
stack, depending on the network layer offloads provided by the network device
and the end-station platform. When implemented in the network stack, the
cryptography can be optimized (offloaded) by using an accelerator capability in
the platform, either as an add-in device or as instruction set improvements in
the processor(s). Due to the nature of current protocol standards, transport- and
application-layer security is difficult to offload to a network adapter, and thus
it is and is likely to be implemented in software, perhaps by using platform or
device acceleration, such as the new cryptographic instruction set, which is briefly
described later, and also described in another article in this issue of the Intel
Technology Journal.

In the remainder of this article, we focus on network-layer security that can provide
efficient E2E confidentiality and authenticity protection that is transparent to the
applications. The most relevant network layer security protocols are collectively
known as IP Security or IPsec.

Software Requirements/Stack
Internet protocol (IP) security, or IPsec, is implemented as a substitute network
layer for the IP v4 or v6. This alternate layer receives encrypted packets or
authenticated packets from the link layer, and it performs the appropriate
cryptographic operations on those packets. If the cryptography is successful, the
transport layer headers and payload are then passed up the stack as validated plain
text data. The upper layers of the stack need not be (and are not) aware of the
security provided by the IPsec layer.

Because the required cryptographic operations are computationally expensive,
deployment of IPsec security in high-bandwidth-use models has been limited. These
applications need hardware acceleration to be feasible.

Hardware Offload and Acceleration
As noted in the introduction to this section, the unloading of the cryptographic
overhead from the main CPU is typically accomplished in one of two ways.

First, specialized devices can be used as cryptographic accelerators. In the accelerator
model, the network device delivers the encrypted and authenticated packet to a
software stack that has been enabled to make use of the accelerator. This can provide
significant performance enhancements over software-only implementations. A
similar acceleration can be realized, by using specialized instructions in the platform
processor that accelerate cryptographic algorithms, without the need for specialized
add-in devices. In the following section we highlight our efforts in this area.

“Because the required cryptographic
operations are computationally
expensive, deployment of IPsec security
in high-bandwidth-use models has
been limited.”

“Cryptography can be optimized by
using an accelerator capability in the
platform, either as an add-in device or
as instruction set improvements in the
processor(s).”

Intel® Technology Journal | Volume 13, Issue 2, 2009

120 | Network Security: Challenges and Solutions

The cryptographic performance realized from an accelerator architecture may not
be complete, because it cannot provide the other services that are typically offered
by a network adaptor. Modern network adapters provide several network offloads
that cannot be performed on encrypted traffic. On the transmit side, these offloads
include TCP segmentation offload (TSO), sometimes known as large send offload
or LSO.

On the receive side, the offloads include receive side scaling (RSS) to distribute
the cost of network processing across multiple cores or CPUs. Advanced offloads
such as receive side coalescing for TCP streams are also disabled by encrypted and
authenticated traffic.

An accelerator architecture provides a large benefit in enabling secure, high-
bandwidth use cases. Because of the loss of higher-level network offloads, this
architecture does not completely offset the overhead cost of cryptographically secure
traffic in the end-station.

An alternative to an accelerator architecture is to provide cryptographic offload in
the network controller itself. In such an implementation, the network adapter has
a cryptographic engine that is coordinated with the software stack to perform the
required operations, as the data are received from and transmitted to the network.
The received packets are handed to the software stack already validated and
decrypted, along with an indication of the success or failure of the cryptographic
operation. Likewise, the packets for transmission are passed down to the device
in the clear, and the device is requested to do the cryptographic operations during
transmission. By performing the security operations in the data plane of the
network device, the valuable higher-level offloads provided by the network adapter
can still be performed, and the performance impact of providing E2E security can
theoretically be eliminated.

Cryptographic Algorithms and Modes
Whether accelerated or implemented purely in software, IPsec stacks implement a
variety of algorithms and cryptographic modes of operation. These are negotiated
between communicating hosts during the initial setup of the security association
(SA).

Several common algorithms used for IPsec have come and gone over the years.
Initially the encryption algorithm of choice was the data encryption standard
(DES) as defined in the Federal Information Processing Standards (FIPS). It was
later found that the 56-bit key used for DES was not robust enough, and the
standard was modified to specify Triple DES as a more secure algorithm. On the
authentication side, the secure hash algorithm (SHA) was promulgated as a FIPS
standard, but was similarly deprecated in favor of a new SHA algorithm (SHA-2 or
SHA-256/SHA-512). In 1997, the National Institute of Standards put out a request
for candidate replacements for DES (called AES). The winning algorithm was one
developed by Joan Daemon and Vincent Rijmen and was called Rijndael. AES is
now the standard encryption algorithm in protocol security for many cryptographic
protocols, including Linksec, IPsec, and TLS.

“An accelerator architecture does not

completely offset the overhead cost of

cryptographically secure traffic in the

end-station.”

“Several common algorithms used for

IPsec have come and gone over the

years.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Network Security: Challenges and Solutions | 121

AES can be used for IPsec in multiple modes. The most common mode currently
employed is called cipher block chaining (CBC) mode. In this mode, there is an
initial value (IV) used as input to the encryption of each 16-byte block of data. For
the first block, a random IV is used. For subsequent blocks, the IV is the cipher
text of the previous block. This technique obscures the presence of long strings of
identical values in the plain text.

Alternatively, the AES algorithm (as well as other encryption algorithms) can be
used in counter mode. As in CBC mode, counter modes use an IV, but the IV is
treated as a 128-bit counter that is encrypted and then bitwise XOR’d with the
plain text to produce the cipher text. By encrypting a counter (rather than the
plain text), counter mode can be implemented in hardware much more efficiently
because, in hardware, the input counters to the cryptographic engine can be issued
in a pipeline manner. In addition, for AES, counter mode encryption can be
combined with a carry-less multiply (called a Galois Field multiply) to provide a
message authentication code, along with the cipher text of the packet in a single
pass over the plain text. This combined mode of AES is known as AES-GCM and
has significant performance advantages over other encryption and authentication
algorithms.

The proliferation of algorithms and modes for IPsec has contributed significantly to
the perception that IPsec is too complex to deploy in real networks. This complexity
is significantly reduced by the fact that the algorithms and modes are negotiated
between the parties in the secure connection and need not be manually configured
by users.

Protocol Security Initiatives at Intel
Intel is addressing the area of protocol security in several ways. In upcoming
microprocessors, Intel has announced that it will provide new instructions that
promise greatly accelerated cryptographic operations on the platform. The Intel
cryptographic instructions provide significant performance enhancements when
compared to implementations that use conventional x86 instructions. The AES
instructions [8] accelerate implementations of the AES algorithm. When paired
with another new instruction, PCLMULQDQ, the full AES suite of AES-CBC
encryption, as well as AES-GCM and GMAC, has dramatically less overhead than
leveraging two discrete cryptographic algorithms, one for data confidentiality and
another for data authenticity. These instructions are useful for all cryptographic
operations on the platform, including network security that uses IPsec.

This AES instruction set includes six Intel SSE instructions. Four instructions
(AESENC, AESENCLAST, AESDEC, and AESDELAST) support the high-
performance AES encryption and decryption; the other two instructions (AESIMC
and AESKEYGENASSIST) facilitate the AES key expansion procedure.

“Intel has announced that it will
provide new instructions that promise
greatly accelerated cryptographic
operations on the platform.”

“AES-GCM has significant
performance advantages over other
encryption and authentication
algorithms.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

122 | Network Security: Challenges and Solutions

One example scenario is where multiple blocks (16 bytes per block) are encrypted
by the same key in AES-128. In this scenario, we store eight data blocks in memory,
and a round key is also loaded into a separate memory area. For each round, eight
AES round instructions are issued, operating on the eight data blocks with the same
round key. Then, the next round key is loaded. The eight blocks encryption results
are finally stored into memory. In a nutshell, the code computes one AES round on
all eight blocks, using one round key, and then continues to the next round (using
the next round key).

In the NIC offload, the difference is that the dedicated circuit does all the above
operations on the key expansion and data-path encryption. The offload engine has a
dedicated CAM and SRAM to store thousands of keys for different SAs. Receiving
an encrypted packet, the crypto circuit extracts certain identifiers from the packet
and uses them to quickly look up the corresponding key. Then the key and the
cipher text blocks are fed into the dedicated AES pipeline engine for the decryption
operations. The dedicated crypto circuit can flexibly handle all scenarios on the SAs:
back-to-back packets from the same SAs (one key encrypting many data blocks);
and a mixture of packets from different SAs (many keys encrypting many data
blocks).

Intel is also developing network controllers that offload AES-GCM in the
data plane. This provides the performance benefits described earlier as well
as the authentication and cryptographic operations for MACsec/Linksec
(802.1AE/802.1X-Rev). The industry is currently beginning to enable Linksec, and
Intel’s adapters are ready to process that traffic when it becomes available. IPsec, on
the other hand, has been in the industry for many years, but has recently gained
additional attention due to its ability to protect network traffic, independent of
specific applications.

IPsec Offload
In order to address the problem of network layer cryptography, Intel’s networking
group has developed two products that provide data-plane offload of IPsec traffic.
The first available product, the Intel® 82576EB Gigabit Ethernet controller, code
name Kawela, is a 1-Gb Ethernet solution that became available in mid-2008. The
second product, the Intel® 82599EB 10 Gigabit Ethernet controller, codename
Niantic, is a 10-Gb Ethernet solution that was first available in 2009. There are only
minor differences between the feature sets of these two products. In the remainder
of this article we focus on the Intel 82599EB 10 Gigabit Ethernet controller.

The Intel 82599EB 10 Gigabit Ethernet controller is designed to work with the
Microsoft* IPsec Task Offload interface to offload the cryptographic operations for
specific IPsec streams. All of the control plane operations remain with the operating
system (OS).

“The industry is currently beginning

to enable Linksec, and Intel’s adapters

are ready to process that traffic when it

becomes available.”

“The Intel 82599EB 10 Gigabit

Ethernet controller is designed to work

with the Microsoft* IPsec Task Offload

interface.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Network Security: Challenges and Solutions | 123

Both controllers only offload the AES-GCM encryption and authentication
algorithm and modes. The GCM mode of AES is optimal for implementation in
silicon. Other modes of AES (that is, CBC mode) and other algorithms (3DES)
are expensive to implement in hardware for high-speed network devices. As
the algorithm and modes of IPsec are negotiated at session startup, the optimal
algorithms for the communicating hosts can be selected.

When the driver loads for the Intel 82599EB 10 Gigabit Ethernet controller,
the OS queries the IPsec offload characteristics to determine which algorithms
are supported and how many flows may be offloaded. After an IPsec connection
has been established and the keys negotiated, the OS may choose to offload the
SA to the controller. Two sets of keys are passed down from the OS to the driver,
one for outbound traffic and one for inbound traffic. The driver is responsible
for transferring each set of keys to the controller in such a way that they may be
efficiently accessed as needed for future data operations.

Once the driver has completed offloading the cryptographic information to
hardware, the driver is available to process requests associated with the SA. For
outbound traffic, the OS knows which SA needs to be used for a request, so it
passes down a handle with each packet. The driver needs to translate that handle
into a hardware command, but the authentication and encryption are left up to the
hardware. For inbound traffic, hardware needs to do more work to figure out which
SA needs to be used for a given packet. The packet parser first extracts several fields
from the packet and then uses these fields to find the SA that should be used. Once
a match is found, the hardware authenticates and decrypts the packet data before
passing the packet to the OS for further processing. Hardware provides a status
indication so that the OS can determine whether the authentication check passed
or failed.

Conceptually, the Intel 82599EB 10 Gigabit Ethernet controller implements
protocol security in a block right next to the physical interface of the device, as
depicted in the block diagram in Figure 2.

Because security is implemented in this way, cryptographic operations are the last to
be performed on outgoing traffic and the first to be performed on incoming traffic.
This allows the network device to apply any of the offloads or routing algorithms
that it usually applies to non-IPsec traffic. For example, after a received packet is
decrypted and authenticated, the device can calculate the TCP checksum and pass
the result of this test up to the OS. As another example, the Intel 82599EB 10
Gigabit Ethernet controller supports the combination of TCP segmentation offload
and IPsec offload. The OS can pass down as a single request enough data for several
packets on the wire. The controller will use the prototype header provided by the
OS to first segment the request into packets, insert the appropriate checksums into
each packet, and finally encrypt and authenticate the packet before it is sent out on
the wire.

The acceleration and offloads just described are designed to overcome the
performance impact of utilizing network-layer security in enterprise networks. It is
useful to take a quantitative look at the performance benefit of these technologies.

PHY

MAC

Protocol Security

TX logic
(offloads)

RX logic
(offloads)

AES Engine AES Engine

Queue Management & DMA

PCle Interface

TX SA
table

RX SA
table

Figure 2: Network Controller Security Block
Diagram
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 2, 2009

124 | Network Security: Challenges and Solutions

Offload Performance
When offloading IPsec to the network device, the benefit is significant.

0

100

200

300

400

500

600

700

800

900

1000

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 2048 4096 8192 16384 32768 65536

No IPsec

IPsec–Offloads
Disabled

IPsec–Offloads
Enabled

No IPsec CPU

IPsec–Offloads
Disabled CPU

IPsec–Offloads
Enabled CPU

Buffer Sizes (Bytes)

T
h

ro
u

g
h

p
u

t
M

b
/s

Figure 3: Network Controller Security Offload Performance
Source: Intel Corporation, 2009

The left axis and bars of the graph in Figure 3 are the maximum throughput of
the network device in three circumstances. The blue bars represent the offload
performance with no security enabled, at a range of I/O sizes. The orange bars
represent that performance when security is enabled, but IPsec offload (or
acceleration) is not available. Finally, the purple bars represent the throughput when
security is enabled and the IPsec offloads are enabled in the network controller. The
right axis and the three line graphs show the corresponding percentage of CPU
that is consumed in each circumstance and for each I/O size. These measurements
are for receive traffic only and were taken on a dual-socket server with Intel® Xeon®
5355 processors, codename Clovertown, with eight functional CPU cores running
a Microsoft* Windows* 2008 server.

As can be seen from the bar chart in Figure 3, the performance of an offloaded IPsec
connection approaches that of an unprotected network flow. The slight decrease
in throughput and increase in CPU is explained by the extra validation (padding
content verification and anti-replay checking) required in the software stack for
IPsec, which is not offloaded. The extremely low throughput and the constant CPU
utilization (light orange line) in the non-offload case is explained by the fact that
the network processing for the single stream is being done on a single core and the
cryptographic operations are saturating that core.

Details on the performance characteristics of the new cryptographic instructions are
provided in a separate article [9] in this issue of the Intel Technology Journal.

These performance tests show that even today, the performance impact of IPsec
protection for network flows can be mitigated. This removes the performance
barrier to widespread use of IPsec in the enterprise.

“These performance tests show that

even today, the performance impact of

IPsec protection for network flows can

be mitigated.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Network Security: Challenges and Solutions | 125

Industry Collaboration
Aside from designing and delivering products to accelerate secure networking,
Intel is also working with industry players to make protocol security a more widely
deployed technology. At the link layer, the same protocol must be implemented
by both end nodes and by each switch or router along a given path. Thus,
interoperability is critical.

One key barrier to IPsec deployment in the enterprise is the performance impact
of providing cryptographic services to secure traffic. Intel is addressing this directly
with its processor instructions and offload network devices. Other key barriers
include the cost of designing a network device that supports tens of thousands of
SAs, the difficulty in managing a network in which traffic is encrypted and therefore
not visible to intermediary devices, and the fact that it is very computationally
expensive to create a secure connection. These barriers cannot be cleared by any
one company. Cooperation will be needed among many industry players including
OS vendors, intermediary device vendors, and network device vendors in order to
create a solution that will have the characteristics needed to be widely adopted.

Future Research
Network security touches the everyday lives of people. For instance, an ordinary
person knows there is an encryption channel between his or her computing
device and server when an on-line E-commerce or banking transaction occurs.
From a layperson’s vantage point, therefore, network security is thought of as the
technology of one endpoint encrypting and authenticating a data packet and the
other endpoint decrypting and validating that packet. As networking infrastructure
devices and computers continue to evolve, it becomes clearer that this layperson’s
view overlooks some important subtleties. In this section, we point out a few
requirements that may demand additional technology breakthroughs to tackle the
deployment of real-world applications.

Traffic Visibility
Internet-based malware (viruses and worms) is getting more and more sophisticated
as hackers become more sophisticated and reap increasing financial benefits from
their exploits. More and more government agencies and commercial organizations
also use cyber attacks as a means to gain information over their competitors.
Because of this trend, we have observed a heavy investment in network appliances
(such as intrusion detection systems, intrusion prevention systems, and so forth) in
enterprises. Furthermore, enterprise environments employ numerous other network
management tools that observe, monitor, and modify network packets to provide
various network services. The network appliances usually perform deep-packet
inspection on clear text traffic; however, they are not able to function properly when
dealing with encrypted packets. Hence, enterprises start to face a choice between
employing existing network-monitoring tools operating on clear text traffic,
or succumb to the reality of securing the traffic within the network. On initial
evaluation, these two goals appear to be mutually exclusive. The technical challenge
is how to satisfy these two opposite goals of E2E security and traffic visibility.

Intel® Technology Journal | Volume 13, Issue 2, 2009

126 | Network Security: Challenges and Solutions

One naïve solution might be to request an endpoint to relinquish the security keys
(at least the data encryption keys) for each session to each intermediary device
needing access to the data. However, the SAs are dynamic in terms of both spatial
and temporal properties. The naïve solution might lead to the wrong key being
provided for a given encrypted packet to the intermediate device. Furthermore, as
well as the associated overhead in synchronizing the large number of keys with each
intermediate device on a per-secure-session basis, these security sessions come and
go on demand, further compounding the problem.

Scalability
Another significant development in the networking arena is cloud computing. In
cloud computing, computing resources are created and maintained at powerful
data centers and accessed by clients. The network serves as a vehicle to deliver the
input and output between the data centers and clients. In order to protect the
increasing amount of data over the network, an SA is established between a client
and a server. The implications are hundreds of thousands, even millions, of SAs
terminated at a server through aggregated 10-Gbps pipes. The aforementioned
CPU-based and NIC offload solutions can certainly be used to tackle this problem.
However, the essential question is whether or not those technologies can keep up
with the scalability requirement, as load and demand for these services increase. The
case of hundreds of thousands of SAs will incur megabytes of storage for keying
materials that will likely contend with the CPU cache, with the packet processing
(for example, TCP/IP), and with application-level logic processing. Furthermore,
contention is created for data movement between the cache and accelerator at
the CPU SSE domain. For NIC offload, this sheer volume of SAs will demand
megabytes of SRAM and CAM, a very expensive solution. We note that the leading
industry companies could provide more than 200-Gbps throughput of AES circuit
at the 22-nm silicon process. However, the problems of large-volume SAs may not
be easily overcome by such crypto-primitive circuits. In this case, protocol-level
security is a must to address the scalability issues, such as the key context change
between multiple SAs and the packet processing performance requirements.

Intel is actively working with other companies to define protocol extensions in the
standards community to provide these services. One such activity is the definition
of an extensible IPsec ESP packet format through the Internet Engineering Task
Force (IETF) community. Within the IETF, we are introducing the concept of
Wrapped ESP, or WESP for short, which extends the existing ESP packet format to
provide additional benefits to trusted intermediary devices for packet inspection.
We outline some of the problems addressed by WESP.

“In cloud computing, computing

resources are created and maintained

at powerful data centers and accessed

by clients.”

“The essential question is whether or

not those technologies can keep up

with the scalability requirement, as

load and demand for these services

increase.”

“We are introducing the concept of

Wrapped ESP, or WESP for short,

which extends the existing ESP packet

format to provide additional benefits

to trusted intermediary devices for

packet inspection.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Network Security: Challenges and Solutions | 127

WESP addresses the problem of the ability to discern between encrypted IPsec
traffic and traffic carrying authentication-only tags within the IPsec ESP protocol.
In the current ESP specification, there is no way to differentiate between these types
of traffic, without knowing every policy associated with every single IPsec SA being
monitored by the trusted intermediary device. WESP proposes to address this by
introducing a new wrapper to the existing ESP protocol and leveraging a brand
new protocol number to identify the WESP protocol. Devices supporting the
new WESP protocol header will be able to easily identify and differentiate between
encrypted data and ESP-NULL (integrity protected) data and make rapid decisions
on whether the packet can be examined or if it is encrypted.

WESP also proposes some extension headers that allow the trusted intermediary
devices to determine the ESP overhead in the packet header and trailer by providing
these overhead field sizes directly in the WESP header. The WESP header also
proposes to add a field directly in the header that readily identifies the upper-
layer protocol (TCP/UDP) being carried by the IPsec packet. In the current
ESP specification, the upper-layer protocol is stored at the tail end of the packet,
something that requires any device to store and parse the whole packet, before
determining what the upper-layer protocol within the packet is. This requirement
is not amenable to building high-speed, highly-optimized, cost-effective, hardware-
based solutions. These changes will allow the intermediary devices to easily identify
and extract the packet payload for further analysis, instead of having to store
or identify and use a specific rule for each secure IPsec connection in order to
determine these overheads (as different connections may employ different security
algorithms and policies), before extracting the upper-layer payload.

Even though IPsec has been prevalent in the industry for over a decade, it has
gained little traction for applicability to E2E data protection; instead, its most
popular usage has been in the areas of remote access and VPNs. Intel is working
with other vendors within the industry to change this and make IPsec ubiquitous
and applicable to every Layer-3 and above data packet. This will provide E2E data
security, while allowing trusted intermediary devices to operate unhindered within
this environment,

Summary and Conclusion
Network protocol security is increasingly important in the face of attacks that
render the prevalent paradigm of perimeter security less effective. Furthermore,
protocol security deals with attacks that cannot be fended off with perimeter
security. As usages, such as remote storage and others, become more and more
prevalent, it becomes increasingly necessary to protect the data in flight between
platforms. Moreover, in-flight security as a utility is increasingly necessary for all
applications.

“Intel is working with other vendors to
make IPsec ubiquitous and applicable
to every Layer-3 and above data
packet.”

“Protocol security deals with attacks
that cannot be fended off with
perimeter security.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

128 | Network Security: Challenges and Solutions

Protocol security places new demands on the overall compute and network
environment. New security solutions must be economical and scalable or they will
not be widely adopted. Network security at different layers of the network stack
(2, 3, and 5+) offers different services for network access control for authorized
devices and users. These services are complementary in nature and may be
employed simultaneously for a given connection. Without them, though, the
Internet and our more local networks will become increasingly insecure and less
trustworthy.

We and our colleagues at Intel are actively researching protocol security
solutions, introducing new products based on our research, and working with
other companies to develop a secure network ecosystem that is unobtrusive,
reliable, scalable, efficient, and trustworthy. We will continue this work with new
technologies on the horizon that will make secure network communications even
better going forward.

References
[1] Kent, S. “IP Encapsulating Security Payload (ESP).” RFC 4303,

December 2005.
[2] Kent, S. “IP Authentication Header.” RFC 4302, December 2005.
[3] IEEE 802.1AE. “Media Access Control Security (MACSec).” June 2006.

At www.ieee802.org

[4] IEEE 802.1X-Rev. “Draft standard Port-based Network Access Control.”
Expected end of 2009. At www.ieee802.org

[5] Kaufman, C. “Internet Key Exchange (IKEv2) Protocol.” RFC 4306,
December 2005.

[6] Kivinen, T., Swander, B., Huttunen, A., and V. Volve. “Negotiation of
NAT-Traversal in the IKE.” RFC 3947, January 2005.

[7] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M. Stenberg.
“UDP Encapsulation of IPsec ESP Packets.” RFC 3948, January 2005.

[8] Gueron, Shay. ”Advanced Encryption Standard AES Instructions Set.”
April 2008. At www.intel.com

[9] Gueron, S., Kounavis, M. “New Processor Instructions for Accelerating
Encryption and Authentication Algorithms.“ Intel Technology Journal,
Volume 13, Issue 2, 2009.

Intel® Technology Journal | Volume 13, Issue 2, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Network Security: Challenges and Solutions | 129

Author Biographies
Linden Cornett is a Software Architect for Intel’s LAN Access Division. She
has worked for Intel for over ten years and holds several patents in the areas of
networking and communications. Linden graduated from Williams College with a
Bachelor’s degree in Computer Science and Mathematics in 1998, and she received
her MBA from Babson College in 2006. Her e-mail is linden.cornett at intel.com.

Ken Grewal is a Research Scientist at Intel Labs. Ken has worked for Intel for
over ten years and holds several patents in the areas of network security and
communications. Ken graduated from City University, UK with a Bachelor’s
degree in Applied Physics in 1988 and has extensive experience in the software and
network security arena over the last 20 years. Ken holds two patents and has over 20
pending in the area of network and computer security. His e-mail is ken.grewal at
intel.com.

Men Long is a Research Scientist at Intel Labs. Men received a B.E. degree
(Honors) from Chongqing University, Chongqing, China, in 2000 and a Ph.D.
degree from Auburn University, Auburn, AL, USA, in 2005, both in Electrical
Engineering. Men joined Intel Corporation in 2005. He has 18 pending patents
and has published 23 peer-reviewed research papers (for IEEE and ACM
transactions and conferences, among others) in the areas of network and computer
security, applied cryptography, wireless networking, and image processing. His
e-mail is men.long at intel.com.

Marc Millier is a Software Architect and Architecture Manager in DEG
Architecture and Planning. Marc is leading the LAN Access Division’s protocol
security architecture effort. He has worked for Intel for 15 of the last 30 years or
more of a software engineering career. His e-mail is marc.millier at intel.com.

Steve Williams is a Product Planner for Intel’s LAN Access Division. He has
worked in various aspects of the networking industry for over 20 years, with the
last 15 years being spent with Intel. He holds four patents. Steven graduated from
the University of California at Santa Barbara in 1981 with a Bachelor’s Degree in
Computer Science. His e-mail is steven.d.williams at intel.com.

130 | The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware

Contributors

Intel® Technology Journal | Volume 13, Issue 2, 2009

Index Words

THE DARK CLoUD: UNDERSTANDINg AND DEFENDINg AgAINST
BoTNETS AND STEALTHY MALWARE

Jaideep Chandrashekar
Intel Corporation

Steve Orrin
Intel Corporation

Carl Livadas
Intel Corporation

Eve M. Schooler
Intel Corporation

Abstract
The proliferation of botnets reveals a worrisome trend in the spread and
sophistication of computer viruses and worms in the Internet today. (A botnet is
essentially a collection of compromised distributed computers or systems, known
as bots because of their zombie-like nature, under the control of a bot-herder, by
virtue of the use of command and control servers.) Botnets are the latest scourge
to hit the Internet, each one revealing a new level of technologic expertise and
the use of quality software processes that undermine, if not downright prohibit,
the ability of current anti-malware and other intrusion detection systems (IDSs)
to deal with them. Most IDSs focus on detecting known threats, or on detecting
the volume of traffic generated by a bot-host after it has been activated. Most
bots, however, are polymorphic: they change with every instantiation so appear
as something new every time. Furthermore, most bots generate only low-volume,
periodic communication back to a bot-herder, and this volume is generally within
the thresholds used by IDSs. In this article, we present an overview of the state of
the art of botnets and stealthy malware, then develop and present several promising
anti-botnet defense strategies that specifically target current and emerging trends in
botnet development.

Introduction: Current and Emerging Trends in Botnets
With estimates of botnet infections continuing to gain in momentum, botnets are
the latest scourge to hit the Internet and are the latest challenge for IT personnel.
Each new botnet discovered reveals the use of more advanced technology and
the use of quality software processes that are challenging the defense strategies
of current intrusion detection systems (IDS). Thus, we begin this article with an
overview of the state of the art of botnets and stealthy malware. We first describe
the botnet lifecycle and highlight the advanced capabilities and stealth techniques
in use today by botnets; we also examine and strategize about future advances
in this area. We then go on to present several promising anti-botnet defense
strategies, notably a collection of real traces to calibrate normalcy, the development
of techniques that analyze communication with remote nodes with the goal of
identifying botnet command-and-control (C&C) channels, and the application
of various forms of correlation to amplify accuracy of detection and to root out
stealthiness.

“Botnets are the latest scourge to

hit the Internet and are the latest

challenge for IT personnel.”

Malware
Botnets
Network Defense
Cyber-Security
Stealth
Rootkits

The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware | 131

Intel® Technology Journal | Volume 13, Issue 2, 2009

Botnets Defined
A botnet is a collection of distributed computers or systems that has been
compromised, that is, taken over by rogue software. As a result, these machines are
often called zombies or bots. Bots are controlled or directed by a bot-herder by means
of one or more C&C servers. Most commonly, the bot-herder controls the botnet
with C&C servers, delivered via protocols such as internet relay chat (IRC) or peer-
to-peer (P2P) networking communications. Bots typically become installed on our
devices via malware, worms, trojan horses, or other back-door channels. Further
information on botnets can be found in [1].

The statistics for the size and growth of botnets differ widely, based on the reporting
organization. According to Symantec’s “Threat Horizon Report” [2], 55,000 new
botnet nodes are detected every day, while a 2008 Report from USA Today states
that “…on an average day, 40 per cent of the 800 million computers connected
to the Internet are bots used to send out spam, viruses and to mine for sensitive
personal data” [3]. USA Today also reports a tenfold increase in 2008 in the code
threats reported over the same period in 2007, signifying the increase in threat
surface area for botnet-style infections [3]. Various sources estimate that the best-
known botnets—Storm, Kraken, and Conficker—have infected staggering numbers
of machines. These numbers range from 85,000 machines infected by Storm,
to 495,000 infected by Kraken [4], to a staggering 9 million nodes infected by
Conficker [5].

The Underground Economy and Advances in Botnet Development
Like any money-driven market, botnet developers operate like a legitimate
business: they take advantage of the economic benefits of cooperation, trade, and
development processes, and quality. Recently, botnets have begun to use common
software quality practices such as lifecycle management tools, peer reviews, object
orientation, and modularity. Botnet developers are selling their software and
infection vectors, providing documentation and support, as well as collecting
feedback and requirements from customers.

Common economic goals are driving innovation, collaboration, and risk reduction
in the Botnet communities. On-line barter and marketplace sites have sprung up
to service this underground community with barter and trade forums, on-line
support, and rent and lease options for bot-herders. This cooperation has led to a
fairly mature economy where botnet nodes or groups are bought and sold, or where
several bot-herders can cooperate when targeting an entity for attack. Botnets can
be rented for the distribution of spam. Stolen identities and accounts are traded
and sold among the participants.

“A botnet is a collection of distributed
computers or systems that has been
compromised.”

“Bots typically become installed on our
devices via malware, worms, trojan
horses, or other back-door channels.”

“Botnet developers are selling their
software and infection vectors,
providing documentation and support,
as well as collecting feedback and
requirements from customers.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

132 | The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware

The Botnet Lifecycle
The lifecycle of a botnet typically includes four phases: spread, infection, command
and control (C&C), and attack, as shown in Figure 1. We describe each phase.

Spread Phase
In the spread phase in many botnets, the bots propagate and infect systems. Bots
can spread through a variety of means, including SPAM e-mails, web worms, and
through web downloads of malware that occur unbeknownst to users. Since the
goal of the spread phase is to infect a system for the first time, bot-herders attempt
to either trick the user into installing the malware payload or exploit vulnerabilities
on the user system via applications or browsers, thereby delivering the malware
payload.

Infection Phase
The malware payload, once on the system, uses a variety of techniques to infect the
machine and obfuscate its presence. Advances in bot infection capabilities include
techniques for hiding the infection and for extending the life of the infection
by targeting the anti-malware tools and services that would normally detect and
remove the infection. Botnets employ many of the standard malware techniques in
use by viruses today. Polymorphism and rootkitting are two of the most common
techniques in use.

•	 By	polymorphism,	we	mean	that	the	malware	code	changes	with	every	
new infection, thus making it harder for anti-virus products to detect the
code. Further, the use of code-hardening techniques often employed by
SW developers to protect from SW piracy and reverse engineering, are in
turn used by botnet developers. These techniques include code obfuscation,
encryption, and encoding that further hide the true nature of the malware
code as well as making it harder for anti-virus vendors to analyze it. There
are indications that malware and botnet developers are beginning to look
into advanced rootkitting techniques to further hide the malware.

•	 By	rootkitting,	we	mean	the	stealthy	installation	of	malicious	software–
called a rootkit–that is activated each time a system boots up. Rootkits are
difficult to detect because they are activated before the system’s operating
system (OS) has completely booted up. Advances in rootkit techniques
include hyperjacking and virtualization-based rootkits as well as identifying
and using new targets for code insertion such as firmware and BIOS.

A virtual machine monitor (VMM) or hypervisor runs underneath an OS, making
it a particularly useful means for botnet and malware developers to gain control of
computer systems. Hyperjacking involves installing a rogue hypervisor that can take
complete control of a system. Regular security measures are ineffective against this
hypervisor, because the OS is unaware that the machine has been compromised,
and software anti-virus and local firewalls are unable to detect them.

Spread:
via SPAM, Web, Worms,…

Local Infection
Malware infects
the system and
hides using
Rootkit
techniques

Trojan downloads malicious code
for SPAM, DoS or other attacks
per commands received

Attack

Command
and Control

Can be re-program
m

ed

for new attacks
M

alware

Contacts C&C

Figure 1: The Botnet Lifecycle
Source: Intel Corporation, 2009

“By polymorphism, we mean that the
malware code changes with every new
infection.”

“By rootkitting, we mean the stealthy
installation of malicious software–
called a rootkit–that is activated each
time a system boots up.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware | 133

Another technique that is currently used by botnet developers is to actively target
the anti-virus, local firewall and intrusion prevention and detection software (IPS/
IDS) and services. Some of the techniques employed by botnets have included
attacking the anti-virus and firewall software by killing its process or blocking its
ability to get updates. Two examples that we know of show how botnets blocked the
security software from getting updates:

•	 A	botnet	changed	the	local	DNS	settings	of	the	infected	system	to	disable	
the anti-virus software from reaching its update site.

•	 A	botnet	was	actively	detecting	connection	attempts	to	the	update	site	and	
blocking them.

These update-blocking techniques prevent the security software from getting
potential updated signatures from the vendor that identify the newer version of the
botnet or from being able to communicate with a central vendor server for anomaly
correlation and update.

Timing the infection to strike between malware detection services scan times is
another infection technique employed by botnet developers. The bot slowly infects
a system without generating alarms in the intrusion detection software services.

Other advanced bots spoof the local and remote scans performed by the IDS/IPS
and anti-virus software. In this case, the botnet’s malware presents a false image of
memory or hard disk to the anti-virus software to scan, or the malware disrupts
vulnerability scans by dropping packets, spoofing the network response, or
redirecting traffic coming from vulnerability scanners.

Command and Control
Botnet C&C servers use one of several protocols to communicate, the most
common of which up to this point has been IRC. Recently, however, a trend
towards the use of protected or hardened protocols has begun to emerge. For
example, the Storm botnet uses an encrypted P2P protocol (eDonkey/Overnet).
Advances in C&C techniques are crucial for bot-herders to keep their Botnets
from being detected and shut down. To this end, botnets have begun to leverage
protocols such as HTTP and P2P that are common across networks, thus making
the botnet harder to detect. HTTP is particularly advantageous to botnets because
of the sheer volume and diversity of HTTP traffic coming from systems today.
Also, botnet software can take advantage of the local browser software for much
of its functionality and communications stack, leveraging HTTP’s ability to
transit firewalls. Other techniques on the horizon include the use of VoIP, web
services, and the use of scripting within the HTTP communications stack. Another
advanced technique uses a blind drop, a site on the Internet such as a forum, BBS,
or a newsgroup, where users can leave anonymous messages. Botnet nodes can post
messages to these sites, and bot-herders can anonymously check for messages from
their nodes and post instructions. The botnet nodes can then poll the site for new
instructions and other communications as part of a messaging-based C&C. Social
networking sites are a prime target for this kind of C&C.

“Timing the infection to strike
between malware detection services
scan times is another infection
technique employed by botnet
developers.”

“Botnet software can take advantage
of the local browser software for
much of its functionality and
communications stack, leveraging
HTTP’s ability to transit firewalls.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

134 | The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware

A key feature of modern botnet development is the ability to re-program or
update the botnet node software after it has infected a system. The C&C directs
the node either to download the update directly or to go to a specific infected site
hosting the update. Botnets with this reprogrammability have a higher value in the
underground economy, as they can be augmented to perform new and advanced
attack and stealth missions as they are developed.

As mentioned previously, stealth is a key feature of botnet technology. Kracken
and Conficker Botnets both target and disable anti-virus software resident on the
system. Other botnets deliberately try to hide from threshold-detection software
by customizing the timing of infections and the frequency of communications
to hide activities from both local and network security products. Steganographic
techniques are the next method by which botnet developers plan to evade detection.
They include the use of covert channels for communications and steganography-
based messaging, such as mimicry and stegged content (i.e., embedding messages in
content such as images, streaming media, VoIP, and so on).

Attack Phase
The final phase of the botnet lifecycle is the attack phase. In many cases the attack
is simply the distribution of the SPAM that is carrying the infection, and when
the attack is successful, the size of the botnet itself increases. Botnets also often
have been used to send SPAM as part of barter and rental deals, whereby phishers,
hackers, spammers, and virus writers use the botnet to sell information and services.
Botnets also have been used to perform massive distributed denial-of-service (DoS)
attacks against a variety of targets including government, corporate systems, and
even other botnets. Some of the newer botnets can be upgraded to use various
hacker tools, fault injectors (fuzzers), and so on, to further attack the networks they
have infiltrated. For example, the Asprox botnet included an SQL injection attack
tool, and another botnet included a Brute Force SSH attack engine. In addition to
performing remote attacks, botnets can engage in persistent local attacks to phish
for identities and accounts from the infected system and its users.

The Evolution of Anti-Botnet Strategies
Given the proliferation and sophistication of malware, it is not hard to see why
traditional anti-malware techniques don’t work against botnets. Most IDS focus
on detecting known threats, or on detecting the volume of traffic generated by a
bot host, after it has been activated. However, most bots are polymorphic: they
change with every instantiation so always appear as new. Furthermore, most botnets
generate only low-volume periodic communication back to a bot master, and this
volume is generally within the thresholds used by IDS.

“Steganographic techniques are
the next method by which botnet
developers plan to evade detection.”

“Phishers, hackers, spammers, and
virus writers use the botnet to sell
information and services.”

“Most bots are polymorphic: they
change with every instantiation so
always appear as new.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware | 135

In the remainder of this article, we describe the Canary detector that targets early
botnet detection. The Canary detector encompasses three promising anti-botnet
strategies. The first strategy employed is the analysis of real enterprise network traces
that reveal how the network is actually used; this analysis, in turn, reveals how
certain user-driven traffic properties differ from botnet traffic. Our second strategy
is an end-host detection algorithm that is able to root out the botnet C&C channel.
Our approach is based on the computation of a single persistence value, a measure
of how regularly remote destinations are contacted. The strength of this method
is that it requires no a priori knowledge of the botnets that are to be detected,
nor does it require inspection of traffic payloads. Although the botnet detection
capability may be carried out solely at an individual end-host, we show that
detection is further improved by correlating across a population of systems, either
at a network operation center (NOC) or in a completely de-centralized fashion, to
identify the commonality in persistent destinations across multiple systems. This is
our third strategy.

The Design of the Canary Detector
The Canary detector takes a novel approach to detecting stealthy, end-host
malware, such as botnets. Here we use the term stealthy to mean not generating
a noticeable level of traffic. The central idea in our detection scheme is to track
the usage of destination atoms, the logical collections of destination addresses that
describe services. Specifically, we measure the correlation of destination atoms—
temporally for individual users, and spatially across sets of users–and scrutinize
those destination atoms that become significant. In the case of botnets, for example,
the recruited end-hosts typically call home periodically. By tracking this destination
atom over time at a coarse level, we can flag it when it becomes significantly
persistent.

Preliminaries
Destination Atoms in Intel Enterprise Traces
Interested in studying correlations between user activity and network traffic
patterns, we launched an enterprise data collection effort from inside Intel’s
corporate network. We collected traces (over a 5-week period from approximately
400 end-hosts) that we and others subsequently data-mined for interesting
phenomena, statistics, and contradictions of long-held assumptions [6].

“The Canary detector encompasses
three promising anti-botnet strategies.”

“Here we use the term stealthy to
mean not generating a noticeable level
of traffic.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

136 | The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware

Looking at real enterprise traces, we can see that there are substantial efficiencies
to be gained when correlating destination usage. Thus, our Canary algorithms rely
on a level of abstraction we call destination atoms, that is, logical representations of
network services. This level of summarization leads to a significant reduction in the
number of destination entities that are tracked, and thus, tracking atoms requires
less overhead. The base definition for a destination corresponding to a connection is
the tuple (destIP, destPort, proto), which is simply the end-point for the connection
consisting of the destination address, the destination port, and the transport
protocol that is used. Often, in the case of well-known services, multiple physical
hosts provide the same, indistinguishable application service. Thus, we can group
the set into a single atom (dstService, dstPort, proto). Here, the service is simply the
domain name to which the underlying addresses resolve. Examples of atoms include
(www.google.com, 80, tcp), (akamaitech.com, 80, tcp), and (mail.cisco.com, 135,
tcp).

Further summarization is also possible by applying heuristics on how ports are used
by applications. Consider an FTP server, connected in PASV mode. The initial
connection is over port 21, but a separate server-negotiated ephemeral port is used
for data transfer. Thus, a single FTP session has two atoms, (ftp.service.com, 21,
tcp) and (ftp.service.com, k, tcp), where k is a port number beyond 1024, which
can be viewed as offering the same service. By considering FTP semantics, we can
add the entire range of ports larger than 1024 to the associated atom (ftp.service.
com, 21:>1024, tcp). This means that, when we see a connection on port 21, we
can expect an ephemeral port to be used in the near future.

In the real enterprise traces, we had many occasions to perform this level of
summarization, most notably on the Microsoft* RPC ports between 135 and
139. We then arrive at the full definition of destination atom, the triple (addr set,
port set, proto). Here, addr set is a set of destination addresses: these addresses are
identical with respect to the applications provided; port set is a set of individual
ports or port ranges; and finally, proto is the transport protocol the service uses.
Table 1 enumerates some atoms extracted from the enterprise traces.

Destination Atom Description

(google.com, 80, tcp) HTTP sessions to any of the Google servers
(ftp.nai.com, 21:>1024, tcp) Updates for Norton antivirus delivered via

PASV FTP from the Norton Web site
(mail.cisco.com,135:>1024,tcp) Microsoft RPC-based services use ephemeral

ports after the session is negotiated over port
135

Table 1: Atoms Extracted from Enterprise Traces
Source: Intel Corporation, 2009

“Our Canary algorithms rely on a
level of abstraction we call destination
atoms, that is, logical representations
of network services.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware | 137

Note that a single destination host can provide a number of distinct services, and
in this case, the port is sufficient to disambiguate the services from each other, even
though they may have similar service names, which are obtained by (reverse) DNS
lookup. Finally, note that in cases where the addresses cannot be mapped to names,
no summarization is possible, and the conventional destination address is the final
descriptor.

Persistence
The key anti-botnet technique we propose is to identify temporal heavy hitters
without regard to their level of traffic; that is, identify services that get used with
a degree of regularity. Again, this strategy was validated by the analysis of real
enterprise traces from a diverse group of end users in varied geographic regions
with disparate usage patterns. We believe that the set of significant atoms for an
end-host is small and stable, and that when a host is infected with malware, it will
connect periodically to a home server, and the latter will stand out. To perform this
detection, we must first assign a numeric value to the somewhat nebulous concept
of regularity, which we refer to as the persistence of an atom. We want to track the
regularity of usage, rather than the connections themselves. Consider the act of
using your newsreader to download the news headlines. Each time the newsreader
application is launched, it makes a large number of connections. To track the
long(er)-term communication with the end-host, we concentrate on tracking high-
level sessions, rather than individual connection frequencies.

To track high-level sessions, we bin connections to the atom by using a small
tracking window, w, and we assign a 1 or a 0 to that window (the atom was seen 1
or more times, or not). Clearly, the tracking window length should cover sessions.
When we plot the inter-arrival time for individual atoms across a large number
of users, we see that 59 percent of the connections to atoms are made within a
minute of each other, and 87 percent of connections to the same atom are separated
by at least an hour. We therefore select an hour as the tracking window length to
compute persistence.

The other step needed to assign a numeric value to persistence is the construction
of an observation window, W ; that is, we look at how long an atom should be
regularly observed before it is classified as significant. Based on experience with
the data, we defined the observation window, W = 10w, which roughly covers the
average work day. Having defined w and W = (w1 , w2 , . . . , w10), we quantify
persistence for an atom a, as observed at host h, over the observation window
W, p (a, h, W), as the number of individual windows w1 , w2 , . . . , wn where the
atom was observed.

If we denote p* as a threshold for an atom to be significantly regular, then if
p (a, h, W) > p* , the destination a is considered persistent for host h. Note that
the definition of persistence has an inherent timescale dictated by W. Suppose that
w = 1hour and W = 1day. When computed at this scale, persistence captures the
day-to-day behavior of the atom. However, it fails to capture longer-term trends
that may exist. Consider two different atoms: a1, seen every hour, and a2, observed
once a day. We have p (a1) = 24/24 and p (a2) = 1/24.

“We believe that when a host is
infected with malware, it will connect
periodically to a home server, and the
latter will stand out.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

138 | The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware

Intuitively, however, they are both quite regular and thus both should be termed
persistent. In fact, because we are trying to detect stealthy malware about which we
have no a priori timescale information, the one timescale we pick may be the exact
one that misses the malware activity. Thus, instead of relying on a single timescale
W, we consider five different timescales, W1 , W2 , . . . , W5 . Therefore, for every
atom, we compute p (a, h, Wi) for i = 1, 2, . . . , 5 and say that it is persistent if
maxi p (a, h, Wi) > p*

Commonality
While persistence is defined as a property of the individual end-user, we use
commonality to quantify how correlated a destination atom is across the users in a
network. Thus, a destination atom is significant in this dimension if a large fraction
of the users are communicating with it. Since these atoms are created because of
many users in a network, we expect them to be quite stable among the population.
The commonality metric is defined quite simply: let N (a) be the number of users
in the population that see the atom a, at least in some observation window. Thus,
the commonality of atom a, c (a) = N (a)/N, where N is the total number of hosts
in the network. Additionally, we could require a minimum persistence for the atom
across the set of hosts that report connections to it; doing so would counter the
effect of temporary transients such as flash crowds.

Unlike persistence, this commonality metric cannot be computed in isolation at
an individual end-host. Persistence requires a means for the system to collect and
correlate information across end-hosts. One solution is to assume the existence of
a central IT operations center (ITOC) that can collect periodic reports of atoms
observed from all the end-hosts, and that can determine the significant common
atoms in the set. Alternatively, peer systems can share persistence information
periodically with like-minded subsets of the population (e.g., proximate peers, those
running a similar OS or patch level, those deemed trusted via the social network of
users at the application layer, and so on).

In contrast to the ITOC approach, significantly common atoms are determined
and maintained at the end-hosts, as in [7]. In either scheme an important point
is that a sliding window is maintained over the entire observation window (the
largest among the different timescales). While computing the commonality metric,
only reports within this observation window are considered. Again, the test for
significance is when the value of c (a) is greater than a specific threshold c . When
c (a) > c , we say that ‘a’ is common in the population.

“Persistence requires a means for
the system to collect and correlate
information across end-hosts.”

“We use commonality to quantify how
correlated a destination atom is across
the users in a network.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware | 139

Building Whitelists
We construct a whitelist for each user in two steps. First, the host observes its
traffic for a training period, builds the set of atoms, and tracks their persistence;
the length of this training period would vary with how stable the traffic patterns
are, and we expect this to be defined by the network operator. We define p to be
the persistence threshold; that is, if the persistence of a particular atom is larger
than p , then the atom is added to the whitelist. In the detection phase, each
end-host sends its set of observed atoms (all of them, not just the persistent ones)
either to the central ITOC of the enterprise or to a subset of like-minded peers. At
the ITOC, the commonality is calculated for each atom in the union. We define
a threshold for commonality, c , and collect those atoms whose commonality
exceeds c . These atoms are sent to every end-host, where they are incorporated
into the whitelist. Thus, every host’s whitelist has two components: an individual
component capturing behaviors unique to that host, and a global component that
corresponds to behavior that is common to the population. The global component
can contain atoms that are not part of the individual host’s regular behavior.

Detection Algorithm
At a high level, our system generates alarms corresponding to two types of events.
These are classified as (1) p-alarms, when a destination atom not contained in the
host’s whitelist becomes persistent and (2) c-alarms, when a destination atom is
observed at a large number of end-hosts in the same window and is identified as
common. Note that p-alarms are generated locally; the user is alerted and asked to
acknowledge the alarm. In contrast, c-alarms are raised either at the central ITOC
or locally, if full whitelists are distributed among peers. Note that when the alarm
corresponds to an atom becoming significant, one of two things must happen:
either the atom is classified as benign (by a user or operator) in which case it must
be added to the appropriate whitelist, or else the alarm indicates malicious behavior,
requiring remediation action. In this article, we do not address the remediation
stage; we simply note that a number of possibilities have been suggested in the
literature, such as throttling traffic, redirecting traffic through a scrubber, blocking
traffic, and so on.

processPacket(pkt, t, wi)

1. a <-- getDestAtom(pkt)
2. if a in WHITELIST then
3. return /* ignore atoms already in the whitelist */
4. end if
5. if a is a new connection initiation then
6. DCT[a][currIdx] = 1 /*update persistence */
7. sendReport(userID, a, t) /*report sent to central console*/
8. end if

Code listing 1: outgoing Packet Processing
Source: Intel Corporation, 2009

“Every host’s whitelist has two
components: an individual component
capturing behaviors unique to that
host, and a global component that
corresponds to behavior that is
common to the population.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

140 | The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware

In the rest of this section, we briefly review the specific actions required to process
outgoing packets (summarized in Code listing 1). When the (outgoing) packet
corresponds to an atom already in the individual host whitelist, nothing further is
done. If the outgoing packet does not correspond to an atom already in the host
whitelist, then the following steps are taken:

•	 If	the	atom	was	not	previously	seen,	a	new	entry	is	created	in	the	data	
structure used to track persistence (DCT); this is indexed by the atom and
points to a bitmap. Each bit corresponds to a particular tracking window.

•	 The	data	structure	that	tracks	the	observations	of	atoms	(labeled	DCT)	is	
updated for the current tracking window.

•	 The	atom,	if	new,	is	sent	to	the	ITOC	(possibly	after	being	filtered	through	
a minimum persistence criterion).

Note that our system is not tied to any particular traffic feature or threshold
definition; for convenience, we assume connections per minute as the feature under
consideration. To generate p-alarms, we track persistence at all the timescales by
employing a sliding window. The data structure to do this is depicted in Figure 2.
A dictionary (or hash table) is maintained, in which an atom is indexed, and this
dictionary entry reveals the particular bitmap associated with the atom. When
the atom is observed in a tracking window wi, the ith bit is set to 1 as described in
Figure 2. As the sliding window is advanced, at the end of the last window, the
persistence is computed for each atom observed in the last tracking window. It
would seem that doing this for multiple timescales would be expensive. However,
an interesting observation is that we do not need to replicate the structure at
different timescales. Instead, we can exploit the overlapping nature of the timescales
(W3 < W4); we can get away with this by using a single long bitmap that has
enough bits to cover the longest observation window.

a1

a2

an

…

a1 a1 a1 a1

a2 a2 a2

W

w

1 1

1 1

Figure 2: Data Structure Used to Track Atom Persistence
Source: Intel Corporation, 2009

“Note that our system is not tied
to any particular traffic feature or
threshold definition.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware | 141

If at any time, the persistence value of the atom exceeds the threshold p , an alarm
is raised for the atom; at this time, the user is asked to attest whether the atom is
valid and should be added to the whitelist. If the value is not significant even after
sufficient tracking windows, the bitmap is cleared out and the atom is no longer
tracked (a new bitmap is instantiated if it ever appears again).

To understand the overhead imposed by this procedure, we note that the length of
the dictionary need not be large. If an outgoing packet is already in the whitelist
(specifically, if its atom is in the whitelist), then no new dictionary entry is required.
For everything else, we only need one entry per atom (even if the same atom has
many connections or packets associated with it). With atoms that actually need
to be tracked, the computation involved is simply the time it takes to index the
dictionary and update the bitmap. However, we see in the traffic that most atoms
that we track occur very infrequently (and that the most obviously persistent atoms
are already in the whitelist and do not need to be tracked). Therefore, most entries
in the bitmap are empty; an easy optimization would be to use sparse vectors in lieu
of bitmaps. In our analysis, we found that the worst-case scenario over all users, and
all observation windows Wmax had 1435 atoms requiring tracking. The average case
was 485 atoms. This is almost negligible if one considers the computational power
and memory associated with modern-day mobile systems.

We conclude this discussion by briefly discussing how the c-alarms are generated
through tracking commonality—a very straightforward operation. The central
console at the ITOC keeps track of atoms seen by different users over the largest
observation window. When a report arrives from a host, the corresponding atom
is updated. At the same time, old information is expunged (that is, sightings of an
atom older than the observation window are discarded). When an atom’s entry is
updated, and the number of associated users (who have seen this atom recently)
crosses the threshold c , a c-alarm is generated. The frequency with which a host
sends reports to the central console determines how soon an anomaly will be
detected. Dispatching the report immediately (as soon as the atom is first seen)
helps with catching the anomaly early, but at the cost of communication. Batching
updates reduces the communication cost, but increases the time to detection. While
this is an interesting tradeoff to study, we do not explore it in this article.

“If an outgoing packet is already in
the whitelist, then no new dictionary
entry is required.”

“Batching updates reduces the
communication cost, but increases the
time to detection. This is an interesting
tradeoff.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

142 | The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware

Testing with Malware Traces
We present the results from running our detection algorithm with traces collected
from real botnets. Recall that we detect three different types of anomalies: burst
anomalies, triggered by large changes in traffic distribution; persistence anomalies
triggered when destinations are communicated with regularly, even with very little
traffic (such as botnet C&C channels); and commonality anomalies, triggered when
a number of network users begin to exhibit correlated behavior. These anomalies
correspond to the three types of alarms output by our system. Table 2 lists some
well-known malware types, indicating what types of alarms are likely to result from
each.

Burst alarm p-alarm c-alarm

(long) DDoS attack ♦ ♦
DDoS attack ♦ ♦
Scanning worm ♦
IRC botnet ♦ ♦ ♦
Stealthy botnet ♦

Table 2: Well-known Malware Types and Their Alarms
Source: Intel Corporation, 2009

Botnet Traces

We collected traffic traces from three distinct botnet families. We executed bot
code on a host and logged packet traces for a week, by using the same host over
multiple weeks to run the three different bots. The host was wiped clean in between
collections, and a pristine copy of Windows* XP* was installed. Also, we turned
off the auto-update functionality and configured the firewall to drop all incoming
connections. From each trace, we discarded all packets that did not have a source
or destination address corresponding to the host. The packet traces were converted
to flows by using Bro [8], and the rest of the analysis uses flows. One of our goals
in this section is to understand the detection of the different behaviors; that is, the
attack behavior and the channel behavior (when the malware calls home). In the
traces we collected, we saw both. Because many bots in the wild do not generate
much volume (and try to remain undetected), detecting the control channel is of
critical importance. We briefly describe the three Botnets and how the flows were
classified:

SDBot. An SDBot is a well-studied botnet that uses IRC as the channel but on
a non-standard port. However, the IRC servers are easy to pick out from the
domain names, for example irc.undernet.org. The traces revealed two distinct
atoms in the control flows. The remaining flows consist of scans being run on a
neighboring network prefix. We noticed a large number of scans on ports 135, 139,
445, and 2097 (a well-known commercial anti-virus product). In the traces, we
see connections on the well-known IRC ports and use this knowledge to identify
control traffic (the IRC traffic) and attack flows.

“One of our goals is to understand the

detection of the attack behavior and
the channel behavior.”

“We detect three different types of
anomalies: burst, persistent, and
commonality.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware | 143

Zapchast. This botnet also uses IRC as the channel and uses the well-known IRC
ports (6666 and 6667). We saw a total of five IRC service atoms (about 13 distinct
IP addresses) in the traces. The attack traffic was predominantly netbios traffic.

Storm. This botnet is P2P-based and very different from the others. The traces are
two orders of magnitude larger than the other botnets. Lacking a single destination
server or a well-defined port, it was quite hard to identify the control channels
and we had to rely on some heuristics to do this: the fact that Storm uses UDP to
connect to the P2P is documented.

We looked at distributions of the UDP flows (flows with two-way traffic) and
noticed a very large number of packets that were of a small, fixed size (the flows
were on non-standard ports and unlikely to be attacks). We took these flows to be
an indicator of maintenance traffic and isolated all the ports involved. UDP flows
to this set of ports are assumed to be part of the control channel. We did see a much
smaller number of HTTP and SSH flows that may also be control related; the
volume of these flows is such that it does not affect our results. The attack traffic for
Storm is overwhelmingly on TCP port 25 (SMTP).

Evaluation
In the rest of this section, we discuss the detection of persistence anomalies, and we
defer the analysis of commonality anomalies due to space limitations.

Detecting stealthy behavior with p-alarms. To validate the detection of the control
channel in each of the Botnets, we first identify the distinct atoms that can be
extracted from the control traffic. For each of these atoms, we compute persistence
over the lifetime of the (malware) trace. Recall that we compute this at five different
timescales. For the purposes of detection, we consider the atom to be flagged as
a p-alarm, if the value at any timescale exceeds the threshold p = 0.6. We found
that this threshold is associated with the fewest false alarms per day and the best
detection rate, where the rates were averaged over all the destination atoms for all
the malware traces.

In Figure 3, we plot the maximum persistence value for each of the atoms. The
Y axis indicates the value used for p . The scatter plot contains three distinct
markers for each of the botnets, and each mark plots the persistence value for
the corresponding atom. We plot a vertical line at p=0.6, which is the persistence
threshold used by our detection system. Atoms that occur to the right of the
vertical line are flagged by our system as possible C&C destinations. The particular
threshold, i.e., p=0.6 was selected so as to achieve the best tradeoff between
minimizing the number of false positives (i.e., normal, benign destinations flagged
by our method as C&C destinations), and maximizing the detection rate (i.e., the
fraction of C&C destinations that we correctly flag).

“Lacking a single destination server or
a well-defined port, it was quite hard
to identify the control channels.”

“For each of these atoms, we compute
persistence over the lifetime of the
(malware) trace.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

144 | The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware

The SDBot traces revealed exactly one atom, and this atom appears toward the top
right of the plot. It is the largest marker and is shown as a triangle. The Zapchast
traces contained exactly nine atoms, all but one of which appear to the right of the
vertical line. Finally, the Storm traces contain approximately 82,000 atoms with
persistence levels evenly distributed (for convenience, we only plot a sample of
100 atoms). While persistence is reflected on the x-axis, the vertical bands indicate
different timescales. Thus, a point in the bottom band indicates the persistence
value is associated with the 1-hr timescale.

We plot the maximum persistence for each destination atom, so the band indicates
the timescale at which the persistence value maxed. Looking over the points, we see
that the SDBot atom and eight of the nine Zapchast atoms are easily detected,
appearing to the right of the threshold. For the single Zapchast atom to the left of
the threshold, we noticed exactly two connections, close to each other, over the
entire trace. We conclude that these connections do not really count as regular. We
point out that these particular botnet instances are stealthy and generate very few
connections. One of the atoms (to the right of the line) was associated with 30
connections over a whole week, with at most one connection in a window. This
behavior qualifies as being close to indistinguishable. However, the persistence value
for this atom is 0.7 and is above the threshold. This particular example drives home
why a system such as ours is required to detect stealthy malware. With malware
becoming more stealthy and with developers building in extraordinary measures to
keep it from being detected, looking for volume-based anomalies is unlikely to have
much success.

Conclusions
With the rapid evolution of botnets toward increasingly stealthy behavior and the
staggering numbers of end-hosts already infected by such malware, there is a dire
need to develop and deploy techniques to counteract these problems. In this article,
we reviewed the latest in botnet behavior and trends to elucidate the shortcomings
of traditional approaches that depend on rule-based and/or volume-based detection.
Bots and botnets are able to evade anomaly detection in part because they are
polymorphic in nature and thus are considered a new vulnerability with every
new sighting; their communication behaviors deliberately mimic that of normal
end-hosts, and thus they stay below detector threshold settings.

As a result, we analyze the behavior of real Intel enterprise end-host background
traffic and contrast it to real botnet C&C channel activity. Consequently, we are
able to develop and present the Canary end-host detector, designed to root out
the botnet command and control channel by tracking the persistence of a node’s
relationships with destination hosts, and the commonality of persistence across
multiple peers—both fairly stable properties of non-botnet traffic. The strength of
these methods requires no a priori knowledge of the botnets that are to be detected,
nor do they require traffic payload inspection.

1

6

12

18

24

Atom Persistence

H
o

u
rs

0 0.2 0.4 0.6 0.8 1

Figure 3: Detection by Persistence of Three
Botnets
Source: Intel Corporation, 2009

“We are able to develop and present
the Canary end-host detector, designed
to root out the botnet command and
control channel.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware | 145

References
[1] “An Inside Look at Botnets.” Paul Barford and Vinod Yegneswaran. In

Series: Advances in Information Security, Springer, 2006.
[2] Symantec. “2H 07 Threat Horizon Report.”
[3] USA Today. “Botnet scams are exploding.” March 17, 2008.

At http://www.usatoday.com/money

[4] Damballa. “Damballa announces discovery of Kraken BotArmy,” April 7,
2008. At http://www.damballa.com

[5] F-Secure. “Calculating the Size of the Downadup Outbreak.” January 16,
2009. At http://www.f-secure.com

[6] F. Giroire, J. Chandrashekar, G. Iannaccone, D. Papagiannaki, E.
Schooler, and N. Taft. “The cubicle vs. the coffee shop: Behavioral modes
in enterprise end-users.” In Proceedings Passive and Active Measurement
Conference (PAM’08), Springer Verlag Lecture Notes in Computer Science,
pages 202-211, Volume 2979, April 2008.

[7] D. Dash, B. Kveton, J. M. Agosta, E. Schooler, J. Chandrashekar, A.
Bachrach, and A. Newman. “When gossip is good: distributed probabilistic
inference for detection of slow network intrusions.” In Proceedings of the
21st National Conference on Artificial Intelligence, (AAAI’06),
pages 1115-1122, July 2006.

[8] Bro. At http://www.bro-ids.org

Acknowledgments
The development of the Canary detector was a collaborative research effort with
Frederic Giroire, Nina Taft, and Dina Papagiannaki.

Intel® Technology Journal | Volume 13, Issue 2, 2009

146 | The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware

Author Biographies
Jaideep Chandrashekar is a Research Scientist at Intel in Santa Clara, CA. His
general area of interest is communication networks and distributed systems. In
particular, he has worked on Internet and end-host security, traffic measurements
and analysis, and Internet routing. His recent work has focused on building security
solutions that adapt to individual traffic patterns and distributed anomaly detection
mechanisms; and he has investigated the energy footprint associated with network
traffic. He joined Intel research in 2006 after receiving a Ph.D. from the University
of Minnesota. His e-mail is jaideep.chandrashekar at intel.com.

Carl Livadas is a Research Scientist at Intel Labs. He is currently working on
the Distributed Detection and Inference (DDI) project; a cyber-security project
focusing on collaborative techniques among overlay peers to promptly and
accurately detect malicious behavior. His current research interests include peer-
to-peer systems, content-based networking, and cyber security. Prior to joining
Intel, Carl worked at BBN Technologies on several cyber-security projects, such
as Zombiestones, IPSPOOR, Stingray, and STARLITE. Zombiestones involved
the network-based detection and identification of IRC-based Botnets. IPSPOOR
involved a simple, light-weight, and effective router-based solution to the problem
of IP packet traceback. Stingray involved the design and implementation of
a network-based insider threat detection and investigation system. Finally,
STARLITE involved the development of novel stepping-stone detection techniques.
Carl received his Ph.D. degree in Electrical Engineering and Computer Science
from the Theory of Distributed Systems (TDS) group at the Laboratory for
Computer Science at MIT. His Ph.D. work involved applying formal techniques to
model, analyze, and design retransmission-based reliable multicast protocols. Prior
to this work, Carl worked on formally modeling and verifying the correctness and
safety of hybrid systems, such as collision avoidance systems for commercial aircraft
and autonomous vehicles. His e-mail is clivadas at alum.mit.edu.

Steve Orrin is Director of Security Solutions for Software Pathfinding and
Innovation, a part of the Software and Services Group at Intel Corporation, and
is responsible for security platforms architecture and security strategy and product
direction. Steve joined Intel as part of the acquisition of Sarvega, Inc. where he was
their CSO. Steve was previously CTO of Sanctum, a pioneer in Web application
security. Prior to joining Sanctum, Steve was CTO and co-founder of LockStar,
Inc. and SynData Technologies, Inc. Steve was named one of InfoWorld’s Top
25 CTOs of 2004 and is a recognized expert and frequent lecturer on enterprise
security. He has also developed several patent-pending technologies covering user
authentication, secure data access, and steganography, and he has one issued patent
in steganography. Steve is a member of the Information Systems Audit and Control
Association (ISACA), the Computer Security Institute (CSI), the International
Association of Cryptographic Research (IACR), and he is also a co-founder of
WASC (Web Application Security Consortium) and a co-founder of the SafeSOA
task force. He participates in several OASIS, and AFEI working groups. His e-mail
is steve.orrin at intel.com.

Intel® Technology Journal | Volume 13, Issue 2, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

The Dark Cloud: Understanding and Defending against Botnets and Stealthy Malware | 147

Eve Schooler joined Intel in 2005. She is a Principal Engineer at Intel Labs.
Presently she leads the Distributed Detection and Inference (DDI) project, an effort
that focuses on collaborative anomaly detection in large-scale networks and that,
more broadly, promotes the adoption of an end-host correlation framework that
leverages the idea of measurement everywhere. Eve obtained a B.S. degree from Yale
University, an MS degree from UCLA, and a Ph.D. from Caltech, all in Computer
Science. Her broad interests lie at the intersection of distributed systems,
networking, and scalable group algorithm design. Interested in protocol standards,
Eve served on the Transport Directorate of the IETF, co-founded and co-chaired
the IETF MMUSIC working group for many years, and is a co-author of the SIP
protocol that is widely used for Internet telephony. Prior to Intel, she held positions
at Apollo Computer, Information Sciences Institute, AT&T Labs-Research, and
Pollere LLC. Her e-mail is eve.m.schooler at intel.com.

148 | Decentralized Trust Management for Securing Community Networks

Contributors

Intel® Technology Journal | Volume 13, Issue 2, 2009

Index Words

DECENTRALIZED TRUST MANAgEMENT FoR SECURINg
CoMMUNITY NETWoRKS

Meiyuan Zhao
Intel Corporation

Hong Li
Intel Corporation

Rita Wouhaybi
Intel Corporation

Jesse Walker
Intel Corporation

Vic Lortz
Intel Corporation

Michael J. Covington
Independent Researcher

Abstract
Emerging networking technologies, such as community networks, mobility, ad hoc
connectivity, mesh, ubiquitous computing, and other infrastructure-less networks,
have an urgent need for a first-class set of features that address the problems of
direct device-to-device introduction, authentication, and trust management.
Traditional approaches have proven to be inadequate to address these needs, because
these approaches rely on centralized or managed infrastructures, which are brittle
or cannot scale. In this article, we discuss the fundamental difficulties and system
requirements for decentralized trust management, and we propose new technologies
that enable the bootstrapping of trust, and, subsequently, the calculation of trust
metrics that are better suited to these domains.

Introduction
The development of wireless technologies, mesh networks, ubiquitous computing,
and ad hoc networking enables new applications to enhance the user experience,
provide more flexibility, and give the user more choice. Network technologies,
recently deployed, have increased user connectivity options, allowing users to
connect from virtually anywhere. These changes create challenges for network
security. Traditional centralized authority-based mechanisms do not work, or work
at less than optimum, for emerging networking patterns. Novel network topologies,
such as peer-to-peer (P2P) networking, void many of the assumptions made by
established approaches to security, and these new topologies, therefore, require us to
rethink the entire security architecture.

One example of this kind of network is mobile, ad hoc networks (MANETs) that
provide wireless network services without relying on any centralized infrastructure.
MANETs treat each node in the network equally, and each node acts as both a
client and a server node. The network topology is emergent, based on collaborative
routing. Because of the emergent connectivity, a single centralized authentication
server may not be reachable at all times.

Another example is P2P networks, widely used to share data and resources. As
of 2006, over 80 percent of all Internet traffic consisted of P2P network traffic,
and this percentage appears to be steadily growing. The network structure of a
P2P network is also self-organizing, is typically unmanaged and unplanned, is
unsupported by any dedicated support staff or servers, and is utilized by potentially
very large numbers of users. The operation of these networks is distributed and
autonomous. Interjecting a traditional centralized authentication scheme, therefore,

“Traditional centralized authority-

based mechanisms do not work,

or work at less than optimum, for

emerging networking patterns.”

Certificate
Public Key
Social Networks
Identity
Mobility
Distributed Algorithms

Decentralized Trust Management for Securing Community Networks | 149

Intel® Technology Journal | Volume 13, Issue 2, 2009

into these sorts of networks would impose a centralized control structure and
require permanent on-line servers and support staff to manage them, thereby
undermining the emergent, unmanaged character that makes these networks so
attractive to their users. Instead, what is needed is a trust management system
that matches the emergent nature of these networks, and one that is based on
collaborative individual decisions.

In this article, we examine centralized authentication systems and analyze the
reasons why these systems fall short for new classes of networks. We argue that a
centralized authority that creates and manages all of the identities for a domain is
too inflexible to support self-organizing networks, where relationships are emerging
through individual interactions. We call for a new approach wherein identities are
created to signify the relationships, and entities collaboratively manage and evolve
trust, based on these relationships.

We propose a decentralized trust management framework that manages identities
to support authentication in self-organizing networks. This framework contains
several key functions: evidence collection and distribution, identity generation
and auditing, and trust calculation. Within this framework, every node collects
trust evidence locally and shares information with peers. Trust decisions are
made locally, based on collected information. The global consensus of trusting
identities is reached by peer interactions and trust calculation. We emphasize the
need to bootstrap trust relationships in order to build practical trust-management
systems. For managing and propagating trust, we propose a novel trust model to
calculate trust, based on both first-hand observations and on second-hand opinions
from peers. This trust calculus model has two unique features: (1) support for
both positive and negative trust values; and (2) whenever possible, pre-existing
relationships, such as those between devices and their users from other contexts
and communities, are transformed into new relationships between devices in new
communities.

We further analyze some threats, such as identity attacks, to the decentralized trust
model, and we propose using device profiling to build consensus on binding a
device identifier with its profiling attributes. We further discuss candidate attributes
that can be used to thwart certain identity attacks.

Organization of this Article
Firstly, we analyze the trust-management challenges in current centralized models.
We propose a decentralized trust-management framework for identity management
and authentication and describe several of its main functions. Then, we describe
applications of the basic trust model functions to bootstrap trust relationships,
identities, and trusted communities. Next, we illustrate the design of community
vouchers as a means to propagate trust, by using trust-calculation algorithms. We
then analyze the identity attacks on our decentralized trust-management system and
suggest some attack-detection methods. We finally present a discussion of related
works, and we conclude the article with a look at our future research directions.

“What is needed is a trust
management system that matches the
emergent nature of these networks.”

“We call for a new approach
wherein identities are created to
signify the relationships, and entities
collaboratively manage and evolve
trust.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

150 | Decentralized Trust Management for Securing Community Networks

Decentralized Trust-Management Problems
Traditional Trust Models and Problems
The current practice of managing trust and authentication is designed to efficiently
address the needs of enterprise access control. A centralized server is deployed to
perform all authentication procedures, such as X.509v3 [1] certification authority,
revocation servers, on-line certificate status protocol (OCSP) servers, or RADIUS
servers [2]. Having a single central server simplifies credential management and
makes it easier for the organization to enforce its access-control policies. However,
it has become evident that the dominant centralized security models fail to meet
the following challenges presented by the P2P communication patterns in self-
organizing networks:

A centralized authority has to be available all the time. Given the dynamic nature of
new networking forms, it is impossible to guarantee that this centralized authority
can be reached from everywhere in the network.

A single point of control makes it harder for users to communicate with the domain.
The centralized authority generates and manages all the identities and credentials
for the domain. This design forces users to contact the centralized authority
for every enrollment and authentication activity. In self-organizing networks,
communications may happen only in a local context, where contacting the
centralized authority is impossible or, at best, very inconvenient.

Centralized trust models demand long-lived trust evidence. IT administrators often
hold the view that computing devices belong to a single administrative domain, so
that credentialing happens only once during the lifetime of a device, at most. The
resulting identity credentials have to fit all usage cases. This increases the cost of
gathering and maintaining evidence, increases the possible damage if credentials
become compromised, and makes it difficult to re-evaluate trust evidence. In
self-organizing networks, an entity’s relationship with a particular domain may
be dynamic and transient. Such relationships require frequent and on-line trust
evidence re-evaluation.

A centralized authority imposes a single trust metric for the entire domain. This means
that a name is bound to a key. However, in self-organizing networks, the trust
evidence is not uniform. Evidence may be in the form of keys, names, hardware
attributes, and even social relationships. Hence, evidence evaluation cannot be
uniform either.

Traditional centralized security models require the domain to be established at a central
place by some authority. In unmanaged networks, however, the trust relationships
are formed at the grassroots level and from P2P interactions. A corresponding trust
model needs to be built to match this pattern.

“It has become evident that the

dominant centralized security models

fail to meet the challenges presented by

the P2P communication patterns.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Decentralized Trust Management for Securing Community Networks | 151

The centralized model enforces a uniform relationship between the individual named
entities and the organization running the central server, not between different devices
within the organization. This is at variance with the needs of devices in new usage
models such as P2P networks, where each device needs some means to directly
manage its relationships with other devices in the community.

Prior research on security models has proposed decentralized trust models that
remove the dependency on the centralized authority and servers [3, 4, 5, 6, 7, 8,
and 9]. However, most of the existing literature only focuses on the trust calculation
models, which evolve and propagate trust on entities, based on a transitive property
of trust. Decentralized trust calculations only address part of the problem. A
complete and practical decentralized trust management system demands solutions
to the following three additional problems: 1) trust evidence gathering; 2) trust
evidence evaluation for initial trust computation; and 3) the creation of trusted
communities.

Decentralized Trust-Management Framework
Requirements
We propose a decentralized trust-management framework for managing trusted
member identity in self-organizing networks. The trust-management system creates
and manages a trusted domain, called a trusted community. This framework satisfies
the following requirements:

Removes dependency on a centralized authority. We envision a completely
decentralized system in which every node in the domain has the potential to be a
naming authority. Many authorities in a domain allow users to join and use the
system from anywhere in the network.

Makes on-line evidence distribution a first-class ingredient. All members in the system
provide a variety of evidence to help calculate the initial and ongoing trust and
reputation of other members. It is important to provide on-line mechanisms so
that members can distribute trust evidence, in order to build a practical trust-
management system.

Provides accountability. The trusted community uses the authentication procedure
to enforce accountability that cannot be repudiated, for actions performed by a
member of the domain. To achieve accountability, identities must be individual,
unique, and undeniable, within the administrative domain.

Treats relationships as a central component of the network. The usage of identities
in P2P communications is often relevant only to the communicating parties
within the domain. Identities created and managed in the trusted community
should signify P2P member relationships and members’ relationships with the
trusted community, via the relationship the credential issuer maintains with the
community.

“Most of the existing literature only

focuses on the trust calculation models,

which evolve and propagate trust on

entities, based on a transitive property

of trust.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

152 | Decentralized Trust Management for Securing Community Networks

Decentralized Trust-Management Paradigm
At a high level, a trust-management framework should provide the following
functions to be able to secure communities:

•	 Bootstrap,	or	create,	the	community.
•	 Enroll	members	in	the	community.
•	 Authenticate	members	to	one	another.

The framework mechanisms to generate and manage identities for each member
should be decentralized. They must permit members to authenticate and securely
communicate with each other through mediation of any other members in the
trusted community. Members self-organize the trusted community by using trust
calculations to evaluate their evolving relationships within the community.

Relationships exist between roles within a community. Each community contains
members who are entities that can participate in community activities with full
member privileges. Issuers are special members. In addition to ordinary member
privileges, issuers have the responsibility of generating identities for new members.
We represent identities with identity certificates that can be used as authentication
credentials within the community.

Authentication within the community is achieved by the holder of an identity
credential issued by a recognized issuer proving possession of a key that is bound
to the credential. Authentication fails if the authenticated party does not possess a
certificate from an issuer who is recognized by the authenticator as such.

A member may recognize all or some subset of the other members as issuers in the
community. When a member is first enrolled in the community, this member’s
enroller is, by default, the first issuer recognized by the member. A member
may gain trust and recognize new issuers by collecting trust evidence from the
community and applying the evidence to a trust calculation. A member can become
an issuer as a result of a consensus reached by a group of issuers and members; this
group is called the issuer’s election committee. The election committee can consist
of a single member, but an issuer has little impact unless it is recognized broadly
across the community. Members of the election committee execute a joint trust-
calculation algorithm to elect an issuer. Once elected, an issuer certificate is issued to
the new issuer, signed by each of the electors. The purpose of this signed certificate
is to demonstrate that the issuer is recognized by more than a single member.
However, having the certificate signed by multiple parties raises security issues
about collusion and about members with multiple identities, which are discussed
later in this article.

“Members of the election committee

execute a joint trust-calculation

algorithm to elect an issuer.”

“Members self-organize the

trusted community by using trust

calculations to evaluate their evolving

relationships.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Decentralized Trust Management for Securing Community Networks | 153

Founders are special issuers who initially establish the trusted community. Founders
recognize each other as founders, issuers, and members.

Lastly, some entities are treated as guests in the community. Any community
member can introduce new entities to other community members as guests. An
issuer can enroll a guest as a member by following certain procedures. Creating the
guest role allows a newcomer to participate in a trusted community without having
to first contact an issuer.

It is important to stress that community credentials provide more than just
identities for community members.

Credentials are relationship signifiers. Each one signifies a relationship between the
member and its issuer. In this model identity is not necessarily who you say you
are, but rather who your issuer says you are. Other members of the community
believe this identity because it is asserted by an issuer they trust. The community
collectively holds its issuers accountable for issuing identities that do not conform
to the rules of the community.

In this trust-model, framework, each entity implements the same set of trust-
management functions: 1) trust evidence collection and distribution; 2) identity
generation and auditing; and 3) trust calculation and propagation of identities. In
addition, each entity maintains a community database locally that stores the entity’s
knowledge about the trusted communities it belongs to. Some examples of the type
of data stored in the community database are community name, policy, recognized
identity certificates, recognized issuer certificates, and relevant trust evidence.

Figure 1 illustrates the three major trust-management functions and their
relationships. Each entity collects evidence through its own measurements, and also
through communication with other entities within the community. Entities use
on-line, evidence-distribution mechanisms to share evidence gathered from either
first-hand observations or from recommendations by other community members
they trust.

Once sufficient evidence is collected, an entity can compute an initial trust value
for the target entity. For initial enrollment, an issuer generates a name label that
is based on collected evidence. The issuer binds the name label to the relevant
evidence in a credential for the target entity.

For authentication, the identity auditing mechanisms ensure that the entity uses its
identity properly, the one that is laid out in the authentication and authorization
procedures. In particular, the entities need to pay close attention to identity-related
attacks (discussed later in this article), and they need to utilize certain approaches
to detect or mitigate identity attacks. The auditing function requires knowledge of
both the name label and trust evidence that is bound to the entity’s identity in the
community.

Evidence
Collection

Evidence
Distribution

Identity
Generation

Identity
Auditing

Trust
Calculus

Trust
Propagation

Figure 1: Distributed Trust Framework for Identity
Management
Source: Intel Corporation, 2009

“Credentials are relationship

signifiers.”

“For authentication, the identity

auditing mechanisms ensure that the

entity uses its identity properly.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

154 | Decentralized Trust Management for Securing Community Networks

Lastly, each entity builds its trust value or reputation upon joining the community.
To establish and update trust on an existing member, the entity utilizes trust
calculus to incorporate opinions from its peers, as well as first-hand observations.
More specifically, the main goal of trust calculus is to compute the trust value on
a member without communicating directly with the member. Often, this is done
by utilizing the transitive property of trust. Later on in this article, we introduce a
novel trust-calculation model that has two unique features: it supports both positive
and negative trust values, and it utilizes relationships among devices and their users
inherited from other contexts to root trust whenever possible. The outcome of the
trust calculation is fed back to trust-evidence collection and auditing components
to further improve the knowledge of trust evidence and the binding of entity
attributes with the identity of the entity.

In the remaining sections of this article, we discuss in detail our vision for these
three components with our focus on bootstrapping trust and propagating trust in
the community.

Bootstrapping Trust in the Community
Trust Evidence and Evidence Collection
Bootstrapping trust starts from collected trust evidence. In this scenario, any
information useful for computing trust value on an entity is referred to as trust
evidence. In general, there are three types of evidence:

•	 First-hand observation or measurement. The observer can collect such
evidence by direct interaction with the target entity. For instance, MAC
address, hardware identifier, and past network activities associated with
these hardware identifiers are observable directly.

•	 Second-hand observation. Members can share their first-hand observations
with each other to help trust calculation.

•	 Recommendations. Members can also share their opinions on other entities
with each other. Recommendations result from the distillation of evidence
by the trust calculations of other members. For instance, one member may
recognize another as an issuer. By doing so, the first member has decided
that certificates issued by the issuer are an acceptable form of identity
within the community. Responding to a query from another member for
the issuer’s certificate is its way of recommending the issuer.

The mechanisms to share trust evidence are critical to enable decentralized
trust calculation. A general requirement for trust evidence sharing is that trust
evidence be distributed to wherever it is needed as quickly as possible. Several P2P
communication systems have the potential to satisfy this requirement, such as ant-
based routing, content-based information routing, publish and subscribe systems,
delay tolerant transport protocols, P2P file sharing, P2P gossip protocols, and so
on. Part of our future work is to choose appropriate protocol and communication
primitives to support distributed trust evidence sharing.

“A general requirement is that trust

evidence be distributed to wherever it

is needed as quickly as possible.”

“The main goal of trust calculus is to

compute the trust value on a member

without communicating directly with

the member.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Decentralized Trust Management for Securing Community Networks | 155

Bootstrapping Trust from Evidence
Device credentialing requires the creation of a relationship with a new community.
This problem may be broken down into two separate problems. Firstly, the device
must somehow be able to unambiguously recognize the community, and the
community must somehow be able to recognize the device. Secondly, both the
owner of the device and the community have to agree to form the relationship
signified by the credential being established. Solutions to the first problem, such as
Wi-Fi Protected Setup [10], utilize an out-of-band channel to exchange some sort
of setup key, which cannot be forged, between the device and the administrative
domain. The solution to the second problem requires human choice: both the
device owner and the new community must somehow indicate their desire for this
new relationship. (Solutions such as factory-installed identities remove human
choice, thereby defeating the essential purpose of authentication credentials.)

All electronic identity establishment mechanisms require an out-of-band channel
to be secure. The purpose of the out-of-band channel is demonstrative identification;
that is, the out-of-band channel establishes beyond a doubt that the identity is
being assigned to the intended party. We believe pre-existing relationships can serve
as the out-of-band channel in many circumstances. However, this is not always
possible. A newly purchased device, for instance, has no prior relationship with any
organization deploying it; therefore, it lacks any useful credential to bootstrap a new
relationship. Consequently, mechanisms, such as Wi-Fi Protected Setup, will always
be needed. However, this lack of credentials is no longer true after a device has been
enrolled in even a single administrative domain. A device with a credential has a
relationship with one administrative domain, and this relationship can be used as a
basis for forming relationships with other members of other administrative domains
who possess relationships with the first.

To illustrate this point, suppose A and B both belong to community C1, while A
also belongs to community C2. If both B and C2 desire that B become a member
of C2, then A can use its relationship with B in C1 as evidence in C2. That is, A
can use this relationship to assert that it has demonstrably identified B as evidence
supporting B ’s request to join C2. Similarly, B can use A’s recommendation of
an issuer I in C2 as evidence that it is indeed joining C2, by accepting an identity
certificate from I. In order to protect the confidentiality of the relationship in
C1 between A and B, the new credential should not indicate which external
relationship was used to identify B to the C2 relationship. On the other hand, A
is revealing something about its own relationships within C2 by recommending
an issuer to B, but our assumption is that relationships within a community are
open to all members for inspection. This is in keeping with current practice, as the
authentication credentials provisioned by existing manual solutions to the problem
do not inherently reveal the human relationships used to provision the credentials.

“The device owner and the new

community must somehow indicate

their desire for this new relationship.”

“A device with a credential has a

relationship with one administrative

domain.”

“Our assumption is that relationships

within a community are open to all

members for inspection.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

156 | Decentralized Trust Management for Securing Community Networks

Community Formation
A practical trust-management system should address the problem of bootstrapping
the trusted domain, a central concern in any decentralized trust models. Here
we introduce flexible approaches to establish a new trusted community. The key
consideration is to reduce the cost of forming a trusted community. More precisely,
we are looking into approaches that require only a limited amount of information
and human intervention.

In some cases, a trusted community can be constructed with only one party, but
one-party communities are usually not very interesting. Instead we illustrate the
more general case where two or more parties create a new community through the
following steps:

•	 Establish	an	initial	trust	relationship,	as	described	earlier,	based	on	some	
form of demonstrative identification, including the use of credentials from
some other community.

•	 Run	a	commitment	protocol	to	agree	on	the	following	parameters:
 - Community name, as an arbitrary name string
 - Community policy, stating membership and naming rules
 - Founders’ identity information
 - Lifetime of the community

The string that identifies the community is the concatenation of community name,
founders’ public keys, and the community policy description. The public keys are
included to uniquely identify the community.

•	 Create	credentials	to	represent	the	community.	The	founders	create	and	sign	
a special community certificate that contains the information of the newly
established community. The founders also recognize each other as issuers
and members of this new community.

•	 Exchange	credentials	and	update	the	community	database.	Each	founder	
inserts the newly-generated community certificate, issuer certificates, and
member certificates into its own community database.

At this point, the founders successfully establish a community by themselves and
are collectively responsible for the management of the community. Issuers propagate
this community information and certificates to new members as part of any
successful enrollment ceremony.

By using this procedure, parties can self-organize trusted communities. This
procedure is flexible and allows for parties to establish long-lived or transient
communities to suit different kinds of secure applications.

“At this point, the founders successfully

establish a community by themselves

and are collectively responsible for the

management of the community.”

“The key consideration is to reduce the

cost of forming a trusted community.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Decentralized Trust Management for Securing Community Networks | 157

Managing a Trusted Community
Human societies have been generally successful in managing trust and reputation.
People have always self-organized into resilient communities for information
exchange, and these self-organizing models have won the test of time [11]. In
this section we describe an approach that models trust by using the exchange of
reputation and trust information based on social networks [12].

Utilizing Social Networks: Community Vouchers
Earlier we described a web-of-trust model. Several attempts have been made to
create viable web-of-trust models, such as Pretty Good Privacy (PGP) [9]. There
are several problems with the models proposed to date, such as the collusion and
identity problems already noted. Problems also occur because in every community,
members depend on other members for trust. The recommendations are not
weighted, and newly enrolled members may have difficulty finding any existing
members whose recommendations are believable. Furthermore, the notion of
negative recommendations, which is essential in defending against malicious
members, does not exist in the existing web-of-trust models. We propose calling all
forms of recommendations vouchers, because we see a recommendation as a way for
one member to vouch or not for another member.

In Figures 2a and 2b, each solid line between two members represents an existing
trust relationship. Figure 2a represents a community that has accreted naturally into
three clusters: a cluster between two members labeled Cluster_i, a random network
cluster labeled Cluster_r, and a mesh network labeled Cluster_m.

If member F intends to establish a trust relationship with member A, any
combination of the following existing trust relationships can be utilized by A to
provide evidence for trusting F: (1) the trust relationship between F and I, because
A accepts I ’s vouchers, (2) the trust relationship between F and D, because A
accepts D ’s vouchers, or (3) the trust relationship between F and S, because A
accepts S ’s vouchers.

“If member F intends to establish a

trust relationship with member A,

any combination of existing trust

relationships can be utilized.”

“The notion of negative

recommendations, which is essential in

defending against malicious members,

does not exist in the existing web-of-

trust models.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

158 | Decentralized Trust Management for Securing Community Networks

A

B

I

H E

G

C
D F

J K

M N

Cluster_r:
A random network

Cluster_m:
A complete mesh

Cluster_i:
An individual trust

S

L

Random node on the network

Highly-connected node on the
network (super node)

 Established trust relationship
 Trust relationship being established
 Relationship with precedence
 Relationship without precedence

Administratively assigned community leader

A

S

L

Figure 2a: Community-based Trust – Formation of Trust Communities
Source: Intel Corporation, 2009

Of course, in general A does not have a priori knowledge about any of these
relationships, and it faces the problem of how to expeditiously obtain the evidence
it needs about F ’s trustworthiness. The solution? A should query all of the other
community members it considers trustworthy that are presently on-line. Other
community members can send their vouchers. Whether another member has the
evidence A needs depends on that member’s connectivity and experience within the
community. Figure 2 depicts S as more highly connected than other members, so it
is likely S can respond to more requests.

By responding to more requests, S can build a reputation for fast or more complete
or authoritative responses, because it has access to more sources of evidence (S may
instead build a negative reputation by passing information that later proves to
be inaccurate). A member such as S builds its reputation based on the natural
evolution of relationships within social communities. These reputations can be used
to weight trust decisions.

“A member such as S builds its

reputation based on the natural

evolution of relationships within

social communities.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Decentralized Trust Management for Securing Community Networks | 159

 Negative recommendation

A

B

Cluster_i:
An individual trust I

H E

G

C
D F

J K

M N

Cluster_r:
A random network

Cluster_m:
A complete mesh

X
X

X

S

L

X

Random node on the network

Highly-connected node on the
network (super node)

 Established trust relationship
 Trust relationship being established
 Relationship with precedence
 Relationship without precedence

Administratively assigned community leader

A

S

L

Figure 2b: Community-based Trust – Negative Endorsement
Source: Intel Corporation, 2009

Trust Calculation
In addition to making decisions on whether or not to trust another member,
the weight factor can also be used to determine trust levels. Trust levels fluctuate
dynamically. For example, a voucher from a highly connected member such as S
may make F more trustworthy to A. A higher trust value is therefore given to F in
A’s trust list, because S is likely to have more evidence about F ’s past behavior. By
reporting helpful vouchers more frequently than other members, S ’s trust level will
increase.

There are many ways to represent levels of trust. One representation can be trust
rings, where each node creates several rings around it that represent levels of trust,
and the device sorts other members into the most appropriate ring. A member
places the peer members it trusts the most (that is, those that it maintains the
closest relationships with) in the inner-most ring, followed by its friends in the next
ring, and so forth. A neutral ring denotes a neutral trust state, while the outer rings
represent mis-trust. A member can move between rings depending on the change in
its relationship with other members. Trust, from a member’s point of view, can have
the following form:

τax = ∑ αr ∑ τay τyx + ∑ βr ∑ τay τy

∀pos_rings

∀neg_rings y

“Trust levels fluctuate dynamically.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

160 | Decentralized Trust Management for Securing Community Networks

where τay denotes how much member A trusts B, τay < 0 denotes mis-trust, and
αr denotes the weight associated with a trust ring. Using this equation, if member
A receives several vouchers for member B, A will use the trust ring of the members
vouching for B to resolve conflicting vouchers. A then uses its trust calculation
to decide whether to transfer B between rings. Highly-connected members tend
to migrate toward the innermost ring (at least if the vouchers they provide report
good information over time), resulting in their opinions weighing more. Trust rings
provide a simplified version of assigning trust for a node, especially in situations
where the node does not have the computing power to assign and maintain
individual values for all nodes it encounters. It provides the flexibility of grouping
nodes according to trust levels.

As an example, in Figure 2b, node L trusts member M with a value of 3, while
J mistrusts M with a value of -2. Member A places L and J at level 5 and 2.5,
respectively. When A computes the trust level for M, the negative endorsement
of member J will be subtracted from that of member L. This will result in a
positive trust value τAM , which will probably not be high enough to place it in
the inner circle due to the negative endorsement of J. In addition, the trust levels
(τab) are dynamic variables, which makes the equation adaptive to changes in the
communities (for example, nodes moving out of current communities or forming
new communities).

A member’s cumulative rating across all other members’ rings represents its
reputation within the community. Reputation requires maintenance of a
relationship history, so is not free. We believe reputation makes for a good default
trust value when no other information is available.

Micro and Macro Trust System
In addition to trust between members, we extend the trust model to a second
dimension, where trust is calculated in a vertical (layered) manner, and reconciled
to horizontal trust (for example, nodes virtual networks). Figure 3 illustrates the
concept with a system comprised of three entities, and each entity is comprised of
multiple components. For example, entity A consists of a user, a device, a virtual
machine, a host operating system, and an application running on the device. A
vertical trust relationship exists between the respective components of entity A; in
the meantime trust also exists horizontally, such as between entities.

“Trust rings provide a simplified

version of assigning trust for a node.”

“Trust rings provide a simplified

version of assigning trust for a node.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Decentralized Trust Management for Securing Community Networks | 161

Entity E

Entity D

Device

VM

Entity C

OS

Application

VM

Entity A

OS Device

Application

Entity B

Application 2

Application 1 OS1

OS2

VM1

VM2

Device

Figure 3: Micro and MacroTrust
Source: Intel Corporation, 2009

In existing technologies, individual components completely trust all the
components of other trusted entities. This increases the risk when a component on
a trusted entity is compromised. Our approach, on the other hand, applies trust
propagation among individual components inside entities as well as among entities
as a whole, and trust levels among different components within an entity can be
independent. For example, assume that entity A is running a web browser, while
entity B is running a web server, with a database backend. As a result, the trust of
the browser in the database server on entity A is a function of its own trust level for
the web server and a trust voucher on the database, while Entity A and Entity B
as a whole may have different levels of trust between themselves. We assume no
explicitly defined trust level between the application and the device. However, trust
can propagate from the application to the device through the user, the operating
system (OS), or a virtual machine (VM). In order for such a system to be usable, it
is essential to have a network that is manageable to the degree that you can continue
to model the interconnections based on social networks, where each entity can be
treated as a community.

“In existing technologies, individual

components completely trust all the

components of other trusted entities.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

162 | Decentralized Trust Management for Securing Community Networks

Identity Attacks on Decentralized Trust Models
Traditionally, it is easy to assign identities to devices and users within a community:
choose one member to issue an electronic identity to each new member. With
centralized credentialing, the major worry is impersonation attacks, where one
party steals and uses the identity of another. Completely decentralized domains
introduce new challenges, as a party might acquire multiple identities from
different issuers. The exchange of trust evidence and trust values in our model is
based on the assumption that distinct members have unique identities, and their
opinions are independent; this assumption is critical to our model. Without this
assumption, entities cannot be held responsible for either their actions or for the
recommendations they render. In this section we discuss several common identity
attacks and potential countermeasures.

Identity Attacks
Distributed trust calculation is particularly sensitive to three kinds of identity
attacks:

•	 Masquerade. This kind of attack allows an attacker to use the identity
of a legitimate community member. Masquerading attacks violate the
requirement in trust calculus that recommendations can be attributed to
the member allegedly sharing an opinion.

•	 Sybil. This kind of attack occurs when the attacker uses multiple identities
simultaneously in the same community to take advantage of distributed
trust calculations. Sybil attacks violate the requirement in the trust model
that every member should contribute only one vote to each trust decision.
Arbitrary Sybil attacks allow the attacker to disproportionally weight
its own contributions to a trust calculation, thereby increasing its own
influence beyond what it is entitled to, based on its reputation.

•	 White-washing. This kind of attack is similar to that of a Sybil attack,
but it differs in that the attacker quickly changes its identity to avoid the
consequences of its own actions. White-washing attacks violate the same
fairness requirement as the Sybil attacks. In addition, they also violate
the accountability requirements in the trust model, that state that each
member should commit to the consequences of its own actions, including
contributing opinions to the trust evaluation. This commitment is required
so that community members can build stable trust relationships within
the community. If the entity changes its identity quickly, its actions are
not accountable, and the consequences of its actions cannot be bound
effectively to the perpetrator.

Countermeasures for Identity Attacks
Potential countermeasures to identity attacks belong to two general categories:
prevention or detection.

“A party might acquire multiple

identities from different issuers.”

“The accountability requirements in

the trust model state that each member

should commit to the consequences of

its own actions, including contributing

opinions to the trust evaluation.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Decentralized Trust Management for Securing Community Networks | 163

In centralized trust management systems, it is relatively easy to deploy a prevention
mechanism to stop attackers from creating multiple identities illegally, because
all the identity credentials are generated by the centralized authority. In the
decentralized case, however, detection is a more effective countermeasure. One of
our research hypotheses has been that the consensus-building nature of our trust
model makes it suitable to detect Sybil and white-washing attacks. The goal is to
minimize the risk that a member can illegitimately deny an identity previously
acquired from the community.

In our trust model, trust requires consistent attribute usage, so a communal
consensus about each member’s attributes becomes feasible, and access to the
community’s resources can be regulated by the relationships maintained through
time. The trust on an identity is established by building a device profile of attribute
usage and verifying that the device profile is consistently mapped to the acquired
device name. In other words, the community members build the initial binding of
the device profile and device name, propagate this knowledge, and eventually build
the communal consensus on the bindings. If the attacking device uses a different
identity by modifying any of the bound attributes, this will be detected by other
community members, who can then deny the attacker resources afforded through
existing relationships within the community.

In order to detect the mis-bindings, the device profile contains a set of measurable
device attributes. It is not required that a single attribute be able to uniquely
identify the device. Together, the combined probability of forming a unique device
identifier should be reasonably high. In particular, it is preferable that the attributes
are tied to device hardware or the surrounding physical environment. In effect,
the cost of creating a new identity for the device is close to the cost of changing all
the hardware attributes in the device profile. Consequently, buying a new device
becomes probably the only viable option for the attackers to create a new identity.
Next, we suggest three types of attributes that can help with device profiling.

Attributes for Identifying Other Devices
We examine three types of attributes for machine identification: radio attributes,
hardware platform attributes, and behavioral attributes, such as network activity:

Radio attributes. Wi-Fi, Bluetooth, and other radio-based communications devices
are now ubiquitous in mobile devices. Radios may have a number of attributes that
can be measured and shared:

•	 Received	signal	strength	indication	(RSSI).	RSSI	is	a	transient	attribute	
that could be used to detect some types of Sybil attacks. Cheriton and Faria
report [13] that the signal strength measurements of a target by different
receivers consistently correlate; [14] and [15] suggest a similar technique.
This means it should be feasible to detect whether a device is changing low-
level identifiers such as a MAC address. A community member utilizing
shared RSSI values measured from the target devices can decide whether
the frames sent, using different identities, render the same RSSI profile and
therefore match the same physical device. We plan to design a distributed
solution that utilizes a subset of real-time RSSI data.

“Community members build the

initial binding of the device profile

and device name, propagate this

knowledge, and eventually build the

communal consensus on the bindings.”

“It is preferable that the attributes

are tied to device hardware or the

surrounding physical environment.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

164 | Decentralized Trust Management for Securing Community Networks

•	 A	second	line	of	investigation	shows	that	every	radio	has	unique	
fingerprints. A fingerprint is a measurable characteristic, such as the rise
time of the first symbol beginning a radio transmission. In [16], Xiao et
al. propose using radio fingerprints as a way to recognize devices. If radio
fingerprinting proves to be practical, it could be used to detect identity
attacks. In particular, a radio fingerprint could be bound to an identity
certificate and the radio fingerprint database that was searched, prior to
issuing a credential to a new party joining a community.

Hardware measurements. A typical personal computer contains a list of hardware
identifiers or serial numbers to identify each piece of hardware inside the computer.
There are two challenges inherent in using such information. First, these identifiers
should be externally measurable; that is, there should be ways that allow the
measuring entity to retrieve such information on the target entity over the network.
The second challenge is the non-repudiation of measured data. Trusted hardware
from a device, such as the trust platform module (TPM), may be used to store
and communicate the measurement data in order to avoid malicious change of
information when it flows through potentially malicious OSs.

One particular TPM-related mechanism is to have the hardware record the
community ID for every community joined, and to maintain this as a list in sealed
storage. An issuer can then query the TPM of the enrollee about whether it is
already a member of the community into which the enrollee wants to enter, and the
TPM will provide a zero-knowledge proof that the new community is not already
on its list. The zero knowledge proof will fail if the enrollee has already joined the
community, thus making Sybil and white-washing attacks more difficult.

Network activity correlation. This kind of attribute is transient; yet, it is useful for
building correlations between entities in the network. For instance, tables used by
the address resolution protocol (ARO) on hosts reveal recent IP and MAC address
bindings in the network. Information from multiple nodes may be useful to build
consensus on the correct usage of MAC addresses by members. Another way to get
information would be to use routing tables. Routing table entries from multiple
nodes in the network help to build topological relationships between devices in the
network, that can sometimes be used, together with other localization techniques,
to help distinguish unique devices.

Related Work
Our work is inspired by Gligor’s analysis [4]. He advocated that trust establishment
is an emergent property in ad hoc networks, and trust relationships may need to
be established among nodes after network emergence. Hence, trust establishment
has to be based on dynamic evaluation of evidence about a node and not just on a
statically defined relationship with a single third party. He also urged the design of
evidence-evaluation metrics to assign low certainty to evidence from questionable
sources while still achieving an acceptable number of false positives. We take this a
step further and use identities to signify relationships and verify entity uniqueness
to examine the evidence in question.

“Our work is inspired by Gligor’s

analysis.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

Decentralized Trust Management for Securing Community Networks | 165

Previous work has also proposed several variants of the distributed trust model.
Eschenauer et al. introduce the general principles of trust establishment in mobile
ad hoc networks [3]. Many researchers assume the transitivity of trust to establish
a relationship between two entities without the necessary prior interactions.
The trust evaluation is modeled as a path problem in a directed trust graph.
Theodorakopoulos and Baras [8] extend the PGP model to use second-hand
evidence. However, their trust evaluation assumes independent opinion sources.
Reiter and Subblebine advocate that trust calculation has to be based on multiple
non-intersecting paths [6]. They propose algorithms to identify trust paths in
the trust graph. Unlike our model, their work still assumes every entity offering
opinions is distinct.

Several papers [7, 17, 18, 19, 20, and 21] adopt the idea that trust can be
established through direct observations or through third-party recommendations.
Sun et al. represent trust as uncertainty, computed by using entropy [7]. Zouridaki
et al. use modified Bayesian approaches to build trust and reputation systems
by using second-hand information [21]. Jiang and Baras use weighted voting
algorithms to deal with conflicting opinions [5, 17]. The model favors local
interactions over second-hand opinions. Several works use Dempster-Shafer
Theory (DST) for trust evaluation [19, 20] to take into account the uncertainty
of evidence that cannot be evaluated by using Bayesian methods. Raya et al. [20]
propose evaluating data-centric trust in vehicular ad hoc networks (VANETs).
They use simulations to evaluate algorithms by using weighted voting, Bayesian
methods, and DST, and they conclude that each method has its own strength in
different networks; however, they hold that DST is best suited to the decision logic
requirements in a time-critical vehicular network.

In addition to trust evaluation, there are a few works on trust evidence generation
and distribution. Eschenauer et al. describe examples of generic evidence generation
and distribution in a node-centric authentication process [3]. Hubaux et al. propose
a model to build partial local certificate repositories for PGP [22]. Jiang and Baras
propose an ant-based routing algorithm to search for trust evidence in ad hoc
networks [23].

“Several researchers adopt the idea

that trust can be established through

direct observations or through third-

party recommendations.”

“Many researchers assume the

transitivity of trust to establish a

relationship between two entities

without the necessary prior

interactions.”

Intel® Technology Journal | Volume 13, Issue 2, 2009

166 | Decentralized Trust Management for Securing Community Networks

Conclusions and Future Research Directions
In this article, we present a paradigm of a distributed trust model generalizing
beyond the enterprise model to ad hoc, mesh, and self-organizing networks, where
every member can serve as an authority to enroll and authenticate devices for the
community. Our model elevates the problems of on-line evidence evaluation and
bootstrapping trust to first-class concerns and proposes solutions to address these
problems. We focus on designing credentials to signify the trust relationships that
emerge within a community and suggest a novel identity-laundering concept to
establish new relationships from pre-existing trust relationships rooted in different
administrative domains. We also extend the existing trust propagation models to
incorporate both negative opinions and social relationships.

This work opens a new research area for trust management. A number of open
problems remain. We plan to design a self-organizing information distribution
system suitable for trust evidence dissemination in various network sizes and
topologies. Another area for future work is identifying appropriate trust calculus
and trust metrics for evaluating various first-hand trust evidence and computing
initial device reputation.

References
[1] R. Housley, W. Polk, W. Ford, and D. Solo. “Internet X.509 Public Key

Infrastructure Certificate and CRL Profile.” RFC 3280, 2002.
At http://www.ietf.org

[2] C. Rigney, W. Willens, A. Rubens, and W. Simpson. “Remote
Authentication Dial In User Service (RADIUS).” RFC 2865, 2000.
At http://www.ietf.org

[3] L. Eschenauer, V.D. Gligor, and J. Baras. “On Trust Establishment in
Mobile Ad Hoc Networks.“ In Proceedings of 10th International Security
Protocols Workshop, 2002.

[4] V. Gligor. “Security of Emergent Properties in Ad-Hoc Networks.”
In Proceedings of the 4th ACM Workshop on Wireless Security, 2005.

[5] T. Jiang and J. Baras. “Trust Evaluation in Anarchy: A Case Study on
Autonomous Networks.” INFOCOM 2006, 2006.

[6] M. Reiter and S. Stubblebine. “Resilient Authentication Using Path
Independence.” IEEE Transactions on Computers, Volume 47, No. 12,
December 1998.

[7] Y. Sun, W. Yu, Z. Han, and K.J. Ray Liu. “Information Theoretic
Framework of Trust Modeling and Evaluation for Ad Hoc Networks.”
IEEE Journal on Selected Areas in Communications, 24(2):305—317,
February 2006.

[8] G. Theodorakopoulos and J. Bara. “On Trust Models and Trust Evaluation
Metrics for Ad Hoc Networks.” IEEE Journal on Selected Areas in
Communications, 24(2);318—328, February 2006.

[9] P. R. Zimmermann. The Official PGP User’s Guide. Cambridge, MA, MIT
Press, 1995.

[10] Wi-Fi Protected Setup. At http://www.wi-fi.org.
[11] A.-L. Barabási. Linked: How Everything Is Connected to Everything Else and

What It Means. New York, New York: Penguin Books. 2003.

Intel® Technology Journal | Volume 13, Issue 2, 2009

Decentralized Trust Management for Securing Community Networks | 167

[12] A.-L. Barabási and R. Albert. “Emergence of scaling in random networks.”
Science 286, 509-512, 1999.

[13] D. Faria and D. Cheriton. “Detecting Identity-Based Attacks in Wireless
Networks Using Signalprints.” ACM Workshop on Wireless Security
(WiSe’06), September 2006.

[14] Y. Chen, W. Trappe, and R. Martin. “Detecting and Localizing Wireless
Spoofing Attacks.” IEEE SECON 2007, September 2007.

[15] Y. Sheng, K. Tan, G. Chen, D. Kotz, and A. Campbell. “Detecting 802.11
MAC Layer Spoofing Using Received Signal Strength.” INFOCOM 2008,
April 2008.

[16] L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe. “Fingerprints in
Ether: Using the Physical Layer for Wireless Authentication.”
In ICC Proceedings, 2006.

[17] T. Jiang and J. Baras. “Autonomous Trust Establishment.” In Proceedings of
the 2nd International Network Optimization Conference, 2005.

[18] T. Jiang and J. Baras. “Trust Evaluation in Anarchy: A Case Study on
Autonomous Networks.” INFOCOM 2006, 2006.

[19] A. Josang. “An Algebra for Assessing Trust in Certification Chains.”
In Proceedings of NDSS’99, 1999.

[20] M. Raya, P. Papadimitratos, V. Gligor, J. Hubaux. “On Data-Centric Trust
Establishment in Ephemeral Ad Hoc Networks.” INFOCOM 2008, April
2008.

[21] C. Zouridaki, B. Mark, M. Hejmo, and R. Thomas. “Robust Cooperative
Trust Establishment for MANETs.” In Proceedings of SASN’06, 2006.

[22] J.-P. Hubaux, L. Buttyan, and S. Capkun. “The quest for security in mobile
ad hoc networks.” In Proceedings of MobilHoc’01, 2001.

[23] T. Jiang and J. Baras. “Ant-based Adaptive Trust Evidence Distribution in
MANET.” In Proceedings of the 24th International Conference on Distributed
Computing Systems Workshops (ICDCSW’04), 2004.

Author Biographies
Meiyuan Zhao is a Research Scientist at Intel Labs working on improving the
security and usability of the Intel next-generation platforms. Meiyuan received her
Ph.D. degree from Dartmouth College. Her research interests include network
security, trust and reputation systems, swarm intelligence, peer-to-peer networks,
routing protocols, and distributed systems. Her e-mail is meiyuan.zhao at intel.
com.

Hong Li is a Principal Engineer at Intel Labs. Hong joined Intel in 1999 as
a Security Architect and led the development of IT security strategies and
architectures. She was also a lead researcher on several IT security research initiatives
including policy-enabled network security, trusted autonomics, and community-
based trust. Hong is active in the industry and academia with many external
publications and pending patents in the area of security and manageability. Hong
holds a Ph.D. degree from Penn State University and a B.S. degree from Xi’an
Jiaotong University, China, both in Electrical Engineering. Her e-mail is hong.c.li
at intel.com.

Intel® Technology Journal | Volume 13, Issue 2, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

168 | Decentralized Trust Management for Securing Community Networks

Rita Wouhaybi is a Research Scientist with the Emerging Platforms Lab (in
STL/CTG) at Intel Corporation. Rita received her Ph.D. degree in Electrical
Engineering from Columbia University in 2006. She also holds BE and ME degrees
in Computer and Communications Engineering from the American University
of Beirut. She interned with HP Labs working on network measurements and
parameters estimation. She also had an internship with Intel IT Research working
on intelligent overlays and their applicability to the enterprise. Her research
interests include peer-to-peer networks, game theory, the use of artificial intelligence
in networking, and social networks. Her e-mail is rita.h.wouhaybi at intel.com.

Jesse Walker is an Applied Cryptographer at Intel Labs. He was the person to first
identify vulnerabilities in the 802.11 WEP protocol. He also served as editor for the
802.11i standard. He joined Intel in the Shiva acquisition. He has a Ph.D. degree
in Mathematics from the University of Texas. His e-mail is jesse.walker at intel.com.

Vic Lortz is a Senior Architect at Intel Labs. Since joining Intel in 1994, Vic has
worked on several projects related to home networking, wireless networking, and
network security. Vic served as chair of the security working committee in the
UPnP Forum. He was also a Lead Architect and Editor of the Wi-Fi Protected
Setup specification. His recent work involves peer-to-peer wireless discovery, setup,
and optimizations to enable new mobile device usages. Vic holds M.S. and Ph.D.
degrees in Computer Science from the University of Michigan. His e-mail is victor.
lotz at intel.com.

Michael J. Covington was, until recently a Senior Research Scientist working at
Intel Labs. His research focused on improving security and reliability for Intel’s
next-generation platforms. With more than six patents pending and as the author
of numerous papers that have been published in leading academic conferences and
journals, Dr. Covington’s research has explored formal access control modeling,
cutting-edge authentication techniques, and security approaches for pervasive
computing environments. Dr. Covington received his Ph.D. and MSCS degrees
from the Georgia Institute of Technology’s College of Computing in Atlanta,
Georgia. He also holds a B.S. degree from Mount Saint Mary’s College in
Emmitsburg, Maryland. His e-mail is research at MichaelCovington.com.

Intel® Technology Journal | Volume 13, Issue 2, 2009

Intel Technology Journal

Intel Technology Journal | 169

Ernie Brickell
Howard Herbert
Shay gueron
Eric Mann

Peer Reviewers

