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ABSTRACT 

In th i s paper we f i r s t t r y to character ize 
one meaning of automatic programming. We consider 
it to be one part of the Programming environment 
re la ted to A r t i f i c i a l I n te l l i gence techniques. 
We then i l l u s t r a t e an automatic programning process, 
on a simple example, using an Abstract Data Type 
theory to which we add the not ion of schemes which are 
p a r t i c u l a r l y useful in program de r i va t i on from Ab
s t rac t Type decomposition. We conclude that a l l 
the concepts t reated in th i s paper must be con ta i 
ned in one way or another in any automatic program
ming system. However th i s necessitates fu r the r 
study in such t heo re t i ca l f i e l d s as Abstract Data 
Type Theory, Spec i f i ca t i on languages, Theorem pro-
vers or proof cheekers and ru le r e w r i t i n g systems. 

I GENERALITIES 

I . I . In my opin ion the concepts impl ied in the 
words "Automatic Programning" are not very precise 
and may even seem completly u n r e a l i s t i c . However 
many people, l i k e myself may consider that even if 
they seem vague and sometimes u n r e a l i s t i c they ap
pear worthwhile f o r s tudying. 

In the f i r s t part of my paper, I w i l l t r y to 
speci fy the d e f i n i t i o n of these concepts, created 
by the j u x t a p o s i t i o n of the two words "Automatic" 
and "Programming". 

In Webster's d i c t i o n a r y , we can see that "au 
tomat ic" can be the obtent ion of something which 
can be produced wi thout t h i n k i n g , by habi t or r e 
f l e x . In th i s case, Automatic Progranming could be 
considered as a k ind of programming methodology, 
which is s u f f i c i e n t to fo l low to obta in a good 
program. This can only be appl ied in areas where 
the programing process is r e p e t i t i v e enough that 
a method can grasp the mechanical aspect. In th i s 
w a y . in the business-or iented programming f i e l d , 
some program generators or methodologies can be 
considered as automatic programming. 

A second meaning to the word automatic con
cerns one ac t ion which is done by i t s e l f . We could 
then look fo r a programming technique which is en
t i r e l y produced by any k ind of mechanism. This is 
a more A r t i f i c i a l I n te l l i gence approach. In t h i s 
sense we could consider bu i l d i ng a system which 
would receive the s p e c i f i c a t i o n of a problem as 
input and which w i l l give a program as output . 
This f i e l d is o f ten ca l led Program Synthesis. The 

input s p e c i f i c a t i o n can be formal spec i f i ca t i ons 
(as log ic ) [ l l [ 2] , Examples [ 3] [ 4] f 5] or Natural 
Language. Taking in to account the research which 
has been done on th i s subject dur ing the last f i v e 
years and my own personal experience, I th ink that 
th i s approach is only possible for r e s t r i c t e d 
f i e l d s of app l i ca t i on and toy problems. In other 
cases the s p e c i f i c a t i o n language is close to a 
programming language and it is more a compil ing 
technique than automatic programming. I am there
fore convinced that t h i s approach can be useful 
l o c a l l y but that programming, in the general sense, 
w i l l never be completly automatic. 

A t h i r d sense to the word automatic w i l l also 
help us. It character izes one ac t ion which is done 
using automatic equipment. This d i c t i ona ry d e f i n i 
t i o n is in fac t recurs ive ! ! That leaves us now to 
consider that i t is not the ac t ion of programming 
which has to be automatic but the equipment which 
could help do t h i s ac t i on . Las t l y we can i n t e r p r e t 
"Automatic Programming" as the programming ac t ion 
using a computer, which al lows us to w r i t e pro
grams in the best way poss ib le " . That does not im
ply that the whole programming process has to be 
automatic. 

Un fo r tuna te l y , t h i s d e f i n i t i o n is too genera l . 
If any system used dur ing the programming process 
is re levant to automatic programming then most of 
the programmers are in fac t using automatic p ro
gramming techniques wi thout knowing i t . Is a tex t 
e d i t o r , a compi ler, a l i n k e r , . . . re levant to au
tomatic programming ? And is there any d i f fe rence 
between "Automatic Programming" and "Programming 
Environment" ? 

In fac t I consider that automatic programming 
is a part of what is ca l led programming environment. 
It consists of the too ls which are the most advan
ced in the programming environment and which are 
d i r e c t l y re la ted to the programmer. We are very 
close here to an A r t i f i c i a l I n t e l l i g e n c e paradigm 
because the ac t ion of programming can be conside
red as one of the most d i f f i c u l t and i n t e l l i g e n t 
ac t ion a human can do. So f i s t i ca ted too ls which 
could help the programmer dur ing t h i s powerful ac
t i o n may be re levant to the A r t i f i c i a l I n t e l l i g e n 
ce f i e l d . 

However, even i f the l i n e between A r t i f i c i a l 
I n t e l l i gence and c l a s s i c a l Computer Science is not 
r e a l l y precise in Automatic Programming, I cons i 
der that i t is a domain in which many d i f f e r e n t 
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A r t i f i c i a l I n te l l i gence techniques can be extreme
ly u s e f u l . This must be a challenge fo r A r t i f i c i a l 
I n te l l i gence people. I t is not a coincidence i f the 
f i r s t and most powerful programming environments 
came from the A r t i f i c i a l I n t e l l i gence community, 
( l n t e r l i s p , Mac l i sp . . . ) 

1.2. I w i l l summarize some f i e l d s of A r t i f i c i a l I n 
te l l i gence and j u s t give some areas where they 
could be p r o f i t a b l e in automatic programming. 

- Natural Language Understanding—This sub-
f i e l d could be very u s e f u l , not in the command to 
be given to a system but to help the programmer in 
the various commands and u t i l i t i e s of the program
ming environment. For an experienced programmer, 
the the commands he knows have to be very shor t . 
They are genera l ly keys. The problem is that when 
we want to explore some new p o s s i b i l i t i e s , we do 
not know prec ise ly the keys or the successions of 
keys to use for these new p o s s i b i l i t i e s . Looking 
through the documentation (even in l i ne ) is some
times bor ing . The "a propos" command under emacs is 
usefu l but is only a key word search. The develop
ment of a na tura l language in te r face would al low a 
soph is t i ca ted help system which would then be very 
e f f e c t i v e . 

- Expert Systems—I do not th ink an expert 
system can be constructed at the present in the 
program-creat ing process because i t i s too d i f f i 
c u l t and may even be outside of c l ass i ca l expert 
systems approach. However, in many parts of the 
programming process an expert system viewed as an 
ass is tan t can be used. These systems have to be se
parate tools : 

. The organ isa t ion of large programs. How to 
f i n d some in format ion in a large base of programs 
or data types ? What has been done u n t i l now and 
what would be the most su i tab le to do now e t c . . . ? 
I t is a knowledge-based or iented system [ 6 ] . 

. The process of t ransforming programs [7 ] . 

. Rest r ic ted areas. When the f i e l d is very 
small and the de r i va t i on of the program from the 
s p e c i f i c a t i o n very easy, i t would be f r u i t f u l to 
design some small expert systems. 

. The v a l i d a t i o n of programs using tes t se ts . 
The generat ion of the tes t set fo r programs is ne
ver completly s a t i s f a c t o r y and is a d i f f i c u l t a r t . 
Test ing a program can be re levant to Expert System 
techniques. 

- Theorem Proving—Testing programs are not 
s u f f i c i e n t and in the fu tu re most of the programs 
w i l l have to be proven, at least p a r t i a l l y . Many 
i n t e r a c t i v e systems w i l l have to be designed in or
der to help the programmer prove the correctness of 
t h i s work. This domain is h igh ly re la ted to Theore
t i c a l Computer Science because most of the concepts 
in languages or programs have not yet been s u f f i 
c i e n t l y studied to be used in p rac t i ve fo r rea l 
programs. Some systems as GYPSY [8 ] , STP [9 ] , 
FORMEL [ 10] are milestones towards t h i s approach. 

The res t of t h i s paper w i l l t r y to show that 
even fo r small examples, the proof can be long and 
the mater ia l involved very soph is t i ca ted . 

- Other techniques—Many other aspects which 
only use h e u r i s t i c s can be very use fu l in the p ro -

granrning process. I w i l l j u s t give some of them here 
but t h i s is not exhaust ive. 

-Help dur ing the programming process—Proposing 
program schemes, data decomposit ion, programs which 
are " c lose " to the one the programmer is ac tua l l y 
doing e t c . . . 

- I n t e l l i g e n t d isp lay of a l l the in format ion 
needed dur ing the programming process (a screen with 
a mult ip le-window or iented e d i t o r ) . 

- Organisat ion fo r work schedul ing. 

II PROGRAM CONSTRUCTION 

We will.now describe one proposal f o r a program 
const ruc t ion technique. It is not aimed to be e n t i 
r e l y general but shows many concepts which, in one 
form or another, are necessary in every fu tu re auto
matic programming system. 

I t is now beginning to be admitted that a l i 
brary which is useful in the programming process 
must conta in both data and programs. A l l these ob
j e c t s have to be encapsulated in modules. Some of 
these modules involve descr ip t ions of powerful data 
types w i th basic operators ; some others involve 
sets of programs wi th one common f u n c t i o n a l i t y . 

A i l these modules contains two par ts . One which 
shows that which is v i s i b l e outside of the module, 
which attempts to describe the s p e c i f i c a t i o n of 
the manner in which to use i t . The second par t des
cr ibes how e f f e c t i v e l y the elements of the modules 
are implemented. This is one of the most important 
aspects of ADA wi th the PACKAGE and PACKAGE BODY 
pa r t s . Generally the desc r i p t i on par t (which we wi l l 
c a l l the s p e c i f i c a t i o n par t ) only contains the pro
f i l e of the operations which are v i s i b l e outside the 
module and few other he lp fu l things fo r type chee
k ing and documentation. However, even if t h i s aspect 
cons t i tu tes a major improvement, it does not al lows 
us to produce proofs . 

The nature of the objects which have to be 
grasped in our system can be represented as : 
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1. Data Type Spec i f i ca t ion (DS) 

We use Algebraic Abstract Data Types in an ex
tended manner which w i l l be described in s e c t i o n l l l . 
According to the theory, an Algebraic Abstract Data 
Type s p e c i f i c a t i o n denotes a class of Algebra Alg∑ 
and in our theory t h i s class has one i n i t i a l algebra 
T∑. ( i e fo r each algebra A in Alg∑ there ex is ts one 
unique morphism h : T∑+A. 

2. Data Implementation (DI) 

Generally the Data Implementation is not v i ' . 
s i b le to the user (and it must not be v i s i b l e ) . We 
w i l l consider that the Data Implementation repre
sents one of the algebra in Alg∑ denoted by the ab
s t r ac t type s p e c i f i c a t i o n . The f ac t that there e-
x i s t s one morphism between T∑ (which is a p a r t i c u 
la r Algebra of Terms) and A helps us prove proper
t i es or theorems on the type using T∑.. These pro
per t ies w i l l be propert ies of any implementation. 
Of course the correctness of the implementation 
has to be provenin the same ways that many proper
t i es concerning abstract s p e c i f i c a t i o n . That is 
done once for a l l and could be considered as the 
responsab i l i t y of the data type designer. Note that 
our class of algebra is the class of f i n i t e l y ge
nerated algebras so that we can use term r e w r i t i n g 
and s t r u c t u r a l induct ion for producing proof . 

3. Procedure spec i f i ca t i on (PS) 

In a f i r s t approximation we w i l l consider spe
c i f i c a t i o n s in an algebraic manner. This w i l l be 
easier for proofs but it may lead to speci f icat ions 
which are not r e a l l y readable. I consider that 
there does not ex i s t for the moment an e f f e c t i v e , 
convenient s p e c i f i c a t i o n language. If one such 
language would e x i s t , i t s semantic would have to 
be expressed a l g e b r a i c a l l y , but for our purposes 
here I have chosen to express it d i r e c t l y in i t s 
a lgebraic form. 

4. Procedure implementation (PI) 

F i r s t we need a programming language w i th a 
we l l -de f ined semantic in order to produce proofs . 
Section IV w i l l describe such a toy language. 

Given a program P w r i t t e n in such a language 
and proving i t s correctness may not be s u f f i c i e n t . 
These proper t ies are proven in f a c t , in an exten
sion of T , the i n i t i a l term algebra : T∑ + P and 
the program w i l l ac tua l l y be used in an algebra 
A + P. The fac t that there ex is ts an horaomorphism 
h : T∑-+A does not prove that it can be na tu ra l l y 
extended to an homomorphism n : T∑ + P --> A + P. 
This has to be proven again and it can be done 
e i t he r : 

- By proving it on each program !! 
- By r e s t r i c t i n g the form of programs or by 

d i r e c t i n g the program const ruc t ion such 
that any morphism can be extended. 

- By using monomorphic abstract types. 

5. Program cons t ruc t ion 

Two main methods can be used in bu i l d i ng pro
cedures concerning a problem we have in mind or 

which is expressed in a natura l language manner : 

a. Knowing a fami ly of Data Types Spec i f i ca 
t i o n , bu i l d a procedure s p e c i f i c a t i o n using any i n 
t u i t i v e method and then der ive a program. 

The problem whith th is method is that even 
for short s p e c i f i c a t i o n s , the r i sk of er ror is high 
( i t may be even higher than d i r e c t l y de r i v ing the 
program if the s p e c i f i c a t i o n language is obscure). 
Subsequently the program w i l l be wrong and if the 
procedure s p e c i f i c a t i o n represents in some sense a 
" c o n t r a c t " , th i s could be dangerous. One other pro
blem is that only when the program is e f f e c t i v e l y 
tested that some errors w i l l occur. It might not be 
easy to see where they correspond to a mistake in 
the s p e c i f i c a t i o n . The r i s k is that the programmer 
w i l l d i r e c t l y change the program !! One could say 
that we have some executable spec i f i ca t i ons but the 
other r i s k is that the program might eas i l y fo l l ow 
the spec i f i ca t i on and could be h igh ly une f fec t i ve . 

b. Knowing a fami ly of Data Type Spec i f i ca 
t i ons , bu i l d a procedure s p e c i f i c a t i o n , then bu i l d 
a program separately and prove the correctness of 
the program versus the s p e c i f i c a t i o n s . 

Here we have more chance to make er rors in the 
two construct ions but the er rors w i l l not be neces
s a r i l y the same. The proof mechanism w i l l help us 
to cor rect the two p a r t s . In my experience I always 
made aproximately the same number of mistakes in 
w r i t i n g programs or s p e c i f i c a t i o n s . Try ing to prove 
the correctness always leads me to reconsider both . 
The r i s k is that i f the s p e c i f i c a t i o n is too far 
from the implementation (h igh ly non executable spe
c i f i c a t i o n fo r instance) the proof could be very 
d i f f i c u l t . 

One other way would be to ex t rac t automat ica l 
ly the tes t set from the s p e c i f i c a t i o n in order to 
tes t the program. [ 1 1 ] , 

This is the type of program const ruc t ion tech-
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nique we wil use in f u r t he r sect ions w i th a sys te
matic methodology for bu i l d i ng programs. I t could 
help us reduce the amount of e r ro rs when we t r y to 
express our i n t u i t ion.Wewil l use one toy example a l l 
along (the gcd problem) because i t is s u f f i c i e n t l y 
complex, the concepts s i g n i f i c a n t and su f f i c ien t l y 
short to be shown in one paper. 

I l l ALGEBRAIC ABSTRACT DATA TYPeS 

We w i l l use the now c lass i ca l theory of abs
t rac t types which is d i r e c t l y insp i red from 
ADJ [ 12] , Goguen [ 1 3l [14] , Broy & Wirs ing [ 1 5] , 
complemented by work from B ido i t [ 16] , Kaplan [ 17] , 
myself , Boisson and Pavot [ 18] . Our addenda concern 
p r i n c i p a l l y the presenta t ion of type, the use of 
pos i t i ve cond i t iona l axioms and the e r ro r mechanism. 

The schemes are d i r e c t extensions of the de
composit ion schemes of C. Gresse [ 19] (same procee
d ings ) . 

An abst ract type is given by : 

1. A s ignature represented by a set S of Sorts 
and a set ∑. of symbols w i th an a r i t y in (S) . This 
d i f f e r s from the usual theory where the a r i t y be
longs to S ). We use, as Goguen does, over loading 
and coercion ex tens ive ly . The no ta t ion of operators 
is s im i l a r to OBJ ( \2\ . 

2. A set of pos i t i ve cond i t i ona l axioms. 

These axioms (as in Goguen [ 14])contains the 
sor t in which the equation has to be considered. 
The operators are raultioperators and can have more 
than one output . In f a c t , t h e i r i n t e r p r e t a t i o n is 
a f unc t i on from the domaines of t h e i r input to the 
union of domaines of t he i r output (which have to be 
d i s j o i n t e d ) . The operators have to be t o t a l on the 
ground terms but can be p a r t i a l on terms w i th va
r i a b l e s . Using some kinds of presentat ion and w i th 
some p rope r t i es , it can be shown that there can 
ex i s t one i n i t i a l algebra of terms in the class of 
spec i f i ed algebras. More d e t a i l s are ava i lab le in 
Boisson & A l l [ 18] . 

3. Some induc t ion schemes 

These induc t ion schemes w i l l be usefu l dur ing 
the cons t ruc t ion and the proof process. They w i l l 
be described more p rec ise ly in the appropr iate sec
t i o n . They correspond in a sense to the induc t ion 
schemata in A f f i rm [ 20] . 

4. Some theorems 

This par t contains p roper t ies or theorems 
which can be deduced from the axioms. These theo
rems may be usefu l in the proofs . 

F i g . 1 describes the s p e c i f i c a t i o n of the po
s i t i v e in tegers type. We assume that the type Bool 
which represents the booleans is known somewhere 
else w i th a l l i t ' s su i tab le operat ions and axioms. 
We can make the fo l l ow ing remarks on t h i s example : 

- We def ine here three so r t s . The zero sor t is 

very convenient fo r cons t ruc t ing programs and fo r 
spec i fy ing t h i s type. 

- The no ta t ion i n t = i n t , + zero is j u s t syntac-
t i c . I t is to avoid w r i t i n g i n t , zero everywhere 
in the type. 

- The underscore ( _) shows the places of the 
operands w i th the d i s f i x no ta t i on of operators. 

- There are p lenty of overloadings in th i s spe
c i f i c a t i o n . For instance there are four + operators! 

- When there is more than one sor t in the l e f t 
par t of the a r i t y of one operator , i t means that i t 
is a mu l t iopera to r . For instance P has two outputs : 
i n t and zero. 

- There ex is ts also mult iaxioms (a syn tac t i c 
leve l ) in the way that an axiom is repeated when 
there is some ambiguity in the type of operators or 
when there are more than one sor t before the axiom. 

For instance : 
i n t : x + 0 = x means zero : x + 0 = x 

i n t : x + 0 = x 
or 

bool : x < 0 - False " bool : x : zero < 0 = False 
bool : x : i n t < 0 = False 

See f igu re 1 next page fo r presentat ion of the 
type. 

- There are cond i t iona l axioms l i k e : 
x egal y =* x oiv y = True 
In fac t a cor rec t d e f i n i t i o n would be : 
x egal y = True --> div y = True 

We accepted t h i s syn tac t i c s i m p l i f i c a t i o n , in 
order not to overload the axioms but they are a l l 
pos i t i ve c o n d i t i o n a l . 

- We can see w i th some examples how the i n i t i a l 
term algebra i s . 
. 0 is in sort zero 
. sO is in sor t i n t and [ s n 0 | f o r n > 1) are in int 

because s is not a mu l t i opera to r . These terms can 
be considered as representat ive of classes of 
terms in i n t 

. psO is in zero because of the f i r s t axiom 

. ppsO does not ex i s t because p does not apply to 
sor t zero 

. sO - ssO = 0 - sO by axiom 3 
= erint by axiom 4 

Then i t i s in i n t e r 
. The term sO + (sO - sssO) does not e x i s t ! 

It can be proven that there is no ambiguity f o r 
any ground term and then th i s term algebra is i n i 
t i a l . 

- The axiom i n t e r : x = e r i n t c o l l e c t s a l l the 
e r ro r terms in to one s ing le class wi thout avoiding 
a l l the c l a s s i c a l problems w i th the e r ro rs in abs
t r a c t data type. 

- It is necessary fo r the evaluator to do type 
cheeking dur ing the eva luat ion process in order to 
choose the cor rec t axioms or to detect terms which 
do not e x i s t . In fac t these terms w i l l not be gene
rated w i t h cor rec t programs. I t might be possib le 
here to add some operators which could be appl ied 
to i n t e r to get e r ro r propagat ion and these terms 
would then ex i s t ( f o r instance : 
+ : ( i n t , i n t e r ) ( i n t , i n t e r ) -> i n t , i n t e r 
in sp i te of the e x i s t i n g one !) 

- An equation can be used i f f i t s two sides 
e x i s t and have the same type. Then, f o r ins tance, 
the t h i r d theorem 
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This example shows that the proof is not very 
easy, even fo r such a simple example because of the 
theorems or lemmas which have to be used. In our o p i 
n ion , t h i s k ind of proof cannot be done automat i 
c a l l y by a present theorem prover (wi th the d isco
very of lemmas).A nice proof checher would be pre
fe rab le . 

V CONCLUSION 

This method, t h i s toy example and the sim
ple proof do not intend to describe a l l the 
tools which have to be in such a system, 
l.'e claim here that when we t ry to be very precise 
(and we have to when we bu i l d correct programs) a l l 
the concepts which belong to th i s paper have to be 
contained in one way or anotlier in the system, which 
leads to many d i f f i c u l t theore t i ca l problems not 
completely solved at th i s t ime. 

What we can hope for in the near fu ture is the e f 
f ec t i ve implementation of such p a r t i a l systems 
which w i l l become more and more power fu l , coupled 
wi th meaningful research on abstract data type the
ory, Spec i f i ca t i on languages, Theorem provers or 
proof cheekers and ru le r e w r i t i n g systems. 
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