
AUTOMATIC PROGRAMMING USING ABSTRACT DATA TYPES

Gerard Guiho

Univers i te Paris Sud LRI - Bat. 490 91405 ORSAY - FRANCE

ABSTRACT

In th i s paper we f i r s t t r y to character ize
one meaning of automatic programming. We consider
it to be one part of the Programming environment
re la ted to A r t i f i c i a l I n te l l i gence techniques.
We then i l l u s t r a t e an automatic programning process,
on a simple example, using an Abstract Data Type
theory to which we add the not ion of schemes which are
p a r t i c u l a r l y useful in program de r i va t i on from Ab
s t rac t Type decomposition. We conclude that a l l
the concepts t reated in th i s paper must be con ta i
ned in one way or another in any automatic program
ming system. However th i s necessitates fu r the r
study in such t heo re t i ca l f i e l d s as Abstract Data
Type Theory, Spec i f i ca t i on languages, Theorem pro-
vers or proof cheekers and ru le r e w r i t i n g systems.

I GENERALITIES

I . I . In my opin ion the concepts impl ied in the
words "Automatic Programning" are not very precise
and may even seem completly u n r e a l i s t i c . However
many people, l i k e myself may consider that even if
they seem vague and sometimes u n r e a l i s t i c they ap
pear worthwhile f o r s tudying.

In the f i r s t part of my paper, I w i l l t r y to
speci fy the d e f i n i t i o n of these concepts, created
by the j u x t a p o s i t i o n of the two words "Automatic"
and "Programming".

In Webster's d i c t i o n a r y , we can see that "au
tomat ic" can be the obtent ion of something which
can be produced wi thout t h i n k i n g , by habi t or r e
f l e x . In th i s case, Automatic Progranming could be
considered as a k ind of programming methodology,
which is s u f f i c i e n t to fo l low to obta in a good
program. This can only be appl ied in areas where
the programing process is r e p e t i t i v e enough that
a method can grasp the mechanical aspect. In th i s
w a y . in the business-or iented programming f i e l d ,
some program generators or methodologies can be
considered as automatic programming.

A second meaning to the word automatic con
cerns one ac t ion which is done by i t s e l f . We could
then look fo r a programming technique which is en
t i r e l y produced by any k ind of mechanism. This is
a more A r t i f i c i a l I n te l l i gence approach. In t h i s
sense we could consider bu i l d i ng a system which
would receive the s p e c i f i c a t i o n of a problem as
input and which w i l l give a program as output .
This f i e l d is o f ten ca l led Program Synthesis. The

input s p e c i f i c a t i o n can be formal spec i f i ca t i ons
(as log ic) [l l [2] , Examples [3] [4] f 5] or Natural
Language. Taking in to account the research which
has been done on th i s subject dur ing the last f i v e
years and my own personal experience, I th ink that
th i s approach is only possible for r e s t r i c t e d
f i e l d s of app l i ca t i on and toy problems. In other
cases the s p e c i f i c a t i o n language is close to a
programming language and it is more a compil ing
technique than automatic programming. I am there
fore convinced that t h i s approach can be useful
l o c a l l y but that programming, in the general sense,
w i l l never be completly automatic.

A t h i r d sense to the word automatic w i l l also
help us. It character izes one ac t ion which is done
using automatic equipment. This d i c t i ona ry d e f i n i
t i o n is in fac t recurs ive ! ! That leaves us now to
consider that i t is not the ac t ion of programming
which has to be automatic but the equipment which
could help do t h i s ac t i on . Las t l y we can i n t e r p r e t
"Automatic Programming" as the programming ac t ion
using a computer, which al lows us to w r i t e pro
grams in the best way poss ib le " . That does not im
ply that the whole programming process has to be
automatic.

Un fo r tuna te l y , t h i s d e f i n i t i o n is too genera l .
If any system used dur ing the programming process
is re levant to automatic programming then most of
the programmers are in fac t using automatic p ro
gramming techniques wi thout knowing i t . Is a tex t
e d i t o r , a compi ler, a l i n k e r , . . . re levant to au
tomatic programming ? And is there any d i f fe rence
between "Automatic Programming" and "Programming
Environment" ?

In fac t I consider that automatic programming
is a part of what is ca l led programming environment.
It consists of the too ls which are the most advan
ced in the programming environment and which are
d i r e c t l y re la ted to the programmer. We are very
close here to an A r t i f i c i a l I n t e l l i g e n c e paradigm
because the ac t ion of programming can be conside
red as one of the most d i f f i c u l t and i n t e l l i g e n t
ac t ion a human can do. So f i s t i ca ted too ls which
could help the programmer dur ing t h i s powerful ac
t i o n may be re levant to the A r t i f i c i a l I n t e l l i g e n
ce f i e l d .

However, even i f the l i n e between A r t i f i c i a l
I n t e l l i gence and c l a s s i c a l Computer Science is not
r e a l l y precise in Automatic Programming, I cons i
der that i t is a domain in which many d i f f e r e n t

2 G. Guiho

A r t i f i c i a l I n te l l i gence techniques can be extreme
ly u s e f u l . This must be a challenge fo r A r t i f i c i a l
I n te l l i gence people. I t is not a coincidence i f the
f i r s t and most powerful programming environments
came from the A r t i f i c i a l I n t e l l i gence community,
(l n t e r l i s p , Mac l i sp . . .)

1.2. I w i l l summarize some f i e l d s of A r t i f i c i a l I n
te l l i gence and j u s t give some areas where they
could be p r o f i t a b l e in automatic programming.

- Natural Language Understanding—This sub-
f i e l d could be very u s e f u l , not in the command to
be given to a system but to help the programmer in
the various commands and u t i l i t i e s of the program
ming environment. For an experienced programmer,
the the commands he knows have to be very shor t .
They are genera l ly keys. The problem is that when
we want to explore some new p o s s i b i l i t i e s , we do
not know prec ise ly the keys or the successions of
keys to use for these new p o s s i b i l i t i e s . Looking
through the documentation (even in l i ne) is some
times bor ing . The "a propos" command under emacs is
usefu l but is only a key word search. The develop
ment of a na tura l language in te r face would al low a
soph is t i ca ted help system which would then be very
e f f e c t i v e .

- Expert Systems—I do not th ink an expert
system can be constructed at the present in the
program-creat ing process because i t i s too d i f f i
c u l t and may even be outside of c l ass i ca l expert
systems approach. However, in many parts of the
programming process an expert system viewed as an
ass is tan t can be used. These systems have to be se
parate tools :

. The organ isa t ion of large programs. How to
f i n d some in format ion in a large base of programs
or data types ? What has been done u n t i l now and
what would be the most su i tab le to do now e t c . . . ?
I t is a knowledge-based or iented system [6] .

. The process of t ransforming programs [7] .

. Rest r ic ted areas. When the f i e l d is very
small and the de r i va t i on of the program from the
s p e c i f i c a t i o n very easy, i t would be f r u i t f u l to
design some small expert systems.

. The v a l i d a t i o n of programs using tes t se ts .
The generat ion of the tes t set fo r programs is ne
ver completly s a t i s f a c t o r y and is a d i f f i c u l t a r t .
Test ing a program can be re levant to Expert System
techniques.

- Theorem Proving—Testing programs are not
s u f f i c i e n t and in the fu tu re most of the programs
w i l l have to be proven, at least p a r t i a l l y . Many
i n t e r a c t i v e systems w i l l have to be designed in or
der to help the programmer prove the correctness of
t h i s work. This domain is h igh ly re la ted to Theore
t i c a l Computer Science because most of the concepts
in languages or programs have not yet been s u f f i
c i e n t l y studied to be used in p rac t i ve fo r rea l
programs. Some systems as GYPSY [8] , STP [9] ,
FORMEL [10] are milestones towards t h i s approach.

The res t of t h i s paper w i l l t r y to show that
even fo r small examples, the proof can be long and
the mater ia l involved very soph is t i ca ted .

- Other techniques—Many other aspects which
only use h e u r i s t i c s can be very use fu l in the p ro -

granrning process. I w i l l j u s t give some of them here
but t h i s is not exhaust ive.

-Help dur ing the programming process—Proposing
program schemes, data decomposit ion, programs which
are " c lose " to the one the programmer is ac tua l l y
doing e t c . . .

- I n t e l l i g e n t d isp lay of a l l the in format ion
needed dur ing the programming process (a screen with
a mult ip le-window or iented e d i t o r) .

- Organisat ion fo r work schedul ing.

II PROGRAM CONSTRUCTION

We will.now describe one proposal f o r a program
const ruc t ion technique. It is not aimed to be e n t i
r e l y general but shows many concepts which, in one
form or another, are necessary in every fu tu re auto
matic programming system.

I t is now beginning to be admitted that a l i
brary which is useful in the programming process
must conta in both data and programs. A l l these ob
j e c t s have to be encapsulated in modules. Some of
these modules involve descr ip t ions of powerful data
types w i th basic operators ; some others involve
sets of programs wi th one common f u n c t i o n a l i t y .

A i l these modules contains two par ts . One which
shows that which is v i s i b l e outside of the module,
which attempts to describe the s p e c i f i c a t i o n of
the manner in which to use i t . The second par t des
cr ibes how e f f e c t i v e l y the elements of the modules
are implemented. This is one of the most important
aspects of ADA wi th the PACKAGE and PACKAGE BODY
pa r t s . Generally the desc r i p t i on par t (which we wi l l
c a l l the s p e c i f i c a t i o n par t) only contains the pro
f i l e of the operations which are v i s i b l e outside the
module and few other he lp fu l things fo r type chee
k ing and documentation. However, even if t h i s aspect
cons t i tu tes a major improvement, it does not al lows
us to produce proofs .

The nature of the objects which have to be
grasped in our system can be represented as :

G. Guiho 3

1. Data Type Spec i f i ca t ion (DS)

We use Algebraic Abstract Data Types in an ex
tended manner which w i l l be described in s e c t i o n l l l .
According to the theory, an Algebraic Abstract Data
Type s p e c i f i c a t i o n denotes a class of Algebra Alg∑
and in our theory t h i s class has one i n i t i a l algebra
T∑. (i e fo r each algebra A in Alg∑ there ex is ts one
unique morphism h : T∑+A.

2. Data Implementation (DI)

Generally the Data Implementation is not v i ' .
s i b le to the user (and it must not be v i s i b l e) . We
w i l l consider that the Data Implementation repre
sents one of the algebra in Alg∑ denoted by the ab
s t r ac t type s p e c i f i c a t i o n . The f ac t that there e-
x i s t s one morphism between T∑ (which is a p a r t i c u
la r Algebra of Terms) and A helps us prove proper
t i es or theorems on the type using T∑.. These pro
per t ies w i l l be propert ies of any implementation.
Of course the correctness of the implementation
has to be provenin the same ways that many proper
t i es concerning abstract s p e c i f i c a t i o n . That is
done once for a l l and could be considered as the
responsab i l i t y of the data type designer. Note that
our class of algebra is the class of f i n i t e l y ge
nerated algebras so that we can use term r e w r i t i n g
and s t r u c t u r a l induct ion for producing proof .

3. Procedure spec i f i ca t i on (PS)

In a f i r s t approximation we w i l l consider spe
c i f i c a t i o n s in an algebraic manner. This w i l l be
easier for proofs but it may lead to speci f icat ions
which are not r e a l l y readable. I consider that
there does not ex i s t for the moment an e f f e c t i v e ,
convenient s p e c i f i c a t i o n language. If one such
language would e x i s t , i t s semantic would have to
be expressed a l g e b r a i c a l l y , but for our purposes
here I have chosen to express it d i r e c t l y in i t s
a lgebraic form.

4. Procedure implementation (PI)

F i r s t we need a programming language w i th a
we l l -de f ined semantic in order to produce proofs .
Section IV w i l l describe such a toy language.

Given a program P w r i t t e n in such a language
and proving i t s correctness may not be s u f f i c i e n t .
These proper t ies are proven in f a c t , in an exten
sion of T , the i n i t i a l term algebra : T∑ + P and
the program w i l l ac tua l l y be used in an algebra
A + P. The fac t that there ex is ts an horaomorphism
h : T∑-+A does not prove that it can be na tu ra l l y
extended to an homomorphism n : T∑ + P --> A + P.
This has to be proven again and it can be done
e i t he r :

- By proving it on each program !!
- By r e s t r i c t i n g the form of programs or by

d i r e c t i n g the program const ruc t ion such
that any morphism can be extended.

- By using monomorphic abstract types.

5. Program cons t ruc t ion

Two main methods can be used in bu i l d i ng pro
cedures concerning a problem we have in mind or

which is expressed in a natura l language manner :

a. Knowing a fami ly of Data Types Spec i f i ca
t i o n , bu i l d a procedure s p e c i f i c a t i o n using any i n
t u i t i v e method and then der ive a program.

The problem whith th is method is that even
for short s p e c i f i c a t i o n s , the r i sk of er ror is high
(i t may be even higher than d i r e c t l y de r i v ing the
program if the s p e c i f i c a t i o n language is obscure).
Subsequently the program w i l l be wrong and if the
procedure s p e c i f i c a t i o n represents in some sense a
" c o n t r a c t " , th i s could be dangerous. One other pro
blem is that only when the program is e f f e c t i v e l y
tested that some errors w i l l occur. It might not be
easy to see where they correspond to a mistake in
the s p e c i f i c a t i o n . The r i s k is that the programmer
w i l l d i r e c t l y change the program !! One could say
that we have some executable spec i f i ca t i ons but the
other r i s k is that the program might eas i l y fo l l ow
the spec i f i ca t i on and could be h igh ly une f fec t i ve .

b. Knowing a fami ly of Data Type Spec i f i ca
t i ons , bu i l d a procedure s p e c i f i c a t i o n , then bu i l d
a program separately and prove the correctness of
the program versus the s p e c i f i c a t i o n s .

Here we have more chance to make er rors in the
two construct ions but the er rors w i l l not be neces
s a r i l y the same. The proof mechanism w i l l help us
to cor rect the two p a r t s . In my experience I always
made aproximately the same number of mistakes in
w r i t i n g programs or s p e c i f i c a t i o n s . Try ing to prove
the correctness always leads me to reconsider both .
The r i s k is that i f the s p e c i f i c a t i o n is too far
from the implementation (h igh ly non executable spe
c i f i c a t i o n fo r instance) the proof could be very
d i f f i c u l t .

One other way would be to ex t rac t automat ica l
ly the tes t set from the s p e c i f i c a t i o n in order to
tes t the program. [1 1] ,

This is the type of program const ruc t ion tech-

4 G. Guiho

nique we wil use in f u r t he r sect ions w i th a sys te
matic methodology for bu i l d i ng programs. I t could
help us reduce the amount of e r ro rs when we t r y to
express our i n t u i t ion.Wewil l use one toy example a l l
along (the gcd problem) because i t is s u f f i c i e n t l y
complex, the concepts s i g n i f i c a n t and su f f i c ien t l y
short to be shown in one paper.

I l l ALGEBRAIC ABSTRACT DATA TYPeS

We w i l l use the now c lass i ca l theory of abs
t rac t types which is d i r e c t l y insp i red from
ADJ [12] , Goguen [1 3l [14] , Broy & Wirs ing [1 5] ,
complemented by work from B ido i t [16] , Kaplan [17] ,
myself , Boisson and Pavot [18] . Our addenda concern
p r i n c i p a l l y the presenta t ion of type, the use of
pos i t i ve cond i t iona l axioms and the e r ro r mechanism.

The schemes are d i r e c t extensions of the de
composit ion schemes of C. Gresse [19] (same procee
d ings) .

An abst ract type is given by :

1. A s ignature represented by a set S of Sorts
and a set ∑. of symbols w i th an a r i t y in (S) . This
d i f f e r s from the usual theory where the a r i t y be
longs to S). We use, as Goguen does, over loading
and coercion ex tens ive ly . The no ta t ion of operators
is s im i l a r to OBJ (\2\ .

2. A set of pos i t i ve cond i t i ona l axioms.

These axioms (as in Goguen [14])contains the
sor t in which the equation has to be considered.
The operators are raultioperators and can have more
than one output . In f a c t , t h e i r i n t e r p r e t a t i o n is
a f unc t i on from the domaines of t h e i r input to the
union of domaines of t he i r output (which have to be
d i s j o i n t e d) . The operators have to be t o t a l on the
ground terms but can be p a r t i a l on terms w i th va
r i a b l e s . Using some kinds of presentat ion and w i th
some p rope r t i es , it can be shown that there can
ex i s t one i n i t i a l algebra of terms in the class of
spec i f i ed algebras. More d e t a i l s are ava i lab le in
Boisson & A l l [18] .

3. Some induc t ion schemes

These induc t ion schemes w i l l be usefu l dur ing
the cons t ruc t ion and the proof process. They w i l l
be described more p rec ise ly in the appropr iate sec
t i o n . They correspond in a sense to the induc t ion
schemata in A f f i rm [20] .

4. Some theorems

This par t contains p roper t ies or theorems
which can be deduced from the axioms. These theo
rems may be usefu l in the proofs .

F i g . 1 describes the s p e c i f i c a t i o n of the po
s i t i v e in tegers type. We assume that the type Bool
which represents the booleans is known somewhere
else w i th a l l i t ' s su i tab le operat ions and axioms.
We can make the fo l l ow ing remarks on t h i s example :

- We def ine here three so r t s . The zero sor t is

very convenient fo r cons t ruc t ing programs and fo r
spec i fy ing t h i s type.

- The no ta t ion i n t = i n t , + zero is j u s t syntac-
t i c . I t is to avoid w r i t i n g i n t , zero everywhere
in the type.

- The underscore (_) shows the places of the
operands w i th the d i s f i x no ta t i on of operators.

- There are p lenty of overloadings in th i s spe
c i f i c a t i o n . For instance there are four + operators!

- When there is more than one sor t in the l e f t
par t of the a r i t y of one operator , i t means that i t
is a mu l t iopera to r . For instance P has two outputs :
i n t and zero.

- There ex is ts also mult iaxioms (a syn tac t i c
leve l) in the way that an axiom is repeated when
there is some ambiguity in the type of operators or
when there are more than one sor t before the axiom.

For instance :
i n t : x + 0 = x means zero : x + 0 = x

i n t : x + 0 = x
or

bool : x < 0 - False " bool : x : zero < 0 = False
bool : x : i n t < 0 = False

See f igu re 1 next page fo r presentat ion of the
type.

- There are cond i t iona l axioms l i k e :
x egal y =* x oiv y = True
In fac t a cor rec t d e f i n i t i o n would be :
x egal y = True --> div y = True

We accepted t h i s syn tac t i c s i m p l i f i c a t i o n , in
order not to overload the axioms but they are a l l
pos i t i ve c o n d i t i o n a l .

- We can see w i th some examples how the i n i t i a l
term algebra i s .
. 0 is in sort zero
. sO is in sor t i n t and [s n 0 | f o r n > 1) are in int

because s is not a mu l t i opera to r . These terms can
be considered as representat ive of classes of
terms in i n t

. psO is in zero because of the f i r s t axiom

. ppsO does not ex i s t because p does not apply to
sor t zero

. sO - ssO = 0 - sO by axiom 3
= erint by axiom 4

Then i t i s in i n t e r
. The term sO + (sO - sssO) does not e x i s t !

It can be proven that there is no ambiguity f o r
any ground term and then th i s term algebra is i n i
t i a l .

- The axiom i n t e r : x = e r i n t c o l l e c t s a l l the
e r ro r terms in to one s ing le class wi thout avoiding
a l l the c l a s s i c a l problems w i th the e r ro rs in abs
t r a c t data type.

- It is necessary fo r the evaluator to do type
cheeking dur ing the eva luat ion process in order to
choose the cor rec t axioms or to detect terms which
do not e x i s t . In fac t these terms w i l l not be gene
rated w i t h cor rec t programs. I t might be possib le
here to add some operators which could be appl ied
to i n t e r to get e r ro r propagat ion and these terms
would then ex i s t (f o r instance :
+ : (i n t , i n t e r) (i n t , i n t e r) -> i n t , i n t e r
in sp i te of the e x i s t i n g one !)

- An equation can be used i f f i t s two sides
e x i s t and have the same type. Then, f o r ins tance,
the t h i r d theorem

G. Guiho 5

6 G. Guiho

G. Guiho 7

8 G. Guiho

G. Guiho 9

This example shows that the proof is not very
easy, even fo r such a simple example because of the
theorems or lemmas which have to be used. In our o p i
n ion , t h i s k ind of proof cannot be done automat i
c a l l y by a present theorem prover (wi th the d isco
very of lemmas).A nice proof checher would be pre
fe rab le .

V CONCLUSION

This method, t h i s toy example and the sim
ple proof do not intend to describe a l l the
tools which have to be in such a system,
l.'e claim here that when we t ry to be very precise
(and we have to when we bu i l d correct programs) a l l
the concepts which belong to th i s paper have to be
contained in one way or anotlier in the system, which
leads to many d i f f i c u l t theore t i ca l problems not
completely solved at th i s t ime.

What we can hope for in the near fu ture is the e f
f ec t i ve implementation of such p a r t i a l systems
which w i l l become more and more power fu l , coupled
wi th meaningful research on abstract data type the
ory, Spec i f i ca t i on languages, Theorem provers or
proof cheekers and ru le r e w r i t i n g systems.

''ACKNOWLEDGMENTS .' '

The authors wishes to thank M. B i d o i t , M.C.
M. C. Gaudel, C. Gresse, S. Kaplan for many e x c i
t i n g discussions on t h i s subject .

REFERENCES

[1 J Manna,Z. & R. Waldinger, "Deductive synthesis
of the u n i f i c a t i o n Algor i thm" In Computer Pro
gram synthesis methodologies. A. Biermann &
G. Guiho Ed i t o r s . D. Re ide l 'Pub l ish ing Co 1983.

[2] B i d o i t , M.& C. Gresse & G. Guiho, "A system
which synthesiezs array manipulat ing programs
from s p e c i f i c a t i o n s . Proc 6th 1JCAI-79. Tokyo
pp. 63-65.

[3] K o d r a t o f f , Y, "A class of funct ions synthesized
from a f i n i t e number of examples and a LISP pro
gram shceme". I n te rna t i ona l J. of Comp. and
I n f . Sciences 8, 1979, pp. 489-521.

[4] Jouannaud,J. P. & G. Guiho, "SISP/ l An i n t e r -
ant ive system able to synthesize funct ions form
examples". Proc 5th IJCAI. M . I .T . , August, 1977.

[5] Biermann, A. W. & D. R. Smith, "The h i e r a r c h i
cal synthesis of LISP scanning programs". I n
format ion processing 77, North Hol land, 1977,
pp. 41-45.

[6]Mor i con i , M. "A d e s i g n e r / v e r i f i e r ' s Ass is tan t "
IEEE Transactions on Software Engineering,
Vol Se-5 N° 4, Ju l y , 1979.

[/]Barstow, D. R. "Automatic Construct ion of A l
gori thm and Data Structures using a Knowledge
base of Programming Rules". PHD D i s s e r t a t i o n ,
Stanford Memo A1M-308, 1977.

[8]Good D. & A l l , "Report on the language Gypsy"
Version 2. 0. I n s t i t u t e fo r computing Science
and computer app l i ca t i ons . The Un ivers i t y of
Texas. Aust in Texas 1978.

[9]Shostak, R. E. and R. Schwartz, Mel 1iard-Smith
P.M. STP : ?A Mechanized Logic f o r s p e c i f i c a
t i on and v e r i f i c a t i o n " . 6th conference on Au
tomated Deduction, NY 1982.

[l 0] H u e t , G. "Pro je t Formel", INRIA, France 1983.

[l l]Bouge, L. "Model isat ion de la not ion de test
et de programmes". These 3e cycle LITP Paris
Novembre 1982

[12]Thatcher, J. W. and E. G. Wagner and J. B.
Wright , "Spec i f i ca t i on of Abstract Types using
cond i t iona l axioms , IBM report 6214, Septem
ber 1976.

[13]Coguen, J. A. and J. W. Thatcher and E. G.
Wagner, "An I n i t i a l Algebra approach to the
s p e c i f i c a t i o n , correctness and Implementation
of abstract data type. IBM repor t KC 6487,
October, 1976.

[l4]Goguen, J. "Order Sorted Algebras : Exceptions
and Error Sor ts , coercion and Overloaded opera
t o r s . Report IT 14, S . R . I . December, 1978.

[15]Wirsing, M. and M. Broy, "Abstract data types
as l a t t i c e s of f i n i t e l y generated Models".
9th MFCS ,Rydjyna, September, 1980.

[l 6] B i d o i t , M; "Algebraic Data Types. Structured
Spec i f i ca t ions and Fair Presenta t ions" . Co l l o -
que AFCET/MA ,Par is , March, 1982.

[17]Kaplan, S. "Un langage de s p e c i f i c a t i o n de t y
pes abs t ra i t s a lgebr iques" . These 3e cycle
LRI - Orsay, Fev r ie r , 1983.

[18]Boisson, F. and G. Guiho and D. Pavot, "A lge-
bres a Operateurs M u l t i t y p e s " . Rapport in terne
LRI-Orsay, Mai, 1983.

[19]Gresse, C. "Automatic programming from Data
Type decomposition pa te rns" . 8th IJCAI-83, Kar l -
sruhe, August, 1983.

[20]Loeckx, J . "Proving Proper t ies of a lgor i thmic
Spec i f i ca t ions of Abstract data Types in
AFFIRM". Memo-29-JL U.S.C July 1980.

