```
Question < 12 3 4 4 5 6 7 8 9 101112131415161718192021222324252627282930
```


Description

This is the review for Exam \#2. Please work as many problems as possible before we
review in-class. As always, if you need anything, please email me
Joshua.Patterson@tamuc.edu

1. Question Details

Find the missing coordinate of P, using the fact that P lies on the unit circle in the given quadrant.

Coordinates	Quadrant	
$P\left(-\frac{5}{13}\right.$,	$\left.\boxed{-\frac{12}{13}}\right)$	III

2.

Question Details
Find the missing coordinate of P, using the fact that P lies on the unit circle in the given quadrant.

Coordinates	Quadrant
$P\binom{$$-\frac{4 \sqrt{5}}{9}}{$}	II

3.

Find t and the terminal point determined by t for each point in the figure, where t is increasing in increments of $\pi / 4$.

4. Question Details

Consider the following.

Find t and the terminal point determined by t for each point in the figure, where t is increasing in increments of $\pi / 6$.

t	Terminal Point
0	($\quad 1,0)$
$\frac{\pi}{6}$	$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
$\frac{\pi}{3}$	($\frac{1}{2}, \frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	$(0,0,1)$
$\frac{2 \pi}{3}$	$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right.$)
$\frac{5 \pi}{6}$	$\left.\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rfloor\right)$
π	$\left(\begin{array}{\|c}-1,0\end{array}\right)$
$\frac{7 \pi}{6}$	$\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right.$)
$\frac{4 \pi}{3}$	$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
$\frac{3 \pi}{2}$	(00,01$)$
$\frac{5 \pi}{3}$	$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
$\frac{11 \pi}{6}$	$\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right.$)
2π	($\quad 1,0)$

Find $\sin t$ and $\cos t$ for the values of t whose terminal points are shown on the unit circle in the figure. t increases in increments of $\pi / 4$.

t	$\boldsymbol{\operatorname { s i n }} \boldsymbol{t}$	$\boldsymbol{\operatorname { c o s }} \boldsymbol{t}$
0	0	1
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{2}$	1	0
$\frac{3 \pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
π	0	-1
$\frac{5 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
$\frac{3 \pi}{2}$	-1	0
$\frac{7 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$

6. Question Details

Find $\sin t$ and $\cos t$ for the values of t whose terminal points are shown on the unit circle in the figure. t increases in increments of $\pi / 6$.

t	$\boldsymbol{\operatorname { s i n }} \boldsymbol{t}$	$\boldsymbol{\operatorname { c o s } t}$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0
$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
$\frac{5 \pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
π	0	-1
$\frac{7 \pi}{6}$	- $\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
$\frac{4 \pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
$\frac{3 \pi}{2}$	-1	0
$\frac{5 \pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{11 \pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

7. Question Details

Find the exact value of the trigonometric function at the given real number.
(a) $\sin \frac{11 \pi}{4}$
\qquad
(b) $\quad \csc \frac{11 \pi}{4}$

$$
\sqrt{2}
$$

(c) $\cot \frac{11 \pi}{4}$
8. Question Details

Find the exact value of the trigonometric function at the given real number.
(a) $\cos \left(-\frac{\pi}{3}\right)$
$\frac{1}{2}$
(b) $\sec \left(-\frac{\pi}{3}\right)$

2
(c) $\tan \left(-\frac{\pi}{3}\right)$

$$
-\sqrt{3}
$$

9. Question Details

Find the exact value of the trigonometric function at the given real number.
(a) $\sec \frac{11 \pi}{3}$

2
(b) $\csc \frac{11 \pi}{3}$
$-\frac{2 \sqrt{3}}{3}$
(c) $\sec \left(-\frac{\pi}{6}\right)$

$$
\frac{2 \sqrt{3}}{3}
$$

10.

Question Details
SPreCalc6 5.3.013. [1775018]
Graph the function.

$$
g(x)=3+3 \cos x
$$

11. Question Details

Find the amplitude and period of the function.
$y=\cos 4 x$

amplitude	
period	\square
	$\square \frac{\pi}{2}$

Sketch the graph of the function.

Find the amplitude and period of the function.

$$
y=\frac{1}{2} \cos 8 x
$$

amplitude	$\square \frac{\pi}{4}$	
period		$\boxed{3} / 2$

Sketch the graph of the function.

13.
Question Details
Find the amplitude and period of th

$$
y=4 \sin \frac{1}{2} x
$$

amplitude
period

Sketch the graph of the function.

0

The trigonometric function $y=\tan x$ has period

$$
\pi \text { and the following asymptotes. }
$$

$$
\begin{aligned}
& x=n \pi \text { (} n \text { is an integer) } \\
& x=\frac{\pi}{2}+2 n \pi(n \text { is an integer }) \\
& x=\frac{\pi}{2}+n \pi(n \text { is an integer }) \\
& x=\frac{3 \pi}{2}+2 n \pi(n \text { is an integer }) \\
& x=2 n \pi(n \text { is an integer })
\end{aligned}
$$

Sketch a graph of this function on the interval $(-\pi / 2, \pi / 2)$.

15. Question Details

The trigonometric function $y=\csc x$ has period

- $x=n \pi$ (n is an integer)
- $x=\frac{3 \pi}{2}+2 n \pi$ (n is an integer)
$x=\frac{\pi}{2}+2 n \pi(n$ is an integer $)$
- $x=(2 n+1) \pi$ (n is an integer $)$
- $x=\frac{\pi}{2}+n \pi$ (n is an integer)

Sketch a graph of this function on the interval $(-\pi, \pi)$.

16. Question Details

Find the radian measure of the angle with the given degree measure.
18°

$$
\frac{\pi}{10} \mathrm{rad}
$$

17. Question Details

Find the degree measure of the angle with the given radian measure.
$\frac{\pi}{6}$
$\square 30^{\circ}$

The measure of an angle in standard position is given. Find two positive angles and two negative angles that are coterminal with the given angle. (Enter your answers as a comma-separated list.)
225°

$$
-495,-135,585,945{ }^{\circ}
$$

19.

Question Details
SPreCalc6 6.1.030. [1776286]
The measure of an angle in standard position is given. Find two positive angles and two negative angles that are coterminal with the given angle. (Enter your answers as a comma-separated list.)

$$
\frac{5 \pi}{6}
$$

$$
-\frac{19 \pi}{6},-\frac{7 \pi}{6}, \frac{17 \pi}{6}, \frac{29 \pi}{6} \mathrm{rad}
$$

20.

Question Details
Solve the right triangle.
47°

Find the length of the side opposite to the given angle. (Round your answer to two decimal places.)
\square 37.53

Find the length of the hypotenuse. (Round your answer to two decimal places.)
\square
Find the other acute angle.
$\square 43{ }^{\circ}$
21. Question Details

You conclude a triangle is 3 cm long and 2.5 tall. Use these measurements to estimate the six trigonometric ratios of θ. (Round your answers to two decimal places.)

| $\sin \theta=\square$ | 0.64 |
| ---: | ---: | ---: |
| $\cos \theta=\square$ | 0.77 |
| $\tan \theta=\square$ | 0.83 |
| $\csc \theta=\square$ | 1.56 |
| $\sec \theta=\square$ | 1.30 |
| $\cot \theta=\square$ | 1.20 |

22.

Question Details
Find the quadrant in which θ lies from the information given.
$\tan \theta<0$ and $\sin \theta>0$

- I
- II
- III
- IV

23. Question Details

Find the values of the six trigonometric functions of θ with the given constraint.

	Function Value	Constraint $\cos (\theta)=-7 / 25$	θ lies in Quadrant III

24. Question Details

SPreCalc6 6.3.046. [2708293]
Find the values of the trigonometric functions of θ from the information given.
$\cos \theta=-\frac{7}{12}, \theta$ in Quadrant III
$\sin \theta=$

$-\frac{\sqrt{95}}{12}$ $\frac{\sqrt{95}}{7}$ $-\frac{12}{\sqrt{95}}$ $-\frac{12}{7}$ $\frac{7}{\sqrt{95}}$

25. Question Details

SPreCalc6 6.5.001. [1763555]
In triangle $A B C$ with sides a, b, and c the Law of Sines states that

$$
-- \text { Select--- } \frac{\sqrt{\sin A}}{a}=\frac{-- \text { Select--- } \sin B}{b}=\frac{-- \text { Select }--\sqrt{\square \sin C}}{c}
$$

26. Question Details

Solve the triangle using the Law of Sines. (Assume $c=65, \angle A=55^{\circ}$, and $\angle B=25^{\circ}$. Round lengths to two decimal places.)

27.

Question Details
Solve the triangle using the Law of Sines. (Assume $b=5, \angle A=40^{\circ}$, and $\angle C=100^{\circ}$. Round the lengths to two decimal places.)

28. Question Details

For triangle $A B C$ with sides a, b, and c the Law of Cosines states the following.
$c^{2}=$

$$
a^{2}+b^{2}-2 a b \cos (C)
$$

29. Question Details

SPreCalc6 6.6.011. [2563604]
Solve triangle $A B C$. (Round the length to three decimal places and the angles to one decimal place.)

30. Question Details

Solve triangle $A B C$. (Round your answers to one decimal place.)

$\angle A=$	-73.3
$\angle B=$	- 14.5
$\angle C=$	- 92.3

Assignment Details

