
A Quick Tutorial on Multibody Dynamics

C. Karen Liu
Sumit Jain

School of Interactive Computing
Georgia Institute of Technology

i

Contents

1 Introduction 2

2 Lagrangian Dynamics 3

3 Review: Newton-Euler equations 6

4 Rigid Body Dynamics: Lagrange’s equations 8

5 Articulated Rigid Body Dynamics 13

5.1 Definitions . 13
5.2 Cartesian and generalized velocities . 14
5.3 Equations of motion . 15

6 Conversion between Cartesian and Generalized Coordinates 17

6.1 Velocity conversion . 17
6.2 Force conversion . 19

7 Recursive Inverse Dynamics 21

7.1 Dynamics in the local frame . 21
7.2 Pass 1: Compute velocity and acceleration 22
7.3 Pass 2: Compute force and torque . 24

1

1 Introduction

If you have not read the excellent SIGGRAPH course notes on physics-based animation
by Witkin and Baraff, you can stop reading further right now. Go look for those notes at
http://www.cs.cmu.edu/~baraff/sigcourse/ and come back when you fully understand
everything in those notes.

If you are still reading this document, you probably fit the following profile. You are a com-
puter scientist with no mechanical engineering background and minimal training in physics
in high school but you are seriously interested in physics-based character animation. You
have read Witkin and Baraff’s SIGGRAPH course notes a few times but don’t know where
to go from simulating rigid bodies to human figures. You have played with some commercial
physics engines like ODE (Open Dynamic Engine), PhysX, Havok, or Bullet, but you wish
to simulate human behaviors more interesting than ragdoll effects.

Physics-based character animation consists of two parts: simulation and control. This doc-
ument focuses on the simulation part. It’s quite likely that you do not need to understand
how the underlying simulation works if your control algorithm is simple enough. However,
complex human behaviors often require sophisticated controllers that exploit the dynamics
of a multibody system. A good understanding of multibody dynamics is paramount for
designing effective controllers.

There are many ways to learn multibody dynamics. Reading a textbook on this topic or
taking a course from the mechanical engineering department will both do the job. However,
if you only want to learn the minimal set of multibody dynamics necessary to jump start
your research in physics-based character animation, this document might be what you are
looking for. In particular, this document attempts to answer the following questions.

• I know how to derive the equations of motion for one rigid body and I have seen people
use the following equations for articulated rigid bodies, but I don’t know how they are
derived.

M(q)q̈ + C(q, q̇) = Q

• I have seen the Euler-Lagrange equation in the following form before, but I don’t know
how it is related to the equations of motion above.

d

dt

(

∂Ti

∂q̇

)

−
∂Ti

∂q
− Q = 0

• I use generalized coordinates to compute the control forces, how do I convert them
to Cartesian forces such that I can use simulators like ODE, PhysX, or Bullet which
represent rigid bodies in the maximal coordinates?

• I heard that inverse dynamics can be computed efficiently using a recursive formulation.
How does that work?

2

2 Lagrangian Dynamics

Articulated human motions can be described by a set of dynamic equations of motion of
multibody systems. Since the direct application of Newton’s second law becomes difficult
when a complex articulated rigid body system is considered, we use Lagrange’s equations

derived from D’Alembert’s principle to describe the dynamics of motion. To simplify the
math, let’s temporarily imagine that the entire human skeleton consists of a collection of
particles {r1, r2, . . . , rnp

}. Each particle, ri, is defined by Cartesian coordinates that describe
the translation with respective to the world coordinates. We can represent ri by a set of
generalized coordinates that indicate the joint configuration of the human skeleton:

ri = ri(q1, q2, . . . , qnj
, t) (1)

where t is the time and qj is a joint degree of freedom (DOF) in the skeleton. Each qj is a
function of time but we assume that ri is not an explicit function of time.

The virtual displacement δri refers to an infinitesimal change in the system coordinates such
that the constraint remains satisfied. In the context of human skeleton, the system coor-
dinates are the generalized coordinates qj and the constraint manifold lies in the Cartesian
space. The virtual displacement δri is a tangent vector to the constraint manifold at a fixed
time, written as

δri =
∑

j

∂ri

∂qj

δqj (2)

We can now write the virtual work done by a force fi acting on particle ri as

fi · δri = fi ·
∑

j

∂ri

∂qj

δqj ≡
∑

j

Qijδqj = Qi · δq (3)

where Qij =
(

∂ri

∂qj

)T

fi is defined as the component of the generalized force associated with

coordinate qj. In vector form, Qi is the generalized force corresponding to the Cartesian
force fi with the relation Qi = JT

i fi, where Ji is the Jacobian matrix with the jth column
defined as ∂ri

∂qj
.

From D’Alembert’s principle, we know that the sum of the differences between the forces
acting on a system and the inertial force of the system along any virtual displacement
consistent with the constraints of the system, is zero. Therefore, the virtual work at ri can
be written as

δWi = fi · δri = µir̈i · δri =
∑

j

µir̈i ·
∂ri

∂qj

δqj (4)

where µi is the infinitesimal mass associated with ri. The component of inertial force asso-
ciated with qj can be written as

µir̈i ·
∂ri

∂qj

=
d

dt

(

µiṙi ·
∂ri

∂qj

)

− µiṙi ·
d

dt

(

∂ri

∂qj

)

(5)

3

Now let us consider the velocity of ri in terms of joint velocity q̇j

ṙi =
∑

j

∂ri

∂qj

q̇j (6)

from which we derive the following two identities:

∂ṙi

∂q̇j

=
∂ri

∂qj

(7)

∂ṙi

∂qj

=
∑

k

∂2ri

∂qj∂qk

q̇k =
d

dt

∂ri

∂qj

(8)

Using these two identities, we rewrite Equation (5) as

µir̈i ·
∂ri

∂qj

=
d

dt

(

∂

∂q̇j

(

1

2
µiṙ

T
i ṙi

))

−
∂

∂qj

(

1

2
µiṙ

T
i ṙi

)

(9)

We can denote the kinetic energy of ri as

Ti =
1

2
µṙT

i ṙi, (10)

and rewrite Equation (9) as

µir̈i ·
∂ri

∂qj

=
d

dt

(

∂Ti

∂q̇j

)

−
∂Ti

∂qj

(11)

Combining the definition of generalized force (Equation (3)), D’Alembert’s principle (Equa-
tion (4)), and the generalized inertial force (Equation (11)), we arrive at the following equa-
tion:

(

d

dt

(

∂Ti

∂q̇j

)

−
∂Ti

∂qj

)

δqj = Qijδqj (12)

If the set of generalized coordinates qj is linearly independent, Equation (12) leads to La-

grangian equation:
d

dt

(

∂Ti

∂q̇j

)

−
∂Ti

∂qj

− Qij = 0 (13)

Equations of Motion in Vector Form. Equation (13) is the equation of motion for one
generalized coordinate in a multibody system. We can combine nj scalar equations into the
familiar vector form

M(q)q̈ + C(q, q̇) = Q (14)

where M(q) is the mass matrix, C(q, q̇) is the Coriolis and centrifugal term of the equation
of motion, and Q is the vector of generalized forces for all the degrees of freedom (DOFs) in
the system. M only depends on q and C depends quadratically on q̇.

4

How do we derive M and C from Equation (13)? Let us go back to the velocity of one
particle ri:

ṙi =
∑

j

∂ri

∂qj

q̇j = Ji(q)q̇ (15)

where Ji denotes the Jacobian of ri. By summing up all the particles in the system, the
kinetic energy of the system can then be expressed as

T =
∑

i

Ti =
∑

i

1

2
µṙT

i ṙi =
∑

i

1

2
µ(Jiq̇)T (Jiq̇) =

1

2
q̇T (
∑

i

µJT
i Ji)q̇ =

1

2
q̇T M(q)q̇ (16)

where we define the mass matrix, M(q) =
∑

i µJT
i Ji, and will shortly show it is indeed the

mass matrix in Equation (14).

From Equation (16), we can derive the derivative terms to construct the Lagrange’s equation
(Equation (13)):

d

dt

∂T

∂q̇
−

∂T

∂q
= M q̈ + Ṁ q̇ −

1

2
q̇T

(

∂M

∂q

)T

q̇ ≡ M q̈ + C(q, q̇) (17)

Comparing Equation (17) to Equation (14), we confirm that the mass matrix is identical in
both equations. C is the Coriolis and centrifugal term in Equation (14) and is defined as

C = Ṁ q̇ − 1
2

(

∂M
∂q

q̇
)T

q̇.

Note. In the second term of C, we introduce tensor notation ∂M
∂q

, which implies that the

jth element of the tensor ∂M
∂q

is the matrix ∂M
∂qj

. Note that, in general, the quantity with

notation ∂M
∂q

q̇ is not equal to Ṁ . This is because, the jth column of the matrix ∂M
∂q

q̇ is the

vector ∂M
∂qj

q̇ or
∑

k

∂(M)k

∂qj
q̇k, where the notation (A)j denotes the jth column of the matrix A.

In contrast, the jth column of the matrix Ṁ is
∑

k

∂(M)j

∂qk
q̇k.

Once we know how to compute the mass matrix, Coriolis and centrifugal terms, and gen-
eralized forces, we can compute the acceleration in generalized coordinates, q̈, for forward

dynamics. Conversely, if we are given q̈ from a motion sequence, we can use these equations
of motion to derive generalized forces for inverse dynamics.

The above formulation is convenient for a system consisting of finite number of mass points.
However, for a dynamic system that consists of rigid bodies, there are infinitely many points
contained in each rigid body making the above formulation intractable. In the following two
sections, we view a rigid body as a continuum and derive compact equations of motions in
both Cartesian coordinates and generalized coordinates.

5

3 Review: Newton-Euler equations

This section reviews Newton-Euler equations for rigid body dynamics. The derivation of mass
matrix M(q) and Coriolis and centrifugal term C(q, q̇) for a rigid body will be presented in
the next section. If you are familiar with Newton-Euler equations, you can skip this section
and continue to the next. However, many math notations used in Witkin and Baraff’s course
notes are also reviewed in this section, such as linear momentum, angular momentum, skew-
symmetric matrix and its properties.

math notations and definitions used in Witkin and Baraff’s course notes, such as linear
momentum, angular momentum, and skew-symmetric matrices and their properties, you
can safely skip this section.

To derive Newton-Euler equations, we begin with the momenta of the rigid body whose
mass, position of the center of mass (COM), orientation, linear velocity of the COM, and
angular velocity are m, x, R, v, and ω respectively (these definitions are the same as are
found in Witkin and Baraff’s course notes). The linear momentum P is computed as:

P =
∑

i

Pi =
∑

i

µṙi =
∑

i

µ(v + ω × r′i)

= mv (18)

where r′i = ri − x. Because
∑

i µr′i = 0 (property of the COM), the second term vanishes.
The angular momentum L about the COM is computed as:

L =
∑

i

Li =
∑

i

r′i × Pi

=
∑

i

µr′i × (v + ω × r′i)

= 0 +
∑

i

µ[r′i][ω]r′i =

(

∑

i

−µ[r′i][r
′

i]

)

ω (19)

The notation [a]b denotes the cross product a×b with [a] being the skew-symmetric matrix
corresponding to the vector a:

[a] =

0 −a3 a2

a3 0 −a1

−a2 a1 0

 (20)

Therefore the following identities hold: [a]b = −[b]a and [a]T = −[a].

Now recall the inertia tensor about the COM defined in Witkin and Baraff’s course notes:
Ic =

∑

i µ((r′Ti r′i)I3 − r′ir
′T
i), where I3 is the 3 × 3 identity matrix. We can easily show that

Ic =
∑

i −µ[r′i][r
′

i] by verifying the identity −[a][a] = (aTa)I3 − aaT . As a result, we write
the angular momentum of a rigid body as:

L = Icω (21)

6

where the inertia tensor can be written as Ic = RI0R
T . R is the rotation matrix corre-

sponding to the orientation of the body and I0 is the constant inertia tensor defined at zero
rotation. From Witkin and Baraff’s course notes, we also learned that the angular velocity
in the skew-symmetric form is related to the rotation matrix R as [ω] = ṘRT .

With these definitions, we can derive the equations of motion for a rigid body. The equations
corresponding to the linear force can be evaluated as:

f = ṗ = mv̇ (22)

The equations corresponding to the torque can be evaluated as:

τ = L̇ = ˙(Icω)

= Icω̇ + ˙(RI0RT)ω = Icω̇ + ṘI0R
T
ω + RI0Ṙ

T
ω

= Icω̇ + ṘRT Icω + Ic(ṘRT)T
ω

= Icω̇ + [ω]Icω − Ic[ω]ω (Using the identity [ω]T = −[ω])

= Icω̇ + ω × Icω (23)

Combining Equation (22) and Equation (23), we arrive at the Newton-Euler equations:

(

mI3 0

0 Ic

)(

v̇

ω̇

)

+

(

0

ω × Icω

)

=

(

f

τ

)

(24)

7

4 Rigid Body Dynamics: Lagrange’s equations

The Newton-Euler equations are defined in terms of velocities instead of position and ori-
entation. We now derive the equations in generalized coordinates q that define the position
and orientation. The first three coordinates are the same as the position of COM. The next
three represent the rotation of the rigid body such as an exponential map or three Euler
angles (or four coordinates can be used for a quaternion). In particular, we will show how
mass matrix and Coriolis and centrifugal term are computed in Equation (14).

We start by computing the kinetic energy of the rigid body using the notions in Equation (18):

T =
∑

i

Ti =
∑

i

1

2
µṙT

i ṙi =
∑

i

1

2
µ(v + ω × r′i)

T (v + ω × r′i)

=
∑

i

1

2
µ(vTv + vT [ω]r′i + r′Ti [ω]Tv + r′Ti [ω]T [ω]r′i) (25)

Because
∑

i µr′i = 0, the second term and the third term in Equation (25) vanish. Using the
identity [ω]r′i = −[r′i]ω, we can rewrite Equation (25) as:

T =
1

2
mvTv +

1

2
ω

T

(

∑

i

−µ[r′i][r
′

i]

)

ω

=
1

2
mvTv +

1

2
ω

T Icω (26)

The kinetic energy of a rigid body can be written in its vector form:

T =
1

2
(vT

ω
T)

(

mI3 0

0 Ic

)(

v

ω

)

≡
1

2
VT McV (27)

where V = (vT ,ωT)T , Mc = blockdiag(mI3, Ic). We now relate the velocities in the Cartesian
space V to the generalized velocities q̇. Let x(q) and R(q) represent the position of the
COM and the rotation matrix of the rigid body. The linear velocity of the COM is computed
as:

v = ẋ(q) =
∂x

∂q
q̇ ≡ Jvq̇ (28)

The angular velocity is computed as:

[ω] = Ṙ(q)RT (q)

=
∑

j

∂R

∂qj

RT q̇j ≡
∑

j

[jj]q̇j (29)

∂R
∂qj

RT is always a skew-symmetric matrix that we represent as [jj] (skew-symmetric form of

the vector jj). ω can now be represented in the vector form as:

ω = Jωq̇ (30)

8

where jj is the jth column of the matrix Jω.

Using Equation (28) and Equation (30), we can write:

V =

(

Jv

Jω

)

q̇ ≡ J(q)q̇ (31)

Substituting the above in Equation (27), we get:

T =
1

2
q̇T JT McJ q̇ (32)

Using the recipe for Lagrangian dynamics in Equation (13), we first compute ∂T
∂q̇j

as:

∂T

∂q̇j

=
1

2
q̇T JT Mc(J)j +

1

2
(J)T

j McJ q̇

= (J)T
j McJ q̇ (33)

where the notation (A)j denotes the jth column of the matrix A. The term d
dt

(

∂T
∂q̇j

)

is

computed as:

d

dt

(

∂T

∂q̇j

)

= (J)T
j McJ q̈ + (J)T

j McJ̇ q̇ + (J)T
j ṀcJ q̇ + ˙(J)

T

j McJ q̇ (34)

Now we evaluate the term ∂T
∂qj

:

∂T

∂qj

=
1

2
q̇T JT Mc

∂J

∂qj

q̇ +
1

2
q̇T JT ∂Mc

∂qj

J q̇ +
1

2
q̇T ∂JT

∂qj

McJ q̇

= q̇T ∂JT

∂qj

McJ q̇ +
1

2
q̇T JT ∂Mc

∂qj

J q̇ (35)

Using the above equations, we write:

d

dt

(

∂T

∂q̇j

)

−
∂T

∂qj

= (J)T
j McJ q̈ + (J)T

j McJ̇ q̇ + (J)T
j ṀcJ q̇ −

1

2
q̇T JT ∂Mc

∂qj

J q̇

+

(

˙(J)
T

j McJ q̇ −

(

∂J

∂qj

q̇

)T

McJ q̇

)

(36)

Comparing Equation (36) to Equation (17), it seems that we can view the first term as the
mass matrix multiplying by q̈ and the rest terms as Coriolis and centrifugal forces. However,
we will show that the third, fourth, and fifth terms of this equation can be greatly reduced.

Third term:

(J)T
j ṀcJ q̇ = (Jω)T

j İcJωq̇ (The linear term in Mc is constant: see Equation (27))

= jTj
˙(RI0RT)ω (jj represents the jth column of Jω: see Equation (29))

term 3 = jTj [ω]Icω (From Equation (23)) (37)

9

Fourth term: The fourth term in Equation (36) can be simplified as:

1

2
q̇T JT ∂Mc

∂qj

J q̇ =
1

2
(Jωq̇)T ∂Ic

∂qj

Jωq̇

=
1

2
ω

T

(

∂R

∂qj

I0R
T + RI0

∂RT

∂qj

)

ω = ω
T

(

∂R

∂qj

I0R
T

)

ω

= ω
T

(

∂R

∂qj

RT Ic

)

ω

= ω
T [jj]Icω (From Equation (29))

term 4 = −jTj [ω]Icω (Using the identity a · (b × c) = −b · (a × c)) (38)

Fifth term: To simplify the fifth term in Equation (36), we explicitly express it using the
linear and angular components:

(

˙(Jv)j

T ˙(Jω)j

T
)

(

mI3 0

0 Ic

)(

Jvq̇

Jωq̇

)

−
(
(

∂Jv

∂qj
q̇
)T (

∂Jω

∂qj
q̇
)T
)

(

mI3 0

0 Ic

)(

Jvq̇

Jωq̇

)

(39)

The linear term can be extracted and simplified as:

m

(

˙(Jv)j −

(

∂Jv

∂qj

q̇

))T

Jvq̇ = m

(

∑

k

∂(Jv)j

∂qk

q̇k −
∑

k

∂(Jv)k

∂qj

q̇k

)T

Jvq̇

= m

(

∑

k

∂2x

∂qj∂qk

q̇k −
∑

k

∂2x

∂qk∂qj

q̇k

)T

Jvq̇

term 5 (linear) = 0 (40)

The above derivation uses the property of the Jacobian of the linear velocity (Jv)j = ∂x

∂qj
∀j

(See Equation (28)).

We now extract and simplify the angular term in Equation (39) as:

(

˙(Jω)j −

(

∂Jω

∂qj

q̇

))T

IcJωq̇ =

(

∑

k

∂jj

∂qk

q̇k −
∑

k

∂jk

∂qj

q̇k

)T

Icω

=

(

∑

k

(

∂jj

∂qk

−
∂jk

∂qj

)

q̇k

)T

Icω ≡

(

∑

k

zjkq̇k

)T

Icω(41)

10

Now let us evaluate the term denoted by zjk. Consider the skew symmetric form:

[zjk] =

[

∂jj

∂qk

−
∂jk

∂qj

]

=
∂[jj]

∂qk

−
∂[jk]

∂qj

(Using linearity of the skew symmetric matrix)

=

(

∂2R

∂qj∂qk

RT +
∂R

∂qj

∂RT

∂qk

)

−

(

∂2R

∂qk∂qj

RT +
∂R

∂qk

∂RT

∂qj

)

(From Equation (29))

=
∂R

∂qj

RT

(

∂R

∂qk

RT

)T

−
∂R

∂qk

RT

(

∂R

∂qj

RT

)T

= −[jj][jk] + [jk][jj] (Using the identity [a]T = −[a])

= [jk × jj] (Using the identity [a × b] = [a][b] − [b][a])

⇒ zjk = jk × jj = [jk]jj (42)

Substituting the above in Equation (41), we get:
(

∑

k

zjkq̇k

)T

Icω =

(

∑

k

[jk]jj q̇k

)T

Icω

=

(

(

∑

k

[jk]q̇k

)

jj

)T

Icω

=

(

[

∑

k

jkq̇k

]

jj

)T

Icω

= ([Jωq̇]jj)
T

Icω = ([ω]jj)
T Icω

term 5 (angular) = −jTj [ω]Icω (43)

Put it together: Finally, we substitute the terms computed in Equation (37), Equa-
tion (38), Equation (40) and Equation (43) into Equation (36) and rewrite it as:

d

dt

(

∂T

∂q̇j

)

−
∂T

∂qj

= (J)T
j McJ q̈ + (J)T

j McJ̇ q̇ + jTj [ω]Icω

=
(

(J)T
j McJ

)

q̈ +
(

(J)T
j McJ̇ + (J)T

j [ω̃]McJ
)

q̇

where [ω̃] =

(

0 0

0 [Jωq̇]

)

(44)

Writing the equations for all the qj in the vector form, we get:

d

dt

(

∂T

∂q̇

)

−
∂T

∂q
=

(

JT McJ
)

q̈ +
(

JT McJ̇ + JT [ω̃]McJ
)

q̇ (45)

Note that the second term in the above equation involves the computation of J̇ that can be
computed as

∑

k
∂J
∂qk

q̇k. In other words, we will need to compute the first and the second

derivatives of a rotation matrix (i.e. ∂R
∂qj

and ∂2R
∂qi∂qk

) in order to compose Jacobian J and its

time derivative J̇ in Equation (45).

11

Derivation using Newton-Euler equations. We can alternatively derive the result in
Equation (45) from the Newton-Euler equations in Equation (24). Using Equation (31), we
substitute the Cartesian velocities v,ω in terms of the generalized velocities q̇ into Equa-
tion (24) and get:

Mc(˙J q̇) +

(

0

(Jωq̇) × IcJωq̇

)

=

(

f

τ

)

⇒ McJ q̈ + McJ̇ q̇ + [ω̃]McJ q̇ =

(

f

τ

)

(46)

From the principle of virtual work in Equation (3), we convert the Cartesian-space forces
to the Generalized space by pre-multiplying the above equation with the transpose of the
Jacobian J :

(

JT McJ
)

q̈ +
(

JT McJ̇ + JT [ω̃]McJ
)

q̇ = JT
v f + JT

ω τ (47)

The LHS of Equation (47) is identical to the RHS of Equation (45) and they are of the form
M(q)q̈ + C(q, q̇) = Q, where the Mass matrix, the Coriolis term and the generalized forces
are defined as:

M(q) = JT McJ

C(q, q̇) = (JT McJ̇ + JT [ω̃]McJ)q̇

Q = JT
v f + JT

ω τ (48)

12

5 Articulated Rigid Body Dynamics

We now derive the equations of motion for an articulated rigid body structure. We follow
the derivation of rigid body dynamics in generalized coordinates from Section 4.

An articulated rigid body system is represented as a set of rigid bodies connected through
joints in a tree structure. Every rigid link has exactly one parent joint. The joint corre-
sponding to the root of the tree is special; the root link does not link to any other rigid
link. The generalized coordinates are therefore the DOFs of the root link of the tree (that
may represent the global translation and rotation) and the joint angles corresponding to the
admissible joint rotations for all the other joints.

5.1 Definitions

The state of an articulated rigid body system can be expressed as (xk, Rk,vk,ωk), where
k = 1, · · · ,m and m is the number of rigid links. Here xk and Rk are the position of the
COM and the orientation of the rigid link k, and (vk,ωk) are the linear and angular velocity
of the rigid link k viewed in the world frame. Similarly, we define the Cartesian force and
torque applied on rigid link k as (fk, τk), both of which are expressed in the world frame.

The same articulated rigid body system can be represented in generalized coordinates. We
define the generalized state as (q, q̇), where q = (q1, . . . ,qk, . . . ,qm) and each qk is the set
of DOFs of the joint that connects the link k to its parent link (see Figure 1).

k=1

k=2

k=3

k=4

q
1
={q

11,
q
12

}

universal joint

hinge joint

ball joint

q
2
={q

21,
q
22,
q
23

}

q
4
={q

41
}

q
3
={q

31
}

Figure 1: An articulated system.

We list a few notations and definitions for an articu-
lated rigid body system with m rigid links.

• p(k) returns the index of the parent link of link
k. This is illustrated in Figure 1, p(4) = 2.
p(1, k) returns the indices of all the links in the
chain from the root to the link k (including k),
e.g. p(1, 4) = {1, 2, 4}

• n(k) returns the number of DOFs in the joint
that connects the link k to the parent link p(k).
For example in Figure 1, n(2) = 3, n(3) = 1
etc. We denote the total number of DOFs in
the system by n. e.g. n = 7 in Figure 1.

• Rk is the local rotation matrix for the link k and
depends only on the DOFs qk. R0

k is the chain of
rotational transformations from the world frame
to the local frame of the link k. Therefore, R0

k = R0
p(k)Rk. Since the link 1 does not

have a parent link, R0
p(1) = I3.

13

5.2 Cartesian and generalized velocities

For a single rigid body, Equation (28) and Equation (30) describe the relation between the
Cartesian velocities and the generalized velocities. For an articulated rigid body system,
we use the same recipe as rigid body dynamics in Section 4 and define the Jacobians for
each rigid link that relate its respective Cartesian velocities to the generalized velocity of the
entire system.

We start with deriving the relation for the angular velocity. The angular velocity (in skew-
symmetric matrix form) of link k viewed in the world frame is:

[ωk] = Ṙ0
kR

0
k

T
= ˙(R0

p(k)Rk)(R
0
p(k)Rk)

T

= (Ṙ0
p(k)Rk + R0

p(k)Ṙk)R
T
k R0

p(k)
T

= Ṙ0
p(k)R

0
p(k)

T
+ R0

p(k)

(

ṘkR
T
k

)

R0
p(k)

T
≡ [ωp(k)] + R0

p(k)[ω̂k]R
0
p(k)

T
(49)

In the above equation, we define [ω̂k] = ṘkR
T
k that denotes the angular velocity of the link

k in the frame of its parent link p(k) since the rotation matrix Rk is the rotation of the
rigid link k with respect to p(k). We can further write ω̂k = Ĵωkq̇k where Ĵωk is the local

Jacobian matrix that relates the joint velocity of link k to its angular velocity in the frame
of the parent link p(k). The dimension of Ĵωk is 3 × n(k).

Using a property of skew symmetric matrices, [Rω] = R[ω]RT , we can express Equation (49)
in vector form as:

ωk = ωp(k) + R0
p(k)Ĵωkq̇k

=
∑

l∈p(1,k)

R0
p(l)Ĵωlq̇l (By unrolling the recursive definition)

≡ Jωkq̇ (50)

where the Jacobian Jωk is:

Jωk =
(

Ĵω1 . . . R0
p(l)Ĵωl . . . 0 . . .

)

(51)

Note that the zero matrices 0 of size 3 × n(l) in Jωk correspond to joint DOFs ql that are
not in the chain of transformations from the root to the link k. Let us look at a couple of
examples using the articulated rigid body system in Figure 1:

ω1 = (Ĵω1 0 0 0)q̇

ω4 = (Ĵω1 R0
1Ĵω2 0 R0

2Ĵω4)q̇

where Ĵω1 ∈ ℜ3×2, Ĵω2 ∈ ℜ3×3 and Ĵω4 ∈ ℜ3×1. Depending on the representation of the
rotation qk, Ĵωk can assume different values and dimensions. For example, if the joint
between link 1 and link 2 in Figure 1 is represented as three Euler rotations, R(x), R(y), and
R(z) such that R2(q2) = R(x)(q21)R

(y)(q22)R
(z)(q23), we have:

Ĵω2 =

1
0
0

R(x)

(0
1
0

)

R(x)R(y)

(0
0
1

)

 (52)

14

If the joint is represented as a quaternion or an exponential map, Ĵωk does not have a simple
form. As an example, the relation between the rotation matrix Rk and the exponential map
representation qk = (qk1, qk2, qk3) can be written as:

Rk(qk) = e[qk] = I3 +
sinθ

θ
[qk] +

1 − cosθ

θ2
[qk]

2 (53)

where θ = ||qk||. The Jacobian Ĵωk can be derived by equating the result of ṘkR
T
k to [Ĵωkq̇k]:

Ĵωk = Rk

(

I3 −
1 − cosθ

θ2
[qk] +

θ − sinθ

θ3
[qk]

2

)

= I3 +
1 − cosθ

θ2
[qk] +

θ − sinθ

θ3
[qk]

2 (54)

For the case when θ → 0, Rk and Ĵωk can be approximated as follows:

Rk = I3 + [qk] +
1

2
[qk]

2 (55)

Ĵωk = I3 +
1

2
[qk] +

1

6
[qk]

2 (56)

Similar to the angular velocity, the linear velocity of the center of mass of the link k can be
expressed in terms of the generalized velocity:

vk = Jvkq̇, where Jvk =
∂xk

∂q
=

∂W 0
k ck

∂q
. (57)

where the chain of homogeneous transformations from the world frame to the local frame
of link k is denoted as W 0

k . Note that W 0
k is different from R0

k in that W 0
k includes the

translational transformations. ck is a constant vector that denotes the center of mass of link
k in its local frame.

We can concatenate the Cartesian velocities into a single vector Vk and denote the relation
as:

Vk = Jkq̇

where Vk =

(

vk

ωk

)

and Jk =

(

Jvk

Jωk

)

(58)

5.3 Equations of motion

We now derive the equations of motion of an articulated rigid body system in generalized
coordinates. The kinetic energy T of the entire system can be expressed as the sum of kinetic
energies of all the rigid links as T =

∑

k Tk. Therefore the equations of motion of the system

15

can be computed as:

d

dt

(

∂T

∂q̇

)

−
∂T

∂q
=

d

dt

(

∂
∑

k Tk

∂q̇

)

−
∂
∑

k Tk

∂q

=
∑

k

(

d

dt

(

∂Tk

∂q̇

)

−
∂Tk

∂q

)

=
∑

k

(

(

JT
k MckJk

)

q̈ +
(

JT
k MckJ̇k + JT

k [ω̃k]MckJk

)

q̇
)

=
∑

k

(

JT
k MckJk

)

q̈ +
∑

k

(

JT
k MckJ̇k + JT

k [ω̃k]MckJk

)

q̇ (59)

In deriving the above equation, we use the equations of motion in generalized coordinates
for a single rigid body defined in Equation (45) subscripted by k for the dynamics of kth link
in the multibody system. The Jacobian Jk for the kth link is defined in Equation (58).

16

6 Conversion between Cartesian and Generalized Co-

ordinates

In practice, we often want to use third-party rigid body simulators rather than develop
our own. There are a few widely used physics engines that provide efficient, robust, and
fairly accurate rigid body simulation and collision handling. Open Dynamic Engine (ODE),
PhysX, and Bullet are perhaps the most popular free choices among game developers and
academic researchers. These commercial simulators use the maximal representation rather
than generalized coordinates described above. That is, these simulators represent each link in
the articulated rigid body system as six DOFs, leading to a redundant system with additional
constraints between links. A common practice is to develop control algorithms in generalized
coordinates and do forward simulation using a commercial physics engine, such as ODE. This
requires some conversion between Cartesian and generalized coordinates.

6.1 Velocity conversion

We can concatenate all 2m Jacobian matrices corresponding to each link into a single Jaco-
bian that relates the generalized velocity to the Cartesian velocity of each link:

V ≡

v1
...

vm

ω1
...

ωm

=

Jv1
...

Jvm

Jω1
...

Jωm

q̇1
...

q̇m

≡

(

Jv

Jω

)

q̇ ≡ J q̇ (60)

Typically, the Jacobian J is full column rank because the number of DOFs in the maximal
representation is more than that in the generalized representation, i.e 6m > n. To compute
q̇ from V, we will end up solving an over-constrained linear system. We can use the pseudo
inverse of J to compute q̇:

q̇ = J+V (61)

where the pseudo-inverse notation J+ = (JT J)−1JT . If this least-squares solution does not
exactly solve the linear system (i.e. J q̇ = V), it indicates that V cannot be achieved in the
generalized coordinates without violating constraints of the system (e.g. constraints that
keep links connected).

Computing J+ may be expensive for a system with many rigid links. Alternatively, we can
rewrite the equation using the relative velocity between a child and a parent link expressed
in the local frame of the parent, instead of using velocities of each link expressed in the world
frame. As an example, we write the simplified expression for the angular velocity of link k

17

using Equation (50) as:

ωk − ωp(k) = R0
p(k)ω̂k = R0

p(k)Ĵωkq̇k

⇒ (−I3 I3)

(

ωp(k)

ωk

)

= R0
p(k)Ĵωkq̇k (62)

Combining these equations for all the links, we get:

Dω = DJωq̇ = blockdiag(Ĵω1, . . . , R
0
p(m)Ĵωm)q̇

= blockdiag(I3, . . . , R
0
p(m))blockdiag(Ĵω1, . . . , Ĵωm)q̇

≡ RĴωq̇ (63)

where D is a constant matrix that encodes the connectivity between links. For example,
matrix D for the system in Figure 1 looks like:

D =

I3 0 0 0

−I3 I3 0 0

0 −I3 I3 0

0 −I3 0 I3

(64)

The relations between ω̂ and ω, and Ĵω and Jω follow from Equation (63):

ω̂ = RT Dω

and Ĵω = RT DJω (65)

The matrix Ĵω being block diagonal is much sparser as compared to Jω.

If q̇ satisfies the over-constrained system of equations V = J q̇, using any n independent
constraints out of 6m to solve this linear system will result in the same q̇. This can be
explained by the problem of fitting an unknown plane to 6m 3D points as Ax = b, where
A ∈ ℜ6m×3. If all 6m points happen to lie on a plane, i.e. there exists an x that exactly
satisfies the over-constrained system, any three distinctive points we pick as the constraints
will result in the same plane. Therefore, if we know V can be achieved in the generalized
coordinates, we can pick a subset of rows from J to form a J ′ such that the rank of J ′ is n,
and compute q̇ = J ′+V′, where V′ are the velocity components corresponding to the rows
in J ′. The solution q̇ to this system will be the same for any J ′.

For a system with only rotational DOFs, it is sufficient to invert only Jω which is also a full
column rank matrix (Jω ∈ ℜ3m×n and n ≤ 3m). This is because each rotational joint can
have at most three independent DOFs. We then can compute the velocities of the rotational
DOFs q̇ as:

q̇ = J+
ω ω

= Ĵ+
ω RT Dω = Ĵ+

ω ω̂

= blockdiag
(

Ĵ+
ω1, . . . , Ĵ

+
ωm

)

ω̂

or q̇k = Ĵ+
ωkω̂k , k ∈ 1 . . . m (66)

18

From this formulation, we see that the problem of computing the pseudo-inverse of a matrix
Jω is reduced to computing m pseudo-inverses of much smaller constant-sized matrices Ĵωk.
Note that if q̇ computed in Equation (66) exactly satisfies the linear system ω = Jωq̇, it also
satisfies the linear velocity relation v = Jvq̇.

For systems that include translational DOFs as well, we can separately solve for the rotational
DOFs as in Equation (66) and solve for the translational DOFs for any link k as q̇k = J+

vkvk.
In most of the cases, only the root joint has translational DOFs making the computation of
generalized translational velocities extremely simple as Jv1 becomes an identity matrix.

6.2 Force conversion

The relation between the Cartesian force and the generalized force can be found in Equa-
tion (3):

Q =
∑

k

J
′

vk

T
fk + JT

ωkτ
′

k =
(

J
′

v

T
JT

ω

)

(

f

τ

′

)

, where J
′

vk =
∂rk

∂q
(67)

where rk is the point of application of the Cartesian force fk and τ

′

k is the body torque applied
to link k expressed in the world frame.

Note. Body torque τ

′

k is different from body torque τk in Equation (48):

Q = JT
v f + JT

ω τ

Here, τ

′

k is the torque applied on link k in the world frame and does not include the torque
induced by the linear forces fk. However, τk in Equation (48) includes the torque [rk −xk]fk
due to each force fk (xk is the COM of the link k). As a result, the linear Jacobian Jv in
Equation (48) is computed at the COM of the respective rigid link and J

′

v in Equation (67)

is defined for the point of application of the force. It is easy to verify that J
′

vk

T
fk = JT

vkfk +
JT

ωk[rk − xk]fk. i.e. τk = τ

′

k + [rk − xk]fk.

Often many controllers (such as a tracking controller) find it convenient to compute the
Cartesian-space joint torques in the local frame of the parent link rather than body torques
in the world frame. Joint torque τ̂k in the frame of a parent link p(k) is defined such
that positive torque in the world frame R0

p(k)τ̂k is applied to the link k and negative torque

−R0
p(k)τ̂k is applied to the parent link p(k). Therefore, the body torque τ

′

k applied to the

link k can be written in terms of the joint torques as τ

′

k = R0
p(k)τ̂k −

∑

l R
0
kτ̂l, ∀l : k = p(l).

Collecting the body torques for all the rigid links in the vector τ , the relation between the
body torques and the joint torques can be defined as:

τ

′

= DT Rτ̂ = (RT D)T
τ̂ (68)

19

where R,D are defined in Equation (65). We now substitute Equation (68) in Equation (67)
and get:

Q =
(

J
′

v

T
JT

ω

)

(

f

(RT D)T
τ̂

)

=
(

J
′

v

T
(RT DJω)T

)

(

f

τ̂

)

=
(

J
′

v

T
ĴT

ω

)

(

f

τ̂

)

(Using Equation (65)) (69)

Equation (69) gives the relation to convert the given cartesian forces f and joint torques τ̂

to the generalized forces Q.

We now describe the process to convert the given generalized forces Q to cartesian forces
and torques. In general, the transposed Jacobian in Equation (67) can be inverted using
a pseudo-inverse to get the Cartesian forces and torques. Note that the relation represents
an under-constrained system when solving for f and τ

′

. This is because the size of the
unknowns is 6m and the number of constraints are n with n ≤ 6m. Therefore, we get
particular solutions for the Cartesian forces and torques out of many possible solutions.

Based on the information about the form of Q, we can solve for the Cartesian forces and
torques in different ways. We describe the solutions to the following cases:

1. General case. In the most general case, the points of application of the Cartesian
forces are not known. Therefore, we cannot use the Jacobian J

′

v in Equation (67). This
forces us to assume the points of application to be the COM of each link and compute
the torques τ instead of body torques τ

′

. i.e. , we can invert the transposed Jacobian
by computing its pseudo-inverse that results in a particular least-squares solution for
f and τ as:

(

f

τ

)

=
(

Jv
T JT

ω

)+
Q (70)

If the points of the force application are known, the Jacobian in Equation (69) can be
inverted to obtain the forces f and the joint torques τ̂ .

2. No linear forces. The more common case for many controllers involves the conver-
sion of only the joint torques from generalized to the Cartesian coordinates. Therefore,
the linear forces f are zero and Equation (69) can be simplified further to result in the
following conversion relation:

τ̂ = (ĴT
ω)+Q

or τ̂k = (ĴT
ωk)

+Qk ∀k ∈ 1 . . . m (71)

where Qk denotes the components of the generalized forces corresponding to the rota-
tional DOFs qk. Note that the size of the matrix ĴT

ωk is n(k) × 3 and n(k) ≤ 3. This
implies that we get a particular least-squares solution for each τ̂k out of possibly many
solutions that would give rise to the same Qk using the relation Qk = ĴT

ωkτ̂k.

20

7 Recursive Inverse Dynamics

As Featherstone pointed out, inverse dynamics can be computed efficiently and much faster
by exploiting the recursive structure of an articulated rigid body system. A recursive algo-
rithm allows computation of inverse dynamics in linear time proportional to the number of
links in the articulated system. In this chapter, we will use our formulation to construct a
recursive inverse dynamics algorithm.

7.1 Dynamics in the local frame

For each body link k, we define ck as the center of mass in the local frame and dc(k)[i] as the
vector between the joint connecting to the parent link and the joint connecting to the i-th
child of link k, where c(k) returns the indices of child links of the link k. As a shorthand, we
define ĩ = c(k)[i] and use the notation dĩ hereafter. Figure 2 illustrates the notations using
the same structure from the previous example.

k=1

k=2

k=3

k=4

q
1
={q

11,
q
12

}

q
2
={q

21,
q
22,
q
23

}

q
4
={q

41
}

q
3
={q

31
}

c
2

d
3

d
4

k=2

f
2
, τ

2 -f
3
, -τ

3

-f
4
, -τ

4

Figure 2: An articulated system.

The goal of the inverse dynam-
ics algorithm is to compute the
force and the torque transmitted
between links. For each link k,
we define the force and torque re-
ceived from the parent link fk and
τk. Similarly, the force and the
torque from the i-th child are de-
noted as −f̃i and −τĩ. Please see
Figure 2 for illustration.

To compute these forces and
torques, let us first write down
Newton-Euler equations for link k

in its local frame. We will use the
notation aℓ

k to denote a vector a expressed in the local frame of link k.

mk(v̇k)
ℓ = f ℓ

k −
∑

ĩ∈c(k)

Rĩf
ℓ
ĩ

(72)

Ick(ω̇k)
ℓ + ω

ℓ
k × Ickω

ℓ
k = τ

ℓ
k − ck × f ℓ

k −
∑

ĩ∈c(k)

(Rĩτ
ℓ
ĩ

+ (dĩ − ck) × (Rĩf
ℓ
ĩ
)) (73)

The inverse dynamics algorithm visits each link twice in two recursive passes. In the first pass,
the velocity and acceleration of each link is computed and expressed in the local frame. In
the second pass, these terms are plugged into the above Newton-Euler equations to compute
forces and torques transmitted between the links.

21

7.2 Pass 1: Compute velocity and acceleration

The articulated rigid body system can be represented as a tree structure, where every link
from the root to the leaves will be visited once in Pass 1. The algorithm is recursive because
the computation at each link depends on the computation of its parent link. Let us first
discuss the computation for a general link and take care of the special case of the root later
in this section.

Assuming the velocity and the acceleration of the parent link, vℓ
p(k), ω

ℓ
p(k), (v̇p(k))

ℓ, (ω̇p(k))
ℓ ,

are already computed from the previous iteration, the COM of the link k in the world frame
is W0

kck. The linear velocity of the link k in Homogeneous coordinates is then expressed as:

vk = Ẇ0
kck = Ẇ0

p(k)Wkck + W0
p(k)Ẇkck

= Ẇ0
p(k)(cp(k) + Wkck − cp(k)) + W0

p(k)Ẇkck

= vp(k) + Ẇ0
p(k)(Wkck − cp(k)) + W0

p(k)Ẇkck (74)

where the fourth element of the vector Wkck − cp(k) and that of the vector Ẇkck are both
zero. This will result in elimination of the translation part of the transformation. We can
therefore express vk in Cartesian space as:

vk = vp(k) + Ṙ0
p(k)(Rkck + dk − cp(k)) + R0

p(k)Ṙkck

= vp(k) + [ωp(k)]R
0
p(k)(Rkck + dk − cp(k)) + R0

p(k)[ω̂k]Rkck (Using [ω] = ṘRT)(75)

So far vk is computed in the world frame and we would like to transform it to the local
frame.

vℓ
k = R0

k

T
vk = RT

k R0
p(k)

T
vk

= RT
k (vℓ

p(k) + [ωℓ
p(k)](Rkck + dk − cp(k)) + [ω̂k]Rkck) (Using R[ω]RT = [Rω])

= RT
k (vℓ

p(k) + [ωℓ
p(k)](dk − cp(k))) + RT

k (([ωℓ
p(k)] + [ω̂k])Rkck)

= RT
k (vℓ

p(k) + ω
ℓ
p(k) × (dk − cp(k))) + ω

ℓ
k × ck (Using R[ω]RT = [Rω]) (76)

Similarly, we can compute the angular velocity of the link k in the world frame and then
transform it to the local frame.

[ωk] = Ṙ0
kR

0
k

T
= (˙R0

p(k)Rk)(R
T
k R0

p(k)
T
) = Ṙ0

p(k)RkR
T
k R0

p(k)
T

+ R0
p(k)ṘkR

T
k R0

p(k)
T

= [ωp(k)] + R0
p(k)[ω̂k]R

0
p(k)

T
(77)

[ωℓ
k] = [R0

k

T
ωk] = R0

k

T
[ωk]R

0
k

= RT
k (R0

p(k)
T
[ωp(k)]R

0
p(k) + [ω̂k])Rk = RT

k ([ωℓ
p(k)] + [ω̂k])Rk

ω
ℓ
k = RT

k (ωℓ
p(k) + ω̂k) (78)

22

Next, we compute the linear and angular acceleration for the link k. Note that the linear
acceleration must be computed in the world frame first and then transformed into the local
frame. If we instead take the time derivative on vℓ

k, i.e. v̇ℓ
k, the result is different from the

true linear acceleration (v̇k)
ℓ, as the former does not take into account the Coriolis forces

due to the moving frame.

vk = R0
kv

ℓ
k = R0

p(k)(v
ℓ
p(k) + ω

ℓ
p(k) × (dk − cp(k))) + R0

kω
ℓ
k × ck

(v̇k)
ℓ = R0

k

T
Ṙ0

p(k)(v
ℓ
p(k) + ω

ℓ
p(k) × (dk − cp(k))) + RT

k (v̇ℓ
p(k) + ω̇

ℓ
p(k) × (dk − cp(k)))

+R0
k

T
Ṙ0

k(ω
ℓ
k × ck) + ω̇

ℓ
k × ck

= RT
k (v̇ℓ

p(k) + ω
ℓ
p(k) × vℓ

p(k) + ω̇
ℓ
p(k) × (dk − cp(k)) + ω

ℓ
p(k) × (ωℓ

p(k) × (dk − cp(k))))

+ω
ℓ
k × (ωℓ

k × ck) + ω̇
ℓ
k × ck (Using R0

k

T
Ṙ0

k = [ωℓ
k]])

= RT
k ((v̇p(k))

ℓ + ω̇
ℓ
p(k) × (dk − cp(k)) + ω

ℓ
p(k) × (ωℓ

p(k) × (dk − cp(k))))

+ω
ℓ
k × (ωℓ

k × ck) + ω̇
ℓ
k × ck (Using (v̇p(k))

ℓ = v̇ℓ
p(k) + ω

ℓ
p(k) × vℓ

p(k)) (79)

In contrast, the angular acceleration (ω̇k)
ℓ is the same as ω̇

ℓ
k.

(ω̇k)
ℓ = RT

k ((ω̇p(k))
ℓ + ˙̂

ωk + ω
ℓ
p(k) × ω̂k) (80)

Base case: The base case of this recursive pass computes the velocity and the acceleration
of the root link. We can simplified the computation as follows:

vℓ
0 = ω

ℓ
0 × c0

ω
ℓ
0 = RT

0 ω̂0

(v̇0)
ℓ = ω

ℓ
0 × (ωℓ

0 × c0) + (ω̇0)
ℓ × c0

(ω̇0)
ℓ = RT

0
˙̂
ω0 (81)

Translational degrees of freedom: So far we assume that the links are connected by
only rotational DOFs, but the formulation can be easily generalized to translational DOFs.
Let us rewrite Equation 74 with the assumption that Wk has only translational DOFs qk,
i.e. Rk = I3 and dk = qk.

vk = vp(k) + Ṙ0
p(k)(ck + qk − cp(k)) + R0

p(k)q̇k (82)

Transforming into the local frame of the link k, we get

vℓ
k = vℓ

p(k) + ω
ℓ
p(k) × (ck + qk − cp(k)) + q̇k (83)

The angular velocity and accelerations can be derived in a similar way.

ω
ℓ
k = ω

ℓ
p(k)

v̇ℓ
k = v̇ℓ

p(k) + ω̇
ℓ
p(k) × (ck + qk − cp(k)) + ω

ℓ
p(k) × q̇k + q̈k

ω̇
ℓ
k = ω̇

ℓ
p(k) (84)

23

7.3 Pass 2: Compute force and torque

The second pass computes forces and torques transmitted between body links. The algorithm
visits each link once from the leaf nodes to the root. At each iteration, we compute f ℓ

k and
τ

ℓ
k , given the velocity and the acceleration computed by Pass 1 and all the forces and torques

from the child links. Specifically, we will plug vℓ
k, ω

ℓ
k, (v̇k)

ℓ, (ω̇k)
ℓ, and all the f ℓ

ĩ
and τ

ℓ
ĩ

into
Equation 72 and Equation 73.

Base case: The leaf nodes have no child links connected to them. Therefore, f̃i and τĩ are
zero at each leaf node. Similarly for the root link, f0 and τ0 are zero.

Gravity: Instead of treating gravity as an external force, we can consider the effect of
gravity by conveniently offsetting the linear acceleration of the root link by −g.

(v̇0)
ℓ = ω

ℓ
0 × (ωℓ

0 × c0) + (ω̇0)
ℓ × c0 − RT

0 g (85)

This is equivalent to adding a fictitious force, −mkg, to each link. The rest of the algorithm
remains unchanged.

Acknowledgements

We thank Jeff Bingham, Stelian Coros, Marco da Silva, and Yuting Ye for proofreading this
document and providing valuable comments.

24

