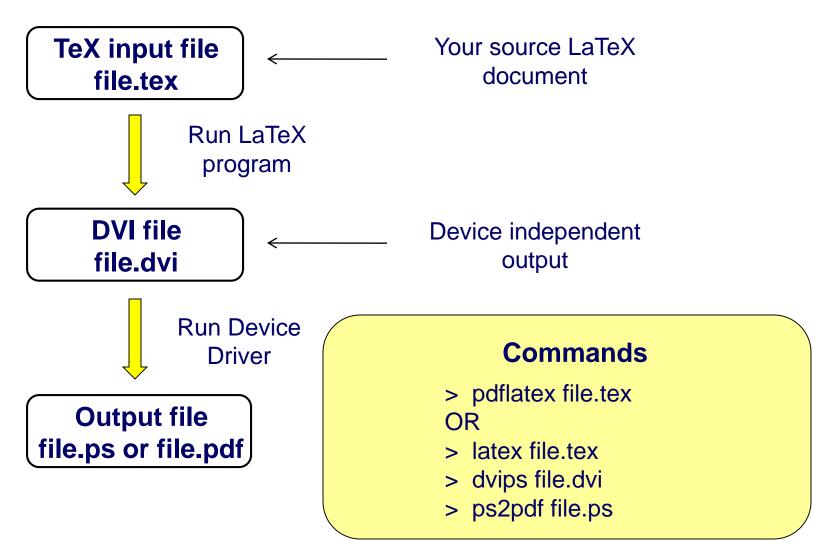
Introduction to LaTeX

Paul Fodor


Stony Brook University

http://www.cs.stonybrook.edu/~cse215

- TeX is essentially a Markup Language (like HTML, CSS, and RTF)
- TeX written by Donald Knuth in 70's
 - A revolution in typesetting
- Latex is an extension of TeX
 - Macro packages to make TeX easier to use

- High typeset quality
- Easy to include math formulas
- Latex is free
- Source file format is not bounded to a particular OS or platform
 - •Latex implementations exists for all platforms (Windows *MikTex*, Mac OsX, Linux)
 - Web, e.g., https://www.sharelatex.com

Process to Create a Document Using LaTeX

How to Setup LaTeX for Windows

- Download and install MikTeX
 http://www.miktex.org (also comes with a good editor)
- Install Ghostscript and Gsview http://pages.cs.wisc.edu/~ghost
- Install Acrobat Reader
- For Mac Users: TeXShop, iTexMac,
 Texmaker

LaTeX in the Cloud

- Make a free account at Overleaf.com
 - •it also lets you save your latex sources in your Google Drive or Dropbox

• Start with a skeleton document:

```
\documentclass {article}
\begin {document}
First document. This is a simple example, with no extra parameters or packages included.
\end {document}
```

- The first line of code declares the type of document, in this case is a *article*.
- Then enclosed in the \begin \document \ \end \document \ tags you must write the text of your document.

• The preamble of a document lets you define the type of document you are writing, the language, the size of font

```
\documentclass {article}
\title {Simple Example}
\author {Paul Fodor}
\date {January 2016}

\begin {document}
\maketitle

Hello world!
\end {document}
```

Basic formatting: abstract, paragraphs and newlines:

```
\begin{abstract}
This is a simple paragraph at the beginning of the document.
\end{abstract}
```

Two newlines start another paragraph.

And I can brake \\ the lines \\ and continue in a new line.

- Comments: sometimes it's necessary to add comments to your LATEX code for readability
 - put a % before the comment and LATEX will ignore that text

\documentclass {article}

% HW document

\begin{document} % Here begins the body of the document

- Reserved characters
 - The following symbol characters are reserved by LATEX because they introduce a command and have a special meaning

Character	Function	How to print it
#	Macro parameter	\#
\$	Math mode	\\$
%	Comment	\%
٨	Superscript (in math mode)	\^{} or \$\textasciicircum\$
&	Separate column entries in tables	\&
_	Subscript (in math mode)	_
{}	Processing block	\{ \}
~	Unbreakable space, use it whenever you want to leave a space which is unbreakable	$\star \$
\	Starting commands, which extend until the first non-	<pre>\$\textbackslash\$ or \$\backsla</pre>

alphanumerical characteristic Fodor (CS Stony Brook)

- LATEX allows two writing modes for mathematical expressions:
 - the inline mode: \$ \$, \(\), or \begin{math} \end{math} \In physics, the mass-energy equivalence is stated by the equation \$E=mc^2\$, discovered in 1905 by Albert Einstein.

In physics, the mass-energy equivalence is stated by the equation $E = mc^2$, discovered in 1905 by Albert Einstein.

• the displayed mode: \[\], \$\$ \$\$, \begin {displaymath} \end {displaymath} or \begin {equation} \end {equation}

The mass-energy equivalence is described by the famous equation

$$\$E=mc^2$$

discovered in 1905 by Albert Einstein.

The mass-energy equivalence is described by the famous equation

$$E = mc^2$$

discovered in 1905 by Albert Einstein.

• Common maths symbols:

description	code	examples		
Greek letters	\alpha \beta \gamma \rho \sigma \delta \@	epsilon $\alpha \ eta \ \gamma \ ho \ \sigma \ \delta \ \epsilon$		
Binary operators	<pre>\times \otimes \oplus \cup \cap</pre>	$\times \otimes \oplus \cup \cap$		
Relation operators	<pre>< > \subset \supset \subseteq \supseteq</pre>	< >⊂ ⊃ ⊆ ⊇		
Others	\int \oint \sum \prod	$\int \oint \sum \prod$		
$ \left[\left[\left(\frac{1}{x^2} + y^2 + y^2 \right) \right] $				
$[a_1^2 + a_2^2 = a_3^2]$ $a_1^2 + a_2^2 = a_3^2$				
$\left[\sum_{i=1}^{\infty} \right] \left[\sum_{i=1}^{\infty} \right]$				
\prod	$\sum_{i=1}^{\infty} \frac{1}{n^s} = \prod_{p} \frac{1}{1 - p^{-s}}$			

LAT_EX markup

Renders as

 a_{n_i}

 a_{n_i}

• More examples:

\int_{i=1}^n

 $\int_{i=1}^{n}$

 $\sum_{i=1}^{\int \int \int dx}$

 $\sum_{i=1}^{\infty}$

\prod_{i=1}^n

 $\prod_{i=1}^{n}$

 $\left(i=1\right)^n$

 $\bigcup_{i=1}^n$

 $cap_{i=1}^n$

 $\bigcap_{i=1}^n$

\oint_{i=1}^n

 \oint_{i-1}^{n}

\coprod_{i=1}^n

 $\coprod_{i=1}^{n}$

(c) Paul Fodor (CS Stony Brook)

Font size

```
\tiny \scriptsize \footnotesize
```

\small \normalsize

\large \Large

\LARGE \huge

\Huge

Tabular

Columns

Two Columns

- \begin{tabular} { | ... | ... | }
- \end{tabular}
- Rows
 - & Split text into columns
 - \\ End a row
 - \hline Draw line under row
 - e.g. 123123 & 34.00\\ \hline

```
1 = automatically adjust
    size, left justify
r = automatically adjust
    size, right justify
p = set size
    e.g p{4.7cm}
```

c = centre text

Example of table

```
\begin{tabular}{|||r|c|} \hline
Date & Price & Size \\ \hline
Yesterday & 5 & big \\ \hline
Today & 3 & small \\ \hline
\end{tabular}
```

Date	Price	Size
Yesterday	5	Big
Today	3	Small

Standard Environments

\begin{env_name} stuff \end{enc_name}

Environment name (env_name) can be document, itemize, enumerate, tabular, etc.

\begin{itemize}
\item The first item
\item The second item
\end{itemize}

- The first item
- The second item

\begin{enumerate}
\item The first item
\item The second item
\end{enumerate}

- 1) The first item
- 2) The second item

Figures

You can insert figures in pdf, jpg, eps, and other formats into your document.

```
\begin{figure}
  \centering
  \includegraphics {name of the figure file}
  \caption{Put the caption here}
\end{figure}
```

Multiple figures can be inserted using \subfigure

Cross Referencing

LaTeX generates numbers for Theorem, Equation, Section, Figure and other environments automatically. You can access them with \label and \ref

```
\section{Introduction} \label{sec:intro}
....
In Section \ref{sec:intro}, we ....
```

Reference and Citation

The \thebibliography environment produces a bibliography or reference list. In the article style, this reference list is labeled "References"; in the report style, it is labeled "Bibliography".

```
\begin{thebibliography} {widest-label}
\bibitem[label]{cite_key}
...
\end{thebibliography}
```

widest-label: Text that, when printed, is approximately as wide as the widest item label produces by the \bibitem commands.

Bibliography by hand

```
\begin{thebibliography} {}
\bibitem[Come95]{Come95} Comer,
D. E., {\it Internetworking with TCP/IP:
Principles, Protocols and Architecture},
volume 1, 3rd edition. Prentice-Hall,
1995.
\end{thebibliography}
```

Bibliography using Bibtex

- Bibliography information is stored in a *.bib file, in Bibtex format.
- Include chicago package
 - \usepackage{chicago}
- Set referencing style
 - \bibliographystyle {chicago}
- Create reference section by
 - \bibliography {bibfile with no extension}

Bibliography using Bibtex

```
(a)book{Come95,
author="D. E. Comer",
title={Internetworking with TCP/IP: Principles,
 Protocols and Architecture \},
publisher="Prentice-Hall",
year=1995,
volume=1,
edition="Third"}
```

Bibliography using Bibtex

- Citing references in text
 - \cite{cuc98} = (Cuce 1998)
 - \citeN{cru98} = Crud (1998)
 - \shortcite { tom 98 } = (Tom, et. al. 1998)
- Creating Bibtex Files
 - Use Emacs with extensions.
 - or copy Bibtex entries from bibliography database.