Ron Patton

Software
Testing

Master the concepts

* Understand the impact of
software bugs and the importance
of software testing

* Develop the skills necessary to find
bugs in any type of software

* Learn how to cffectively plan your
tests, communicate the bugs you
find, and measure your success as
a software tester

Apply your now skills

* Use your new testing skills to test
not just the software, but also the
product specificotion, the row code,
and even the user's manual

* Learn how to test softwore for
compatibility, usability, and
cultural issues

= Dcover how to improve your
testing efficiency by automating
your 1ests

software Testing

Ron Patton

SAMS

800 E. 96th St., Indianapolis, Indiana, 46240 USA

Software Testing
Copyright © 2001 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-31983-7
Library of Congress Catalog Card Number: 00-102897
Printed in the United States of America

First Printing: November 2000

06 05 04 9 8 7 6

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quan-
tity for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales @pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
1-317-428-3341
international @ pearsontechgroup.com

ASSOCIATE PUBLISHER
Bradley L. Jones

AcQuISITIONS EDITOR
Neil Rowe

DEVELOPMENT EDITOR
Susan Shaw Dunn

MANAGING EDITOR
Charlotte Clapp

PRrOJECT EDITOR
Dawn Pearson

Cory EDITOR
Kim Cofer

INDEXER
Eric Schroeder

PROOFREADER
Daniel Ponder

TECHNICAL EDITOR
Gwen Heib

TeAM COORDINATOR
Meggo Barthlow

INTERIOR DESIGNER
Anne Jones

CoVER DESIGNER
Anne Jones

LAYOUT TECHNICIANS

Ayanna Lacey
Heather Hiatt Miller
Stacey Richwine-DeRome

Contents at a Glance

PART |

PART Il
4

5
6
7

Part 111
8
9
10
11
12
13

PART IV
14
15

PART V
16
17
18
19

Introduction 1

The Big Picture
Software Testing Background 9
The Software Development Process 23

The Realities of Software Testing 37

Testing Fundamentals

Examining the Specification 53

Testing the Software with Blinders On 63
Examining the Code 93

Testing the Software with X-Ray Glasses 107

Applying Your Testing Skills
Configuration Testing 127
Compatibility Testing 145
Foreign-Language Testing 157
Usability Testing 175

Testing the Documentation 189
Web Site Testing 199

Supplementing Your Testing
Automated Testing and Test Tools 219
Bug Bashes and Beta Testing 241

Working with Test Documentation
Planning Your Test Effort 251

Writing and Tracking Test Cases 267
Reporting What You Find 281

Measuring Your Success 303

ParT VI
20
21
A

The Future

Software Quality Assurance 319
Your Career as a Software Tester 335
Answers to Quiz Questions 345

Index 367

Contents

Introduction 1

PAarT I The Big Picture 7

1 Software Testing Background 9

Infamous Software Error Case Studies.........ccocevevieieienienienenenenenns 10
Disney’s Lion King, 1994 —1995c.cccoevimirniineincneiencieeeeee 10
Intel Pentium Floating-Point Division Bug, 1994.............cccccceuene 11
NASA Mars Polar Lander, 1999

Patriot Missile Defense System, 1991
The Y2K (Year 2000) Bug, circa 1974cccooveieieieieenenierenee 13

What Is a Bug? ..o 13
Terms for Software Failuresc.ccocoverininieieieiesienecenenenee 14
Software Bug: A Formal Definitionc.ccccoceeevinccinicniiincneeee 15

Why Do Bugs OCCUI?........ccoiiiiiiiiiiiiiiiiiiccccccec 16

What Exactly Does a Software Tester DO?cccoecevevivincincneenee
What Makes a Good Software TesSter?ccceeeeeeeeienienenenenenenan 20
SUMIMATY <.ttt ettt et et ae s saeenanens 21
QUUZ ettt ettt ettt b bbbttt nae e 21
2 The Software Development Process 23
Product COMPONENLS....c..coveruiriiiiiiiiiiieieieieieeie e 24
What Effort Goes Into a Software Product?ccoeceviincneenee 24
What Parts Make Up a Software Product?cccccceevenerncnncnee 28
Software Project Staff
Software Development Lifecycle Modelscccoccoeencincninineccnnene 30
Big-Bang Modelccoiiiiniiiniiiiniciiceneecee e 31
Code-and-Fix Modelccoeoiniiiiniiiiniiiiieneceeceeeen 32
Waterfall Model..........coeoiriiiiniiniiieencirceee e 33
Spiral Modelc.ooiviiiiiiiiniiicececete e 34
SUIMMATY ..ottt 36
QUIZ ettt et et sttt 36

3 The Realities of Software Testing 37
TESUNG AXIOINS ..euveeurerireeiteriienttesteeste et eteeteetesaeesteesteenseeteebeenseenneenees
It’s Impossible to Test a Program Completely
Software Testing Is a Risk-Based EXercise......c..ccocevvevienvencenennne
Testing Can’t Show That Bugs Don’t EXistccceceveveriienieneenennns
The More Bugs You Find, the More Bugs There Are...................... 41
The Pesticide ParadoXcccceeveviiniininininininiiiicicicncnesenee 42

vi

SOFTWARE TESTING

Not All the Bugs You Find Will Be Fixed

When a Bug’s a Bug Is Difficult to Sayc..ccccecvevievievenencncncnens
Product Specifications Are Never Finalc..cccceceevevenencncnicnenns
Software Testers Aren’t the Most Popular Members of a
Project Teamccccoeverinininiiiicicececeeeeete e 45
Software Testing Is a Disciplined Technical Profession................... 45
Software Testing Terms and Definitionscc.cccceevevvevienencncnicnenenns 46
Precision and ACCUTACYc..coeeeeeiieierienienienenieeeetereeesee e 46
Verification and Validationccccocoviiiniiiininiiiiice 47

PartT Il Testing Fundamentals 51

4 Examining the Specification 53
Getting StArtedcoeeveereereriirieieieteererte sttt ettt st 54
Black-Box and White-BoxX Testingcccceveeererieienienienenenenenne 55
Static and Dynamic Testing........ccccevveveeruereneneninineeieenenenenene 56
Static Black-Box Testing: Testing the Specification........c..c.cceceeueeee 57
Performing a High-Level Review of the Specification
Pretend to Be the Customer..............ccoooiiiiiiiniiniiiiccceee
Research Existing Standards and Guidelinesccccceceverercnenne
Review and Test Similar Softwarecccccocooeviniiiiiniincnecnn.

5 Testing the Software with Blinders On 63
Dynamic Black-Box Testing: Testing the Software While

BlNdfolded.......ccooveieiiiiiiciieiicieieieietese et 64
Test-to-Pass and Test-to-Fail...........cccocverieiieiiecieieceeeeeeee e, 66
Equivalence Partitioningcccceeeevveruenenenenenenieieienieneneseeseeeneeneen 68
Data TESHINZ ...eevereierierienierieeeecetee ettt 70

Boundary Conditions..........ccueeveruererenenenenenieieieienenesesiesenienne 71
Sub-Boundary Conditionscecceceeveevieneneneninenieieieneneneniene 75
Default, Empty, Blank, Null, Zero, and None............ccccecerererencnne 78
Invalid, Wrong, Incorrect, and Garbage Data79
StALe TESTING ..eeuvinvitiriinreeteeieeeet ettt ettt sieene 80

Testing the Software’s Logic FIOWcc.ccceeveeieiiieviiiininincncnee 81
Testing States to Failccccoeoeveninininiiiccccencnenenee 85

CONTENTS

Other Black-Box Test Techniques
Behave Like a DUmb USerc..ccccovevenininineninieicicicnenenenee

SUIMMATY ..ottt ettt ettt ettt sresresae i e
QUIZ . ettt ettt ettt et
6 Examining the Code 93

Static White-Box Testing: Examining the Design and Code 94

FOrmal REVIEWSc.ceviiriiriiriiniiniieteieeetetcseeie ettt 95
PeEr REVIEWS ...cuviuiiiiiiiieiieieetee ettt 97
WalKthroughscoveviiiniiieeeeee e 97
Inspections.......cccceeeeeeeenueennnne98

Coding Standards and GUIdelines...........cccceeerererereeienienecnenenenennens 98
Examples of Programming Standards and Guidelines 99
Obtaining Standardscc.cccceverereninenenieeeeere e 101

Generic Code Review Checklist.......cocoverererererienienenininencnceee 102
Data Reference EITorsocooveveneninenenenieeeccesceeeeeeeiee 102
Data Declaration EITors.........cccoeverenereneneenierieiccnceeseeeeee 102
Computation Errors
ComparisOn EITOTS.......cceeveievierienininenereneeeeeeeeeseeeee s
Control FIOW EITOTS.....cc.coveiiiiiinienieniencreeceeececieeeeeeaees 104
Subroutine Parameter EITorscccceveeeririeieniencnenenenencecneee 104
Input/Output EITOrs ..c..coveeiieiiiiiiiienienereeeeeeeeeeeeceeeees 105
Other ChECKS ..c..ooeriiririiieieieeee e 105

SUIMMATY ..ottt ettt b e bbb ees 105

QUIZ oottt ettt et e et e e et e e be e e eat e e ereeeraaeaaneas 106

7 Testing the Software with X-Ray Glasses 107
Dynamic White-BoX TeStiNgccccoerueruinireninieieieiesieneneneseeieene

Dynamic White-Box Testing versus Debugging
Testing the PIECEScoevereririeieieieeteeeeee e
Unit and Integration TeStiNgc.ccocevererereerienienieneneneseeeeeee
An Example of Module TeStingc.ccocevverveeeenenienenenenenenene
Data COVEIAZR.....cveveierierienienieeitetetetest ettt ettt ettt e sbe b ene
Data FIOW ...t

viii

SOFTWARE TESTING

PArT lll Applying Your Testing Skills 125
8 Configuration Testing 127

An Overview of Configuration TeStingcccceceevvevuererienienienieneeneene 128
Isolating Configuration Bugsc.cceceveeieienienenininincncneee 132
Sizing Up the JOb ..ooviiiiiiiiiiiieceeteeeeeeeeeee 134

Approaching the Taskcccceoeevieriirininininineececeeereeeene 135
Decide the Types of Hardware You’ll Needcccccceeenenerennnnne. 136
Decide What Hardware Brands, Models, and

Device Drivers Are Availablecccocooeiiieiiiinciiccceene. 136
Decide Which Hardware Features, Modes, and

Options Are PosSible..........ccevievierinenininieicieneiereneeeceee 137
Pare Down the Identified Hardware Configurations

to @ Manageable Setccooveieriirinininerieeeeeeee e 137
Identify Your Software’s Unique Features That Work

with the Hardware Configurationscc.cccceeevenenenencneecenne. 139
Design the Test Cases to Run on Each Configuration 139
Execute the Tests on Each Configuration
Rerun the Tests Until the Results Satisfy Your Team

Obtaining the Hardwarecoceoevereneneninnienieneneneseecececeeee

Identifying Hardware Standardscccceveeeeieienienenicnicnieneneneeeene

Configuration Testing Other Hardwarecccccoevevininenencnennne.

SUMMATY <.ttt ettt sb e

QUIZ ettt ettt e et e e et e e ta e et e e ete e e araeeaneas

9 Compatibility Testing 145

Compatibility Testing OVEIVIEWc.cceervererieierienienieniesieereeeeeeeeeenns 146

Platform and Application Versions................148
Backward and Forward Compatibilitycc.ccccevevininenenennnne. 148
The Impact of Testing Multiple Versionsc..cccoceeeeverccenennenne 149

Standards and GUIdelinescocevevererenienienieniereseeseeeeeeeeeee 151
High-Level Standards and Guidelines...........ccocevevereninenenennnene. 151
Low-Level Standards and Guidelinesccocevevereninenenennnne. 152

Data Sharing Compatibilityc.cccceveririniniieieiereeneneneseeeeeene 153

SUIMMATY ..ottt ettt sb e 155

QUIZ. .ottt ettt et e st et este e teesta e be e taebeesbeeaseenseensensaeesaanns 156

10 Foreign-Language Testing 157

Making the Words and Pictures Make Sensec..cccoceeveereircnnencne 158

Translation ISSUEScecererieieienienieniesieeieeeeeee et 159
Text EXPANSIONccociviiiiriinieiinieiniiieieneeniee et 159
ASCII, DBCS, and Unicodecccoeevuieeeieeerieeireeeceeeeeeeeveeeee 160
Hot Keys and ShOrtCutsccooveeeriieeneinenieeneenceeseeesieeenens 162

Extended Characterscccooovvieeirieeieieeeieeeieeeeree e 162

Computations on Charactersccccoeverererereneeeereeneenenrenennes 162
Reading Left to Right and Right to Left........ccocooeiiininincnnenne. 163
Text in GraphiCsccccoeeieieirieieieiererere e 163
Keep the Text out of the Code.........ccoeverineninenenicieicneneneene 164
Localization ISSUESccccooiiiiiiiiiiiicecccccecee e 165
CONLENL. ...t 165
Data FOrmatsccooooiiiiiiiiieinciceeccee e 167
Configuration and Compatibility Issues ...168
Foreign Platform Configurations..........c.ccocevvererevceeeneeneenenennenne. 168
Data Compatibilityccccceeveeiririeieriericnenenereeceeeeeeee e 170
How Much Should You Test?c.ccccoiiiiiiiiiiciiciecceeneeeeee 171
SUMIMATY ..coeveieiiteiteieeteteeteet ettt st sttt sae b snes 172
QUIZ ettt e e ettt e e b e e et e et e e et e e et e e e aaeeeaaeeenreaenraes 173
11 Usability Testing 175
User Interface TestiNg......cccoerererieriiieieienereeeeeeieeecet e 176
What Makes a Good UI?cccooiiiiiiiiincieeeceeeeeecceees 177
..178
179
180
181
182
183
184
Testing for the Disabled: Accessibility Testingcccceceeveverenenenne 184
IS the LaW ..o 185
Accessibility Features in Software186
SUMIMATY ..ottt ettt ettt sbe b snes 188
QUIZ ettt ettt e b e e et e et e et e e e te e e ateeeateeeateaeree s 188
12 Testing the Documentation 189
Types of Software Documentationc.coceeveeeueerenreeinecenenieennene 190
The Importance of Documentation Testingccccceeveevecereeneennne 193
What to Look for When Reviewing Documentationccccoeue... 194
The Realities of Documentation Testingcccocccevevveinecenenreennne 196
SUMIMATY ..ottt 196

197
13 Web Site Testing 199

Web Page Fundamentals... ...200
BIack-BOX TESHNE ..c.couerveuiriiieiiieinieieicteceeeetcre et 202
TEXE i 204
HYPEITINKS ..ottt 204

GIAPHICS ...ttt 205

CONTENTS

SOFTWARE TESTING

PArT IV Supplementing Your Testing 217

14 Automated Testing and Test Tools 219

The Benefits of Automation and Tools...........c.ccceceiiiiiiinnininns 220
Test Tools
Viewers and Monitors
Drivers
Stubs
Stress and Load Tools
Interference Injectors and Noise Generators...........cocceveeereeevennenne 226
ANALYSIS TOOIS ..ottt 227
Software Test AUtOMALIONcccoiriiiiiiiiiiiiiiiicee e 228
Macro Recording and Playbackc..ccccoceveveincniinininincncnenne. 228
Programmed Macroscoceecvevvenienenenenineeeeeeteenreeneee e 230
Fully Programmable Automated Testing Tools..........cccceceeeruennnee. 232
Random Testing: Monkeys and GOrillascccceceeeveeveerenenenicncnenne 234
DUmMD MONKEYS ..c.eviviriiiniieiieiciententeniereseeeeeeeeeeeeene e 235
Semi-Smart MONKEYSccccevvervinienininineneneeeeeeiesenienee e 236
SMArt MONKEYS ...ooveriiriiriiiiiiiiiieiceeceeneeeeteeeeee e 236
Realities of Using Test Tools and Automationcccceeeeverereruenne 238
Summary
QUIZ oottt ettt e et e e e e et e e e tr e e eareeereaeaaeas
15 Bug Bashes and Beta Testing 241
Only As Far As the Eye Can Seeccccoceverereneenenieicninencnceee 242
TeSt ShATING ..oovviieiiieierer ettt 243
Beta TESHNE c..eovveiieieienierierieeiee ettt 244
Outsourcing YOUr TEStINGcc.eevevereriererereneneneeeeeeeeteresreere e 246
SUMIMATY ..ottt ettt bbb b eas 247

CONTENTS

PART V. Working with Test Documentation 249

16 Planning Your Test Effort 251
The Goal of Test Planningcccceceeveerieneneneneeininieieieneseneneenne
Test Planning TOPICScovevverierieriirieieieietesiesteeteetceieeee e

High-Level EXpectationsccccerererererenenieeienienieneenesesneenes
People, Places, and Thingscccccoceverereneneniennieniereeneneenene
DEfiNItioNscooevieiriiieineireee et
Inter-Group Responsibilities
What Will and Won’t Be Tested
TSt PRASES......ceeiiiieiiieieierceree et
TSt STIALEZY ..eneenteveritietieiteitet ettt ettt
Resource ReqUIreMentsceeveierienerereneneneeieeeeeseenenes
TeSter ASSIZNMENTScc.eeuerieieieieienieriesie ettt
Test Schedule.........ccoiiiiiiiie e
TSt CASES ..ttt
Bug RePOTtINg ...cceevviviiiriieiieiieieieeesiesiesereeeete e
Metrics and Statistics...

17 Writing and Tracking Test Cases 267
The Goals of Test Case PIanningcocceeveveinieineneinenenenneennens 268
Test Case Planning OVEIVIEWc..cccoueirveieenieinicinenecneeeeeeeenne 270
TSt DESIZN .cvenienieiiiitietieteiee ettt 271
TeSt CASES ...ocviiiiiiiiiiiiiccc 273

18 Reporting What You Find 281

Getting Your Bugs FiXed.......c.ccccveoimeniinerneniincencecneenceene 283
Isolating and Reproducing Bugs........c..cccoevveeneincnincnccncnninecnnae 287
Not All Bugs Are Created Equalcccccovviiinininiiniiiiiinicnicncnee 289
A Bug’s Life CyClecoouiiriiniiirieiieniciecceesecteceeeee et 290
Bug-Tracking SYStEINSc..cccvveuirieieerieirieieeneeeereeereseenesreeenesnenennens 294
The Standard: The Test Incident Reportccccceevveiiviinincnncne. 294
Manual Bug Reporting and Trackingc..ccceccevvenevcncnnenecnnene 295
Automated Bug Reporting and Trackingc.cccceeeencevenecnneae 296
SUMMATY ..ot 301

19 Measuring Your Success 303

Using the Information in the Bug Tracking Databasec.ccccceue. 304
Metrics That You’ll Use in Your Daily Testingcccceceeeverencncnne 306
Common Project-Level MEtriCscceverererinininieieieieiesenienieae 310
SUMIMATY ...ttt ettt ettt sbesbe e 316

PArRT VI The Future 317

20 Software Quality Assurance 319

Quality IS Freeccccovvivininiiiiieieiecncneseeeee320
Testing and Quality Assurance in the Workplace 322
SOFtWATEe TESHING ..eveverieriiriieiieieeeeeteee et 322
QUALILY ASSUTANCE ..ottt 323
Other Names for Software Testing Groupscccceevevevvenerennenne. 325
Test Management and Organizational Structures.............coccecevverenuene 325
Capability Maturity Model (CMM)ccoceverinininieieieieienenenee 328
ISO 9000330
Summary 332
QUIZ e 333
21 Your Career as a Software Tester 335
Your Job as a SOftware TeSter.......c..cceoueireirerieinieineeieseereeeeee 336
Finding a Software Testing POSItion..........cccceeervieieieieieieienenienee 337
Gaining Hands-On EXPeriencecoevuervereneniinininieieieiesenieniene 338
Formal Training OppOrtunitiesc..ccceveeeeerveuinreenereeeneenerneennens 339
Internet LInKSccoooiiiiiiiiiiiiicee et 341
Professional Organizationscc.eoererverenierieeeieienieneseseseeseeene 341
Further Readingccoceveviiiniiiiieieieeese e 342
Summary....
QUIZ .ottt ettt et e e e et e e eeraeeaa e aeeeaaeeaeenraens

A Answers to Quiz Questions 345

Index 367

About the Author

Ron Patton lives and works in Washington state as a software consultant. His software test
experience is wide and varied, from mission-critical systems to painting programs for kids.
Ron graduated from Penn State in 1984 with a B.S. degree in computer science. He began his
career at Texas Instruments as a quality assurance engineer, testing embedded systems and user
interface software for industrial automation equipment. In 1992 he joined Microsoft as a soft-
ware test lead in the Systems Group for Multimedia Viewer, the authoring tool and multimedia
display engine used by Encarta, Cinemania, and Bookshelf. He moved on to become the soft-
ware test manager of the Kids Product Unit, shipping CD-ROM titles such as Creative Writer,
Fine Artist, 3D Movie Maker, and the Magic School Bus series. Most recently, he was the soft-
ware test manager of the Microsoft Hardware Group responsible for the software shipped with
the mouse, keyboard, gaming, telephony, and ActiMates product lines.

Ron’s most memorable project was ActiMates Barney, for which he test managed both the
hardware and software efforts. “Microsoft actually paid my team and me to shake, bake,
freeze, thaw, pull, drop, tumble, dunk, and shock dozens of prototype Barney dolls until we
reduced them to piles of electronic rubble and purple fuzz,” he recalls. “You can’t get much
more test satisfaction than that.”

If you have comments or suggestions for this book, or if you find a bug in it that you want to
report, you can send Ron an email at test@valart.com.

Dedication

To my best friend and wife, Valerie, who sacrificed a summer patiently waiting for me to finish this book.
Hey Val, we can go out now!

Acknowledgments

Many thanks go to Sams Publishing and the editors and staff who produced this book. A spe-
cial thanks goes to Neil Rowe, Susan Dunn, Dawn Pearson, and Gwen Heib who helped me
through my first big-time writing effort and turned my idea for this book into a reality. A thank
you also goes to Danny Faught who provided great input as an expert reviewer.

To my parents, Walter and Eleanore, for allowing me to quit my accordion lessons and buying
me a TRS-80 Model I computer back in 1977. To my sister, Saundra, for keeping my parents
busy with her baton competitions so I could hide in my room and learn to program. To Ruth
Voland, my computer science teacher at Mohawk High School, for dragging me to all those
science fairs and giving me extra time on the school’s ASR 33 teletypes. To Mark Ferrell, who
taught me electronics and kept me out of trouble as a teenager. To Alan Backus and Galen
Freemon of TI for allowing me the freedom to explore software test automation. To all my past
co-workers and employees for teaching me more than I could have ever learned myself about
software testing. And, to my wonderful wife, Valerie, for saying, “Go ahead, send it in, see
what happens” when, in 1991, I posed the question of sending my résumé to a little company
called Microsoft in far-away Seattle. Each of you made a contribution to this book. Thank you!

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an associate publisher for Sams, I welcome your comments. You can email or write me
directly to let me know what you did or didn’t like about this book—as well as what we can
do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every mes-
sage.

When you write, please be sure to include this book’s title and author as well as your name
and phone or fax number. I will carefully review your comments and share them with the
author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
800 E. 96th Street
Indianapolis, IN 46240 USA

Introduction

It seems as though each day there’s yet another news story about a computer software prob-
lem: a bank reporting incorrect account balances, a Mars lander lost in space, a grocery store
scanner charging too much for bananas, and the infamous Y2K bug.

Why does this happen? Can’t computer programmers figure out ways to make software just
plain work? Unfortunately, no. As software gets more complex, gains more features, and is
more interconnected, it becomes more and more difficult to create a glitch-free program.
Despite how good the programmers are and how much care is taken, there will always be soft-
ware problems.

That’s where software testing comes in. We’ve all found those little Inspector 12 tags in our
new clothes. Well, software has Inspector 12s, too. Many large software companies are so
committed to quality they have one or more testers for each programmer. These jobs span the
software spectrum from computer games to factory automation to business applications.

This book, Software Testing, will introduce you to the basics of software testing, teaching you
not just the fundamental technical skills but also the supporting skills necessary to become a
successful software tester. You will learn how to immediately find problems in any computer
program, how to plan an effective test approach, how to clearly report your findings, and how
to tell when your software is ready for release.

Who Should Use This Book?

This book is aimed at three different groups of people:

» Students or computer hobbyists interested in software testing as a full-time job, intern-
ship, or co-op. Read this book before your interview or before your first day on the job
to really impress your new boss.

» Career changers wanting to move from their field of expertise into the software industry.
There are lots of opportunities for non-software experts to apply their knowledge to soft-
ware testing. For example, a flight instructor could test a flight simulator game, an
accountant could test tax preparation software, or a teacher could test a new child educa-
tion program.

e Programmers, software project managers, and other people who make up a software
development team who want to improve their knowledge and understanding of what soft-
ware testing is all about.

SOFTWARE TESTING

What This Book Will Do for You

In this book you will learn something about nearly every aspect of software testing:

* How software testing fits into the software development process
* Basic and advanced software testing techniques

* Applying testing skills to common testing tasks

» Improving test efficiency with automation

* Planning and documenting your test effort

* Effectively reporting the problems you find

* Measuring your test effort and your product’s progress

* Knowing the difference between testing and quality assurance

* Finding a job as a software tester

Software Necessary to Use This Book

The methods presented in this book are generic and can be applied to testing any type of com-
puter software. But, to make the examples familiar and usable by most people, they are based
on simple programs such as Calculator, Notepad, and WordPad included with Windows 95/98
and Windows NT/2000.

Even if you don’t have a PC running Windows, you will likely have similar programs available
on your computer that you can easily adapt to the text. Be creative! Creativity is one trait of a
good software tester.

NoTE

The examples used throughout this book of various applications, software bugs, and
software test tools are in no way intended as an endorsement or a disparagement of
the software. They’re simply used to demonstrate the concepts of software testing.

How This Book Is Organized

This book is designed to lead you through the essential knowledge and skills necessary to
become a good software tester. Software testing is not about banging on the keyboard hoping
you’ll eventually crash the computer. A great deal of science and engineering is behind it, lots
of discipline and planning, and there can be some fun, too—as you’ll soon see.

INTRODUCTION

Part I: The Big Picture

The chapters in Part I lay the foundation for this book by showing you how software products
are developed and how software testing fits into the overall development process. You’ll see the
importance of software testing and gain an appreciation for the magnitude of the job.

¢ Chapter 1, “Software Testing Background,” helps you understand exactly what a soft-
ware bug is, how serious they can be, and why they occur. You’ll learn what your ulti-
mate goal is as a software tester and what traits will help make you a good one.

¢ Chapter 2, “The Software Development Process,” gives you an overview of how a soft-
ware product is created in the corporate world. You’ll learn what components typically
go into software, what types of people contribute to it, and the different process models
that can be used.

* Chapter 3, “The Realities of Software Testing,” brings a reality check to how software is
developed. You’ll see why no matter how hard you try, software can never be perfect.
You’ll also learn a few fundamental terms and concepts used throughout the rest of this
book.

Part II: Testing Fundamentals

The chapters in Part II teach you the fundamental approaches to software testing. The work of
testing software is divided into four basic areas, and you see the techniques used for each one:

* Chapter 4, “Examining the Specification,” teaches you how to find bugs by carefully
inspecting the documentation that describes what the software is intended to do.

* Chapter 5, “Testing the Software with Blinders On,” teaches you the techniques to use
for testing software without having access to the code or even knowing how to program.
This is the most common type of testing.

* Chapter 6, “Examining the Code,” shows you how to perform detailed analysis of the
program’s source code to find bugs. You’ll learn that you don’t have to be an expert pro-
grammer to use these techniques.

* Chapter 7, “Testing the Software with X-Ray Glasses,” teaches you how you can
improve your testing by leveraging information you gain by reviewing the code or being
able to see it execute while you run your tests.

Part lll: Applying Your Testing Skills

The chapters in Part III take the techniques that you learned in Part IT and apply them to some
real-world scenarios that you’ll encounter as a software tester:

* Chapter 8, “Configuration Testing,” teaches you how to organize and perform software
testing on different hardware configurations and platforms.

SOFTWARE TESTING

» Chapter 9, “Compatibility Testing,” teaches you how to test for issues with different soft-
ware applications and operating systems interacting with each other.

* Chapter 10, “Foreign-Language Testing,” shows you that a whole world of software is
out there and that it’s important to test for the special problems that can arise when soft-
ware is translated into other languages.

* Chapter 11, “Usability Testing,” teaches you how to apply your testing skills when
checking a software application’s user interface and how to assure that your software is
accessible to the disabled.

* Chapter 12, “Testing the Documentation,” explains how to examine the software’s docu-
mentation such as help files, user manuals, even the marketing material, for bugs.

* Chapter 13, “Web Site Testing,” takes everything you’ve learned so far and applies it to a
present-day situation. You’ll see how something as simple as testing a Web site can
encompass nearly all aspects of software testing.

Part IV: Supplementing Your Testing

The chapters in Part IV show you how to improve your test coverage and capability by lever-
aging both technology and people to perform your testing more efficiently and effectively:

* Chapter 14, “Automated Testing and Test Tools,” explains how you can use computers
and software to test other software. You’ll learn several different methods for automating
your tests and using tools. You’ll also learn why using technology isn’t foolproof.

* Chapter 15, “Bug Bashes and Beta Testing,” shows you how to use other people to see
the software differently and to find bugs that you completely overlooked.

Part V: Working with Test Documentation

The chapters in Part V cover how software testing is documented so that its plans, bugs, and
results can be seen and understood by everyone on the project team:

* Chapter 16, “Planning Your Test Effort,” shows you what goes into creating a test plan
for your project. As a new software tester, you likely won’t write a test plan from
scratch, but it’s important to know what’s in one and why.

» Chapter 17, “Writing and Tracking Test Cases,” teaches you how to properly document
the test cases you develop so that you and other testers can use them.

» Chapter 18, “Reporting What You Find,” teaches you how to tell the world when you
find a bug, how to isolate the steps necessary to make it recur, and how to describe it so
that others will understand and want to fix it.

» Chapter 19, “Measuring Your Success,” describes various types of data, charts, and
graphs used to gauge both your progress and success at testing and your software pro-
ject’s steps toward release.

INTRODUCTION

Part VI: The Future

The chapters in Part VI explain where the future lies in software testing and set the stage for
your career:

» Chapter 20, “Software Quality Assurance,” teaches you the big difference between soft-
ware testing and quality assurance. You’ll learn about different software industry goals
such as ISO 9000 and the Capabilities Maturity Model and what it takes to achieve them.

» Chapter 21, “Your Career as a Software Tester,” gives you that kick in the behind to go
out and be a software tester. You’ll learn what types of jobs are available and where to
look for them. You’ll also find many pointers to more information.

Appendix

Each chapter in this book ends with a short quiz where you can try out the testing concepts
that you learn. The answers appear in Appendix A, “Answers to Quiz Questions.”

Conventions Used in This Book

This book uses several common conventions to help teach software testing topics. Here’s a
summary of those typographical conventions:

¢ New terms are emphasized in italics the first time they are used.

* Commands and computer output appear in a special monospaced font.

* Words you type appear in a monospaced bold font.

In addition to typographical conventions, the following special elements are included to set off
different types of information to make them easily recognizable.

NoTE

Special notes augment the material you read in each chapter. These notes clarify con-
cepts and procedures.

Tip

You'll find various tips that offer shortcuts and solutions to common problems.

SOFTWARE TESTING

REMINDER

Reminders refer to concepts discussed in previous chapters to help refresh your mem-
ory and reinforce important concepts.

PART

The Big Picture

A crash is when your competitor’s program dies. When your program
dies, it is an “idiosyncrasy.” Frequently, crashes are followed with a
message like “ID 02.” “ID” is an abbreviation for “idiosyncrasy” and
the number that follows indicates how many more months of testing the
product should have had.

—Guy Kawasaki, “The Macintosh Way”

I love deadlines. I especially like the whooshing sound they make as they
go flying by.

—Douglas Adams, author of “The Hitch Hiker’s Guide to the Galaxy”

IN THIS PART

1 Software Testing Background 9
2 The Software Development Process 23

3 The Realities of Software Testing 37

Software Testing Background CHAPTER

IN THIS CHAPTER

¢ Infamous Software Error Case Studies 10

e What Is a Bug? 13

e Why Do Bugs Occur? 16

¢ The Cost of Bugs 18

¢ What Exactly Does a Software Tester Do? 19
e What Makes a Good Software Tester? 20

10

The Big Picture
PART I

In 1947, computers were big, room-sized machines operating on mechanical relays and glow-
ing vacuum tubes. The state of the art at the time was the Mark II, a behemoth being built at
Harvard University. Technicians were running the new computer through its paces when it sud-
denly stopped working. They scrambled to figure out why and discovered, stuck between a set
of relay contacts deep in the bowels of the computer, a moth. It had apparently flown into the
system, attracted by the light and heat, and was zapped by the high voltage when it landed on
the relay.

The computer bug was born. Well, okay, it died, but you get the point.

Welcome to the first chapter of Software Testing. In this chapter, you’ll learn about the history
of software bugs and software testing.

Highlights of this chapter include

* How software bugs impact our lives
* What bugs are and why they occur

¢ Who software testers are and what they do

Infamous Software Error Case Studies

It’s easy to take software for granted and not really appreciate how much it has infiltrated our
daily lives. Back in 1947, the Mark II computer required legions of programmers to constantly
maintain it. The average person never conceived of someday having his own computer in his
home. Now there’s free software CD-ROMs attached to cereal boxes and more software in our
kids’ video games than on the space shuttle. What once were techie gadgets, such as pagers
and cell phones, have become commonplace. Most of us now can’t go a day without logging
on to the Internet and checking our email. We rely on overnight packages, long-distance phone
service, and cutting-edge medical treatments.

Software is everywhere. However, it’s written by people—so it’s not perfect, as the following
examples show.

Disney’s Lion King, 1994 -1995

In the fall of 1994, the Disney company released its first multimedia CD-ROM game for chil-
dren, The Lion King Animated Storybook. Although many other companies had been marketing
children’s programs for years, this was Disney’s first venture into the market and it was highly
promoted and advertised. Sales were huge. It was “the game to buy” for children that holiday
season. What happened, however, was a huge debacle. On December 26, the day after
Christmas, Disney’s customer support phones began to ring, and ring, and ring. Soon the phone
support technicians were swamped with calls from angry parents with crying children who
couldn’t get the software to work. Numerous stories appeared in newspapers and on TV news.

Software Testing Background

CHAPTER 1

It turns out that Disney failed to properly test the software on the many different PC models
available on the market. The software worked on a few systems—Ilikely the ones that the
Disney programmers used to create the game—but not on the most common systems that the
general public had.

Intel Pentium Floating-Point Division Bug, 1994

Enter the following equation into your PC’s calculator:
(4195835 / 3145727) * 3145727 - 4195835

If the answer is zero, your computer is just fine. If you get anything else, you have an old Intel
Pentium CPU with a floating-point division bug—a software bug burned into a computer chip
and reproduced over and over in the manufacturing process.

On October 30, 1994, Dr. Thomas R. Nicely of Lynchburg (Virginia) College traced an unex-
pected result from one of his experiments to an incorrect answer by a division problem solved
on his Pentium PC. He posted his find on the Internet and soon afterward a firestorm erupted
as numerous other people duplicated his problem and found additional situations that resulted
in wrong answers. Fortunately, these cases were rare and resulted in wrong answers only for
extremely math-intensive, scientific, and engineering calculations. Most people would never
encounter them doing their taxes or running their businesses.

What makes this story notable isn’t the bug, but the way Intel handled the situation:

» Their software test engineers had found the problem while performing their own tests
before the chip was released. Intel’s management decided that the problem wasn’t severe
enough or likely enough to warrant fixing it, or even publicizing it.

¢ Once the bug was found, Intel attempted to diminish its perceived severity through press
releases and public statements.

e When pressured, Intel offered to replace the faulty chips, but only if a user could prove
that he was affected by the bug.

There was a public outcry. Internet newsgroups were jammed with irate customers demanding
that Intel fix the problem. News stories painted the company as uncaring and incredulous. In
the end, Intel apologized for the way it handled the bug and took a charge of over $400 million
to cover the costs of replacing bad chips. Intel now reports known problems on its Web site
and carefully monitors customer feedback on Internet newsgroups.

11

=

aANNOYmIdVY

ONILSI|

ERL/IMVEToLN

The Big Picture
PART I

12

NoTE

On August 28th, 2000, shortly before this book went to press, Intel announced a
recall of all the 1.13MHz Pentium Il processors it had shipped after the chip had been
in production for a month. A problem was discovered with the execution of certain
instructions that could cause running applications to freeze. Computer manufacturers
were creating plans for recalling the PCs already in customers’ hands and calculating
the costs of replacing the defective chips. As the baseball legend Yogi Berra once
said, “This is like déja vu all over again.”

NASA Mars Polar Lander, 1999

On December 3, 1999, NASA’s Mars Polar Lander disappeared during its landing attempt on
the Martian surface. A Failure Review Board investigated the failure and determined that the
most likely reason for the malfunction was the unexpected setting of a single data bit. Most
alarming was why the problem wasn’t caught by internal tests.

In theory, the plan for landing was this: As the lander fell to the surface, it was to deploy a
parachute to slow its descent. A few seconds after the chute deployed, the probe’s three legs
were to snap open and latch into position for landing. When the probe was about 1,800 meters
from the surface, it was to release the parachute and ignite its landing thrusters to gently lower
it the remaining distance to the ground.

To save money, NASA simplified the mechanism for determining when to shut off the
thrusters. In lieu of costly radar used on other spacecraft, they put an inexpensive contact
switch on the leg’s foot that set a bit in the computer commanding it to shut off the fuel.
Simply, the engines would burn until the legs “touched down.”

Unfortunately, the Failure Review Board discovered in their tests that in most cases when the
legs snapped open for landing, a mechanical vibration also tripped the touch-down switch, set-
ting the fatal bit. It’s very probable that, thinking it had landed, the computer turned off the
thrusters and the Mars Polar Lander smashed to pieces after falling 1,800 meters to the surface.

The result was catastrophic, but the reason behind it was simple. The lander was tested by mul-
tiple teams. One team tested the leg fold-down procedure and another the landing process from
that point on. The first team never looked to see if the touch-down bit was set—it wasn’t their
area; the second team always reset the computer, clearing the bit, before it started its testing.
Both pieces worked perfectly individually, but not when put together.

Software Testing Background

CHAPTER 1

Patriot Missile Defense System, 1991

The U.S. Patriot missile defense system is a scaled-back version of the Strategic Defense
Initiative (“Star Wars”) program proposed by President Ronald Reagan. It was first put to use
in the Gulf War as a defense for Iraqi Scud missiles. Although there were many news stories
touting the success of the system, it did fail to defend against several missiles, including one
that killed 28 U.S. soldiers in Dhahran, Saudi Arabia. Analysis found that a software bug was
the problem. A small timing error in the system’s clock accumulated to the point that after 14
hours, the tracking system was no longer accurate. In the Dhahran attack, the system had been
operating for more than 100 hours.

The Y2K (Year 2000) Bug, circa 1974

Sometime in the early 1970s a computer programmer—Iet’s suppose his name was Dave—was
working on a payroll system for his company. The computer he was using had very little mem-
ory for storage, forcing him to conserve every last byte he could. Dave was proud that he could
pack his programs more tightly than any of his peers. One method he used was to shorten dates
from their 4-digit format, such as 1973, to a 2-digit format, such as 73. Because his payroll
program relied heavily on date processing, Dave could save lots of expensive memory space.
He briefly considered the problems that might occur when the current year hit 2000 and his
program began doing computations on years such as 00 and 01. He knew there would be prob-
lems but decided that his program would surely be replaced or updated in 25 years and his
immediate tasks were more important than planning for something that far out in time. After
all, he had a deadline to meet. In 1995, Dave’s program was still being used, Dave was retired,
and no one knew how to get into the program to check if it was Y2K compliant, let alone how
to fix it.

It’s estimated that several hundred billion dollars were spent, worldwide, to replace or update
computer programs such as Dave’s, to fix potential Year 2000 failures.

What Is a Bug?

You’ve just read examples of what happens when software fails. It can be inconvenient, as
when a computer game doesn’t work properly, or it can be catastrophic, resulting in the loss of
life. In these instances, it was obvious that the software didn’t operate as intended. As a soft-
ware tester you’ll discover that most failures are hardly ever this obvious. Most are simple,
subtle failures, with many being so small that it’s not always clear which ones are true failures,
and which ones aren’t.

13

=

aANNOYmIdVY

ONILSI|
JUVYMLI0S

14

The Big Picture
PART I

Terms for Software Failures

Depending on where you’re employed as a software tester, you will use different terms to
describe what happens when software fails. Here are a few:

Defect Variance
Fault Failure
Problem Inconsistency
Error Feature
Incident Bug
Anomaly

(There’s also a list of unmentionable terms, but they’re most often used privately among
programmers.)

You might be amazed that so many names could be used to describe a software failure. Why so
many? It’s all really based on the company’s culture and the process the company uses to
develop its software. If you look up these words in the dictionary, you’ll find that they all have
slightly different meanings. They also have inferred meanings by how they’re used in day-to-
day conversation.

For example, fault, failure, and defect tend to imply a condition that’s really severe, maybe
even dangerous. It doesn’t sound right to call an incorrectly colored icon a fault. These words
also tend to imply blame: “It’s his fault that the software failed.”

Anomaly, incident, and variance don’t sound quite so negative and infer more unintended oper-
ation than an all-out failure. “The president stated that it was a software anomaly that caused
the missile to go off course.”

Problem, error, and bug are probably the most generic terms used.

Just Call It What It Is and Get On with It

It's interesting that some companies and product teams will spend hours and hours of
precious development time arguing and debating which term to use. A well-known
computer company spent weeks in discussion with its engineers before deciding to
rename Product Anomaly Reports (PARs) to Product Incident Reports (PIRs). Countless
dollars were spent in the process of deciding which term was better. Once the deci-
sion was made, all the paperwork, software, forms, and so on had to be updated to
reflect the new term. It's unknown if it made any difference to the programmer’s or
tester’s productivity.

Software Testing Background

CHAPTER 1

So, why bring this topic up? It’s important as a software tester to understand the personality

behind the product development team you’re working with. How they refer to their software

problems is a tell-tale sign of how they approach their overall development process. Are they
cautious, careful, direct, or just plain blunt?

In this book, all software problems will be called bugs. It doesn’t matter if it’s big, small,
intended, unintended, or someone’s feelings will be hurt because they create one. There’s no
reason to dice words. A bug’s a bug’s a bug.

Software Bug: A Formal Definition

Calling any and all software problems bugs may sound simple enough, but doing so hasn’t
really addressed the issue. Now the word problem needs to be defined. To keep from running
in circular definitions, there needs to be a definitive description of what a bug is.

First, you need a supporting term: product specification. A product specification, sometimes
referred to as simply a spec or product spec, is an agreement among the software development
team. It defines the product they are creating, detailing what it will be, how it will act, what it
will do, and what it won’t do. This agreement can range in form from a simple verbal under-
standing to a formalized written document. In Chapter 2, “The Software Development
Process,” you will learn more about software specifications and the development process, but
for now, this definition is sufficient.

For the purposes of this book and much of the software industry, a software bug occurs when
one or more of the following five rules is true:

1. The software doesn’t do something that the product specification says it should do.

2. The software does something that the product specification says it shouldn’t do.
3. The software does something that the product specification doesn’t mention.
4

. The software doesn’t do something that the product specification doesn’t mention but
should.
5. The software is difficult to understand, hard to use, slow, or—in the software tester’s
eyes—will be viewed by the end user as just plain not right.

To better understand each rule, try the following example of applying them to a calculator.

The specification for a calculator probably states that it will perform correct addition, subtrac-
tion, multiplication, and division. If you, as the tester, receive the calculator, press the + key,
and nothing happens, that’s a bug because of Rule #1. If you get the wrong answer, that’s also
a bug because of Rule #1.

The product spec might state that the calculator should never crash, lock up, or freeze. If you
pound on the keys and get the calculator to stop responding to your input, that’s a bug because
of Rule #2.

15

=

aANNOYmIdVY

ONILSI|
JUVYMLI0S

16

The Big Picture
PART I

Suppose that you receive the calculator for testing and find that besides addition, subtraction,
multiplication, and division, it also performs square roots. Nowhere was this ever specified. An
ambitious programmer just threw it in because he felt it would be a great feature. This isn’t a
feature—it’s really a bug because of Rule #3.

The fourth rule may read a bit strange with its double negatives, but its purpose is to catch
things that were forgotten in the specification. You start testing the calculator and discover
when the battery gets weak that you no longer receive correct answers to your calculations. No
one ever considered how the calculator should react in this mode. A bad assumption was made
that the batteries would always be fully charged. You expected it to keep working until the bat-
teries were completely dead, or at least notify you in some way that they were weak. Correct
calculations didn’t happen with weak batteries and it wasn’t specified what should happen.
Rule #4 makes this a bug.

Rule #5 is the catch-all. As a tester you are the first person to really use the software. If you
weren’t there, it would be the customer using the product for the first time. If you find some-
thing that you don’t feel is right, for whatever reason, it’s a bug. In the case of the calculator,
maybe you found that the buttons were too small. Maybe the placement of the = key made it
hard to use. Maybe the display was difficult to read under bright lights. All of these are bugs
because of Rule #5.

NoTE

Every person who uses a piece of software will have different expectations and opin-
ions as to how it should work. It would be impossible to write software that every
user thought was perfect. As a software tester, you should keep this in mind when
you apply Rule #5 to your testing. Be thorough, use your best judgment, and be
reasonable.

These are greatly simplified examples, so think about how the rules apply to software that you
use every day. What is expected, what is unexpected? What do you think was specified and
what was forgotten? And, what do you just plain dislike about the software?

This definition of a bug covers a lot of ground but it assures that all problems are identified.

Why Do Bugs Occur?

Now that you know what bugs are, you might be wondering why they occur. What you’ll be
surprised to find out is that most of them aren’t caused by programming errors. Numerous
studies have been performed on very small to extremely large projects and the results are
always the same. The number one cause of software bugs is the specification (see Figure 1.1).

Software Testing Background
CHAPTER 1

Specification

Design

FIGURE 1.1
Bugs are caused for numerous reasons, but the main cause can be traced to the specification.

There are several reasons specifications are the largest bug producer. In many instances a spec
simply isn’t written. Other reasons may be that the spec isn’t thorough enough, it’s constantly
changing, or it’s not communicated well to the entire development team. Planning software is
vitally important. If it’s not done correctly, bugs will be created.

The next largest source of bugs is the design. This is where the programmers lay out their plan
for the software. Compare it to an architect creating the blueprints for a building. Bugs occur
here for the same reason they occur in the specification. It’s rushed, changed, or not well

communicated.

17

=

NoTE

There's an old saying, “If you can't say it, you can’t do it.” This applies perfectly to
software development and testing.

Coding errors may be more familiar to you if you’re a programmer. Typically, these can be
traced to the software’s complexity, poor documentation (especially in code that’s being

aANNOYmIdVY

DNILST |
JUVYMLI0S

18

The Big Picture
PART I

updated or revised), schedule pressure, or just plain dumb mistakes. It’s important to note that
many bugs that appear on the surface to be programming errors can really be traced to specifi-
cation and design errors. It’s quite common to hear a programmer say, “Oh, so that’s what it’s
supposed to do. If somebody had just told me that I wouldn’t have written the code that way.”

The other category is the catch-all for what’s left. Some bugs can be blamed on false positives,
conditions that were thought to be bugs but really weren’t. There may be duplicate bugs, multi-
ple ones that resulted from the same root cause. Some bugs can also be traced to testing errors.
In the end, these bugs usually make up such a small percentage of all bugs found that they
aren’t worth worrying about.

The Cost of Bugs

As you will learn in Chapter 2, software doesn’t just magically appear—there’s usually a
planned, methodical development process used to create it. From its inception, through the
planning, programming, and testing, to its use by the public, there’s the potential for bugs to be
found. Figure 1.2 shows how the cost of fixing these bugs grows over time.

A

’ @M‘j!g %;"‘Eg

Specification Design Code Test Release

Cost To Fix A Bug
e
o

@
—

o

Time When Bug Is Found

FIGURE 1.2
The cost to fix bugs increases dramatically over time.

The costs are logarithmic—that is, they increase tenfold as time increases. A bug found and
fixed during the early stages when the specification is being written might cost next to nothing,
or 10 cents in our example. The same bug, if not found until the software is coded and tested,
might cost $1 to $10. If a customer finds it, the cost could easily top $100.

Software Testing Background

CHAPTER 1

As an example of how this works, consider the Disney Lion King case discussed earlier. The
root cause of the problem was that the software wouldn’t work on a very popular PC platform.
If, in the early specification stage, someone had researched what PCs were popular and speci-
fied that the software needed to be designed and tested to work on those configurations, the
cost of that effort would have been almost nothing. If that didn’t occur, a backup would have
been for the software testers to collect samples of the popular PCs and verify the software on
them. They would have found the bug, but it would have been more expensive to fix because
the software would have to be debugged, fixed, and retested. The development team could have
also sent out a preliminary version of the software to a small group of customers in what’s
called a beta test. Those customers, chosen to represent the larger market, would have likely
discovered the problem. As it turned out, however, the bug was completely missed until many
thousands of CD-ROMs were created and purchased. Disney ended up paying for telephone
customer support, product returns, replacement CD-ROMs, as well as another debug, fix, and
test cycle. It’s very easy to burn up your entire product’s profit if serious bugs make it to the
customer.

What Exactly Does a Software Tester Do?

You’ve now seen examples of really nasty bugs, you know what the definition of a bug is, and
you know how costly they can be. By now it should be pretty evident what a tester’s goal is:

The goal of a software tester is to find bugs.

You may run across product teams who want their testers to simply confirm that the software
works, not to find bugs. Reread the case study about the Mars Polar Lander, and you’ll see
why this is the wrong approach. If you’re only testing things that should work and setting up
your tests so they’ll pass, you will miss the things that don’t work. You will miss the bugs.

If you’re missing bugs, you’re costing your project and your company money. As a software
tester you shouldn’t be content at just finding bugs—you should think about how to find them
sooner in the development process, thus making them cheaper to fix.

The goal of a software tester is to find bugs, and find them as early as possible.

But, finding bugs, even finding them early, isn’t enough. Remember the definition of a bug.
You, the software tester, are the customer’s eyes, the first one to see the software. You speak
for the customer and must demand perfection.

The goal of a software tester is to find bugs, find them as early as possible, and make
sure they get fixed.

This final definition is very important. Commit it to memory and refer back to it as you learn
the testing techniques discussed throughout the rest of this book.

19

=

aANNOYmIdVY

ONILSI|
JUVYMLI0S

20

The Big Picture
PART I

What Makes a Good Software Tester?

In the movie Star Trek I1: The Wrath of Khan, Spock says, “As a matter of cosmic history, it
has always been easier to destroy than to create.” At first glance, it may appear that a software
tester’s job would be easier than a programmer’s. Breaking code and finding bugs must surely
be easier than writing the code in the first place. Surprisingly, it’s not. The methodical and dis-
ciplined approach to software testing that you’ll learn in this book requires the same hard work
and dedication that programming does. It involves very similar skills, and although a software
tester doesn’t necessarily need to be a full-fledged programmer, having that knowledge is a
great benefit.

Today, most mature companies treat software testing as a technical engineering profession.
They recognize that having trained software testers on their project teams and allowing them to
apply their trade early in the development process allows them to build better quality software.

Here’s a list of traits that most software testers should have:

¢ They are explorers. Software testers aren’t afraid to venture into unknown situations.
They love to get a new piece of software, install it on their PC, and see what happens.

e They are troubleshooters. Software testers are good at figuring out why something
doesn’t work. They love puzzles.

* They are relentless. Software testers keep trying. They may see a bug that quickly van-
ishes or is difficult to re-create. Rather than dismiss it as a fluke, they will try every way
possible to find it.

* They are creative. Testing the obvious isn’t sufficient for software testers. Their job is to
think up creative and even off-the-wall approaches to find bugs.

* They are (mellowed) perfectionists. They strive for perfection, but they know when it
becomes unattainable and they’re OK with getting as close as they can.

* They exercise good judgment. Software testers need to make decisions about what they
will test, how long it will take, and if the problem they’re looking at is really a bug.

* They are tactful and diplomatic. Software testers are always the bearers of bad news.
They have to tell the programmers that their baby is ugly. Good software testers know
how to do so tactfully and professionally and know how to work with programmers who
aren’t always tactful and diplomatic.

¢ They are persuasive. Bugs that testers find won’t always be viewed as severe enough to
be fixed. Testers need to be good at making their points clear, demonstrating why the bug
does indeed need to be fixed, and following through on making it happen.

Software Testing Background
CHAPTER 1

Software Testing Is Fun!

A fundamental trait of software testers is that they simply like to break things. They
live to find those elusive system crashes. They take great satisfaction in laying to
waste the most complex programs. They’re often seen jumping up and down in glee,
giving each other high-fives, and doing a little dance when they bring a system to its
knees. It's the simple joys of life that matter the most.

21

=

In addition to these traits, having some education in software programming is a big plus. As
you’ll see in Chapter 6, “Examining the Code,” knowing how software is written can give you
a different view of where bugs are found, thus making you a more efficient and effective tester.
It can also help you develop the testing tools discussed in Chapter 14, “Automated Testing and
Test Tools.”

Lastly, if you’re an expert in some non-computer field, your knowledge can be invaluable to a
software team creating a new product. Software is being written to do just about everything
today. Your knowledge of teaching, cooking, airplanes, carpentry, medicine, or whatever would
be a tremendous help finding bugs in software for those areas.

Summary

Software testing is a critical job. With the size and complexity of today’s software, it’s impera-
tive that software testing be performed professionally and effectively. Too much is at risk. We
don’t need more defective computer chips or lost Mars landers.

In the following chapters of Part I, you’ll learn more about the big picture of software develop-
ment and how software testing fits in. This knowledge is critical to helping you apply the spe-
cific test techniques covered in the remainder of this book.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

1. In the Year 2000 bug example, did Dave do anything wrong?

2. True or False: It’s important what term your company or team calls a problem in its
software.

3. What’s wrong with just testing that a program works as expected?

4. How much more does it cost to fix a bug found after the product is released than it does
from the very start of the project?

aANNOYmIdVY

ONILSI|
JUVYMLI0S

22

The Big Picture

PART |

5. What’s the goal of a software tester?
6. True or False: A good tester relentlessly strives for perfection.

7. Give several reasons why the product specification is usually the largest source of bugs
in a software product.

The Software Development CHAPTER

Process 2

IN THIS CHAPTER

¢ Product Components 24
e Software Project Staff 29

¢ Software Development Lifecycle Models 30

24

The Big Picture
PART I

To be an effective software tester, it’s important to have at least a high-level understanding of
the overall process used to develop software. If you write small programs as a student or hob-
byist, you’ll find that the methods you use are much different from what big companies use to
develop software. The creation of a new software product may involve dozens, hundreds, even
thousands of team members all playing different roles and working together under tight sched-
ules. The specifics of what these people do, how they interact, and how they make decisions
are all part of the software development process.

The goal of this chapter isn’t to teach you everything about the software development
process—that would take an entire book! The goal is to give you an overview of the all the
pieces that go into a software product and a look at a few of the common approaches in use
today. With this knowledge you’ll have a better understanding of how best to apply the soft-
ware testing skills you learn in the later chapters of this book.

The highlights of this chapter include

¢ What major components go into a software product
* What different people and skills contribute to a software product

* How software progresses from an idea to a final product

Product Components

What exactly is a software product? Many of us think of it as simply a program that we install
from a floppy disk or CD-ROM that runs on our computer. That’s a pretty good description,
but in reality, many hidden pieces go into making that software. There are also many pieces
that “come in the box” that are often taken for granted or might even be ignored. Although it
may be easy to forget about all those parts, as a software tester, you need to be aware of them,
because they’re all testable pieces and can all have bugs.

What Effort Goes Into a Software Product?

First, look at what effort goes into a software product. Figure 2.1 identifies a few of the
abstract pieces that you may not have considered.

So what are all these things, besides the actual code, that get funneled into the software? At
first glance they probably seem much less tangible than the program listing a programmer cre-
ates. And they definitely aren’t something that can be viewed directly from the product’s CD-
ROM. But, to paraphrase a line from an old spaghetti sauce commercial, “they’re in there.” At
least, they should be.

The term used in the software industry to describe a software product component that’s created
and passed on to someone else is deliverable. The easiest way to explain what all these deliver-
ables are is to organize them into major categories.

The Software Development Process
CHAPTER 2

Product Product Design
Specification Reviews Documents
Feedback from Competitive
Schedules Previous :
. Information
Versions
Test Plans Customer Usability Data ~ Look and Feel
Surveys Specifications
Oh yeah,
Software don’t forget
Architecture the Software

Code

FiGURE 2.1
A lot of hidden effort goes into a software product.

Customer Requirements

Software is written to fulfill some need that a person or a group of people has. Let’s call them
the customer. To properly fill that need, the product development team must find out what the
customer wants. Some teams simply guess, but most collect detailed information in the form of
surveys, feedback from previous versions of the software, competitive product information,
magazine reviews, focus groups, and numerous other methods, some formal, some not. All this
information is then studied, condensed, and interpreted to decide exactly what features the soft-
ware product should have.

25

N

Put Your Features in Perspective with Focus Groups

A popular means to get direct feedback from potential customers of a software prod-
uct is to use focus groups. Focus groups are often organized by independent survey
companies who set up offices in shopping malls. The surveyors typically walk around

$s3D04d
IN3WdO13NIQ
JUVML40S FH]

26

The Big Picture
PART I

the mall with a clipboard and ask passers-by if they want to take part in a study.
They'll ask a few questions to qualify you such as “Do you have a PC at home? Do
you use software X? How much time do you spend online?” And so on. If you fit
their demographic, they’ll invite you to return for a few hours to participate with
several other people in a focus group. There, you'll be asked more detailed questions
about computer software. You may be shown various software boxes and be asked to
choose your favorite. Or, you may discuss as a group features you'd like to see in a
new product. Best of all, you get paid for your time.

Most focus groups are conducted in such a way that the software company request-
ing the information is kept anonymous. But, it's usually easy to figure out who
they are.

Specifications

The result of the customer requirements studies is really just raw data. It doesn’t describe the
proposed product, it just confirms whether it should (or shouldn’t) be created and what feat-
ures the customers want. The specifications take all this information plus any unstated but
mandatory requirements and truly define what the product will be, what it will do, and how it
will look.

The format of specifications varies greatly. Some companies—especially those developing
products for the government, aerospace, financial, and medical industries—use a very rigorous
process with many checks and balances. The result is a very detailed and thorough specifica-
tion that’s locked down, meaning that it can’t change except under very extreme conditions.
Everyone on the development team knows exactly what they are creating.

There are development teams, usually ones creating software for less-critical applications, who
produce specifications on cocktail napkins, if they create them at all. This has the distinct
advantage of being very flexible, but there’s lots of risk that not everyone is “on the same
page.” And, what the product finally becomes isn’t known until it’s released.

Schedules

A key part of a software product is its schedule. As a project grows in size and complexity,
with many pieces and many people contributing to the product, it becomes necessary to have
some mechanism to track its progress. This could range from simple task lists to Gantt charts
(see Figure 2.2) to detailed tracking of every minute task with project management software.

The goals of scheduling are to know which work has been completed, how much work is still
left to do, and when it will all be finished.

The Software Development Process
CHAPTER 2

Task 1 —

Task 2

Task 3 ——

Task 4

Task 5 ———

3/1/2001 4/1/2001 5/1/2001 6/1/2001 7/1/2001

FIGURE 2.2

A Gantt chart is a bar chart that shows a project’s tasks against a horizontal timeline.

Software Design Documents

One common misconception is that when a programmer creates a program, he simply sits
down and starts writing code. That may happen in some small, informal software shops, but for
anything other than the smallest programs, there must be a design process to plan out how the
software will be written. Think about this book, which required an outline before the first
words were typed, or a building, which has blueprints drawn before the first concrete is
poured. The same planning should happen with software.

The documents that programmers create vary greatly depending on the company, the project,
and the team, but their purpose is to plan and organize the code that is to be written.

Here is a list of a few common software design documents:

e Architecture. A document that describes the overall design of the software, including
descriptions of all the major pieces and how they interact with each other.

* Data Flow Diagram. A formalized diagram that shows how data moves through a pro-
gram. It’s sometimes referred to as a bubble chart because it’s drawn by using circles
and lines.

« State Transition Diagram. Another formalized diagram that breaks the software into
basic states, or conditions, and shows the means for moving from one state to the next.

* Flowchart. The traditional means for pictorially describing a program’s logic.
Flowcharting isn’t very popular today, but when it’s used, writing the program code from
a detailed flowchart is a very simple process.

* Commented Code. There’s an old saying that you may write code once, but it will be
read by someone at least 10 times. Properly embedding useful comments in the software
code itself is extremely important, so that programmers assigned to maintain the code
can more easily figure out what it does and how.

27

N

$s3D04d
IN3WdO13NIQ
JUVML40S FH]

28

The Big Picture
PART I

Test Documents

Test documentation is discussed in detail in Chapters 17-19 but is mentioned here because it’s
integral to what makes up a software product. For the same reasons that programmers must
plan and document their work, software testers must as well. It’s not unheard of for a software
test team to create more deliverables than the programmers.

Here’s a list of the more important test deliverables:

* The test plan describes the overall method to be used to verify that the software meets
the product specification and the customer’s needs. It includes the quality objectives,
resource needs, schedules, assignments, methods, and so forth.

o Test cases list the specific items that will be tested and describe the detailed steps that
will be followed to verify the software.

* Bug reports describe the problems found as the test cases are followed. These could be
done on paper but are often tracked in a database.

* Metrics, statistics, and summaries convey the progress being made as the test work pro-
gresses. They take the form of graphs, charts, and written reports.

What Parts Make Up a Software Product?

So far in this chapter you’ve learned about the effort that goes into creating a software product.
It’s also important to realize that when the product is ready to be boxed up and shipped out the
door, it’s not just the code that gets delivered. Numerous supporting parts go along with it (see
Figure 2.3). Since all these parts are seen or used by the customer, they need to be tested too.

It’s unfortunate, but these components are often overlooked in the testing process. You’ve
surely attempted to use a product’s built-in help file and found it to be not so helpful or—
worse—ijust plain wrong. Or, maybe you’ve checked the system requirements printed on the
side of a software box only to find out after you bought it that the software didn’t work on
your PC. These seem like simple things to test, but no one probably even gave them a second
look before the product was OK’d for release. You will.

Later in this book you’ll learn about these non-software pieces and how to properly test them.
Until then, keep this list in mind as just a sampling of what more there is to a software product
than just the code:

Help files Users manual

Samples and examples Labels and stickers

Product support info Icons and art

Error messages Ads and marketing material

Setup and installation Readme file

The Software Development Process
CHAPTER 2

Samples
Setup and .
Examples Readme file
Help Files
Label and
Advertisements Stickers
Error = .
Final
Messages Users Manuals
l’ Product
Support
Samples Information

FIGURE 2.3
The software floppy disk or CD-ROM is just one of the many pieces that make up a software product.

29

N

Don’t Forget to Test Error Messages

Error messages are one of the most overlooked parts of a software product.
Programmers, not trained writers, typically write them. They’re seldom planned for
and are usually hacked in while fixing bugs. It's also very difficult for testers to find
and display all of them. Don’t let error messages such as these creep into your
software:

Error: Keyboard not found. Press F1 to continue.

Can't instantiate the video thing.

Windows has found an unknown device and is installing a driver for it.

A Fatal Exception 006 has occurred at 0000:0000007.

Software Project Staff

Now that you know what goes into a software product and what ships with one, it’s time to
learn about all the people who create software. Of course, this varies a great deal based on the
company and the project, but for the most part the roles are the same, it’s just the titles that are

different.

$s3D04d
IN3WdO13NIQ
JUVML40S FH]

30

The Big Picture
PART I

The following lists, in no particular order, the major players and what they do. The most com-
mon names are given, but expect variations and additions:

* Project managers, program managers, or producers drive the project from beginning to
end. They’re usually responsible for writing the product spec, managing the schedule,
and making the critical decisions and trade-offs.

* Architects or system engineers are the technical experts on the product team. They’re
usually very experienced and therefore are qualified to design the overall systems archi-
tecture or design for the software. They work very closely with the programmers.

* Programmers, developers, or coders design, write, and fix bugs in the software. They
work closely with the architects and project managers to create the software. Then, they
work closely with the project managers and testers to get the bugs fixed.

» Testers or QA (Quality Assurance) are responsible for finding and reporting problems in
the software product. They work very closely with all members of the team as they
develop and run their tests, and report the problems they find. Chapter 20, “Software
Quality Assurance,” thoroughly covers the differences between software testing and soft-
ware quality assurance tasks.

o Technical writers, user assistance, user education, manual writers, or illustrators create
the paper and online documentation that comes with a software product.

» Configuration management or builder handles the process of pulling together all the soft-
ware written by the programmers and all the documentation created by the writers and
putting it together into a single package.

As you can see, several groups of people contribute to a software product. On large teams there
may be dozens or hundreds working together. To successfully communicate and organize their
approach, they need a plan, a method for getting from point A to point B. That’s what the next
section is about.

Software Development Lifecycle Models

A running joke in the computer industry is that three things should never be seen in the process
of being created: laws, sausage, and software. Their creation is so messy and disgusting that
it’s best to just wait and see the final result. That may or may not be totally true, but with most
old sayings, there is a grain of truth behind the words. Some software is developed with the
rigor and discipline of a fine craftsman, some software with tightly controlled chaos, and other
software is stuck together with duct tape and chewing gum. Usually, in the end, it’s apparent to
the customer what process was used. The process used to create a software product from its
initial conception to its public release is known as the software development lifecycle model.

The Software Development Process
CHAPTER 2

As discussed previously, there are many different methods that can be used for developing soft-
ware, and no model is necessarily the best for a particular project. There are four frequently
used models, with most others just variations of these:

* Big-Bang

¢ Code-and-Fix

* Waterfall

 Spiral
Each model has its advantages and disadvantages. As a tester, you will likely encounter them
all and will need to tailor your test approach to fit the model being used for your current pro-

ject. Refer to these model descriptions as you read the rest of this book and think about how
you would apply the various testing techniques you learn under each of them.

Big-Bang Model

One theory of the creation of the universe is the big-bang theory. It states that billions of years
ago, the universe was created in a single huge explosion of nearly infinite energy. Everything
that exists is the result of energy and matter lining up to produce this book, floppy disks, and
Bill Gates. If the atoms didn’t line up just right, these things might all be just quivering masses
of goop.

The big-bang model for software development shown in Figure 2.4 follows much the same
principle. A huge amount of matter (people and money) is put together, a lot of energy is
expended—often violently—and out comes the perfect software product...or it doesn’t.

OR

Big Bang @
FIGURE 2.4

The big-bang model is by far the simplest method of software development.

The beauty of the big-bang method is that it’s simple. There is little if any planning, schedul-
ing, or formal development process. All the effort is spent developing the software and writing
the code. It’s an ideal process if the product requirements aren’t well understood and the final

31

N

$s3D04d
IN3NdO13AIQ
JUVML40S FH]

32

The Big Picture
PART I

release date is flexible. It’s also important to have very flexible customers, too, because they
won’t know what they’re getting until the very end.

Notice that testing isn’t shown in Figure 2.4. In most cases, there is little to no formal testing
done under the big-bang model. If testing does occur, it’s squeezed in just before the product is
released. It’s a mystery why testing is sometimes inserted into this model, but it’s probably to
make everyone feel good that some testing was performed.

If you are called in to test a product under the big-bang model, you have both an easy and a
difficult task. Because the software is already complete, you have the perfect specification—
the product itself. And, because it’s impossible to go back and fix things that are broken, your
job is really just to report what you find so the customers can be told about the problems.

The downside is that, in the eyes of project management, the product is ready to go, so your
work is holding up delivery to the customer. The longer you take to do your job and the more
bugs you find, the more contentious the situation will become. Try to stay away from testing in
this model.

Code-and-Fix Model

The code-and-fix model shown in Figure 2.5 is usually the one that project teams fall into by
default if they don’t consciously attempt to use something else. It’s a step up, procedurally,
from the big-bang model, in that it at least requires some idea of what the product require-
ments are.

Code, Fix,

Typically informal
ypiea’y Repeat Until?

Product Specification

FIGURE 2.5

The code-and-fix model repeats until someone gives up.

A wise man once said, “There’s never time to do it right, but there’s always time to do it over.”
That pretty much sums up this model. A team using this approach usually starts with a rough
idea of what they want, does some simple design, and then proceeds into a long repeating
cycle of coding, testing, and fixing bugs. At some point they decide that enough is enough and
release the product.

As there’s very little overhead for planning and documenting, a project team can show results
immediately. For this reason, the code-and-fix model works very well for small projects

The Software Development Process
CHAPTER 2

intended to be created quickly and then thrown out shortly after they’re done, such as proto-
types and demos. Even so, code-and-fix has been used on many large and well-known software
products. If your word processor or spreadsheet software has lots of little bugs or it just doesn’t
seem quite finished, it was likely created with the code-and-fix model.

Like the big-bang model, testing isn’t specifically called out in the code-and-fix model but
does play a significant role between the coding and the fixing.

As a tester on a code-and-fix project, you need to be aware that you, along with the program-
mers, will be in a constant state of cycling. As often as every day you’ll be given new or
updated releases of the software and will set off to test it. You’ll run your tests, report the bugs,
and then get a new software release. You may not have finished testing the previous release
when the new one arrives, and the new one may have new or changed features. Eventually,
you’ll get a chance to test most of the features, find fewer and fewer bugs, and then someone
(or the schedule) will decide that it’s time to release the product.

You will most likely encounter the code-and-fix model during your work as a software tester.
It’s a good introduction to software development and will help you appreciate the more formal
methods.

Waterfall Model

The waterfall method is usually the first one taught in programming school. It’s been around
forever. It’s simple, elegant, and makes sense. And, it can work well on the right project.
Figure 2.6 shows the steps involved in this model.

Development I

FIGURE 2.6

The software development process flows from one step to the next in the waterfall model.

33

N

$s3D04d
IN3NdO13AIQ
JUVML40S FH]

34

The Big Picture
PART I

A project using the waterfall model moves down a series of steps starting from an initial idea
to a final product. At the end of each step, the project team holds a review to determine if
they’re ready to move to the next step. If the project isn’t ready to progress, it stays at that level
until it’s ready.

Notice three important things about the waterfall method:

» There’s a large emphasis on specifying what the product will be. Note that the develop-
ment or coding phase is only a single block!

» The steps are discrete; there’s no overlap.

» There’s no way to back up. As soon as you’re on a step, you need to complete the tasks
1
for that step and then move on—you can’t go back.

This may sound very limiting, and it is, but it works well for projects with a well-understood
product definition and a disciplined development staff. The goal is to work out all the
unknowns and nail down all the details before the first line of code is written. The drawback is
that in today’s fast moving culture, with products being developed on Internet time, by the time
a software product is so carefully thought out and defined, the original reason for its being may
have changed.

From a testing perspective, the waterfall model offers one huge advantage over the other mod-
els presented so far. Everything is carefully and thoroughly specified. By the time the software
is delivered to the test group, every detail has been decided on, written down, and turned into
software. From that, the test group can create an accurate plan and schedule. They know
exactly what they’re testing, and there’s no question about whether something is a feature or

a bug.

But, with this advantage, comes a large disadvantage. Because testing occurs only at the end, a
fundamental problem could creep in early on and not be detected until days before the sched-
uled product release. Remember from Chapter 1, “Software Testing Background,” how the cost
of bugs increases over time? What’s needed is a model that folds the testing tasks in earlier to
find problems before they become too costly.

Spiral Model

It’s not quite utopia, but the spiral model (see Figure 2.7) goes a long way in addressing many
of the problems inherent with the other models while adding a few of its own nice touches.

' Variations of the waterfall model loosen the rules a bit, allowing some overlap of the steps and the
ability to back up one step if necessary.

The Software Development Process
CHAPTER 2

Cumulative Cost
A

Identify and
Resolve Risks

Determine Objectives;
Alternatives, and
Constraints

\

Decide on the
Approach for the
Next Level

Evaluate Alternatives

Plan the

Next-Level
Develop and Test
the Current Level

Final [|

Product m

FIGURE 2.7
The spiral model starts small and gradually expands as the project becomes better defined and gains stability.

The spiral model was introduced by Barry Boehm in 1986 in his Association for Computing
Machinery (ACM) paper, “A Spiral Model of Software Development and Enhancement.” It’s
used fairly often and has proven to be an effective approach to developing software.

The general idea behind the spiral model is that you don’t define everything in detail at the
very beginning. You start small, define your important features, try them out, get feedback
from your customers, and then move on to the next level. You repeat this until you have your
final product.

Each time around the spiral involves six steps:

Determine objectives, alternatives, and constraints.
Identify and resolve risks.

Evaluate alternatives.

Develop and test the current level.

Plan the next level.

AN

Decide on the approach for the next level.

35

N

$s3D04d
IN3NdO13AIQ

FHVMLIOS FH]|

36

The Big Picture

PART |

Built into the spiral model is a bit of waterfall (the steps of analysis, design, develop, test), a
bit of code-and-fix (each time around the spiral), and a bit of big-bang (look at it from the out-
side). Couple this with the lower costs of finding problems early, and you have a pretty good
development model.

If you're a tester, you’ll like this model. You’ll get a chance to influence the product early by
being involved in the preliminary design phases. You’ll see where the project has come from
and where it’s going. And, at the very end of the project, you won’t feel as rushed to perform
all your testing at the last minute. You’ve been testing all along, so the last push should only be
a validation that everything is OK.

Summary

You now have an understanding of how software products are created—both what goes into
them and the processes used to put them together. As you can see, there’s no definitive
approach. The four models presented here are just examples. There are many others and lots of
variations of these. Each company, each project, and each team will choose what works for
them. Sometimes they will choose right, sometimes they will choose wrong. Your job as a soft-
ware tester is to work the best you can in the development model you’re in, applying the test-
ing skills you learn in the rest of this book to create the best software possible.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!
1. Name several tasks that should be performed before a programmer starts writing the first
line of code.
2. What disadvantage is there to having a formal, locked-down specification?
3. What is the best feature of the big-bang model of software development?

4. When using the code-and-fix model, how do you know when the software is ready to
release?

5. Why can the waterfall method be difficult to use?

6. Why would a software tester like the spiral model better than the others?

The Realities of Software CHAPTER

Testing 3

IN THIS CHAPTER

e Testing Axioms 38

e Software Testing Terms and Definitions 46

38

The Big Picture
PART I

In Chapters 1 and 2, you learned about the basics of software testing and the software develop-
ment process. The information presented in these chapters offered a very high-level and
arguably idealistic view of how software projects might be run. Unfortunately, in the real world
you will never see a project flawlessly follow the spiral model of development. You will never
be given a thoroughly detailed specification that perfectly meets the customer’s needs. It just
doesn’t happen. But, to be an effective software tester, you need to understand what the ideal
process is so that you have something to aim for.

The goal of this chapter is to temper that idealism with a reality check from a software tester’s
perspective. It will help you see that, in practice, trade-offs and concessions must be made
throughout the development cycle. Many of those trade-offs are directly related to the software
test effort. The bugs you find and the problems you prevent all significantly affect the project.
After reading this chapter, you’ll have a much clearer picture of the roles, the impact, and the
responsibilities that software testing has and you’ll hopefully appreciate the behind-the-scenes
decisions that must be made to create a software product.

The highlights of this chapter include

* Why software can never be perfect
e Why software testing isn’t just a technical problem

* The terms commonly used by software testers

Testing Axioms

This first section of this chapter is a list of axioms, or truisms. Think of them as the “rules of
the road” or the “facts of life” for software testing and software development. Each of them is
a little tidbit of knowledge that helps put some aspect of the overall process into perspective.

It's Impossible to Test a Program Completely

As a new tester, you might believe that you can approach a piece of software, fully test it, find
all the bugs, and assure that the software is perfect. Unfortunately, this isn’t possible, even with
the simplest programs, due to four key reasons:

* The number of possible inputs is very large.

* The number of possible outputs is very large.

* The number of paths through the software is very large.

» The software specification is subjective. You might say that a bug is in the eye of the

beholder.

Multiply all these “very large” possibilities together and you get a set of test conditions that’s
too large to attempt. If you don’t believe it, consider the example shown in Figure 3.1, the
Microsoft Windows Calculator.

The Realities of Software Testing

CHAPTER 3

FiGURE 3.1
Even a simple program such as the Windows Calculator is too complex to completely test.

Assume that you are assigned to test the Windows Calculator. You decide to start with addition.
You try 1+0=. You get an answer of 1. That’s correct. Then you try 1+1=. You get 2. How far do
you go? The calculator accepts a 32-digit number, so you must try all the possibilities up to

1+99999999999999999999999999999999=

Once you complete that series, you can move on to 2+0=, 2+1=, 2+2=, and so on. Eventually
you’ll get to

99999999999999999999999999999999+99999999999999999999999999999999=
Next you should try all the decimal values: 1.0+0.1, 1.0+0.2, and so on.

Once you verify that regular numbers sum properly, you need to attempt illegal inputs to assure
that they’re properly handled. Remember, you’re not limited to clicking the numbers
onscreen—you can press keys on your computer keyboard, too. Good values to try might be
1+a, z+1, 1a1+2b2,.... There are literally billions upon billions of these.

Edited inputs must also be tested. The Windows Calculator allows the Backspace and Delete
keys, so you should try them. 1<backspace>2+2 should equal 4. Everything you’ve tested so
far must be retested by pressing the Backspace key for each entry, for each two entries, and
SO on.

If you or your heirs manage to complete all these cases, you can then move on to adding three
numbers, then four numbers,....

There are so many possible entries that you could never complete them, even if you used a
super computer to feed in the numbers. And that’s only for addition. You still have subtraction,
multiplication, division, square root, percentage, and inverse to cover.

The point of this example is to demonstrate that it’s impossible to completely test a program,
even software as simple as a calculator. If you decide to eliminate any of the test conditions
because you feel they’re redundant or unnecessary, or just to save time, you’ve decided not to
test the program completely.

39

w

ONILST]

J¥VM140S
40 S3lLNvay IH]

40

The Big Picture
PART I

Software Testing Is a Risk-Based Exercise

If you decide not to test every possible test scenario, you’ve chosen to take on risk. In the cal-
culator example, what if you choose not to test that 1024+1024=20487 It’s possible the pro-
grammer accidentally left in a bug for that situation. If you don’t test it, a customer will still
use it, and he or she will discover the bug. It’1l be a costly bug, too, since it wasn’t found until
the software was in the customer’s hands.

This may all sound pretty scary. You can’t test everything, and if you don’t, you will likely
miss bugs. The product has to be released, so you will need to stop testing, but if you stop too
soon, there will still be areas untested. What do you do?

One key concept that software testers need to learn is how to reduce the huge domain of possi-
ble tests into a manageable set, and how to make wise risk-based decisions on what’s important
to test and what’s not.

Figure 3.2 shows the relationship between the amount of testing performed and the number of
bugs found. If you attempt to test everything, the costs go up dramatically and the number of
missed bugs declines to the point that it’s no longer cost effective to continue. If you cut the
testing short or make poor decisions of what to test, the costs are low but you’ll miss a lot of
bugs. The goal is to hit that optimal amount of testing so that you don’t test too much or too
little.

Number of Cost of
Missed Bugs Testing

Optimal Amount
of Testing

Quantity

Under
Testing
Over
Testing

Amount of Testing

FIGURE 3.2

Every software project has an optimal test effort.

The Realities of Software Testing

CHAPTER 3

You will learn how to design and select test scenarios that minimize risk and optimize your
testing in Chapters 4 through 7.

Testing Can’t Show That Bugs Don’t Exist

Think about this for a moment. You’re an exterminator charged with examining a house for
bugs. You inspect the house and find evidence of bugs—maybe live bugs, dead bugs, or nests.
You can safely say that the house has bugs.

You visit another house. This time you find no evidence of bugs. You look in all the obvious
places and see no signs of an infestation. Maybe you find a few dead bugs or old nests but you
see nothing that tells you that live bugs exist. Can you absolutely, positively state that the
house is bug free? Nope. All you can conclude is that in your search you didn’t find any live
bugs. Unless you completely dismantled the house down to the foundation, you can’t be sure
that you didn’t simply just miss them.

Software testing works exactly as the exterminator does. It can show that bugs exist, but it
can’t show that bugs don’t exist. You can perform your tests, find and report bugs, but at no
point can you guarantee that there are no longer any bugs to find. You can only continue your
testing and possibly find more.

The More Bugs You Find, the More Bugs There Are

There are even more similarities between real bugs and software bugs. Both types tend to come
in groups. If you see one, odds are there will be more nearby.

Frequently, a tester will go for long spells without finding a bug. He’ll then find one bug, then
quickly another and another. There are several reasons for this:

* Programmers have bad days. Like all of us, programmers can have off days. Code
written one day may be perfect; code written another may be sloppy. One bug can be a
tell-tale sign that there are more nearby.

¢ Programmers often make the same mistake. Everyone has habits. A programmer who
is prone to a certain error will often repeat it.

¢ Some bugs are really just the tip of the iceberg. Very often the software’s design or
architecture has a fundamental problem. A tester will find several bugs that at first may
seem unrelated but eventually are discovered to have one primary serious cause.

It’s important to note that the inverse of this “bugs follow bugs” idea is true, as well. If you fail
to find bugs no matter how hard you try, it may very well be that the software was cleanly
written and that there are indeed few if any bugs to be found.

41

W

ONILST]
J¥VM140S
40 S3ILNvay IH]

42

The Big Picture
PART I

The Pesticide Paradox

In 1990, Boris Beizer, in his book Software Testing Techniques, Second Edition, coined the
term pesticide paradox to describe the phenomenon that the more you test software, the more
immune it becomes to your tests. The same thing happens to insects with pesticides (see Figure
3.3). If you keep applying the same pesticide, the insects eventually build up resistance and the
pesticide no longer works.

Software Tester Software Bug

FIGURE 3.3

Software undergoing the same repetitive tests eventually builds up resistance to them.

Remember the spiral model of software development described in Chapter 2? The test process
repeats each time around the loop. With each iteration, the software testers receive the software
for testing and run their tests. Eventually, after several passes, all the bugs that those tests
would find are exposed. Continuing to run them won’t reveal anything new.

To overcome the pesticide paradox, software testers must continually write new and different
tests to exercise different parts of the program and find more bugs.

Not All the Bugs You Find Will Be Fixed

One of the sad realities of software testing is that even after all your hard work, not every bug
you find will be fixed. Now, don’t be disappointed—this doesn’t mean that you’ve failed in
achieving your goal as a software tester, nor does it mean that you or your team will release

a poor quality product. It does mean, however, that you’ll need to rely on a couple of those
traits of a software tester listed in Chapter 1—exercising good judgment and knowing when

The Realities of Software Testing
CHAPTER 3

perfection isn’t reasonably attainable. You and your team will need to make trade-offs,

risk-based decisions for each and every bug, deciding which ones will be fixed and which
ones won’t.

There are several reasons why you might choose not to fix a bug:

There’s not enough time. In every project there are always too many software features,
too few people to code and test them, and not enough room left in the schedule to finish.
If you’re working on a tax preparation program, April 15 isn’t going to move—you must
have your software ready in time.

It’s really not a bug. Maybe you’ve heard the phrase, “It’s not a bug, it’s a feature!” It’s
not uncommon for misunderstandings, test errors, or spec changes to result in would-be
bugs being dismissed as features.

It’s too risky to fix. Unfortunately, this is all too often true. Software is fragile, inter-
twined, and sometimes like spaghetti. You might make a bug fix that causes other bugs to
appear. Under the pressure to release a product under a tight schedule, it might be too
risky to change the software. It may be better to leave in the known bug to avoid the risk
of creating new, unknown ones.

It’s just not worth it. This may sound harsh, but it’s reality. Bugs that would occur
infrequently or bugs that appear in little-used features may be dismissed. Bugs that have
work-arounds, ways that a user can prevent or avoid the bug, are often not fixed. It all
comes down to a business decision based on risk.

The decision-making process usually involves the software testers, the project managers, and
the programmers. Each carries a unique perspective on the bugs and has his own information
and opinions as to why they should or shouldn’t be fixed. In Chapter 18, “Reporting What You
Find,” you’ll learn more about reporting bugs and getting your voice heard.

What Happens When You Make the Wrong Decision?

Remember the Intel Pentium bug described in Chapter 1? The Intel test engineers
found this bug before the chip was released, but the product team decided that it
was such a small, rare bug that it wasn’t worth fixing. They were under a tight sched-
ule and decided to meet their current deadline and fix the bug in later releases of
the chip. Unfortunately, the bug was discovered and the rest, they say, is history.

When a Bug’s a Bug Is Difficult to Say

If there’s a problem in the software but no one ever discovers it—not programmers, not testers,
and not even a single customer—is it a bug?

43

W

DNILSI|

J¥VM140S
40 S3ILNvay IH]

44

The Big Picture
PART I

Get a group of software testers in a room and ask them this question. You’ll be in for a lively
discussion. Everyone has their own opinion and can be pretty vocal about it. The problem is
that there’s no definitive answer. The answer is based on what you and your development team
decide works best for you.

For the purposes of this book, refer back to the rules to define a bug from Chapter 1:

1. The software doesn’t do something that the product specification says it should do.
2. The software does something that the product specification says it shouldn’t do.

3. The software does something that the product specification doesn’t mention.
4

. The software doesn’t do something that the product specification doesn’t mention but
should.

5. The software is difficult to understand, hard to use, slow, or—in the software tester’s
eyes—will be viewed by the end user as just plain not right.

Following these rules helps clarify the dilemma by making a bug a bug only if it’s observed.
To claim that the software does or doesn’t do “something” implies that the software was run
and that “something” or the lack of “something” was witnessed. Since you can’t report on what
you didn’t see, you can’t claim that a bug exists if you didn’t see it.

Here’s another way to think of it. It’s not uncommon for two people to have completely differ-
ent opinions on the quality of a software product. One may say that the program is incredibly
buggy and the other may say that it’s perfect. How can both be right? The answer is that one
has used the product in a way that reveals lots of bugs. The other hasn’t.

NoTE

For the purposes of this book, a bug is a bug only if it's observed. Bugs that haven't
been found yet are simply undiscovered bugs.

If this is as clear as mud, don’t worry. Discuss it with your peers in software testing and find
out what they think. Listen to others’ opinions, test their ideas, and form your own definition.
Remember the old question, “If a tree falls in the forest and there’s no one there to hear it, does
it make a sound?”

Product Specifications Are Never Final

Software developers have a problem. The industry is moving so fast that last year’s cutting-edge
products are obsolete this year. At the same time, software is getting larger and gaining more
features and complexity, resulting in longer and longer development schedules. These two
opposing forces result in conflict, and the result is a constantly changing product specification.

The Realities of Software Testing

CHAPTER 3

There’s no other way to respond to the rapid changes. Assume that your product had a locked-
down, final, absolutely-can’t-change-it product spec. You're halfway through the planned two-
year development cycle, and your main competitor releases a product very similar to yours but
with several desirable features that your product doesn’t have. Do you continue with your spec
as is and release an inferior product in another year? Or, does your team regroup, rethink the
product’s features, rewrite the product spec, and work on a revised product? In most cases,
wise business dictates the latter.

As a software tester, you must assume that the spec will change. Features will be added that
you didn’t plan to test. Features will be changed or even deleted that you had already tested
and reported bugs on. It will happen. You’ll learn techniques for being flexible in your test
planning and test execution in the remainder of this book.

Software Testers Aren’t the Most Popular Members of a
Project Team

Remember the goal of a software tester?

The goal of a software tester is to find bugs, find them as early as possible, and make
sure they get fixed.

Your job is to inspect and critique your peer’s work, find problems with it, and publicize what
you’ve found. Ouch! You won’t win a popularity contest doing this job.

Here are a couple of tips to keep the peace with your fellow teammates:

¢ Find bugs early. That’s your job, of course, but work hard at doing this. It’s much less
of an impact and much more appreciated if you find a serious bug three months before,
rather than one day before, a product’s scheduled release.

¢ Temper your enthusiasm. Okay, you really love your job. You get really excited when
you find a terrible bug. But, if you bounce into a programmer’s cubicle with a huge grin
on your face and tell her that you just found the nastiest bug of your career and it’s in her
code, she won’t be happy.

* Don’t always report bad news. If you find a piece of code surprisingly bug free, tell the
world. Pop into a programmer’s cubicle occasionally just to chat. If all you ever do is
report bad news, people will see you coming and will run and hide.

Software Testing Is a Disciplined Technical Profession

It used to be that software testing was an afterthought. Software products were small and not
very complicated. The number of people with computers using software was limited. And, the
few programmers on a project team could take turns debugging each others’ code. Bugs
weren’t that much of a problem. The ones that did occur were easily fixed without much cost

45

W

ONILST]
J¥VM140S
40 S3ILNvay IH]

46

The Big Picture
PART I

or disruption. If software testers were used, they were frequently untrained and brought into
the project late to do some “ad-hoc banging on the code to see what they might find.” Times
have changed.

Look at the software help-wanted ads and you’ll see numerous listings for software testers. The
software industry has progressed to the point where professional software testers are manda-
tory. It’s now too costly to build bad software.

To be fair, not every company is on board yet. Many computer game and small-time developers
still use a fairly loose software development model—usually big-bang or code-and-fix. But
most software is now developed with a disciplined approach that has software testers as core,
vital members of their staff.

This is great news if you're interested in software testing. It can now be a career choice—a job
that requires training and discipline, and allows for advancement.

Software Testing Terms and Definitions

This chapter wraps up the first section of this book with a list of software testing terms and
their definitions. These terms describe fundamental concepts regarding the software develop-
ment process and software testing. Because they’re often confused or used inappropriately,
they’re defined here as pairs to help you understand their true meanings and the differences
between them.

Precision and Accuracy

As a software tester, it’s important to know the difference between precision and accuracy.
Suppose that you’re testing a calculator. Should you test that the answers it returns are precise
or accurate? Both? If the project schedule forced you to make a risk-based decision to focus on
only one of these, which one would you choose?

What if the software you’re testing is a simulation game such as baseball or a flight simulator?
Should you primarily test its precision or its accuracy?

Figure 3.4 helps to graphically describe these two terms. The goal of this dart game is to hit
the bull’s-eye in the center of the board. The darts on the board in the upper left are neither
precise nor accurate. They aren’t closely grouped and not even close to the center of the target.

The board on the upper right shows darts that are precise but not accurate. They are closely
grouped, so the thrower has precision, but he’s not very accurate because the darts didn’t even
hit the board.

The Realities of Software Testing
CHAPTER 3

Accurate, but not Precise Accurate and Precise

FIGURE 3.4

Darts on a dartboard demonstrate the difference between precision and accuracy.

The board on the lower left is an example of accuracy but poor precision. The darts are very
close to the center, so the thrower is getting close to what he’s aiming at, but because they
aren’t closely positioned, the precision is off.

The board in the lower right is a perfect match of precision and accuracy. The darts are closely
grouped and on target.

Whether the software you test needs to be precise or accurate depends much on what the prod-
uct is and ultimately what the development team is aiming at (excuse the pun). A software cal-
culator likely demands that both are achieved—a right answer is a right answer. But, it may be
decided that calculations will only be accurate and precise to the fifth decimal place. After that,
the precision can vary. As long as the testers are aware of that specification, they can tailor
their testing to confirm it.

Verification and Validation

Verification and validation are often used interchangeably but have different definitions. These
differences are important to software testing.

47

W

DNILSI|

JYVML0S
40 S3ILNvay IH]

48

The Big Picture
PART I

Verification is the process confirming that something—software—meets its specification.
Validation is the process confirming that it meets the user’s requirements. These may sound
very similar, but an explanation of the Hubble space telescope problems will help show the
difference.

In April 1990, the Hubble space telescope was launched into orbit around the Earth. As a
reflective telescope, Hubble uses a large mirror as its primary means to magnify the objects it’s
aiming at. The construction of the mirror was a huge undertaking requiring extreme precision
and accuracy. Testing of the mirror was difficult since the telescope was designed for use in
space and couldn’t be positioned or even viewed through while it was still on Earth. For this
reason, the only means to test it was to carefully measure all its attributes and compare the
measurements with what was specified. This testing was performed and Hubble was declared
fit for launch.

Unfortunately, soon after it was put into operation, the images it returned were found to be out
of focus. An investigation discovered that the mirror was improperly manufactured. The mirror
was ground according to the specification, but the specification was wrong. The mirror was
extremely precise, but it wasn’t accurate. Testing had confirmed that the mirror met the spec—
verification—but it didn’t confirm that it met the original requirement—validation.

In 1993, a space shuttle mission repaired the Hubble telescope by installing a “corrective lens”
to refocus the image generated by the improperly manufactured mirror.

Although this is a not a software example, verification and validation apply equally well to
software testing. Never assume that the specification is correct. If you verify the spec and vali-
date the final product, you help avoid problems such as the one that hit the Hubble telescope.

Quality and Reliability

Merriam-Webster’s Collegiate Dictionary defines quality as “a degree of excellence” or “supe-
riority in kind.” If a software product is of high quality, it will meet the customer’s needs. The
customer will feel that the product is excellent and superior to his other choices.

Software testers often fall into the trap of believing that quality and reliability are the same
thing. They feel that if they can test a program until it’s stable, dependable, and reliable, they
are assuring a high-quality product. Unfortunately, that isn’t necessarily true. Reliability is just
one aspect of quality.

A software user’s idea of quality may include the breadth of features, the ability of the product
to run on his old PC, the software company’s phone support availability, or even the color of
the box. Reliability, or how often the product crashes or trashes his data, may be important, but
not always.

The Realities of Software Testing

CHAPTER 3

To ensure that a program is of high quality and is reliable, a software tester must both verify
and validate throughout the product development process.

Testing and Quality Assurance (QA)

The last pair of definitions is testing and quality assurance (sometimes shortened to QA).
These two terms are the ones most often used to describe either the group or the process that’s
verifying and validating the software. In Chapter 20, “Software Quality Assurance,” you’ll
learn more about software quality assurance, but for now, consider these definitions:

e The goal of a software tester is to find bugs, find them as early as possible, and make
sure they get fixed.

e A software quality assurance person’s main responsibility is to create and enforce stan-
dards and methods to improve the development process and to prevent bugs from ever
occurring.

Of course, there is overlap. Some testers will do a few QA tasks and some QA-ers will perform
a bit of testing. The two jobs and their tasks are intertwined. What’s important is that you know
what your primary job responsibilities are and communicate that information to the rest of the
development team. Confusion among the team members about who’s testing and who’s not has
caused lots of process pain in many projects.

Summary

Sausages, laws, and software—watching them being made can be pretty messy. Hopefully the
previous three chapters haven’t scared you off.

Many software testers have come into a project not knowing what was happening around them,
how decisions were being made, or what procedure they should be following. It’s impossible to
be effective that way. With the information you’ve learned so far about software testing and the
software development process, you’ll have a head start when you begin testing for the first
time. You’ll know what your role should be, or at least know what questions to ask to find your
place in the big picture.

For now, all the process stuff is out of the way, and the next chapter of this book begins a new
section that will introduce you to the basic techniques of software testing.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

49

W

ONILST]
J¥VM140S
40 S3ILNvay IH]

50

The Big Picture

PART |

. Given that it’s impossible to test a program completely, what information do you think

should be considered when deciding whether it’s time to stop testing?

Start the Windows Calculator. Type 5,000-5= (the comma is important). Look at the
result. Is this a bug? Why or why not?

If you were testing a simulation game such as a flight simulator or a city simulator,
what do you think would be more important to test—its accuracy or its precision?
Is it possible to have a high-quality and low-reliability product? What might an
example be?

5. Why is it impossible to test a program completely?

6. If you were testing a feature of your software on Monday and finding a new bug every

hour, at what rate would you expect to find bugs on Tuesday?

Testing Fundamentals

Go out looking for one thing, and that’s all you’ll ever find.
—OId prospector’s saying

The most exciting phrase to hear in science, the one that heralds the
most discoveries, is not “Eureka!” but “That’s funny...”

—Isaac Asimov, science and science-fiction author

IN THIS PART

4 Examining the Specification 53

5 Testing the Software with Blinders On 63

6 Examining the Code 93

7 Testing the Software with X-Ray Glasses 107

Examining the Specification CHAPTER

A4

IN THIS CHAPTER

e Getting Started 54

¢ Performing a High-Level Review of the
Specification 57

¢ Low-Level Specification Test Techniques 60

54

Testing Fundamentals
ParT Il

This chapter will introduce you to your first real hands-on testing—but it may not be what you
expect. You won’t be installing or running software and you won’t be pounding on the key-
board hoping for a crash. In this chapter, you’ll learn how to test the product’s specification to
find bugs before they make it into the software.

Testing the product spec isn’t something that all software testers have the luxury of doing.
Sometimes you might come into a project midway through the development cycle after the
specification is written and the coding started. If that’s the case, don’t worry—you can still use
the techniques presented here to test the final specification.

If you’re fortunate enough to be involved on the project early and have access to a preliminary
specification, this chapter is for you. Finding bugs at this stage can potentially save your pro-
ject huge amounts of time and money.

Highlights of this chapter include

* What is black-box and white-box testing
* How static and dynamic testing differ
* What high-level techniques can be used for reviewing a product specification

* What specific problems you should look for when reviewing a product specification in
detail

Getting Started

Think back to the four development models presented in Chapter 2, “The Software
Development Process”: big-bang, code-and-fix, waterfall, and spiral. In each model, except
big-bang, the development team creates a product specification, sometimes called a require-
ments document, to define what the software will become.

Typically, the product specification is a written document using words and pictures to describe
the intended product. An excerpt from the Windows Calculator (see Figure 4.1) product spec
might read something like this:

The Edit menu will have two selections: Copy and Paste. These can be chosen by one of
three methods: pointing and clicking with the mouse, using access-keys (Alt+C for Copy
and Alt+P for Paste), or using the standard Windows shortcut keys of Ctrl+C for Copy
and Ctrl+V for Paste.

The Copy function will copy the current entry displayed in the number text box into the
Windows Clipboard. The Paste function will paste the value stored in the Windows
Clipboard into the number text box.

Examining the Specification

CHAPTER 4

Edit Menu Number Text Box

FiGURe 4.1
The standard Windows Calculator displaying the drop-down Edit menu.

As you can see, it took quite a few words just to describe the operation of two menu items in a
simple calculator program. A thoroughly detailed spec for the entire application could be a
hundred pages long.

It may seem like overkill to create a meticulous document for such simple software. Why not
just let a programmer write a calculator program on his own? The problem is that you would
have no idea what you’d eventually get. The programmer’s idea of what it should look like,
what functionality it should have, and how the user would use it could be completely different
from yours. The only way to assure that the end product is what the customer required—and to
properly plan the test effort—is to thoroughly describe the product in a specification.

The other advantage of having a detailed spec, and the basis of this chapter, is that as a tester
you’ll also have a document as a testable item. You can use it to find bugs before the first line
of code is written.

Black-Box and White-Box Testing

Two terms that software testers use to describe how they approach their testing are black-box
testing and white-box testing. Figure 4.2 shows the difference between the two approaches. In
black-box testing, the tester only knows what the software is supposed to do—he can’t look
in the box to see how it operates. If he types in a certain input, he gets a certain output. He
doesn’t know how or why it happens, just that it does.

Think about the Windows Calculator shown in Figure 4.1. If you type 3.14159 and press the
sqrt button, you get 1.772453102341. With black-box testing, it doesn’t matter what gyrations
the software goes through to compute the square root of pi. It just does it. As a software tester,
you can verify the result on another “certified” calculator and determine if the Windows
Calculator is functioning correctly.

55

NN

NOILVDI41D3dS
JHL1 SNININVYXJ

Testing Fundamentals

PART Il
\\ 7
7 Input -2)= Input
7.5 &
= S — S
Output Output
Black-Box Testing White-Box Testing
FIGURE 4.2

With black-box testing, the software tester doesn’t know the details of how the software works.

In white-box testing (sometimes called clear-box testing), the software tester has access to the
program’s code and can examine it for clues to help him with his testing—he can see inside the
box. Based on what he sees, the tester may determine that certain numbers are more or less
likely to fail and can tailor his testing based on that information.

NoTE

There is a risk to white-box testing. It's very easy to become biased and fail to
objectively test the software because you might tailor the tests to match the code’s

operation.

Static and Dynamic Testing

Two other terms used to describe how software is tested are static testing and dynamic testing.
Static testing refers to testing something that’s not running—examining and reviewing it.
Dynamic testing is what you would normally think of as testing—running and using the
software.

The best analogy for these terms is the process you go through when checking out a used

car. Kicking the tires, checking the paint, and looking under the hood are static testing tech-
niques. Starting it up, listening to the engine, and driving down the road are dynamic testing

techniques.

Examining the Specification
CHAPTER 4

Static Black-Box Testing: Testing the Specification

Testing the specification is static black-box testing. The specification is a document, not an
executing program, so it’s considered static. It’s also something that was created using data
from many sources—usability studies, focus groups, marketing input, and so on. You don’t
necessarily need to know how or why that information was obtained or the details of the
process used to obtain it, just that it’s been boiled down into a product specification. You can
then take that document, perform static black-box testing, and carefully examine it for bugs.

Earlier you saw an example of a product specification for the Windows Calculator. This exam-
ple used a standard written document with a picture to describe the software’s operation.
Although this is the most common method for writing a spec, there are lots of variations. Your
development team may emphasize diagrams over words or it may use a self-documenting com-
puter language such as Ada. Whatever their choice, you can still apply all the techniques pre-
sented in this chapter. You will have to tailor them to the spec format you have, but the ideas
are still the same.

What do you do if your project doesn’t have a spec? Maybe your team is using the big-bang
model or a loose code-and-fix model. As a tester, this is a difficult position. Your goal is to find
bugs early—ideally finding them before the software is coded—but if your product doesn’t
have a spec, this may seem impossible to do. Although the spec may not be written down,
someone, or several people, know what they’re trying to build. It may be the developer, a pro-
ject manager, or a marketer. Use them as the walking, talking, product spec and apply the same
techniques for evaluating this “mental” specification as though it was written on paper. You can
even take this a step further by recording the information you gather and circulating it for
review. Tell your project team, “This is what I plan to test and submit bugs against.” You’ll be
amazed at how many details they’ll immediately fill in.

NoTE

You can test a specification with static black-box techniques no matter what the for-
mat of the specification. It can be a written or graphical document or a combination
of both. You can even test an unwritten specification by questioning the people who
are designing and writing the software.

Performing a High-Level Review of the Specification

Defining a software product is a difficult process. The spec must deal with many unknowns,
take a multitude of changing inputs, and attempt to pull them all together into a document that
describes a new product. The process is an inexact science and is prone to having problems.

57

NN

NOILYDI41D3dS

JHL1 SNININVYXJ

58

Testing Fundamentals
ParT Il

The first step in testing the specification isn’t to jump in and look for specific bugs. The first
step is to stand back and view it from a high level. Examine the spec for large fundamental
problems, oversights, and omissions. You might consider this more research than testing, but
ultimately the research is a means to better understand what the software should do. If you
have a better understanding of the whys and hows behind the spec, you’ll be much better at
examining it in detail.

Pretend to Be the Customer

The easiest thing for a tester to do when he first receives a specification for review is to pre-
tend to be the customer. Do some research about who the customers will be. Talk to your mar-
keting or sales people to get hints on what they know about the end user. If the product is an
internal software project, find out who will be using it and talk to them.

It’s important to understand the customer’s expectations. Remember that the definition of qual-
ity means “meeting the customer’s needs.” As a tester, you must understand those needs to test
that the software meets them. To do this effectively doesn’t mean that you must be an expert in
the field of nuclear physics if you’re testing software for a power plant, or that you must be a
professional pilot if you’re testing a flight simulator. But, gaining some familiarity with the
field the software applies to would be a great help.

Above all else, assume nothing. If you review a portion of the spec and don’t understand it,
don’t assume that it’s correct and go on. Eventually, you’ll have to use this specification to
design your software tests, so you’ll eventually have to understand it. There’s no better time to
learn than now. If you find bugs along the way (and you will), all the better.

Research Existing Standards and Guidelines

Back in the days before Microsoft Windows and the Apple Macintosh, nearly every software
product had a different user interface. There were different colors, different menu structures,
unlimited ways to open a file, and myriad cryptic commands to get the same tasks done.
Moving from one software product to another required complete retraining.

Thankfully, there has been an effort to standardize the hardware and the software. There has
also been extensive research done on how people use computers. The result is that we now
have products reasonably similar in their look and feel that have been designed with ergonom-
ics in mind. You may argue that the adopted standards and guidelines aren’t perfect, that there
may be better ways to get certain tasks done, but efficiency has greatly improved because of
this commonality.

Chapter 11, “Usability Testing,” will cover this topic in more detail, but for now you should
think about what standards and guidelines might apply to your product.

Examining the Specification
CHAPTER 4

NoTEe

The difference between standards and guidelines is a matter of degree. A standard is
much more firm than a guideline. Standards should be strictly adhered to. Guidelines
are optional but should be followed.

Here are several examples of standards and guidelines to consider. This list isn’t definitive. You
should research what might apply to your software:

e Corporate Terminology and Conventions. If this software is tailored for a specific
company, it should adopt the common terms and conventions used by the employees of
that company.

¢ Industry Requirements. The medical, pharmaceutical, industrial, and financial indus-
tries have very strict standards that their software must follow.

* Government Standards. The government, especially the military, has strict standards.

* Graphical User Interface (GUI). If your software runs under Microsoft Windows or
Apple Macintosh operating systems, there are published standards and guidelines for
how the software should look and feel to a user.

* Hardware and Networking Standards. Low-level software and hardware interface
standards must be adhered to, to assure compatibility across systems.

As a tester, your job isn’t to define what guidelines and standards should be applied to your
software. That job lies with the project manager or whoever is writing the specification. You
do, however, need to perform your own investigation to “test” that the correct standards are
being used and that none are overlooked. You also have to be aware of these standards and
test against them when you verify and validate the software. Consider them as part of the
specification.

Review and Test Similar Software

One of the best methods for understanding what your product will become is to research simi-
lar software. This could be a competitor’s product or something similar to what your team is
creating. It’s likely that the project manager or others who are specifying your product have
already done this, so it should be relatively easy to get access to what products they used in
their research. The software likely won’t be an exact match (that’s why you’re creating new
software, right?), but it should help you think about test situations and test approaches. It
should also flag potential problems that may not have been considered.

59

NN

NOILYDI41D3dS

JHL1 SNININVYXJ

Testing Fundamentals
ParT Il

Some things to look for when reviewing competitive products include
* Scale. Will your software be smaller or larger? Will that size make a difference in your
testing?
* Complexity. Will your software be more or less complex? Will this impact your testing?
 Testability. Will you have the resources, time, and expertise to test software such as this?
* Quality/Reliability. Is this software representative of the overall quality planned for your

software? Will your software be more or less reliable?

There’s no substitute for hands-on experience, so do whatever you can to get a hold of similar
software, use it, bang on it, and put it through its paces. You’ll gain a lot of experience that will
help you when you review your specification in detail.

Low-Level Specification Test Techniques

After you complete the high-level review of the product specification, you’ll have a better
understanding of what your product is and what external influences affect its design. Armed
with this information, you can move on to testing the specification at a lower level. The
remainder of this chapter explains the specifics for doing this.

Specification Attributes Checklist

A good, well-thought-out product specification, with “all its t’s crossed and its i’s dotted,” has
eight important attributes:

¢ Complete. Is anything missing or forgotten? Is it thorough? Does it include everything
necessary to make it stand alone?

* Accurate. Is the proposed solution correct? Does it properly define the goal? Are there
any errors?

* Precise, Unambiguous, and Clear. Is the description exact and not vague? Is there a
single interpretation? Is it easy to read and understandable?

* Consistent. Is the description of the feature written so that it doesn’t conflict with itself
or other items in the specification?

* Relevant. Is the statement necessary to specify the feature? Is it extra information that
should be left out? Is the feature traceable to an original customer need?

" The checklists are adapted from pp.294-295 and 303-308 of the Handbook of Walkthroughs,
Inspections, and Technical Reviews, 3rd Edition Copyright 1990, 1982 by D.P. Freedman and G.M.
Weinberg. Used by permission of Dorset House Publishing (www.dorsethouse.com). All rights reserved.

Examining the Specification

CHAPTER 4

* Feasible. Can the feature be implemented with the available personnel, tools, and

resources within the specified budget and schedule?

* Code-free. Does the specification stick with defining the product and not the underlying

software design, architecture, and code?

» Testable. Can the feature be tested? Is enough information provided that a tester could

create tests to verify its operation?

When you’re testing a product spec, reading its text, or examining its figures, carefully con-

sider each of these traits. Ask yourself if the words and pictures you’re reviewing have these
attributes. If they don’t, you’ve found a bug that needs to be addressed.

Specification Terminology Checklist

A complement to the previous attributes list is a list of problem words to look for while
reviewing a specification. The appearance of these words often signifies that a feature isn’t yet
completely thought out—it likely falls under one of the preceding attributes. Look for these
words in the specification and carefully review how they’re used in context. The spec may go
on to clarify or elaborate on them, or it may leave them ambiguous—in which case, you’ve
found a bug.

Always, Every, All, None, Never. If you see words such as these that denote something
as certain or absolute, make sure that it is, indeed, certain. Put on your tester’s hat and
think of cases that violate them.

Certainly, Therefore, Clearly, Obviously, Evidently. These words tend to persuade you
into accepting something as a given. Don’t fall into the trap.

Some, Sometimes, Often, Usually, Ordinarily, Customarily, Most, Mostly. These
words are too vague. It’s impossible to test a feature that operates “sometimes.”

Etc., And So Forth, And So On, Such As. Lists that finish with words such as these
aren’t testable. Lists need to be absolute or explained so that there’s no confusion as to
how the series is generated and what appears next in the list.

Good, Fast, Cheap, Efficient, Small, Stable. These are unquantifiable terms. They
aren’t testable. If they appear in a specification, they must be further defined to explain
exactly what they mean.

Handled, Processed, Rejected, Skipped, Eliminated. These terms can hide large
amounts of functionality that need to be specified.

If...Then...(but missing Else). Look for statements that have “If...Then” clauses but
don’t have a matching “Else.” Ask yourself what will happen if the “if” doesn’t happen.

61

NN

NOILYDI41D3dS
JHL1 SNININVYXJ

62

Testing Fundamentals

PART Il

Summary

After completing this chapter, you may have decided that testing a specification is a very sub-
jective process. High-level review techniques will flush out oversights and omissions, and low-
level techniques help assure that all the details are defined. But, these techniques aren’t really
step-by-step processes to follow, for two reasons:

 This is an introductory book whose aim is to get you rapidly up the testing curve. The
material presented here will do just that. Armed with the information presented in this
chapter, you will make a big dent in any software spec you’re given to test.

» The format of specifications can vary widely. You’ll be able to apply the techniques from
this chapter whether you’re pulling the spec out of someone’s brain, looking at a high-
level diagram, or parsing through sentences. You will find bugs.

If you’re interested in pursuing more advanced techniques for reviewing specifications, do
some research on the work of Michael Fagan. While at IBM, Mr. Fagan pioneered a detailed
and methodical approach called software inspections that many companies use, especially com-
panies creating mission-critical software, to formally review their software specifications and
code. You can find more information on his Web site: www.mfagan.com.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

1. Can a software tester perform white-box testing on a specification?

2. Cite a few example of Mac or Windows standards or guidelines.

3. Explain what’s wrong with this specification statement: When the user selects the
Compact Memory option, the program will compress the mailing list data as small as
possible using a Huffman-sparse-matrix approach.

4. Explain what a tester should worry about with this line from a spec: The software will
allow up to 100 million simultaneous connections, although no more than 1 million will
normally be used.

Testing the Software CHAPTER
with Blinders On

IN

THIS CHAPTER

Dynamic Black-Box Testing: Testing the
Software While Blindfolded 64

Test-to-Pass and Test-to-Fail 66
Equivalence Partitioning 68

Data Testing 70

State Testing 80

Other Black-Box Test Techniques 88

64

Testing Fundamentals
ParT Il

Okay, now for the good stuff! This chapter covers what most people imagine when they think
of software testing. It’s time to crack your knuckles, sit in front of your computer, and start
looking for bugs.

As a new software tester, this may be the first job you’re assigned to do. If you’re interviewing
for a software test position, you will no doubt be asked how you’d approach testing a new soft-
ware program or a new program’s features.

It’s very easy to jump right in, start pounding on keys, and hope that something breaks. Such
an approach might work for a little while. If the software is still under development, it’s very
easy to get lucky and find a few bugs right away. Unfortunately, those easy pickings will
quickly disappear and you’ll need a more structured and targeted approach to continue finding
bugs and to be a successful software tester.

This chapter describes the most common and effective techniques for testing software. It does-
n’t matter what kind of program you’re testing—the same techniques will work whether it’s a
custom accounting package for your company, an industrial automation program, or a mass-
market shoot-’em-up computer game.

You also don’t need to be a programmer to use these techniques. Although they’re all based on
fundamental programming concepts, they don’t require you to write code. A few techniques
have some background information that explains why they’re effective, but any code samples
are short and written in BASIC to easily demonstrate the point. If you’re into programming
and want to learn more low-level test techniques, after you finish reading this chapter, move on
to Chapter 6, “Examining the Code,” and 7, “Testing the Software with X-Ray Glasses,” the
white-box testing chapters.

Topics covered in this chapter include

* What is dynamic black-box testing?

* How to reduce the number of test cases by equivalence partitioning
¢ How to identify troublesome boundary conditions

* Good data values to use to induce bugs

* How to test software states and state transitions

* How to use repetition, stress, and high loads to locate bugs

* A few secret places where bugs hide

Dynamic Black-Box Testing: Testing the Software
While Blindfolded

Testing software without having an insight into the details of underlying code is dynamic
black-box testing. It’s dynamic because the program is running—you’re using it as a customer

Testing the Software with Blinders On
CHAPTER 5

would. And, it’s black-box because you’re testing it without knowing exactly how it works—
with blinders on. You’re entering inputs, receiving outputs, and checking the results. Another
name commonly used for dynamic black-box testing is behavioral testing because you’re test-
ing how the software actually behaves when it’s used.

To do this effectively requires some definition of what the software does—namely, a require-
ments document or product specification. You don’t need to be told what happens inside the
software “box”—you just need to know that inputting A outputs B or that performing operation
C results in D. A good product spec will provide you with these details.

Once you know the ins and outs of the software you’re about to test, your next step is to start
defining the fest cases. Test cases are the specific inputs that you’ll try and the procedures that
you’ll follow when you test the software. Figure 5.1 shows an example of several cases that
you might use for testing the addition function of the Windows Calculator.

Addition Test Cases for Windows Calculator

0+0 should equal 0

O+1 should equal 1

254+1 should equal 255
255+1 should equal 256
256+1 should equal 257
1022+1 should equal 1023
1023+1 should equal 1024
1024+1 should equal 1025

J\L/’*Hh_//q“’“\kl/"\x//ﬂ\\‘l/ﬁ“J’mﬁ“me,/“

FIGURE 5.1
Test cases show the different inputs and the steps to test a program.

NoTE

Selecting test cases is the single most important task that software testers do.
Improper selection can result in testing too much, testing too little, or testing the
wrong things. Intelligently weighing the risks and reducing the infinite possibilities to
a manageable effective set is where the magic is.

The rest of this chapter and much of the rest of the book will teach you how to strategically
select good test cases. Chapter 17, “Writing and Tracking Test Cases,” discusses the specific
techniques for writing and managing test cases.

65

NQ S¥3anng
HLIM 34vmidos (U1

JHL SNILSI |

Testing Fundamentals
ParT Il

Use Exploratory Testing If You Don’t Have a Spec

A professional, mature software development process will have a detailed specifica-
tion for the software. If you're stuck in a big-bang model or a sloppy code-and-fix
model, you may not have a software spec to base your tests on. That's not an ideal
situation for a software tester, but you can use a workable solution known as
exploratory testing.

You need to treat the software as the specification. Methodically explore the soft-
ware feature by feature. Take notes of what the software does, map out the fea-
tures, and apply some of the static black-box techniques you learned in Chapter 3,
“The Realities of Software Testing.” Analyze the software as though it is the specifi-
cation. Then apply the dynamic black-box techniques from this chapter.

You won't be able to test the software as thoroughly as you would if you had a
spec—you won't necessarily know if a feature is missing, for example. But, you will
be able to systematically test it. In this situation, finding any bugs would be a positive
thing.

Test-to-Pass and Test-to-Fail

There are two fundamental approaches to testing software: fest-fo-pass and test-to-fail. When
you test-to-pass, you really assure only that the software minimally works. You don’t push its
capabilities. You don’t see what you can do to break it. You treat it with kid gloves, applying
the simplest and most straightforward test cases.

You may be thinking that if your goal is to find bugs, why would you test-to-pass? Wouldn’t
you want to find bugs by any means possible? The answer is no, not initially.

Think about an analogy with a newly designed car (see Figure 5.2). You're assigned to test the
very first prototype that has just rolled off the assembly line and has never been driven. You
probably wouldn’t get in, start it up, head for the test track, and run it wide open at full speed
as hard as you could. You’d probably crash and die. With a new car, there’d be all kinds of
bugs that would reveal themselves at low speed under normal driving conditions. Maybe the
tires aren’t the right size, or the brakes are inadequate, or the engine red lines too early. You
could discover these problems and have them fixed before getting on the track and pushing the
limits.

Testing the Software with Blinders On
CHAPTER 5

A S %
- &
)/

C—R

Test-to-pass

Test-to-fail

FIGURE 5.2
Use test-to-pass to reveal bugs before you test-to-fail.

NoTE

When designing and running your test cases, always run the test-to-pass cases first.
It's important to see if the software fundamentally works before you throw the
kitchen sink at it. You might be surprised how many bugs you find just using the soft-
ware normally.

After you assure yourself that the software does what it’s specified to do in ordinary circum-
stances, it’s time to put on your sneaky, conniving, devious hat and attempt to find bugs by try-
ing things that should force them out. Designing and running test cases with the sole purpose
of breaking the software is called testing-to-fail or error-forcing. You’ll learn later in this chap-
ter that test-to-fail cases often don’t appear intimidating. They often look like test-to-pass
cases, but they’re strategically chosen to probe for common weaknesses in the software.

Error Messages: Test-to-Pass or Test-to-Fail

A common class of test cases is one that attempts to force error messages. You know
the ones—like saving a file to a floppy disk but not having one inserted in the drive.
These cases actually straddle the line between test-to-pass and test-to-fail. The speci-
fication probably states that certain input conditions should result in an error mes-
sage. That seems pretty clear as a test-to-pass case. But, you're also forcing an error,
so it could be viewed as test-to-fail. In the end, it's probably both.

67

NO S¥3anng
HLIM 3¥vmidog |V

JHL SNILSI |

Testing Fundamentals
ParT Il

Don’t worry about the distinction. What's important is to try to force the error mes-
sages that are specified and to invent test cases to force errors that were never con-
sidered. You'll likely end up finding both test-to-pass and test-to-fail bugs.

Equivalence Partitioning

Selecting test cases is the single most important task that software testers do and equivalence
partitioning, sometimes called equivalence classing, is the means by which they do it.
Equivalence partitioning is the process of methodically reducing the huge (infinite) set of pos-
sible test cases into a much smaller, but still equally effective, set.

Remember the Windows Calculator example from Chapter 3? It’s impossible to test all the
cases of adding two numbers together. Equivalence partitioning provides a systematic means
for selecting the values that matter and ignoring the ones that don’t.

For example, without knowing anything more about equivalence partitioning, would you think
that if you tested 1+1, 1+2, 1+3, and 1+4 that you’d need to test 1+5 and 1+6? Do you think you
could safely assume that they’d work?

How about 1+99999999999999999999999999999999 (the maximum number you can type in)?
Is this test case maybe a little different than the others, maybe in a different class, a different
equivalence partition? If you had the choice, would you include it or 1+13?

See, you're already starting to think like a software tester!

REMINDER

An equivalence class or equivalence partition is a set of test cases that tests the same
thing or reveals the same bug.

What is the difference between 1+99999999999999999999999999999999 and 1+13? In the case
of 1+13, it looks like a standard simple addition, a lot like 1+5 or 1+392. However, 1+999. .. is
way out there, on the edge. If you enter the largest possible number and then add 1 to it, some-
thing bad might happen—possibly a bug. This extreme case is in a unique partition, a different
one from the normal partition of regular numbers.

Testing the Software with Blinders On
CHAPTER 5

NoTEe

When looking for equivalence partitions, think about ways to group similar inputs,
similar outputs, and similar operation of the software. These groups are your equiva-
lence partitions.

Look at a few examples:

* In the case of adding two numbers together, there seemed to be a distinct difference
between testing 1+13 and 1+99999999999999999999999999999999. Call it a gut feeling,
but one seemed to be normal addition and the other seemed to be risky. That gut feeling
is right. A program would have to handle the addition of 1 to a maxed-out number differ-
ently than the addition of two small numbers. It would need to handle an overflow condi-
tion. These two cases, because the software most likely operates on them differently, are
in different equivalence partitions.

If you have some programming experience, you might be thinking of several more “spe-
cial” numbers that could cause the software to operate differently. If you’re not a pro-
grammer, don’t worry—you’ll learn the techniques very shortly and be able to apply
them without having to understand the code in detail.

 Figure 5.3 shows the Calculator’s Edit menu selected to display the copy and paste com-
mands. There are five ways to perform each function. For copy, you click the Copy menu
item, type ¢ or C, or press Ctrl+c or Ctrl+Shift+c. Each input path copies the current
number into the Clipboard—they perform the same output and produce the same result.

= Calculator = B
| Edi| i Hep
Lopy ChkC o
Pase Cula

Betoe|| & || ¢ |
el 2| el sl] e

o

i| 1 2 3 o 1/
D) e

FIGURE 5.3
The multiple ways to invoke the copy function all have the same result.

If your job is to test the copy command, you could partition these five input paths down
to three: Clicking the command on the menu, typing a c, or pressing Ctrl+c. As you grow
more confident with the software’s quality and know that the copy function, no matter
how it’s enabled, is working properly, you might even partition these down into a single
partition, maybe Ctrl+c.

69

wn
28
223
m>Z
228
Osx
z25m

T

Testing Fundamentals
ParT Il

* As a third example, consider the possibilities for entering a filename in the standard Save
As dialog box (see Figure 5.4).

Savein [& Pesona e @ & BiE
Hame | Soe || Type | Modified
C My Pretures | File Foider 6/19/99 8:50 AM
My webs Fle Foider EM3/99 853 AM
20 Pudish File Foider 8/23/395:01 PM
53 0 Excel Documents KB Shertcut £/19/99 853 AM

e doc TAKB Micrasolt WeedDioe . 10A15/53 1209PM
4| |
Filemame [Document dos Save
Save 22 bype: | Word for Windows 6.0 =l Cancel

P

FIGURE 5.4

The File Name text box in the Save As dialog box illustrates several equivalence partition possibilities.

A Windows filename can contain any characters except \ / : * ? * <> and |.Filenames
can have from 1 to 255 characters. If you’re creating test cases for filenames, you will

have equivalence partitions for valid characters, invalid characters, valid length names,
names that are too short, and names that are too long.

Remember, the goal of equivalence partitioning is to reduce the set of possible test cases into a
smaller, manageable set that still adequately tests the software. You’re taking on risk because
you’re choosing not to test everything, so you need to be careful how you choose your classes.

NoTE

If you do equivalence partitioning too far in your effort to reduce the number of test
cases, you risk eliminating tests that could reveal bugs. If you're new to testing,
always get someone with more experience to review your proposed classes.

A final point about equivalence partitioning is that it can be subjective. It’s science but it’s also
art. Two testers who test a complex program may arrive at two different sets of partitions.
That’s okay as long as the partitions are reviewed and everyone agrees that they acceptably
cover the software being tested.

Data Testing

The simplest view of software is to divide its world into two parts: the data (or its domain) and
the program. The data is the keyboard input, mouse clicks, disk files, printouts, and so on. The
program is the executable flow, transitions, logic, and computations. A common approach to
software testing is to divide up the test work along the same lines.

Testing the Software with Blinders On
CHAPTER 5

When you perform software testing on the data, you’re checking that information the user
inputs, results that he receives, and any interim results internal to the software are handled
correctly.

Examples of data would be

e The words you type into a word processor

* The numbers entered into a spreadsheet

e The number of shots you have remaining in your space game
e The picture printed by your photo software

* The backup files stored on your floppy disk

e The data being sent by your modem over the phone lines

The amount of data handled by even the simplest programs can be overwhelming. Remember
all the possibilities for simple addition on a calculator? Consider a word processor, a missile
guidance system, or a stock trading program. The trick (if you can call it that) to making any
of these testable is to intelligently reduce the test cases by equivalence partitioning based on a
few key concepts: boundary conditions, sub-boundary conditions, nulls, and bad data.

Boundary Conditions

The best way to describe boundary condition testing is shown in Figure 5.5. If you can safely
and confidently walk along the edge of a cliff without falling off, you can almost certainly
walk in the middle of a field. If software can operate on the edge of its capabilities, it will
almost certainly operate well under normal conditions.

Boundary conditions are special because programming, by its nature, is susceptible to prob-
lems at its edges. Software is very binary—something is either true or it isn’t. If an operation is
performed on a range of numbers, odds are the programmer got it right for the vast majority of
the numbers in the middle, but maybe made a mistake at the edges. Listing 5.1 shows how a
boundary condition problem can make its way into a very simple program.

LisTING 5.1 A Simple BASIC Program Demonstrating a Boundary Condition Bug

Rem Create a 10 element integer array
Rem Initialize each element to -1
Dim data(10) As Integer
Dim i As Integer
For i =1 To 10
data(i) = -1
Next 1
End

o ~NOO O WN =

71

HLIM 34vmidos (U1
JHL ONILSI]

NQ Ssd3aning

72

Testing Fundamentals

PART Il

FIGURE 5.5
A software boundary is much like the edge of a cliff.

The purpose of this code is to create a 10-element array and initialize each element of the array
to —1. It looks fairly simple. An array (data) of 10 integers and a counter (i) are created. A For
loop runs from 1 to 10, and each element of the array from 1 to 10 is assigned a value of —1.
Where’s the boundary problem?

In most BASIC scripts, when an array is dimensioned with a stated range—in this case, Dim
data(10) as Integer—the first element created is O, not 1. This program actually creates a
data array of 11 elements from data (@) to data(10). The program loops from 1 to 10 and ini-
tializes those values of the array to —1, but since the first element of our array is data(0), it
doesn’t get initialized. When the program completes, the array values look like this:

data(@) =0 data(6) =-1
data(1) =-1 data(7) =-1
data(2) =-1 data(8) =-1
data(3) =-1 data(9) =-1
data(4) =-1 data(10) = -1

data(5) =-1

Testing the Software with Blinders On
CHAPTER 5

Notice that data(0)’s value is 0, not —1. If the same programmer later forgot about, or a differ-
ent programmer wasn’t aware of how this data array was initialized, he might use the first ele-
ment of the array, data(0), thinking it was set to —1. Problems such as this are very common
and, in large complex software, can result in very nasty bugs.

Types of Boundary Conditions

Now it’s time to open your mind and really think about what constitutes a boundary. Beginning
testers often don’t realize how many boundaries a given set of data can have. Usually there are
a few obvious ones, but if you dig deeper you’ll find the more obscure, interesting, and often
bug-prone boundaries.

NoTE

Boundary conditions are those situations at the edge of the planned operational lim-
its of the software.

When you’re presented with a software test problem that involves identifying boundaries, look
for the following types:

Numeric Speed
Character Location
Position Size
Quantity

And, think about the following characteristics of those types:

First/Last Min/Max
Start/Finish Over/Under
Empty/Full Shortest/Longest
Slowest/Fastest Soonest/Latest
Largest/Smallest Highest/Lowest

Next-To/Farthest-From

These are not by any means definitive lists. They cover many of the possible boundary condi-
tions, but each software testing problem is different and may involve very different data with
very unique boundaries.

73

NQ S¥3anng
HLIM 34vmidos (U1

JHL SNILSI |

Testing Fundamentals
ParT Il

Tip

If you have a choice of what data you’re going to include in your equivalence parti-
tion, choose data that lies on the boundary.

Testing the Boundary Edges

What you’ve learned so far is that you need to create equivalence partitions of the different

data sets that your software operates on. Since software is susceptible to bugs at the bound-
aries, if you’re choosing what data to include in your equivalence partition, you’ll find more
bugs if you choose data from the boundaries.

But testing the data points just at the edge of the boundary line isn’t usually sufficient. As the
words to the “Hokey Pokey” imply (‘“Put your right hand in, put your right hand out, put your
right hand in, and you shake it all about...”), it’s a good idea to test on both sides of the
boundary—to shake things up a bit.

You’ll find the most bugs if you create two equivalence partitions. The first should contain data
that you would expect to work properly—values that are the last one or two valid points inside
the boundary. The second partition should contain data that you would expect to cause an
error—the one or two invalid points outside the boundary.

Tip

When presented with a boundary condition, always test the valid data just inside the
boundary, test the last possible valid data, and test the invalid data just outside the
boundary.

Testing outside the boundary is usually as simple as adding one, or a bit more, to the maximum
value and subtracting one, or a bit more, from the minimum value. For example:

* First—1/Last+1

e Start—1/Finish+1

¢ Less than Empty/More than Full

* Even Slower/Even Faster

e Largest+1/Smallest—1

* Min-1/Max+1

* Just Over/Just Under

Testing the Software with Blinders On
CHAPTER 5

Even Shorter/Longer
Even Sooner/Later

Highest+1/Lowest—1

Look at a few examples so you can start thinking about all the boundary possibilities:

If a text entry field allows 1 to 255 characters, try entering 1 character and 255 characters
as the valid partition. You might also try 254 characters as a valid choice. Enter 0 and
256 characters as the invalid partitions.

If a program reads and writes to a floppy disk, try saving a file that’s very small, maybe
with one entry. Save a file that’s very large—just at the limit for what a floppy holds.
Also try saving an empty file and a file that’s too large to fit on the disk.

If a program allows you to print multiple pages onto a single page, try printing just one
(the standard case) and try printing the most pages that it allows. If you can, try printing
zero pages and one more than it allows.

Maybe the software has a data-entry field for a 9-digit ZIP code. Try 00000-0000, the
simplest and smallest. Try entering 99999-9999 as the largest. Try entering one more or
one less digit than what’s allowed.

If you’re testing a flight simulator, try flying right at ground level and at the maximum
allowed height for your plane. Try flying below ground level and below sea level as well
as into outer space.

Since you can’t test everything, performing equivalence partitioning around boundary condi-
tions, such as in these examples, to create your test cases is critical. It’s the most effective way
to reduce the amount of testing you need to perform.

NoTEe

It's vitally important that you continually look for boundaries in every piece of soft-
ware you work with. The more you look, the more boundaries you'll discover, and the
more bugs you'll find.

Sub-Boundary Conditions

The normal boundary conditions just discussed are the most obvious to find. They’re the ones
defined in the specification or evident when using the software. Some boundaries, though, that
are internal to the software aren’t necessarily apparent to an end user but still need to be
checked by the software tester. These are known as sub-boundary conditions or internal
boundary conditions.

75

NQ S¥3anng
HLIM 34vmidos (U1

JHL SNILSI |

76

Testing Fundamentals
ParT Il

These boundaries don’t require that you be a programmer or that you be able to read the raw
code that you’re testing, but they do require a bit of general knowledge about how software
works. Two examples are powers-of-two and the ASCII table. The software that you’re testing
can have many others, so you should talk with your team’s programmers to see if they can
offer suggestions for other sub-boundary conditions that you should check.

Powers-of-Two

Computers and software are based on binary numbers—bits representing Os and 1s, bytes made
up of 8 bits, words made up of 4 bytes, and so on. Table 5.1 shows the common powers-of-two
units and their equivalent values.

TABLE 5.1 Software Powers-of-Two

Term Range or Value

Bit Oorl

Nibble 0-15

Byte 0-255

Word 0-65,535 or 0-4,294,967,295
Kilo 1,024

Mega 1,048,576

Giga 1,073,741,824

Tera 1,099,511,627,776

The ranges and values shown in Table 5.1 are critical values to treat as boundary conditions.
You likely won’t see them specified in a requirements document unless the software presents
the same range to the user. Often, though, they’re used internally by the software and are invis-
ible, unless of course they create a situation for a bug.

An Example of Powers-of-Two

An example of how powers-of-two come into play is with communications software.
Bandwidth, or the transfer capacity of your information, is always limited. There’s
always a need to send and receive information faster than what’s possible. For this
reason, software engineers try to pack as much data into communications strings as
they can.

One way they do this is to compress the information into the smallest units possible,
send the most common information in these small units, and then expand to the next
size units as necessary.

Testing the Software with Blinders On
CHAPTER 5

Suppose that a communications protocol supports 256 commands. The software could
send the most common 15 commands encoded into a small nibble of data. For the
16th through 256th commands, the software could then switch over to send the com-
mands encoded into the longer bytes.

The software user knows only that he can issue 256 commands; he doesn’t know that
the software is performing special calculations and different operations on the
nibble/byte boundary.

When you create your equivalence partitions, consider whether powers-of-two boundary condi-
tions need to be included in your partition. For example, if your software accepts a range of
numbers from 1 to 1000, you know to include in your valid partition 1 and 1000, maybe 2 and
999. To cover any possible powers-of-two sub-boundaries, also include the nibble boundaries
of 14, 15, and 16, and the byte boundaries of 254, 255, and 256.

ASCIl Table

Another common sub-boundary condition is the ASCII character table. Table 5.2 is a partial
listing of the ASCII table.

TABLE 5.2 A Partial ASCII Table of Values

Character ASCII Value Character ASCII Value
Null 0 B 66
Space 32 Y 89
/ 47 Z 90
0 48 [91
1 49 ‘ 96
2 50 a 97
9 57 b 98
: 58 y 121
@ 64 z 122
A 65 { 123

Notice that Table 5.2 is not a nice, contiguous list. O through 9 are assigned to ASCII values 48
through 57. The slash character, /, falls before 0. The colon, :, comes after 9. The uppercase
letters A through Z go from 65 to 90. The lowercase letters span 97 to 122. All these cases rep-
resent sub-boundary conditions.

77

NO S¥3anng
HLIM 3¥vmidog |V

JHL SNILSI |

78

Testing Fundamentals
ParT Il

If you’re testing software that performs text entry or text conversion, you’d be very wise to ref-
erence a copy of the ASCII table and consider its boundary conditions when you define what
values to include in your data partitions. For example, if you are testing a text box that accepts
only the characters A—Z and a-z, you should include in your invalid partition the values just
below and above those in the ASCII table—@, [, °, and {.

ASCIl and Unicode

Although ASClII is still very popular as the common means for software to represent
character data, it's being replaced by a new standard called Unicode. Unicode was
developed by the Unicode Consortium in 1991 to solve ASCIl's problem of not being
able to represent all characters in all written languages.

ASCII, using only 8 bits, can represent only 256 different characters. Unicode, which
uses 16 bits, can represent 65,536 characters. To date, more than 39,000 characters
have been assigned, with more than 21,000 being used for Chinese ideographs.

Default, Empty, Blank, Null, Zero, and None

Another source of bugs that may seem obvious is when the software requests an entry—say, in
a text box—but rather than type the correct information, the user types nothing. He may just
press Enter. This situation is often overlooked in the specification or forgotten by the program-
mer but is a case that typically happens in real life.

Well-behaved software will handle this situation. It will usually default to the lowest valid bound-
ary limit or to some reasonable value in the middle of the valid partition, or return an error.

The Windows Paint Attributes dialog box (see Figure 5.6) normally places default values in the
Width and Height text fields. If the user accidentally or purposely deletes them so that the
fields are blank and then clicks OK, what happens?

ibute
File lazt saved: Mot Avalzble

Size on dsk: Mot Avaiable

won [—| oo [— |

Defaut I

‘rlﬂches CiCm 5 Puele

Codoe

’Vr Black and whia 1% Colors ‘
-
I | Use Transparest backaround color

Seleat Calar | l_

FIGURE 5.6
The Windows Paint Attributes dialog box with the Width and Height text fields blanked out.

Testing the Software with Blinders On
CHAPTER 5

Ideally, the software would handle this by defaulting to some valid width and height. If it did
not do that, some error should be returned, which is exactly what you get (see Figure 5.7). The
error isn’t the most descriptive one ever written, but that’s another topic.

P
/ 1 ‘_\‘ Bitmas must be greater than cae pivel on = side

FIGURE 5.7
The error message returned if Enter is pressed with the Width and Height text fields blanked out.

Tip

Always consider creating an equivalence partition that handles the default, empty,
blank, null, zero, or none conditions.

You should create a separate equivalence partition for these values rather than lump them into
the valid cases or the invalid cases because the software usually handles them differently. It’s
likely that in this default case, a different software path is followed than if the user typed 0

or —1 as invalid values. Since you expect different operation of the software, they should be
in their own partition.

Invalid, Wrong, Incorrect, and Garbage Data

The final type of data testing is garbage data. This is where you test-to-fail. You’ve already
proven that the software works as it should by testing-to-pass with boundary testing, sub-
boundary testing, and default testing. Now it’s time to throw the trash at it.

Software testing purists might argue that this isn’t necessary, that if you’ve tested everything
discussed so far you’ve proven the software will work. In the real word, however, there’s noth-
ing wrong with seeing if the software will handle whatever a user can do to it.

If you consider that packaged software today can sell hundreds of millions of copies, it’s con-
ceivable that some percentage of the users will use the software incorrectly. If that results in a
crash or data loss, users won’t blame themselves—they will blame the software. If the software
doesn’t do what they expect, it has a bug. Period.

So, with invalid, wrong, incorrect, and garbage data testing, have some fun. If the software
wants numbers, give it letters. If it accepts only positive numbers, enter negative numbers. If
it’s date sensitive, see if it’ll work correctly on the year 3000. Pretend to have “fat fingers” and
press multiple keys at a time.

79

HLIM 3¥vmidog |V
JHL ONILSI]

NQ Ssd3ianing

80 Testing Fundamentals

PART Il

There are no real rules for this testing other than to try to break the software. Be creative. Be
devious. Have fun.

State Testing

So far what you’ve been testing is the data—the numbers, words, inputs, and outputs of the
software. The other side of software testing is to verify the program’s logic flow through its
various states. A software state is a condition or mode that the software is currently in.
Consider Figures 5.8 and 5.9.

= untitled - Paint M= E
Fle Edit View Image Coos Heb

DE Nl \ Pencil drawing

Ddﬁ

o
i

—ololzz S8 !

Pencil tool —

- 4 Pencil cursor

1 T I o
I

[Fex Fep, chick Helo Topes o the Heyp Men 337,262 y

FIGURE 5.8

The Windows Paint program in the pencil drawing state.

Airbrush tool —

Airbrush drawing

Airbrush cursor

Airbrush sizes —F0

', 1 1 1 T O I
CCEECEEEEC SRS

|Drwx usirg an athnush of the selected size. |352.2"l! 4|

FIGURE 5.9

The Windows Paint program in the airbrushing state.

Testing the Software with Blinders On
CHAPTER 5

Figure 5.8 shows the Windows Paint program in the pencil drawing state. This is the initial
state in which the software starts. Notice that the pencil tool is selected, the cursor looks like a
pencil, and a fine line is used to draw onscreen. Figure 5.9 shows the same program in the air-
brush state. In this state, the airbrush tool is selected, airbrush sizes are provided, the cursor
looks like a spray-paint can, and drawing results in a spray-paint look.

Take a closer look at all the available options that Paint provides—all the tools, menu items,
colors, and so on. Whenever you select one of these and make the software change its look, its
menus, or its operation, you’re changing its state. The software follows a path through the
code, toggles some bits, sets some variables, loads some data, and arrives at a new state of
being.

NoTEe

A software tester must test a program’s states and the transitions between them.

Testing the Software’s Logic Flow

Remember the example in Chapter 3 that showed the infinite data possibilities for testing the
Windows Calculator? You learned earlier in this chapter that to make the testing manageable,
you must reduce the data possibilities by creating equivalence partitions of only the most vital
numbers.

Testing the software’s states and logic flow has the same problems. It’s usually possible to visit
all the states (after all, if you can’t get to them, why have them?). The difficulty is that except
for the simplest programs, it’s often impossible to traverse all paths to all states. The complex-
ity of the software, especially due to the richness of today’s user interfaces, provides so many
choices and options that the number of paths grows exponentially.

The problem is similar to the well-known traveling salesman problem: Given a fixed number of
cities and the distance between each pair of them, find the shortest route to visit all of them
once, returning to your starting point. If there were only five cities, you could do some quick
math and discover that there are 120 different routes. Traversing each of them and finding the
shortest route to all wouldn’t be that difficult or take that much time. If you increase that to
hundreds or thousands of cities—or, in our case, hundreds or thousands of software states—
you soon have a difficult-to-solve problem.

The solution for software testing is to apply equivalence partition techniques to the selection of
the states and paths, assuming some risk because you will choose not to test all of them, but
reducing that risk by making intelligent choices.

81

NQ S¥3anng
HLIM 34vmidos (U1

JHL SNILSI |

82

Testing Fundamentals
ParT Il

Creating a State Transition Map

The first step is to create your own state transition map of the software. Such a map may be
provided as part of the product specification. If it is, you should statically test it as described
in Chapter 4, “Examining the Specification.” If you don’t have a state map, you’ll need to cre-
ate one.

There are several different diagramming techniques for state transition diagrams. Figure 5.10
shows two examples. One uses boxes and arrows and the other uses circles (bubbles) and
arrows. The technique you use to draw your map isn’t important as long as you and the other
members of your project team can read and understand it.

Idle

Esc Key Correct
Pressed Password

/\/\

Esc Key Pressed

Display Password Box

Wait for
Password

Waiting for

password
Incorrect

Password

Incorrect Password

Correct Password l Clear the field

Initiate Destruct

FIGURE 5.10

State transition diagrams can be drawn by using different techniques.

NoTE

State transition diagrams can become quite large. Many development teams cover
their office walls with the printouts. If you expect that your diagrams will become
that complex, look for commercial software that helps you draw and manage them.

A state transition map should show the following items:

» Each unique state that the software can be in. A good rule of thumb is that if you’re
unsure whether something is a separate state, it probably is. You can always collapse it
into another state if you find out later that it isn’t.

¢ The input or condition that takes it from one state to the next. This might be a key
press, a menu selection, a sensor input, a telephone ring, and so on. A state can’t be
exited without some reason. The specific reason is what you’re looking for here.

Testing the Software with Blinders On
CHAPTER 5

¢ Set conditions and produced output when a state is entered or exited. This would
include a menu and buttons being displayed, a flag being set, a printout occurring, a cal-
culation being performed, and so on. It’s anything and everything that happens on the
transition from one state to the next.

NoTEe

Because you are performing black-box testing, you don’t need to know what low-
level variables are being set in the code. Create your map from the user’s view of the
software.

Reducing the Number of States and Transitions to Test

Creating a map for a large software product is a huge undertaking. Hopefully, you’ll be testing
only a portion of the overall software so that making the map is a more reasonable task. Once
you complete the map, you’ll be able to stand back and see all the states and all the ways to
and from those states. If you’ve done your job right, it’ll be a scary picture!

If you had infinite time, you would want to test every path through the software—not just each
line connecting two states, but each set of lines, back to front, round and round. As in the trav-
eling salesman problem, it would be impossible to hit them all.

Just as you learned with equivalence partitioning for data, you need to reduce the huge set of
possibilities to a set of test cases of workable size. There are five ways to do this:

* Visit each state at least once. It doesn’t matter how you get there, but each state needs to
be tested.

* Test the state-to-state transitions that look like the most common or popular. This sounds
subjective, and it is, but it should be based on the knowledge you gained when you per-
formed static black-box analysis (in Chapter 3) of the product specification. Some user
scenarios will be more frequently used than others. You want those to work!

 Test the least common paths between states. It’s likely that these paths were overlooked
by the product designers and the programmers. You may be the first one to try them.

 Test all the error states and returning from the error states. Many times error conditions
are difficult to create. Very often programmers write the code to handle specific errors
but can’t test the code themselves. There are often cases when errors aren’t properly han-
dled, when the error messages are incorrect, or when the software doesn’t recover prop-
erly when the error is fixed.

83

NO S¥3anng
HLIM 3¥vmidog |V

JHL SNILSI |

Testing Fundamentals
ParT Il

 Test random state transitions. If you have a printed state map, throw darts at it and try to
move from dart to dart. If you have time to do more, read Chapter 14, “Automated
Testing and Test Tools,” for information on how to automate your random state transition
testing.

What to Specifically Test
After you identify the specific states and state transitions that you want to test, you can begin
defining your test cases.

Testing states and state transitions involves checking all the state variables—the static condi-
tions, information, values, functionality, and so on that are associated with being in that state or
moving to and from that state. Figure 5.11 shows an example of Windows Paint in the startup
state.

i untitled - Paint |=1O] =] |

¥
Fie Edl Wiew |mzge Coli: Help

—||0|D|/|'a?|x\.|e|-_:z

1 T
=T T

||Fn< Help, cheh. Help Topics on lhe Helo Men [134.15

4|

FIGURE 5.11

The Windows Paint opening screen in the startup state.

Here’s a partial list of the state variables that define Paint’s startup state:

* The window looks as shown in Figure 5.11.

* The window size is set to what it was the last time Paint was used.
* The drawing area is blank.

» The tool box, color box, and status bar are displayed.

* The pencil tool is selected. All the others are not.

* The default colors are black foreground on a white background.

¢ The document name is untitled.

Testing the Software with Blinders On 85

CHAPTER 5

There are many, many more state variables to consider for Paint, but these should give you an
idea of what’s involved in defining a state. Keep in mind that the same process of identifying
state conditions is used whether the state is something visible such as a window or a dialog

box, or invisible such as one that’s part of a communications program or a financial package.

It’s a good idea to discuss your assumptions about the states and state transitions with your
team’s spec writers and programmers. They can offer insights into states that happen behind
the scenes that you may not have considered.

The Dirty Document Flag

State variables can be invisible but very important. A common example is the dirty
document flag.

When a document is loaded into an editor, such as a word processor or painting pro-
gram, an internal state variable called the dirty document flag is cleared and the
software is in the “clean” state. The software stays in this state as long as no changes
are made to the document. It can be viewed and scrolled and the state stays the
same. As soon as something is typed or the document is modified in some way, the
software changes state to the “dirty” state.

If an attempt is made to close or exit the software in the clean state, it shuts down
normally. If the document is dirty, users will get a message asking if they want to
save their work before quitting.

Some software is so sophisticated that if an edit is made that dirties the document
and then the edit is undone to restore the document to its original condition, the
software is returned to the clean state. Exiting the program will occur without a
prompt to save the document.

Testing States to Fail

Everything discussed so far regarding state testing has been about testing-to-pass. You’re
reviewing the software, sketching out the states, trying many valid possibilities, and making
sure the states and state transitions work. The flip side to this, just as in data testing, is to find
test cases that test the software to fail. Examples of such cases are race conditions, repetition,
stress, and load.

Race Conditions and Bad Timing

Most operating systems today, whether for personal computers or for specialized equipment,
can do multitasking. Multitasking means that an operating system is designed to run separate
processes concurrently. These processes can be separate programs such as a spreadsheet and

NO S¥3anng
HLIM 3¥vmidog |V

JHL SNILSI |

86

Testing Fundamentals
ParT Il

email. Or they can be part of the same program such as printing in the background while
allowing new words to be typed into a word processor.

Designing a multitasking operating system isn’t a trivial exercise, and designing applications
software to take advantage of multitasking is a difficult task. In a truly multitasking environ-
ment, the software can’t take anything for granted. It must handle being interrupted at any
moment, be able to run concurrently with everything else on the system, and share resources
such as memory, disk, communications, and other hardware.

The results of all this are race condition problems. These are when two or more events line up
just right and confuse software that didn’t expect to be interrupted in the middle of its opera-
tion. In other words, it’s bad timing. The term race condition comes from just what you’d
think—multiple processes racing to a finish line, not knowing which will get there first.

NoTE

Race condition testing is difficult to plan for, but you can get a good start by looking
at each state in your state transition map and thinking about what outside influences
might interrupt that state. Consider what the state might do if the data it uses isn't
ready or is changing when it's needed. What if two or more of the connecting arcs or
lines occur at exactly the same time?

Here are a few examples of situations that might expose race conditions:

» Saving and loading the same document at the same time with two different programs
» Sharing the same printer, communications port, or other peripheral
* Pressing keys or sending mouse clicks while the software is loading or changing states
¢ Shutting down or starting up two or more instances of the software at the same time
» Using different programs to simultaneously access a common database
These may sound like harsh tests, but they aren’t. Software must be robust enough handle these

situations. Years ago they may have been out of the ordinary but today, users expect their soft-
ware to work properly under these conditions.

Repetition, Stress, and Load

Three other test-to-fail state tests are repetition, stress, and load. These tests target state han-
dling problems where the programmer didn’t consider what might happen in the worst-case
scenarios.

Testing the Software with Blinders On
CHAPTER 5

Repetition testing involves doing the same operation over and over. This could be as simple as
starting up and shutting down the program over and over. It could also mean repeatedly saving
and loading data or repeatedly selecting the same operation. You might find a bug after only a
couple repetitions or it might take thousands of attempts to reveal a problem.

The main reason for doing repetition testing is to look for memory leaks. A common software
problem happens when computer memory is allocated to perform a certain operation but isn’t
completely freed when the operation completes. The result is that eventually the program
uses up memory that it depends on to work reliably. If you’ve ever used a program that works
fine when you first start it up, but then becomes slower and slower or starts to behave errati-
cally over time, it’s likely due to a memory leak bug. Repetition testing will flush these prob-
lems out.

Stress testing is running the software under less-than-ideal conditions—low memory, low disk
space, slow CPUs, slow modems, and so on. Look at your software and determine what exter-
nal resources and dependencies it has. Stress testing is simply limiting them to their bare mini-
mum. Your goal is to starve the software. Does this sound like boundary condition testing?

It is.

Load testing is the opposite of stress testing. With stress testing, you starve the software; with
load testing, you feed it all that it can handle. Operate the software with the largest possible
data files. If the software operates on peripherals such as printers or communications ports,
connect as many as you can. If you’re testing an Internet server that can handle thousands of
simultaneous connections, do it. Max out the software’s capabilities. Load it down.

Don’t forget about time as a load testing variable. With most software, it’s important for it to
run over long periods. Some software should be able to run forever without being restarted.

NoTEe

There’s no reason that you can’t combine repetition, stress, and load, running all the
tests at the same time.

There are two important considerations with repetition, stress, and load testing:

* Your team’s programmers and project managers may not be completely receptive to your
efforts to break the software this way. You’ll probably hear them complain that no cus-
tomer will use the system this way or stress it to the point that you are. The short answer
is that yes, they will. Your job is to make sure that the software does work in these situa-
tions and to report bugs if it doesn’t. Chapter 18, “Reporting What You Find,” discusses
how to best report your bugs to make sure that they’re taken seriously and are fixed.

87

NQ S¥3anng
HLIM 34vmidos (U1

JHL SNILSI |

Testing Fundamentals
ParT Il

* Opening and closing your program a million times is probably not possible if you’re
doing it by hand. Likewise, finding a few thousand people to connect to your Internet
server might be difficult to organize. Chapter 14 covers test automation and will give
you ideas on how to perform testing such as this without requiring people to do the
dirty work.

Other Black-Box Test Techniques

The remaining categories of black-box test techniques aren’t standalone methods as much as
they are variations of the data testing and state testing that has already been described. If you’ve
done thorough equivalence partitioning of your program’s data, created a detailed state map,
and developed test cases from these, you’ll find most software bugs that a user would find.

What’s left are techniques for finding the stragglers, the ones that, if they were real living bugs,
might appear to have a mind of their own, going their own way. Finding them might appear a
bit subjective and not necessarily based on reason, but if you want to flush out every last bug,
you’ll have to be a bit creative.

Behave Like a Dumb User

The politically correct term might be inexperienced user or new user, but in reality, they’re all
the same thing. Put a person who’s unfamiliar with the software in front of your program and
they’ll do and try things that you never imagined. They’ll enter data that you never thought of.
They’ll change their mind in mid-stream, back up, and do something different. They’ll surf
through your Web site, clicking things that shouldn’t be clicked. They’ll discover bugs that you
completely missed.

It can be frustrating, as a tester, to watch someone who has no experience in testing spend five
minutes using a piece of software and crash it. How do they do it? They weren’t operating on
any rules or making any assumptions.

When you’re designing your test cases or looking at the software for the first time, try to think
like a dumb user. Throw out any preconceived ideas you had about how the software should
work. If you can, bring in a friend who isn’t working on the project to brainstorm ideas with
you. Assume nothing. Adding these test cases to your designed library of test cases will create
a very comprehensive set.

Look for Bugs Where You've Already Found Them

There are two reasons to look for bugs in the areas where you’ve already found them:

* As you learned in Chapter 3, the more bugs you find, the more bugs there are. If you dis-
cover that you’re finding lots of bugs at the upper boundary conditions across various

Testing the Software with Blinders On 89

CHAPTER 5

features, it would be wise to emphasize testing these upper boundaries on all features. Of
course you're going to test these anyway, but you might want to throw in a few special
cases to make sure the problem isn’t pervasive.

e Many programmers tend to fix only the specific bug you report. No more, no less. If you
report a bug that starting, stopping, and restarting a program 255 times results in a crash,
that’s what the programmer will fix. There may have been a memory leak that caused the
problem and the programmer found and fixed it. When you get the software back to
retest, make sure you rerun the same test for 256 times and beyond. There could very
well be yet another memory leak somewhere out there.

Follow Experience, Intuition, and Hunches

There’s no better way to improve as a software tester than to gain experience. There’s no better
learning tool than just doing it, and there’s no better lesson than getting that first phone call
from a customer who found a bug in the software you just finished testing.

Experience and intuition can’t be taught. They must be gained over time. You can apply all the
techniques you’ve learned so far and still miss important bugs. It’s the nature of the business.
As you progress through your career, learning to test different types and sizes of products,
you’ll pick up little tips and tricks that steer you toward those tough-to-find bugs. You’ll be
able to start testing a new piece of software and quickly find bugs that your peers would have
missed.

Take notes of what works and what doesn’t. Try different approaches. If you think something
looks suspicious, take a closer look. Go with your hunches until you prove them false.

Experience is the name every one gives to their mistakes.
—Oscar Wilde

Summary

It’s been a long chapter. Dynamic black-box testing covers a lot of ground. For new testers,
this may be the single most important chapter in the book. It’s likely that at your interviews or
your first day on the job you’ll be given software and asked to test it. Applying this chapter’s
techniques is a sure way to immediately find bugs.

Don’t assume, though, that this is all there is to software testing. If it was, you could stop read-
ing right now and ignore the remaining chapters. Dynamic black-box testing will just get you

in the door. There’s so much more to software testing, and you’re just getting started.

The next two chapters introduce you to software testing when you have access to the code and
can see how it works and what it does on the lowest levels. The same black-box techniques are
still valid, but you’ll be able to complement them with new techniques that will help you
become an even more effective software tester.

NQ S¥3anng
HLIM 34vmidos (U1

JHL SNILSI |

90 Testing Fundamentals

PART Il

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!
1. True or False: You can perform dynamic black-box testing without a product specifica-
tion or requirements document.

2. If you’re testing a program’s ability to print to a printer, what generic test-to-fail test
cases might be appropriate?

3. Start up Windows WordPad and select Print from the File menu. You’ll get the dialog
shown in Figure 5.12. What boundary conditions exist for the Print Range feature shown
in the lower-left corner?

Piint EE

tiore: (AT, -] Focete: |

Stalug Delaul prnter, Ready
Typs: Canon BIC-T000 S eries

‘whete LPT1.
Comment: B Dirves 5 5 ™| et ta file
= Piirk 1arge Cape:
L] Mumber of copies 1 3
" Peges jiom [1 to
- e
© Seleotion

coe |

FIGURE 5.12

The Windows Print dialog box showing the Print Range feature.

4. Assume that you have a 10-character-wide ZIP code text box, such as the one shown in
Figure 5.13. What equivalence partitions would you create for this text box?

. Zip Code Tester M=) E3

Eriter 2 Code [io00-0000

FIGURE 5.13
A sample ZIP code text box that holds up to 10 characters.

5. True or False: Visiting all the states that a program has assures that you’ve also tra-
versed all the transitions among them.

6. There are many different ways to draw state transition diagrams, but there are three
things that they all show. What are they?

Testing the Software with Blinders On

CHAPTER 5

. What are some of the initial state variables for the Windows Calculator?

8. What actions do you perform on software when attempting to expose race condition

bugs?
. True or False: It’s an unfair test to perform stress testing at the same time you perform
load testing.

91

NQ S¥3anng
HLIM 34vmidos (U1

JHL SNILSI |

Examining the Code CHAPTER

IN THIS CHAPTER

¢ Static White-Box Testing: Examining the
Design and Code 94

¢ Formal Reviews 95
e Coding Standards and Guidelines 98

¢ Generic Code Review Checklist 102

94

Testing Fundamentals
ParT Il

Software testing isn’t limited to treating the specification or the program like a black box as
described in Chapters 4, “Examining the Specification,” and 5, “Testing the Software with
Blinders On.” If you have some programming experience, even if it’s just a little, you can also
perform testing on the software design and code.

In some industries, such verification isn’t as common as black-box testing. However, if you’re
testing military, financial, industrial, or medical software, or if you’re lucky enough to be
working in a highly disciplined development model, it may be routine to verify the product at
this level.

This chapter introduces you to the basics of performing verification on the design and code. As
a new software tester, it may not be your first task, but it’s one that you can eventually move
into if your interests lie in programming.

Highlights from this chapter include

* The benefits of static white-box testing
» The different types of static white-box reviews
* Coding guidelines and standards

* How to generically review code for errors

Static White-Box Testing: Examining the Design
and Code

Remember the definitions of static testing and white-box testing from Chapter 4? Static testing
refers to testing something that isn’t running—examining and reviewing it. White-box (or clear-
box) testing implies having access to the code, being able to see it and review it.

Static white-box testing is the process of carefully and methodically reviewing the software
design, architecture, or code for bugs without executing it. It’s sometimes referred to as struc-
tural analysis.

The obvious reason to perform static white-box testing is to find bugs early and to find bugs
that would be difficult to uncover or isolate with dynamic black-box testing. The more inde-
pendent people who review the software, the better, especially if it’s at a low level and early in
the development cycle.

A side benefit of performing static white-box testing is that it gives the team’s black-box
testers ideas for test cases to apply when they receive the software for testing. They may not
necessarily understand the details of the code, but by listening to the review comments they
can identify feature areas that sound troublesome or bug-prone.

Examining the Code
CHAPTER 6

NoTEe

Development teams vary in who has the responsibility for static white-box testing. In
some teams the programmers are the ones who organize and run the reviews, invit-
ing the software testers as independent observers. In other teams the software
testers are the ones who perform this task, asking the programmer who wrote the
code and a couple of his peers to assist in the reviews. Ultimately, either approach
can work. It's up to the development team to choose what works best for them.

The unfortunate thing about static white-box testing is that it’s not always done. Many teams
have the misconception that it’s too time-consuming, too costly, or not productive. All of these
are untrue—compared to the alternative of testing, finding, and still missing bugs at the back
end of the project. The problem lies in the perception that a programmer’s job is to write lines
of code and that any task that takes away from his efficiency of churning out those lines is
slowing down the process.

Fortunately, the tide is changing. Many companies are realizing the benefits of testing early
and are hiring and training their programmers and testers to perform white-box testing. It’s not
rocket science (unless you’re designing rockets), but getting started requires knowing a few
basic techniques. If you’re interested in taking it further, the opportunities are huge.

Formal Reviews

A formal review is the process under which static white-box testing is performed. A formal
review can range from a simple meeting between two programmers to a detailed, rigorous
inspection of the code.

There are four essential elements to a formal review:

* Identify Problems. The goal of the review is to find problems with the software—not
just items that are wrong, but missing items as well. All criticism should be directed at
the code, not the person who created it. Participants shouldn’t take any criticism person-
ally. Leave your egos, emotions, and sensitive feelings at the door.

* Follow Rules. A fixed set of rules should be followed. They may set the amount of code
to be reviewed (usually a couple hundred lines), how much time will be spent (a couple
hours), what can be commented on, and so on. This is important so that the participants
know what their roles are and what they should expect. It helps the review run more
smoothly.

* Prepare. Each participant is expected to prepare for and contribute to the review.
Depending on the type of review, participants may have different roles. They need to

95

()]

300D 3HL

SNININVX]

Testing Fundamentals
ParT Il

know what their duties and responsibilities are and be ready to actively fulfill them at the
review. Most of the problems found through the review process are found during prepara-
tion, not at the actual review.

* Write a Report. The review group must produce a written report summarizing the
results of the review and make that report available to the rest of the product develop-
ment team. It’s imperative that others are told the results of the meeting—how many
problems were found, where they were found, and so on.

What makes formal reviews work is following an established process. Haphazardly “getting
together to go over some code” isn’t sufficient and may actually be detrimental. If a process is
run in an ad-hoc fashion, bugs will be missed and the participants will likely feel that the effort
was a waste of time.

If the reviews are run properly, they can prove to be a great way to find bugs early. Think of
them as one of the initial nets (see Figure 6.1) that catches the big bugs at the beginning of the
process. Sure, smaller bugs will still get through, but they’ll be caught in the next testing
phases with the smaller nets with the tighter weave.

=
=

FIGURE 6.1
Formal reviews are the first nets used in catching bugs.

In addition to finding problems, holding formal reviews has a few indirect results:

* Communications. Information not contained in the formal report is communicated. For
example, the black-box testers can get insight into where problems may lie.
Inexperienced programmers may learn new techniques from more experienced program-
mers. Management may get a better feel for how the project is tracking its schedule.

¢ Quality. A programmer’s code that is being gone over in detail, function by function,
line by line, often results in the programmer being more careful. That’s not to say that he
would otherwise be sloppy—just that if he knows that his work is being carefully

Examining the Code

CHAPTER 6

reviewed by his peers, he might make an extra effort to triple-check it to make sure that
it’s right.

e Team Camaraderie. If a review is run properly, it can be a good place for testers and
programmers to build respect for each other’s skills and to better understand each other’s
jobs and job needs.

* Solutions. Solutions may be found for tough problems, although whether they are dis-
cussed depends on the rules for the review. It may be more effective to discuss solutions
outside the review.

These indirect benefits shouldn’t be relied on, but they do happen. On many teams, for what-
ever reasons, the members end up working in isolation. Formal reviews are a great way to get
them in the same room, all discussing the same project problems.

Peer Reviews

The easiest way to get team members together and doing their first formal reviews of the soft-
ware is through peer reviews, the least formal method. Sometimes called buddy reviews, this
method is really more of an “I’ll show you mine if you show me yours” type discussion.

Peer reviews are often held with just the programmer who wrote the code and one or two other
programmers or testers acting as reviewers. That small group simply reviews the code together
and looks for problems and oversights. To assure that the review is highly effective (and does
not turn into a coffee break) all the participants need to make sure that the four key elements of
a formal review are in place: Look for problems, follow rules, prepare for the review, and write
a report. Because peer reviews are informal, these elements are often scaled back. Still, just
getting together to discuss the code can find bugs.

Walkthroughs

Walkthroughs are the next step up in formality from peer reviews. In a walkthrough, the pro-
grammer who wrote the code formally presents (walks through) it to a small group of five or
so other programmers and testers. The reviewers should receive copies of the software in
advance of the review so they can examine it and write comments and questions that they want
to ask at the review. Having at least one senior programmer as a reviewer is very important.

The presenter reads through the code line by line, or function by function, explaining what the
code does and why. The reviewers listen and question anything that looks suspicious. Because
of the larger number of participants involved in a walkthrough compared to a peer review, it’s

much more important for them to prepare for the review and to follow the rules. It’s also very

important that after the review the presenter write a report telling what was found and how he

plans to address any bugs discovered.

97

()]

300D 3HL

SNININVX]

98

Testing Fundamentals
ParT Il

Inspections

Inspections are the most formal type of reviews. They are highly structured and require train-
ing for each participant. Inspections are different from peer reviews and walkthroughs in that
the person who presents the code, the presenter or reader, isn’t the original programmer. This
forces someone else to learn and understand the material being presented, potentially giving a
different slant and interpretation at the inspection meeting.

The other participants are called inspectors. Each is tasked with reviewing the code from a dif-
ferent perspective, such as a user, a tester, or a product support person. This helps bring differ-
ent views of the product under review and very often identifies different bugs. One inspector is
even tasked with reviewing the code backward—that is, from the end to the beginning—to
make sure that the material is covered evenly and completely.

Some inspectors are also assigned tasks such as moderator and recorder to assure that the rules
are followed and that the review is run effectively.

After the inspection meeting is held, the inspectors might meet again to discuss the defects
they found and to work with the moderator to prepare a written report that identifies the rework
necessary to address the problems. The programmer then makes the changes and the moderator
verifies that they were properly made. Depending on the scope and magnitude of the changes
and on how critical the software is, a reinspection may be needed to locate any remaining bugs.

Inspections have proven to be very effective in finding bugs in any software deliverable, espe-
cially design documents and code, and are gaining popularity as companies and product devel-
opment teams discover their benefits.

Coding Standards and Guidelines

In formal reviews, the inspectors are looking for problems and omissions in the code. There are
the classic bugs where something just won’t work as written. These are best found by careful
analysis of the code—senior programmers and testers are great at this.

There are also problems where the code may operate properly but may not be written to meet a
specific standard or guideline. It’s equivalent to writing words that can be understood and get a
point across but don’t meet the grammatical and syntactical rules of the English language.
Standards are the established, fixed, have-to-follow-them rules—the do’s and don’ts.
Guidelines are the suggested best practices, the recommendations, the preferred way of doing
things. Standards have no exceptions, short of a structured waiver process. Guidelines can be a
bit loose.

It may sound strange that some piece of software may work, may even be tested and shown to
be very stable, but still be incorrect because it doesn’t meet some criteria. It’s important,
though, and there are three reasons for adherence to a standard or guideline:

Examining the Code
CHAPTER 6

* Reliability. It’s been shown that code written to a specific standard or guideline is more
reliable and bug-free than code that isn’t.

* Readability/Maintainability. Code that follows set standards and guidelines is easier to
read, understand, and maintain.

* Portability. Code often has to run on different hardware or be compiled with different
compilers. If it follows a set standard, it will likely be easier—or even completely pain-
less—to move it to a different platform.

The requirements for your project may range from strict adherence to national or international
standards to loose following of internal team guidelines. What’s important is that your team
has some standards or guidelines for programming and that these are verified in a formal
review.

Examples of Programming Standards and Guidelines

Figure 6.2 shows an example of a programming standard that deals with the use of the C lan-
guage goto, while, and if -else statements. Improper use of these statements often results in
buggy code, and most programming standards explicitly set rules for using them.

TOPIC: 3.05 Control-Restriction on control structures

STANDARD
The go to statement (and hence labels as well) should not be used.

The while loop should be used instead of the do-while
loop, except where the logic of the problem explicit requires
doing the body at least once regardless of the loop condition.

If a single if-else can replace a continue, an if-else
should be used.

JUSTIFICATION

The go to statement is prohibited for the empirical reason that
its use is highly correlated with errors and hare-to-read code,
and for the abstract reason that algorithms should be
expressed in structures that facilitate checking the program
against the structure of the underlying process.

The do-while is discouraged because loops should be coded
in such a form as to "do nothing gracefully”, i.e. they should
test their looping condition before executing the body.

T U N —

FIGURE 6.2

A sample coding standard explains how several language control structures should be used. (Adapted from C++
Programming Guidelines by Thomas Plum and Dan Saks. Copyright 1991, Plum Hall, Inc.)

99

()]

300D 3HL

SNININVX]

100 Testing Fundamentals

PART Il

The standard has four main parts:

e Title describes what topic the standard covers.

* Standard (or guideline) describes the standard or guideline explaining exactly what’s
allowed and not allowed.

* Justification gives the reasoning behind the standard so that the programmer understands
why it’s good programming practice.

e Example shows simple programming samples of how to use the standard. This isn’t
always necessary.

Figure 6.3 is an example of a guideline dealing with C language features used in C++. Note
how the language is a bit different. In this case, it starts out with “Try to avoid.” Guidelines
aren’t as strict as standards, so there is some room for flexibility if the situation calls for it.

TOPIC: 7.02 C_ problems - Problem areas from C

GUIDELINE
Try to avoid C language features if a conflict with
programming in C++

1. Do not use setimp and longimp if there are any
objects with destructors which could be created]
between the execution of the setimp and the
longimp.

2. Do not use the offsetof macro except when
applied to members of just-a-struct.

3. Do not mix C-style FILE I/O (using stdio.h) with
C++ style I/O (using iostream.h or stream.h) on
the same file.

4. Avoid using C functions like memcpy or memcap for
copying or comparing objects of a type other than
array-of-char or just-a-struct.

5. Avoid the C macro NULL; use 0 instead.

JUSTIFICATION
Each of these features concerns an area of traditional C usage
which creates some problem in C++.

T U N~ —

FIGURE 6.3

An example of a programming guideline shows how to use certain aspects of C in C++. (Adapted from C++
Programming Guidelines by Thomas Plum and Dan Saks. Copyright 1991, Plum Hall, Inc.)

Examining the Code
CHAPTER 6

It's a Matter of Style

There are standards, there are guidelines, and then there is style. From a software
quality and testing perspective, style doesn’t matter.

Every programmer, just like every book author and artist, has his or her own unique
style. The rules may be followed, the language usage may be consistent, but it’s still
easy to tell who created what software.

That differentiating factor is style. In programming, it could be how verbose the com-
menting is or how the variables are named. It could be what indentation scheme is
used in the loop constructs. It's the look and feel of the code.

Some teams, in their zeal to institute standards and guidelines, start critiquing the
style of the code. As a software tester, be careful not to become caught up in this
frenzy. When performing formal reviews on a piece of software, test and comment
only on things that are wrong, missing, or don’t adhere to written standards or
guidelines. Ask yourself if what you're about to report is really a problem or just dif-
ference of opinion, a difference of style. The latter isn't a bug.

101

()]

Obtaining Standards

If your project, because of its nature, must follow a set of programming standards, or if you're
just interested in examining your software’s code to see how well it meets a published standard
or guideline, several sources are available for you to reference.

National and international standards for most computer languages and information technology
can be obtained from:

¢ American National Standards Institute (ANSI), www.ansi.org

* International Engineering Consortium (IEC), www. iec.org

* International Organization for Standardization (ISO), www.iso.ch

* National Committee for Information Technology Standards (NCITS), www.ncits.org
There are also documents that demonstrate programming guidelines and best practices avail-
able from professional organizations such as

* Association for Computing Machinery (ACM), www.acm.org

* Institute of Electrical and Electronics Engineers, Inc (IEEE), www. ieee.org
You may also obtain information from the software vendor where you purchased your pro-

gramming software. They often have published standards and guidelines available for free or
for a small fee.

300D 3HL

SNININVX]

102

Testing Fundamentals
ParT Il

Generic Code Review Checklist

The rest of this chapter on static white-box testing covers some problems you should look for
when verifying software for a formal code review. These checklists are in addition to compar-
ing the code against a standard or a guideline and to making sure that the code meets the pro-
ject’s design requirements.

To really understand and apply these checks, you should have some programming experience.
If you haven’t done much programming, you might find it useful to read an introductory book
such as Sams Teach Yourself Beginning Programming in 24 Hours by Sams Publishing before
you attempt to review program code in detail.

Data Reference Errors
Data reference errors are bugs caused by using a variable, constant, array, string, or record that
hasn’t been properly initialized for how it’s being used and referenced.
* Is an uninitialized variable referenced? Looking for omissions is just as important as
looking for errors.

* Are array and string subscripts integer values and are they always within the bounds of
the array’s or string’s dimension?

* Are there any potential “off by one” errors in indexing operations or subscript references
to arrays? Remember the code in Listing 5.1 from Chapter 5.

* Is a variable used where a constant would actually work better—for example, when
checking the boundary of an array?

 Is a variable ever assigned a value that’s of a different type than the variable? For exam-
ple, does the code accidentally assign a floating-point number to an integer variable?

* Is memory allocated for referenced pointers?

« If a data structure is referenced in multiple functions or subroutines, is the structure
defined identically in each one?

Data Declaration Errors

Data declaration bugs are caused by improperly declaring or using variables or constants.

* Are all the variables assigned the correct length, type, and storage class? For example,
should a variable be declared as a string instead of an array of characters?

" These checklist items were adapted from Software Testing in the Real World: Improving the Process,
pp. 198-201. Copyright 1995 by Edward Kit. Used by permission of Pearson Education Limited,
London. All rights reserved.

Examining the Code

CHAPTER 6

If a variable is initialized at the same time as it’s declared, is it properly initialized and
consistent with its type?

Are there any variables with similar names? This isn’t necessarily a bug, but it could be a
sign that the names have been confused with those from somewhere else in the program.

Are any variables declared that are never referenced or are referenced only once?

Are all the variables explicitly declared within their specific module? If not, is it under-
stood that the variable is shared with the next higher module?

Computation Errors

Computational or calculation errors are essentially bad math. The calculations don’t result in
the expected result.

Do any calculations that use variables have different data types, such as adding an integer
to a floating-point number?

Do any calculations that use variables have the same data type but are different lengths—
adding a byte to a word, for example?

Are the compiler’s conversion rules for variables of inconsistent type or length under-
stood and taken into account in any calculations?

Is the target variable of an assignment smaller than the right-hand expression?
Is overflow or underflow in the middle of a numeric calculation possible?
Is it ever possible for a divisor/modulus to be zero?

For cases of integer arithmetic, does the code handle that some calculations, particularly
division, will result in loss of precision?

Can a variable’s value go outside its meaningful range? For example, could the result of
a probability be less than 0% or greater than 100%?

For expressions containing multiple operators, is there any confusion about the order of
evaluation and is operator precedence correct? Are parentheses needed for clarification?

Comparison Errors

Less than, greater than, equal, not equal, true, false. Comparison and decision errors are very
susceptible to boundary condition problems.

Are the comparisons correct? It may sound pretty simple, but there’s always confusion
over whether a comparison should be less than or less than or equal to.

Are there comparisons between fractional or floating-point values? If so, will any preci-
sion problems affect their comparison? Is 1.00000001 close enough to 1.00000002 to be
equal?

103

()]

300D 3HL

SNININVX]

104

Testing Fundamentals

PART Il

Does each Boolean expression state what it should state? Does the Boolean calculation
work as expected? Is there any doubt about the order of evaluation?

Are the operands of a Boolean operator Boolean? For example, is an integer variable
containing integer values being used in a Boolean calculation?

Control Flow Errors

Control flow errors are the result of loops and other control constructs in the language not
behaving as expected. They are usually caused, directly or indirectly, by computational or com-
parison errors.

If the language contains statement groups such as begin...end and do. . .while, are the
ends explicit and do they match their appropriate groups?

Will the program, module, subroutine, or loop eventually terminate? If it won’t, is that
acceptable?

Is there a possibility of premature loop exit?
Is it possible that a loop never executes? Is it acceptable if it doesn’t?

If the program contains a multiway branch such as a switch. ..case statement, can the
index variable ever exceed the number of branch possibilities? If it does, is this case han-
dled properly?

Are there any “off by one” errors that would cause unexpected flow through the loop?

Subroutine Parameter Errors

Subroutine parameter errors are due to incorrect passing of data to and from software
subroutines.

Do the types and sizes of parameters received by a subroutine match those sent by the
calling code? Is the order correct?

If a subroutine has multiple entry points (yuck), is a parameter ever referenced that isn’t
associated with the current point of entry?

If constants are ever passed as arguments, are they accidentally changed in the
subroutine?

Does a subroutine alter a parameter that’s intended only as an input value?

Do the units of each parameter match the units of each corresponding argument—
English versus metric, for example?

If global variables are present, do they have similar definitions and attributes in all refer-
encing subroutines?

Examining the Code

CHAPTER 6

Input/Output Errors

These errors include anything related to reading from a file, accepting input from a keyboard
or mouse, and writing to an output device such as a printer or screen. The items presented here
are very simplified and generic. You should adapt and add to them to properly cover the soft-
ware you’re testing.

* Does the software strictly adhere to the specified format of the data being read or written
by the external device?

e If the file or peripheral isn’t present or ready, is that error condition handled?

* Does the software handle the situation of the external device being disconnected, not
available, or full during a read or write?

e Are all conceivable errors handled by the software in an expected way?

e Have all error messages been checked for correctness, appropriateness, grammar, and
spelling?

Other Checks

This best-of-the-rest list defines a few items that didn’t fit well in the other categories. It’s not
by any means complete, but should give you ideas for specific items that should be added to a
list tailored for your software project.

e Will the software work with languages other than English? Does it handle extended
ASCII characters? Does it need to use Unicode instead of ASCII?

e If the software is intended to be portable to other compilers and CPUs, have allowances
been made for this? Portability, if required, can be a huge issue if not planned and
tested for.

* Has compatibility been considered so that the software will operate with different
amounts of available memory, different internal hardware such as graphics and sound
cards, and different peripherals such as printers and modems?

* Does compilation of the program produce any “warning” or “informational” messages?
They usually indicate that something questionable is being done. Purists would argue
that any warning message is unacceptable.

Summary

Examining the code—static white-box testing—has proven to be an effective means for finding
bugs early. It’s a task that requires a great deal of preparation to make it a productive exercise,
but many studies have shown that the time spent is well worth the benefits gained. To make it
even more attractive, commercial software is now available that automates a great deal of the

105

()]

300D 3HL

SNININVX]

106

Testing Fundamentals

PART Il

work. Software is available that reads in a program’s source files and checks it against pub-
lished standards and your own customizable guidelines. Compilers have also improved to the
point that if you enable all their levels of error checking, they will catch many of the problems
listed previously in the generic code review checklist. These tools don’t eliminate the tasks of
code reviews or inspections—they just make it easier to accomplish and give testers more time
to look even deeper for bugs.

If your team currently isn’t doing testing at this level and you have some experience at pro-
gramming, you might try suggesting it as a process to investigate. Programmers and managers
may be apprehensive at first, not knowing if the benefits are that great—it’s hard to claim, for
example, that finding a bug during an inspection saved your project five days over finding it
months later during black-box testing. But, static white-box testing is gaining momentum, and
in some circles, projects can’t ship reliable software without it.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

1. Name several advantages to performing static white-box testing.

2. True or False: Static white-box testing can find missing items as well as problems.
3. What key element makes formal reviews work?
4

. Besides being more formal, what’s the big difference between inspections and other
types of reviews?
5. If a programmer was told that he could name his variables with only eight characters and
the first character had to be capitalized, would that be a standard or a guideline?

6. Should you adopt the code review checklist from this chapter as your team’s standard to
verify its code?

Testing the Software with
X-Ray Glasses

IN THIS CHAPTER

¢ Dynamic White-Box Testing 108

e Dynamic White-Box Testing versus
Debugging 110

¢ Testing the Pieces 111
e Data Coverage 116
e Code Coverage 119

CHAPTER

7

108

Testing Fundamentals
ParT Il

So far in Part II you’ve learned about three of the four fundamental testing techniques: static
black box (testing the specification), dynamic black box (testing the software), and static white
box (examining the code). In this chapter, you’ll learn the fourth fundamental technique—
dynamic white-box testing. You’ll look into the software “box” with your X-ray glasses as you
test the software.

In addition to your X-ray specs, you’ll also need to wear your programmer’s hat—if you have
one. If you don’t own one, don’t be scared off. The examples used aren’t that complex and if
you take your time, you’ll be able to follow them. Gaining even a small grasp of this type of
testing will make you a much more effective black-box tester.

If you do have some programming experience, consider this chapter an introduction to a very
wide-open testing field. Most software companies are hiring testers specifically to perform
low-level testing of their software. They’re looking for people with both programming and test-
ing skills, which is often a rare mix and highly sought after.

Highlights from this chapter include

* What dynamic white-box testing is

* The difference between debugging and dynamic white-box testing
* What unit and integration testing are

* How to test low-level functions

* The data areas that need to be tested at a low level

* How to force a program to operate a certain way

* What different methods you can use to measure the thoroughness of your testing

Dynamic White-Box Testing

By now you should be very familiar with the terms static, dynamic, white box, and black box.
Knowing that this chapter is about dynamic white-box testing should tell you exactly what
material it covers. Since it’s dynamic, it must be about testing a running program and since it’s
white-box, it must be about looking inside the box, examining the code, and watching it as it
runs. It’s like testing the software with X-ray glasses.

Dynamic white-box testing, in a nutshell, is using information you gain from seeing what the
code does and how it works to determine what to test, what not to test, and how to approach

the testing. Another name commonly used for dynamic white-box testing is structural testing
because you can see and use the underlying structure of the code to design and run your tests.

Why would it be beneficial for you to know what’s happening inside the box, to understand
how the software works? Consider Figure 7.1. This figure shows two boxes that perform the
basic calculator operations of addition, subtraction, multiplication, and division.

Testing the Software with X-Ray Glasses
CHAPTER 7

250%(1+0.015)*((1+0.015)A360-1)/0.015

L
[C]

250*(1+0.015)*((1+0.015)"360-1)/0.015

L

3581322.293419985680302829734315 ?2777727729772977

FIGURE 7.1
You would choose different test cases if you knew that one box contained a computer and the other a person with a
pencil and paper:

If you didn’t know how the boxes worked, you would apply the dynamic black-box testing
techniques you learned in Chapter 5, “Testing the Software with Blinders On.” But, if you
could look in the boxes and see that one contained a computer and the other contained a person
with a pencil and paper, you would probably choose a completely different test approach for
each one. Of course, this example is very simplistic, but it makes the point that knowing how
the software operates will influence how you test.

Dynamic white-box testing isn’t limited just to seeing what the code does. It also can involve
directly testing and controlling the software. The four areas that dynamic white-box testing
encompasses are

¢ Directly testing low-level functions, procedures, subroutines, or libraries. In Microsoft
Windows, these are called Application Programming Interfaces (APIs).

» Testing the software at the top level, as a completed program, but adjusting your test
cases based on what you know about the software’s operation.

» Gaining access to read variables and state information from the software to help you
determine whether your tests are doing what you thought. And, being able to force the
software to do things that would be difficult if you tested it normally.

* Measuring how much of the code and specifically what code you “hit” when you run
your tests and then adjusting your tests to remove redundant test cases and add missing
ones.

Each area is discussed in the remainder of this chapter. Think about them as you read on and
consider how they might be used to test software that you’re familiar with.

109

~N

SISSVID) AVY-X

HLIM J¥VMLI0S

JH1 DNILSI|

110

Testing Fundamentals
ParT Il

Dynamic White-Box Testing versus Debugging

It’s important not to confuse dynamic white-box testing with debugging. If you’ve done some
programming, you’ve probably spent many hours debugging code that you’ve written. The two
techniques may appear similar because they both involve dealing with software bugs and look-
ing at the code, but they’re very different in their goals (see Figure 7.2).

Testing Programming

Dynamic White-Box Isolating The Bug Debugging
Testing

FIGURE 7.2

Dynamic white-box testing and debugging have different goals but they do overlap in the middle.

The goal of dynamic white-box testing is to find bugs. The goal of debugging is to fix them.
They do overlap, however, in the area of isolating where and why the bug occurs. You’ll learn
more about this in Chapter 18, “Reporting What You Find,” but for now, think of the overlap
this way. As a software tester, you should narrow down the problem to the simplest test case
that demonstrates the bug. If it’s white-box testing, that could even include information about
what lines of code look suspicious. The programmer who does the debugging picks the process
up from there, determines exactly what is causing the bug, and attempts to fix it.

NoTE

It's important to have a clear separation between your work and the programmer’s
work. Programmers write the code, testers find the bugs and may need to write some
code to drive their tests, and programmers fix the bugs. Without this separation,
issues can arise where tasks are overlooked or work is duplicated.

If you’re performing this low-level testing, you will use many of the same tools that program-
mers use. If the program is compiled, you will use the same compiler but possibly with differ-
ent settings to enable better error detection. You will likely use a code-level debugger to
single-step through the program, watch variables, set break conditions, and so on. You may
also write your own programs to test separate code modules given to you to validate.

Testing the Software with X-Ray Glasses
CHAPTER 7

Testing the Pieces

Recall from Chapter 2, “The Software Development Process,” the various models for software
development. The big-bang model was the easiest but the most chaotic. Everything was put
together at once and, with fingers crossed, the team hoped that it all worked and that a product
would be born. By now you’ve probably deduced that testing in such a model would be very
difficult. At most, you could perform dynamic black-box testing, taking the product in one
entire blob and exploring it to see what you could find.

You’ve learned that this approach is very costly because the bugs are found late in the game.
From a testing perspective, there are two reasons for the high cost:

e It’s difficult and sometimes impossible to figure out exactly what caused the problem.
The software is a huge Rube Goldberg machine that doesn’t work—the ball drops in one
side, but buttered toast and hot coffee doesn’t come out the other. There’s no way to
know which little piece is broken and causing the entire contraption to fail.

* Some bugs hide others. A test might fail. The programmer confidently debugs the prob-
lem and makes a fix, but when the test is rerun, the software still fails. So many prob-
lems were piled one on top the other that it’s impossible to get to the core fault.

Unit and Integration Testing

The way around this mess is, of course, to never have it happen in the first place. If the code is
built and tested in pieces and gradually put together into larger and larger portions, there won’t
be any surprises when the entire product is linked together (see Figure 7.3).

Main
Program
|
Module
ABCDEF5
|
| L
Module
ABCD4
]
Module Module Module
BCD1 EF2 GHJ3
I_|_| I_I_I I
|]]]
Module Module Module Module Module Module Module Module Module Module
A B C D E F G H | J

FIGURE 7.3

Individual pieces of code are built up and tested separately, and then integrated and tested again.

111

SISSVID) AVY-X

HLIM 3yvmidos |

JH1 DNILSI|

112

Testing Fundamentals
ParT Il

Testing that occurs at the lowest level is called unit testing or module testing. As the units are
tested and the low-level bugs are found and fixed, they are integrated and integration testing is
performed against groups of modules. This process of incremental testing continues, putting
together more and more pieces of the software until the entire product—or at least a major por-
tion of it—is tested at once in a process called system testing.

With this testing strategy, it’s much easier to isolate bugs. When a problem is found at the unit
level, the problem must be in that unit. If a bug is found when multiple units are integrated, it
must be related to how the modules interact. Of course, there are exceptions to this, but by and
large, testing and debugging is much more efficient than testing everything at once.

There are two approaches to this incremental testing: bottom-up and top-down. In bottom-up
testing (see Figure 7.4), you write your own modules, called test drivers, that exercise the mod-
ules you’re testing. They hook in exactly the same way that the future real modules will. These
drivers send test-case data to the modules under test, read back the results, and verify that
they’re correct. You can very thoroughly test the software this way, feeding it all types and
quantities of data, even ones that might be difficult to send if done at a higher level.

Real World Software Test Driver Software
A A
Temperature Test Case
Data Results Data Results
Y Y
OF to °C OF to 0C
Conversion Conversion
Module Module
Real World Test Driver
Configuration Configuration

FIGURE 7.4

A test driver can replace the real software and more efficiently test a low-level module.

Top-down testing may sound like big-bang testing on a smaller scale. After all, if the higher-
level software is complete, it must be too late to test the lower modules, right? Actually, that’s
not quite true. Look at Figure 7.5. In this case, a low-level interface module is used to collect
temperature data from an electronic thermometer. A display module sits right above the inter-
face, reads the data from the interface, and displays it to the user. To test the top-level display
module, you’d need blow torches, water, ice, and a deep freeze to change the temperature of
the sensor and have that data passed up the line.

Rather than test the temperature display module by attempting to control the temperature of the
thermometer, you could write a small piece of code called a sfub that acts just like the interface
module by feeding temperature values from a file directly to the display module. The display
module would read the data and show the temperature just as though it was reading directly

Testing the Software with X-Ray Glasses
CHAPTER 7

from a real thermometer interface module. It wouldn’t know the difference. With this test stub
configuration, you could quickly run through numerous test values and validate the operation

of the display module.

Temperature
Display Module

A
Y

Thermometer
Interface Module

!

Real World
Configuration

FIGURE 7.5
A test stub sends test data up to the module being tested.

An Example of Unit Testing

Temperature
Display Module
Being Tested

A
Y

Tester Written
Stub

!

Test File of
Temperature
Values

Test Stub
Configuration

A common function available in many compilers is one that converts a string of ASCII charac-

ters into an integer value.

What this function does is take a string of numbers, — or + signs, and possible extraneous char-
acters such as spaces and letters, and converts them to a numeric value—for example, the
string “12345” gets converted to the number 12,345. It’s a fairly common function that’s often
used to process values that a user might type into a dialog box—for example, someone’s age or

an inventory count.

The C language function that performs this operation is atoi (), which stands for “ASCII to
Integer.” Figure 7.6 shows the specification for this function. If you’re not a C programmer,
don’t fret. Except for the first line, which shows how to make the function call, the spec is in
English and could be used for defining the same function for any computer language.

If you’re the software tester assigned to perform dynamic white-box testing on this module,

what would you do?

113
X W
587
> wn
'<;§>:'
=
S
w I

114

Testing Fundamentals

ParT Il
int atoi (const char *string) ;
The ASCII to integer function converts a string to an integer.
Return Value
The function returns the integer value produced by interpreting the input
characters as a number. The return value is 0 if the input cannot be
converted to an integer value. The return value is undefined in case of overflow.
Input Parameter
string

String to be converted

Remarks
The input string is a sequence of characters that can be interpreted as a
numerical value. The function stops reading the input string at the first
character that it cannot recognize as part of a number. This character may be
the null character (\0') termination the string.
The string parameter for this function has the form:
[whitespace] [sign] digits
A whitespace consists of space and/or tab characters, which are ignored;
sign is either plus (+) or minus (-) ; and digits are one or more decimal digits.
The function does not recognize decimal points, exponents or any other
character not mentioned above.

FIGURE 7.6

The specification sheet for the C language atoi() function.

First, you would probably decide that this module looks like a bottom module in the program,
one that’s called by higher up modules but doesn’t call anything itself. You could confirm this
by looking at the internal code. If this is true, the logical approach is to write a test driver to
exercise the module independently from the rest of the program.

This test driver would send test strings that you create to the atoi() function, read back the
return values for those strings, and compare them with your expected results. The test driver
would most likely be written in the same language as the function—in this case, C—but it’s
also possible to write the driver in other languages as long as they interface to the module
you’re testing.

This test driver can take on several forms. It could be a simple dialog box, as shown in Figure
7.7, that you use to enter test strings and view the results. Or it could be a standalone program
that reads test strings and expected results from a file. The dialog box, being user driven, is
very interactive and flexible—it could be given to a black-box tester to use. But the standalone
driver can be very fast reading and writing test cases directly from a file.

Testing the Software with X-Ray Glasses
CHAPTER 7

. ASCII to Integer Test Driver

A5 Sting to be canvested:

[zacc45 itz

Irteger Resul:

|-2 Exit |

FIGURE 7.7

A dialog box test driver can be used to send test cases to a module being tested.

Next, you would analyze the specification to decide what black-box test cases you should try
and then apply some equivalence partitioning techniques to reduce the total set (remember
Chapter 5?). Table 7.1 shows examples of a few test cases with their input strings and expected
output values. This table isn’t intended to be a comprehensive list.

TABLE 7.1 Sample ASCII to Integer Conversion Test Cases

Input String Output Integer Value
ok
L
e
“«»

“
“ 0
“1.27
wy_3m

Lt}

|
—

113

abc
“al23”

and so on

S O N = O O O =

Lastly, you would look at the code to see how the function was implemented and use your
white-box knowledge of the module to add or remove test cases.

NoTE

115

Creating your black-box testing cases based on the specification, before your white-
box cases, is important. That way, you are truly testing what the module is intended

SISSVID) AVY-X

HLIM 3yvmidos |

JH1 DNILSI|

116

Testing Fundamentals
ParT Il

to do. If you first create your test cases based on a white-box view of the module, by
examining the code, you will be biased into creating test cases based on how the
module works. The programmer could have misinterpreted the specification and your
test cases would then be wrong. They would be precise, perfectly testing the module,
but they wouldn’t be accurate because they wouldn't be testing the intended
operation.

Adding and removing test cases based on your white-box knowledge is really just a further
refinement of the equivalence partitions done with inside information. Your original black-box
test cases might have assumed an internal ASCII table that would make cases such as “al23”
and “z123” different and important. After examining the software, you could find that instead
of an ASCII table, the programmer simply checked for numbers, — and + signs, and blanks.
With that information, you might decide to remove one of these cases because both of them are
in the same equivalence partition.

With close inspection of the code, you could discover that the handling of the + and — signs
looks a little suspicious. You might not even understand how it works. In that situation, you
could add a few more test cases with embedded + and — signs, just to be sure.

Data Coverage

The previous example of white-box testing the atoi() function was greatly simplified and
glossed over some of the details of looking at the code to decide what adjustments to make to
the test cases. In reality, there’s quite a bit more to the process than just perusing the software
for good ideas.

The logical approach is to divide the code just as you did in black-box testing—into its data
and its states (or program flow). By looking at the software from the same perspective, you can
more easily map the white-box information you gain to the black-box cases you’ve already
written.

Consider the data first. Data includes all the variables, constants, arrays, data structures, key-
board and mouse input, files and screen input and output, and I/O to other devices such as
modems, networks, and so on.

Data Flow

Data flow coverage involves tracking a piece of data completely through the software. At the
unit test level this would just be through an individual module or function. The same tracking
could be done through several integrated modules or even through the entire software prod-
uct—although it would be more time-consuming to do so.

Testing the Software with X-Ray Glasses
CHAPTER 7

If you test a function at this low level, you would use a debugger and watch variables to view
the data as the program runs (see Figure 7.8). With black-box testing, you only know what the
value of the variable is at the beginning and at the end. With dynamic white-box testing you
could also check intermediate values during program execution. Based on what you see you
might decide to change some of your test cases to make sure the variable takes on interesting
or even risky interim values.

break] - [fimTR2 [Coda)]

[i- Bl Edt Yiew Project Format Debug Bun Query Disgram Toaks Add-Ins Window Help =8 X!

[B-f-HeEHtmadalos], e HE 2| ns s
[emacaror Hlic= -
s € cmdCalePay Click() = 0= ||I‘:| |
. ree payrnll varishles =[5 B Project1 (T2
Dim oursiorked s Inceger =H4=3 Forms
Dim sngRacte As Single, sngTaxRace ks Single B FrmTR2 (1

Dim cusTaxes hs © ney, cueGrossPay ks Currency
Dim cusNecPay ls Cuccency

nicialize

e from
raWorked = 40

wgTaxRace = 0.42

The variable u : incEoursWorked * sngRAace
CUPGPOSSPay ;gElossPa_u-.]!Z noTaxRacte * curGrossPay
: urNecPay = GrossPay - T
contains the value 312 [F| meseseey = susesasspay - curiees

' Display resulce in appropriace labels
1blGrossPay.Capcion = curGrossPay
1blTaxes.Capcion = curTaxes
1blNecPay.Caption = curNecPay

End Sub -~
= S | v
Immediate: (]
| ¥ 5 4| | |

FIGURE 7.8

A debugger and watch variables can help you trace a variable’s values through a program.

Sub-Boundaries

Sub-boundaries were discussed in Chapter 5 in regard to embedded ASCII tables and powers-

of-two. These are probably the most common examples of sub-boundaries that can cause bugs,
but every piece of software will have its own unique sub-boundaries, too. Here are a few more
examples:

¢ A module that computes taxes might switch from using a data table to using a formula at
a certain financial cut-off point.

* An operating system running low on RAM may start moving data to temporary storage
on the hard drive. This sub-boundary may not even be fixed. It may change depending on
how much space remains on the disk.

117

~N

SISSVID) AVY-X

HLIM J¥VMLI0S

JH1 DNILSI|

118

Testing Fundamentals
ParT Il

» To gain better precision, a complex numerical analysis program may switch to a different
equation for solving the problem depending on the size of the number.

If you perform white-box testing, you need to examine the code carefully to look for sub-
boundary conditions and create test cases that will exercise them. Ask the programmer who
wrote the code if she knows about any of these situations and pay special attention to internal
tables of data because they’re especially prone to sub-boundary conditions.

Formulas and Equations

Very often, formulas and equations are buried deep in the code and their presence or effect
isn’t always obvious from the outside. A financial program that computes compound interest
will definitely have this formula somewhere in the software:
nt
A=P(1+r/n)

where

P = principal amount

r = annual interest rate

n = number of times the interest is compounded per year
t = number of years

A = amount after time t

A good black-box tester would hopefully choose a test case of n=0, but a white-box tester,
after seeing the formula in the code, would know to try n=0 because that would cause the for-
mula to blow up with a divide-by-zero error.

But, what if n was the result of another computation? Maybe the software sets the value of n
based on other user input or algorithmically tries different n values in an attempt to find the
lowest payment. You need to ask yourself if there’s any way that n can ever become zero and
figure out what inputs to feed the program to make that happen.

Tip

Scour your code for formulas and equations, look at the variables they use, and cre-
ate test cases and equivalence partitions for them in addition to the normal inputs
and outputs of the program.

Testing the Software with X-Ray Glasses
CHAPTER 7

Error Forcing

The last type of data testing covered in this chapter is error forcing. If you’re running the soft-
ware that you’re testing in a debugger, you don’t just have the ability to watch variables and
see what values they hold—you can also force them to specific values.

In the preceding compound interest calculation, if you couldn’t find a direct way to set the
number of compoundings (n) to zero, you could use your debugger to force it to zero. The soft-
ware would then have to handle it...or not.

NoTE

Be careful if you use error forcing and make sure you aren’t creating a situation that
can never happen in the real world. If the programmer checked that n was greater
than zero at the top of the function and n was never used until the formula, setting
it to zero and causing the software to fail would be an invalid test case.

If you take care in selecting your error forcing scenarios and double-check with the program-
mer to assure that they’re valid, error forcing can be an effective tool. You can execute test
cases that would otherwise be difficult to perform.

Forcing Error Messages

A great way to use error forcing is to cause all the error messages in your software to
appear. Most software uses internal error codes to represent each error message.
When an internal error condition flag is set, the error handler takes the variable that
holds the error code, looks up the code in a table, and displays the appropriate
message.

Many errors are difficult to create—like hooking up 2,049 printers. But if all you want
to do is test that the error messages are correct (spelling, language, formatting, and
so on), using error forcing can be a very efficient way to see all of them. Keep in
mind, though, that you aren’t testing the code that detects the error, just the code
that displays it.

Code Coverage

As with black-box testing, testing the data is only half the battle. For comprehensive coverage
you must also test the program’s states and the program’s flow among them. You must attempt

119

SISSVID) AVY-X

HLIM 3yvmidos |

JH1 DNILSI|

120

Testing Fundamentals
ParT Il

to enter and exit every module, execute every line of code, and follow every logic and
decision path through the software. Examining the software at this level of detail is called
code-coverage analysis.

Code-coverage analysis is a dynamic white-box testing technique because it requires you to
have full access to the code to view what parts of the software you pass through when you run
your test cases.

The simplest form of code-coverage analysis is using your compiler’s debugger to view the
lines of code you visit as you single-step through the program. Figure 7.9 shows an example of
the Visual Basic debugger in operation.

raVEScheduler - fimMain [Code) = [o] =]
Il.hnllnnlh - ICi:Ir -

Option Explicic g

Privace Sub choDace_Click()
Ir gbInicCver Then
Call SechayLabel (lolDay, cholionth, chobate,

7 S - (<0< FariD:
The Debug toolbar———, || a4 ®=l=e= @R G [0P
End Sub
Privace Sub choMonth Click()
H Dim OldIndex%
The line of code [—
belng run OldIndex% = choDate.ListIndex

Call PopluatebateComdo (choMonth.ListIndex 4

The Call Stack S——
dialog box [T

asic Codex]

uler, Frmain. InitDateCankraoks
uer frrilain JrilDateFrame
uler Friain. Farm_Lozd

[<han-Sasic Codex]
VEScheduler, madSchedule, Main

FIGURE 7.9

The debugger allows you to single-step through the software to see what lines of code and modules you execute while
running your test cases.

For very small programs or individual modules, using a debugger is often sufficient. However,
performing code coverage on most software requires a specialized tool known as a code-
coverage analyzer. Figure 7.10 shows an example of such a tool.

Code-coverage analyzers hook into the software you’re testing and run transparently in the
background while you run your test cases. Each time a function, a line of code, or a logic deci-
sion is executed, the analyzer records the information. You can then obtain statistics that iden-
tify which portions of the software were executed and which portions weren’t. With this data
you’ll know

* What parts of the software your test cases don’t cover. If the code in a specific module is
never executed, you know that you need to write additional test cases for testing that
module’s function.

Testing the Software with X-Ray Glasses
CHAPTER 7

File Edt View Go Fegon lods Help

AR X EE &Py %% &

| Region [Fird Fesuts
"8 Classes | (2] Fies 2] Find | | Neme Functione,. ¢ | Uncovers.,, | Condtion/deci .| Uncoversd ¢ |
Show al regons % 120k _compls O — O 415 m—
S Show al falders @ re_malch_2 :.6_ | — 7 . 357 —
I how ol fles @ aod_rcs_file O | — (% 136 —
o all barelions i ACS_delebs_rews :'.«4 N | —— 7 107 =
Show Folders, fles, classes waih EERleD :oz_ ! £ N[-4
Bt cove'uaje'nz : ;g_;:jiee_emgs :g — : C— g— }:g :
[5hew funcions with funclion § admin_fiepioc 0 — O 132
& diag 0 | — . 122 =
& do_medule o 12— 191 =
@ fmatch 0 5% - 12 -
& histony] 17— 143 ==
Funchon coverage | Uncovered functions | Condli isicn coveraps
x 26 3% 1

Coverage Build is disabled

FIGURE 7.10

A code-coverage analyzer provides detailed information about how effective your test cases are. (This figure is copy-
right and courtesy of Bullseye Testing Technology.)

* Which test cases are redundant. If you run a series of test cases and they don’t increase
the percentage of code covered, they are likely in the same equivalence partition.

* What new test cases need to be created for better coverage. You can look at the code that
has low coverage, see how it works and what it does, and create new test cases that will
exercise it.

You will also have a general feel for the quality of the software. If your test cases cover 90 per-
cent of the software and don’t find any bugs, the software is in pretty good shape. If, on the
other hand, your tests cover only 50 percent of the software and you’re still finding bugs, you
know you still have work to do.

Program Statement and Line Coverage

The most straightforward form of code coverage is called statement coverage or line coverage.
If you’re monitoring statement coverage while you test your software, your goal is to make
sure that you execute every statement in the program at least once. In the case of the short pro-
gram shown in Listing 7.1, 100 percent statement coverage would be the execution of lines 1
through 4.

LisTINnG 7.1 It's Very Easy to Test Every Line of This Simple Program

PRINT "Hello World"

PRINT "The date is: "; Date$
PRINT "The time is: "; Time$
END

121

~N

SISSVID) AVY-X
HLIM J¥VALI0S

JH1 DNILSI|

122

Testing Fundamentals
ParT Il

You might think this would be the perfect way to make sure that you tested your program com-
pletely. You could run your tests and add test cases until every statement in the program is
touched. Unfortunately, statement coverage is misleading. It can tell you if every statement is
executed, but it can’t tell you if you’ve taken all the paths through the software.

Branch Coverage

Attempting to cover all the paths in the software is called path testing. The simplest form of
path testing is called branch coverage testing. Consider the program shown in Listing 7.2.

LISTING 7.2 The IF Statement Creates Another Branch Through the Code

PRINT "Hello World"
IF Date$ = "01-01-2000" THEN
PRINT "Happy New Year"

END IF
PRING "The date is: "; Date$
PRINT "The time is: "; Time$

END

If you test this program with the goal of 100 percent statement coverage, you would need to
run only a single test case with the Date$ variable set to January 1, 2000. The program would
then execute the following path:

Lines 1,2,3,4,5,6,7

Your code coverage analyzer would state that you tested every statement and achieved 100 per-
cent coverage. You could quit testing, right? Wrong! You may have tested every statement, but
you didn’t test every branch.

Your gut may be telling you that you still need to try a test case for a date that’s not January 1,
2000. If you did, the program would execute the other path through the program:

Lines 1,2,5,6,7

Most code coverage analyzers will account for code branches and report both statement cover-
age and branch coverage results separately, giving you a much better idea of your test’s
effectiveness.

Condition Coverage

Just when you thought you had it all figured out, there’s yet another complication to path test-
ing. Listing 7.3 shows a slight variation to Listing 7.2. An extra condition is added to the IF
statement in line 2 that checks the time as well as the date. Condition coverage testing takes
the extra conditions on the branch statements into account.

Testing the Software with X-Ray Glasses
CHAPTER 7

LisTING 7.3 The Multiple Conditions in the IF Statement Create More Paths Through
the Code

PRINT "Hello World"
IF Date$ = "01-01-2000" AND Time$ = "00:00:00" THEN
PRINT "Happy New Year"

END IF
PRINT "The date is: "; Date$
PRINT "The time is: "; Time$

END

In this sample program, to have full condition coverage testing, you need to have the four sets
of test cases shown in Table 7.2. These cases assure that each possibility in the IF statement
are covered.

TABLE 7.2 Test Cases to Achieve Full Coverage of the Multiple IF Statement Condition

123

Date$ Time$ Line # Execution
01-01-0000 11:11:11 1,2,5,6,7
01-01-0000 00:00:00 1,2,5,6,7
01-01-2000 11:11:11 1,2,5,6,7
01-01-2000 00:00:00 1,2,3,4,5,6,7

If you were concerned only with branch coverage, the first three conditions would be redun-
dant and could be equivalence partitioned into a single test case. But, with condition coverage
testing, all four cases are important because they exercise different conditions of the IF state-
ment in line 4.

As with branch coverage, code coverage analyzers can be configured to consider conditions
when reporting their results. If you test for all the possible conditions, you will achieve branch
coverage and therefore achieve statement coverage.

NoTE

If you manage to test every statement, branch, and condition (and that’s impossible
except for the smallest of programs), you still haven't tested the program completely.
Remember, all the data errors discussed in the first part of this chapter are still possi-
ble. The program flow and the data together make up the operation of the software.

SISSVID) AVY-X

HLIM 3yvmidos |

JH1 DNILSI|

124

Testing Fundamentals

PART Il

Summary

This chapter showed you how having access to the software’s source code while the program is
running can open up a whole new area of software testing. Dynamic white-box testing is a very
powerful approach that can greatly reduce your test work by giving you “inside” information
about what to test. By knowing the details of the code, you can eliminate redundant test cases
and add test cases for areas you didn’t initially consider. Either way, you can greatly improve
your testing effectiveness.

Chapters 4 through 7 covered the fundamentals of software testing:
e Static black-box testing involves examining the specification and looking for problems
before they get written into the software.

e Dynamic black-box testing involves testing the software without knowing how it works.

e Static white-box testing involves examining the details of the written code through formal
reviews and inspections.

e Dynamic white-box testing involves testing the software when you can see how it works
and basing your tests on that information.

In a sense, this is all there is to software testing. Of course, reading about it in four chapters
and putting it into practice are very different things. Being a good software tester requires lots
of dedication and hard work. It takes practice and experience to know when and how to best
apply these fundamental techniques.

In Part III, “Applying Your Testing Skills,” you’ll learn about different types of software test-
ing and how you can apply the skills from your “black and white testing box” to real-world
scenarios.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!
1. Why does knowing how the software works influence how and what you should test?
2. What’s the difference between dynamic white-box testing and debugging?

3. What are two reasons that testing in a big-bang software development model is nearly
impossible? How can these be addressed?

4. True or False: If your product development is in a hurry, you can skip module testing
and proceed directly to integration testing.

What’s the difference between a test stub and a test driver?
True or False: Always design your black-box test cases first.

Of the three code coverage measures described, which one is the best? Why?

® =N W

What’s the biggest problem of white-box testing, either static or dynamic?

PART

Applying Your Testing Skills

For my birthday I got a humidifier and a dehumidifier...I put them in the
same room and let them fight it out.

—Steven Wright, comedian

Discovery consists of looking at the same thing as everyone else does
and thinking something different.

—Albert Szent-Gyorgyi, 1937 Nobel Prize winner in
physiology and medicine

IN THIS PART

8 Configuration Testing 127

9 Compatibility Testing 145

10 Foreign-Language Testing 157
11 Usability Testing 175

12 Testing the Documentation 189
13 Web Site Testing 199

Configuration Testing CHAPTER

IN THIS CHAPTER

¢ An Overview of Configuration Testing 128

e Approaching the Task 135

Obtaining the Hardware 140

Identifying Hardware Standards 142

Configuration Testing Other Hardware 142

128

Applying Your Testing Skills
PArT llI

Life could be so simple. All computer hardware could be identical. All software could be writ-
ten by the same company. There wouldn’t be confusing option buttons to click or check boxes
to check. Everything would interface perfectly the first time, every time. How boring.

In the real world, 50,000-square-foot computer superstores are offering PCs, printers, monitors,
network cards, modems, scanners, digital cameras, peripherals, net-cams, and hundreds of
other computer doodads from thousands of companies—all able to connect to your PC!

If you’re just getting started at software testing, one of your first tasks may be configuration
testing. You’ll be making sure that your software works with as many different hardware com-
binations as possible. If you’re not testing software for a PC or a Mac—that is, if you’re testing
some proprietary system—you will still need to consider some configuration issues. You can
easily tailor what you learn in this chapter to your situation.

The first part of this chapter deals with the generalities of PC configuration testing and then
moves into the specifics of testing printers, display adapters (video cards), and sound cards for
a PC. Although the examples are based on desktop computers, you can extrapolate the methods
to just about any type of configuration test problem. New and different devices are released
every day, and it will be your job to figure out how to test them.

Highlights of this chapter include

* Why configuration testing is necessary

* Why configuration testing can be a huge job

* A basic approach to configuration testing

* How to find the hardware you need to test with

* What to do if you’re not testing software for a desktop computer

An Overview of Configuration Testing

The next time you’re in one of those computer superstores, look at a few software boxes and
read over the system requirements. You’ll see things such as PC with 486/66 MHz processor,
Super VGA, 256-color monitor, 16-bit audio card, MIDI game port, and so on. Configuration
testing is the process of checking the operation of the software you’re testing with all these
various types of hardware. Consider the different configuration possibilities for a standard
Windows-based PC used in homes and businesses:

¢ The PC. There are dozens of well-known computer manufacturers, such as Compag,
Dell, Gateway, Hewlett Packard, IBM, and others. Each one designs and builds PCs
using their own designed components or parts from other manufacturers. Many lesser-
known manufacturers and many hobbyists even build their own PCs.

Configuration Testing
CHAPTER 8

129

¢ Components. Most PCs are modular and built up from various system boards, compo-
nent cards, and other internal devices such as disk drives, CD-ROM drives, video, sound,
modem, and network cards (see Figure 8.1). There are TV cards and specialized cards for
video capture and home automation. There are even input/output cards that can give a PC
the ability to control a small factory! These internal devices are built by hundreds of dif-
ferent manufacturers.

HARD-DISK DRIVE

\

M DRIVE

00

VIDEO
ADAPTER

SYSTEM UNIT

FIGURE 8.1

Numerous internal components make up a PC’s configuration.

DNILST|
NOLLY¥NDIINOD)

130 Applying Your Testing Skills
PArT llI

* Peripherals. Peripherals, shown in Figure 8.2, are the printers, scanners, mice, key-
boards, monitors, cameras, joysticks, and other devices that plug into your system and
operate externally to the PC.

scanner

digital camera printer
=l
%

o
L. 4" e | l-= system unit

game joystick

FIGURE 8.2

A PC can connect to a wide assortment of peripherals.

¢ Interfaces. The components and peripherals plug into your PC through various types of
interface connectors (see Figure 8.3). These interfaces can be internal or external to the
PC. Typical names for them are ISA, PCI, USB, PS/2, RS/232, and Firewire. There are
so many different possibilities that hardware manufacturers will often create the same
peripheral with different interfaces. It’s possible to buy the exact same mouse in three
different configurations!

* Options and memory. Many components and peripherals can be purchased with differ-
ent hardware options and memory sizes. Printers can be upgraded to support extra fonts
or accept more memory to speed up printing. Graphics cards with more memory can sup-
port additional colors and higher resolutions.

* Device Drivers. All components and peripherals communicate with the operating sys-
tem and the software applications through low-level software called device drivers. These
drivers are often provided by the hardware device manufacturer and are installed when
you set up the hardware. Although technically they are software, for testing purposes
they are considered part of the hardware configuration.

Configuration Testing

CHAPTER 8

0

2500000000000

=———400000000000

0 0 @

Q0O 000000

0

|

@®
lo
o

@®
.I

1}

o

@®
o

]

e
0
e,

o
050
o

(@)
OOOO

—_— —
0.0.0
ogo
0%0
o0

o

o

O

O

r

FIGURE 8.3

The back of a PC shows numerous interface connectors for attaching peripherals.

If you’re a tester gearing up to start configuration testing on a piece of software, you need to
consider which of these configuration areas would be most closely tied to the program. A
highly graphical computer game will require lots of attention to the video and sound areas. A
greeting card program will be especially vulnerable to printer issues. A fax or communications
program will need to be tested with numerous modems and network configurations.

You may be wondering why this is all necessary. After all, there are standards to meet for
building hardware, whether it’s for an off-the-shelf PC or a specialized computer in a hospital.
You would expect that if everyone designed their hardware to a set of standards, software
would just work with it without any problems. In an ideal world, that would happen, but unfor-
tunately, standards aren’t always followed. Sometimes, the standards are fairly loose—call

131

DNILST|
NOLLY¥NDIINOD)

132

Applying Your Testing Skills
PArT llI

them guidelines. Card and peripheral manufacturers are always in tight competition with one
another and frequently bend the rules to squeeze in an extra feature or to get in a last little bit
of performance gain. Often the device drivers are rushed and packed into the box as the hard-
ware goes out the door. The result is software that doesn’t work correctly with certain hard-
ware configurations.

Isolating Configuration Bugs

Those configuration bugs can bite hard. Remember the Disney Lion King bug described in
Chapter 1? That was a configuration problem. The software’s sound didn’t work only on a few,
but very popular, hardware configurations. If you’ve ever been playing a game or using a
graphics program and the colors suddenly go crazy or pieces of windows get left behind as you
drag them, you’ve probably discovered a display adapter configuration bug. If you’ve ever
spent hours (or days!) trying to get an old program to work with your new printer, it’s probably
a configuration bug.

NoTE

The sure way to tell if a bug is a configuration problem and not just an ordinary bug
is to perform the exact same operation that caused the problem, step by step, on
another computer with a completely different configuration. If the bug doesn’t occur,
it's very likely a configuration problem. If the bug happens on more than one config-
uration, it's probably just a regular bug.

Assume that you test your software on a unique configuration and discover a problem. Who
should fix the bug—your team or the hardware manufacturer? That could turn out to be a
million-dollar question.

First you need to figure out where the problem lies. This is usually a dynamic white-box test-
ing and programmer-debugging effort. A configuration problem can occur for several reasons,
all requiring someone to carefully examine the code while running the software under different
configurations to find the bug:

* Your software may have a bug that appears under a broad class of configurations. An
example is if your greeting card program works fine with laser printers but not with
inkjet printers.

* Your software may have a bug specific only to one particular configuration—it doesn’t
work on the OkeeDoKee Model BR549 InkJet Deluxe printer.

Configuration Testing
CHAPTER 8

e The hardware device or its device drivers may have a bug that only your software
reveals. Maybe your software is the only one that uses a unique display card setting.
When your software is run with a specific video card, the PC crashes.

e The hardware device or its device drivers may have a bug that can be seen with lots of
other software—although it may be particularly obvious with yours. An example would
be if a specific printer driver always defaulted to draft mode and your photo printing
software had to set it to high-quality every time it printed.

In the first two cases, it seems fairly straightforward that your project team is responsible for
fixing the bug. It’s your problem. You should fix it.

In the last two cases, things get blurry. Say the bug is in a printer and that printer is the most
popular in the world, with tens of millions in use. Your software obviously needs to work with
that printer. It’s a good bet that your team will have to make changes to your software, even
though the software is doing everything right, to work around the bug in the printer.

In the end, it’s your team’s responsibility to address the problem, no matter where it lies. Your
customers don’t care why or how the bug is happening, they just want the new software they
purchased to work on their system’s configuration.

Of Purple Fuzz and Sound Cards

In 1997 Microsoft released its ActiMates Barney character and supporting CD-ROM
learning software for kids. These animatronic dolls interacted with the software
through a two-way radio in the doll and another radio connected to a PC.

The PC’s radio connected to a seldom-used interface on most sound cards called a
MIDI connector. This interface is used for music keyboards and other musical instru-
ments. Microsoft assumed the connector would be a good choice because most peo-
ple don’t own musical devices. It would likely not have anything plugged into it and
would be available for use with the ActiMates radio.

During configuration testing, a typical amount of bugs showed up. Some were due
to sound card problems, some were in the ActiMates software. There was one bug,
however, that could never quite be pinned down. It seemed that occasionally, ran-
domly, the PC running the software would just lock up and would require rebooting.
This problem occurred only with the most popular sound card on the market—of
course.

With just weeks left in the schedule, a concerted effort was put together to resolve

the problem. After a great deal of configuration testing and debugging, the bug was
isolated to the sound card’s hardware. It seems that the MIDI connector always had

133

DNILST|
NOLLY¥NDIINOD)

134

Applying Your Testing Skills
PArT llI

this bug, but, being so seldom used, no one had ever seen it. The ActiMates software
exposed it for the first time.

There was a mad scramble, lots of denials and finger pointing, and lots of late nights.
In the end, the sound card manufacturer conceded that there was a problem and
promised to work around the bug in updated versions of its device driver. Microsoft
included a fixed driver on the ActiMates CD-ROM and made changes to the software
that attempted to make the bug occur less frequently. Despite all those efforts,
sound card compatibility problems were the top reason that people called in for
assistance with the product.

Sizing Up the Job

The job of configuration testing can be a huge undertaking. Suppose that you’re testing a new
software game that runs under Microsoft Windows. The game is very graphical, has lots of
sound effects, allows multiple players to compete against each other over the phone lines, and
can print out game details for strategy planning.

At the least, you’ll need to consider configuration testing with different graphics cards, sound
cards, modems, and printers. The Windows Add New Hardware Wizard (see Figure 8.4) allows
you to select hardware in each of these categories—and 25 others.

Add New Hardware Wizaid

Select the type of hardware you want b irstal.

Hardware types:

7D Acceleralos
4 CO-ROM carinclars

oF

) [csplay ackapters

2 Flopoy disk contralers

¢ Glabal positiaring davicas
= Hord dak conralers

5 Hurman Inleilace Devices

Imaging Devics =

< Back I Meul > I Ceancel |

FIGURE 8.4

The Microsoft Windows Add New Hardware Wizard dialog box allows you add new hardware to your PC’s current
configuration.

Under each hardware category are the different manufacturers and models (see Figure 8.5).
Keep in mind, these are only the models with support built into Windows. Many other models
provide their own setup disks with their hardware.

Configuration Testing
CHAPTER 8

Add New Hardware Wizaid |
@ Select the manuiaciueer znd madel of pour haideaie.

IF paur hardare is nok ksted, or if wou have an mstallation disk. cick Have
Disk. If your hardware is stl not listed, click Back, and then select & dilerent
hardwars lype.

Diamend Sleakh Pio (53] =
Diamoad Stezkh SE PCI 52 732)

Diamond Stezkh SE VLB (53]

=l
Diamond Sleskh Video FCI (53 BEE] =
Miizrarend Stazkh Widen W1 R 127
4 | »f
Hawe Disk...
< Back Heal> Cencel |

FIGURE 8.5

Each type of hardware has numerous manufacturers and models.

If you decided to perform a full, comprehensive configuration test, checking every possible
make and model combination, you’d have a huge job ahead of you.

There are approximately 336 possible display cards, 210 sound cards, 1500 modems, and 1200
printers. The number of test combinations is 336 x 210 x 1500 x 1200, for a total in the bil-
lions—way too many to consider!

If you limited your testing to exclude combinations, just testing each card individually at about
30 minutes per configuration, you’d be at it for about a year. Keep in mind that’s just one pass

through the configurations. It’s not uncommon with bug fixes to run two or three configuration
test passes before a product is released.

The answer to this mess, as you’ve hopefully deduced, is equivalence partitioning. You need to
figure out a way to reduce the huge set of possible configurations to the ones that matter the
most. You’ll assume some risk by not testing everything, but that’s what software testing is all
about.

Approaching the Task

The decision-making process that goes into deciding what devices to test with and how they
should be tested is a fairly straightforward equivalence partition project. What’s important, and
what makes the effort a success or not, is the information you use to make the decisions. If
you’re not experienced with the hardware that your software runs on, you should learn as much
as you can and bring in other experienced testers or programmers to help you. Ask a lot of
questions and make sure you get your plan approved.

The following sections show the general process that you should use when planning your con-
figuration testing.

135

DNILST|
NOLLY¥NDIINOD)

136

Applying Your Testing Skills
PArT llI

Decide the Types of Hardware You’ll Need

Does your application print? If so, you’ll need to test printers. If it has sound, you’ll need to
test sound cards. If it’s a photo or graphics program, you’ll likely need scanners and digital
cameras. Look closely at your software feature set to make sure that you cover everything. Put
your software disk on a table and ask yourself what hardware pieces you need to put together
to make it work.

Online Registration

An example of a feature that you can easily overlook when selecting what hardware
to test with is online registration. Many programs today allow users to register their
software during installation via modem. Users type in their name, address, and other
personal data, click a button, and the modem dials out to a computer at the software
company where it downloads the information and completes the registration. The
software may not do anything else with online communications. But, if it has online
registration, you will need to consider modems as part of your configuration testing.

Decide What Hardware Brands, Models, and Device
Drivers Are Available

If you’re putting out a cutting-edge graphics program, you probably don’t need to test that it
prints well on a 1987 black-and-white dot-matrix printer. (Remember those?) Work with your
sales and marketing people to create a list of hardware to test with. If they can’t or won’t help,
grab some recent editions and back issues of PC Magazine or Mac World to get an idea of
what hardware is available and what is (and was) popular. Both magazines, as well as others,
have annual reviews of printers, sound cards, and display adapters.

Do some research to see if some of the devices are clones of each other and therefore equiva-
lent—falling under the same equivalence partition. For example, a printer manufacturer may
sell his printer to another company that then puts a different cover and label on it. From your
standpoint, it’s the same printer.

Decide what device drivers you’re going to test with. Your options are usually the drivers
included with the operating system, the drivers included with the device, or the latest drivers
available on the hardware or operating system company’s Web site. Usually, all three are dif-
ferent. Ask yourself what customers have or what they can get.

Configuration Testing
CHAPTER 8

Decide Which Hardware Features, Modes, and Options
Are Possible

Color printers can print in black and white or color, they can print in different quality modes,
and can have settings for printing photos or text. Display cards, as shown in Figure 8.6, can
have different color settings and screen resolutions.

| Sereen Saver | | ek | Effecte Seftngs I

Digpiay:
Bataway EVI0 cn ATI Rage 126 Abindwander 128 AGF (Engih]

Colors: Screan
High Calar [15 ki) = | | Les
N T

I | Exterid s e deshion anle (s rrarilors

0k | Concel)

FIGURE 8.6

The display properties of number of colors and screen area are possible configurations for a display card.

Every device has options, and your software may not need to support all of them. A good
example of this is computer games. Many require a minimum number of display colors and
resolution. If the configuration has less than that, they simply won’t run.

Pare Down the Identified Hardware Configurations to a
Manageable Set

Given that you don’t have the time or budget to test everything, you need to reduce the thou-
sands of potential configurations into the ones that matter—the ones you’re going to test.

One way to do this is to put all the configuration information into a spreadsheet with columns
for the manufacturer, model, driver versions, and options. Figure 8.7 shows an example of a
table that identifies various printer configurations. You and your team can review the chart and
decide which configuration you want to test.

137

00

DNILST|
NOLLY¥NDIINOD)

Applying Your Testing Skills

138
ParT Il
7 8
§ =
T <
o = —
zn & £
88 2 g Device
3% 2 o Driver
P & 2 Manufacturer Model Version Options Options
Laser 3 HAL Printers LDIY2000 1.0 B/W Draft
Quality
5 InkJet 1 HAL Printers |JDIY2000 1.0a Color Draft
B/W Quality
Draft
Quality
5 Inkdet 1 HAL Printers IJDIY2000 2.0 Color Art
Photo
B/W Draft
Quality
10 Laser 5 OkeeDohKee LJ100 1.5 B/W 100dpi
200dpi
300dpi
2 InkJet 2 OkeeDohKee EasyPrint 1.0 Auto 600dpi
FIGURE 8.7

Organize your configuration information into a spreadsheet.

Notice that Figure 8.7 also has columns for information about the device’s popularity, its type,
and its age. When creating your equivalence partitions, you might decide that you want to test
only the most popular printers, or ones that are less than five years old. With the type informa-
tion—in this case, laser or inkjet—you could decide to test 75 percent lasers and 25 percent
inkjets.

NoTEe

Ultimately, the decision-making process that you use to equivalence partition the con-
figurations into smaller sets is up to you and your team. There is no right formula.
Every software project is different and will have different selection criteria. Just make
sure that everyone on the project team, especially your project manager, is aware of
what configurations are being tested and what variables went into selecting them.

Configuration Testing
CHAPTER 8

Identify Your Software’s Unique Features That Work with
the Hardware Configurations

The key word here is unique. You don’t want to, nor do you need to, completely test your soft-
ware on each configuration. You need to test only those features that are different from each
other (different equivalence partitions) that interact with the hardware.

For example, if you’re testing a word processor such as WordPad (see Figure 8.8), you don’t
need to test the file save and load feature in each configuration. File saving and loading has
nothing to do with printing. A good test would be to create a document that contains different
(selected by equivalence partitioning, of course) fonts, point sizes, colors, embedded pictures,
and so on. You would then attempt to print this document on each chosen printer configuration.

Fle Edit View |nssit Formal Help

s EEER N EEEE)
[Formic e M5 (westerr) = = el o|glE =|=] =
RtJ Rue Green

Pt_lurll Ti hare. -o‘rf+--v—e

THIS IS A TEST OF THE COMIC FOMT IN RED
ABCDEFGHITKLMMNOPQRST LWVWYZ
abedefohijklmnopgqrstuvesyz
BOLL JTALTC LMDERLIME

THIS IS A TEST OF THE COMIC FOMT IM BLUE
ABCDEFGHITKLMMNOPRRSTLVWAY T
abedefghijkimnopggretumeyz
BOLD ITALTC LMDERLIME

THIS IS A TEST OF THE COMIC FOMT IM GREEN
ABCDEFGHITKLMMOPQRST LWMWOCYZ
abedefohilkimnopagrstuveyz
BOLD ITALTC LMDERLIME

For Help, prezs F1 [[MoM |

FIGURE 8.8

You can use a sample document made up of different fonts and styles to configuration test a printer.

Selecting the unique features to try isn’t as easy as it sounds. You should first make a black-
box pass by looking at your product and pulling out the obvious ones. Then talk with others on
your team, especially the programmers, to get a white-box view. You may be surprised at what
features are remotely tied to the configuration.

Design the Test Cases to Run on Each Configuration

You’ll learn the details of writing test cases in Chapter 17, “Writing and Tracking Test Cases,”
but, for now, consider that you’ll need to write down the steps required to test each configura-
tion. This can be as simple as

139

DNILST|
NOLLY¥NDIINOD)

140

Applying Your Testing Skills
PArT llI

Select and set up the next test configuration from the list.
Start the software.

Load in the file configtest.doc.

Confirm that the displayed file is correct.

Print the document.

AN

Confirm that there are no error messages and that the printed document matches the
standard.

7. Log any discrepancies as a bug.

In reality, the steps would be much more involved, including more detail and specifics on
exactly what to do. The goal is to create steps that anyone can run. After all, you don’t want to
personally be doing these tests forever.

Execute the Tests on Each Configuration

You need to run the test cases and carefully log and report your results (see Chapter 18,
“Reporting What You Find”) to your team, and to the hardware manufacturers if necessary. As
described earlier in this chapter, it’s often difficult and time-consuming to identify the specific
source of configuration problems. You’ll need to work closely with the programmers and
white-box testers to isolate the cause and decide if the bugs you find are due to your software
or to the hardware.

If the bug is specific to the hardware, consult the manufacturer’s Web site for information on
reporting problems to them. Be sure to identify yourself as a software tester and what company
you work for. Many companies have separate staff set up to assist software companies writing
software to work with their hardware. They may ask you to send copies of your test software,
your test cases, and supporting details to help them isolate the problem.

Rerun the Tests Until the Results Satisfy Your Team

It’s not uncommon for configuration testing to run the entire course of a project. Initially a few
configurations might be tried, then a full test pass, then smaller and smaller sets to confirm bug
fixes. Eventually you will get to a point where there are no known bugs or to where the bugs
that still exist are in uncommon or unlikely test configurations. At that point, you can call your
configuration testing complete.

Obtaining the Hardware

One thing that hasn’t been mentioned so far is where you obtain all this hardware. Even if you
take great pains, and risk, to equivalence partition your configurations to the barest minimum,
you still could require dozens of different hardware setups. It would be an expensive

Configuration Testing
CHAPTER 8

proposition to go out and buy everything at retail, especially if you will use the hardware only
once for the one test pass. Here are a few ideas for overcoming this problem:

Buy only the configurations that you can or will use most often. A great plan is for every
tester on the team to have different hardware. This may drive your purchasing depart-
ment and the group that maintains your company’s PCs crazy (they like everyone to have
exactly the same configuration) but it’s a very efficient means of always having different
configurations available to test on. Even if your test team is very small, three or four peo-
ple having just a few configurations would be a great help.

Contact the hardware manufacturers and ask if they will lend or even give you the hard-
ware. If you explain that you’re testing new software and you want to assure that it
works on their hardware, many will do this for you. They have an interest in the out-
come, too, so tell them that you’ll furnish them with the results of the tests and, if you
can, a copy of the finished software. It’s good to build up these relationships, especially
if you find a bug and need a contact person at the hardware company to report it to.

Send a memo or email to everyone in your company asking what hardware they have in
their office or even at home—and if they would allow you to run a few tests on it. To
perform the configuration testing, you may need to drive around town, but it’s a whole
lot cheaper than attempting to buy all the hardware.

Configuration Testing VCRs

The Microsoft ActiMates product line of animatronic dolls not only interfaced with a
PC, but also a VCR. Specially coded commands, invisible to a viewer, were mixed in
with the video on the tape. A special box connected to the VCR decoded the com-
mands and sent them by radio to the doll. The test team obviously needed to per-
form configuration testing on VCRs. They had many PC configurations but no VCRs.

They found two ways to get the job done:

e They asked about 300 employees to bring in their VCRs for a day of testing. The
program manager awarded gift certificates as a means of persuading people to
bring them in.

¢ They paid the manager of a local electronics superstore to stay at the store
after hours (actually, all night) while they pulled each VCR off the shelf, con-
nected their equipment, and ran the tests. They dusted and cleaned the VCRs
and bought the manager dinner to show their thanks.

When it was all over, they had tested about 150 VCRs, which they determined was a
very good equivalence partition of the VCRs in people’s homes.

141

00

DNILST|
NOLLY¥NDIINOD)

142

Applying Your Testing Skills
PArT llI

* If you have the budget, work with your project manager to contract out your test work to
a professional configuration and compatibility test lab. These companies do nothing but
configuration testing and have every piece of PC hardware known to man. OK, maybe
not that much, but they do have a lot.

These labs can help you, based on their experience, select the correct hardware to test.
Then, they will allow you to come in and use their equipment, or they will provide a
complete turn-key service. You provide the software, the step-by-step test process, and
the expected results. They’ll take it from there, running the tests and reporting what
passed and what failed. Of course this can be costly, but much less so than buying the
hardware yourself or worse, not testing and having customers find the problems.

Identifying Hardware Standards

If you’re interested in performing a little static black-box analysis—that is, reviewing the spec-
ifications that the hardware companies use to create their products—you can look in a couple
of places. Knowing some details of the hardware specifications can help you make more
informed equivalence partition decisions.

For Apple hardware, visit the Apple Hardware Web site at http://developer.apple.com/
hardware/. There you’ll find information and links about developing and testing hardware and
device drivers for Apple computers. Another Apple link, http://developer.apple.com/
testing/, points you to specific testing information, including links to test labs that perform
configuration testing.

For PCs, the best link is http://www.pcdesignguide.org/. This site, sponsored jointly
between Intel and Microsoft, provides information and links to the standards used to develop
hardware and peripherals for PCs. The standards are revised annually and are named PC99,
PC2000, and so on.

Microsoft publishes a set of standards for software and hardware to receive the Windows logo.
That information is at http://msdn.microsoft.com/certification/ and
http://www.microsoft.com/hwtest.

Configuration Testing Other Hardware

So, what if you’re not testing software that runs on a PC or a Mac? Was this chapter a waste of
your time? No way! Everything you learned can be applied to testing generic or proprietary
systems, too. It doesn’t matter what the hardware and software is and what it connects to; if it
connects to anything else, configuration issues need to be tested.

Configuration Testing

CHAPTER 8

If you’re testing software for an industrial controller, a network, medical devices, or a phone
system, ask yourself the same questions that you would if you were testing software for a
desktop computer:

* What external hardware will operate with this software?

e What models and versions of that hardware are available?

* What features or options does that hardware support?
Create equivalence partitions of the hardware based on input from the people who work with
the equipment, your project manager, or your sales people. Develop test cases, collect the

selected hardware, and run the tests. Configuration testing follows the same testing techniques
that you’ve already learned.

Summary

This chapter got you thinking about how to approach configuration testing. It’s a job that new
software testers are frequently assigned because it is easily defined, is a good introduction to

basic organization skills and equivalence partitioning, is a task that will get you working with
lots of other project team members, and is one for which your manager can readily verify the
results. The downside is that it can become overwhelming.

If you’re assigned to perform configuration testing for your project, take a deep breath, reread
this chapter, carefully plan your work, and take your time. When you’re done, your boss will
have another job for you: compatibility testing, the subject of the next chapter.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

1. What’s the difference between a component and a peripheral?

2. How can you tell if a bug you find is a general problem or a specific configuration
problem?

3. How could you guarantee that your software would never have a configuration problem?

4. True or False: A cloned sound card doesn’t need to be considered as one of the configu-
rations to test.

5. In addition to age and popularity, what other criteria might you use to equivalence parti-
tion hardware for configuration testing?

6. Is it acceptable to release a software product that has configuration bugs?

143

DNILST|
NOLLY¥NDIINOD)

Compatibility Testing CHAPTER

IN THIS CHAPTER

e Compatibility Testing Overview 146

¢ Platform and Application Versions 148
e Standards and Guidelines 151

e Data Sharing Compatibility 153

146

Applying Your Testing Skills
PArT llI

In Chapter 8 you learned about hardware configuration testing and how to assure that software
works properly with the hardware it was designed to run on and connect with. This chapter
deals with a similar area of interaction testing—checking that your software operates correctly
with other software.

Testing whether one program plays well with others has become increasingly important as con-
sumers demand the ability to share data among programs of different types and from different
vendors and take advantage of the ability to run multiple programs at once.

It used to be that a program could be developed as a standalone application. It would be run in
a known, understood, benign environment, isolated from anything that could corrupt it. Today,
that program likely needs to import and export data to other programs, run with different oper-
ating systems and Web browsers, and interoperate with other software being run simultane-
ously on the same hardware. The job of software compatibility testing is to make sure that this
interaction works as users would expect.

The highlights of this chapter include

* What it means for software to be compatible
* How standards define compatibility
* What platforms are and what they mean for compatibility

* Why being able to transfer data among software applications is the key to compatibility

Compatibility Testing Overview

Software compatibility testing means checking that your software interacts with and shares
information correctly with other software. This interaction could occur between two programs
simultaneously running on the same computer or even on different computers connected
through the Internet thousands of miles apart. The interaction could also be as simple as saving
data to a floppy disk and hand-carrying it to another computer across the room.

Examples of compatible software are

e Cutting text from a Web page and pasting it into a document opened in your word
processor

* Saving accounting data from one spreadsheet program and then loading it into a com-
pletely different spreadsheet program

* Having photograph touchup software work correctly on different versions of the same
operating system

» Having your word processor load in the names and addresses from your contact manage-
ment program and print out personalized invitations and envelopes

Compatibility Testing
CHAPTER 9

e Upgrading to a new database program and having all your existing databases load in and
work just as they did with the old program

What compatibility means for your software depends on what your team decides to specify and
what levels of compatibility are required by the system that your software will run on.
Software for a standalone medical device that runs its own operating system, stores its data on
its own memory cartridges, and doesn’t connect to any other device would have no compatibil-
ity considerations. However, the fifth version of a word processor (see Figure 9.1) that reads
and writes different files from other word processors, allows multiuser editing over the
Internet, and supports inclusion of embedded pictures and spreadsheets from various applica-
tions has a multitude of compatibility issues.

Word Processor Network Word Processor
from Import/Export from
Company U -~ Company C
running on running on
Operating System W _—> Operating System L
Cut, Copy, Paste
Tape

Backup

File Import/Export -
= Spreadsheet
from

Company L
running on
Operating System N
FIGURE 9.1

Compatibility across different software applications can quickly become very complicated.

\

>

If you’re assigned the task of performing software compatibility testing on a new piece of soft-
ware, you’ll need to get the answers to a few questions:

* What other platforms (operating system, Web browser, or other operating environment)
and other application software is your software designed to be compatible with? If the
software you’re testing is a platform, what applications are designed to run under it?

* What compatibility standards or guidelines should be followed that define how your soft-
ware should interact with other software?

147

DNILSA|
ALITIFILVAINOD

148

Applying Your Testing Skills
PArT llI

* What types of data will your software use to interact and share information with other
platforms and software?

Gaining the answers to these questions is basic static testing—both black-box and white-box. It
involves thoroughly analyzing the specification for the product and any supporting specifica-
tions. It could also entail discussions with the programmers and possibly close review of the
code to assure that all links to and from your software are identified. The rest of this chapter
discusses these questions in more detail.

Platform and Application Versions

Selecting the target platforms or the compatible applications is really a program management
or a marketing task. Someone who’s very familiar with the customer base will decide whether
your software is to be designed for a specific operating system, Web browser, or some other
platform. They’ll also identify the version or versions that the software needs to be compatible
with. For example, you’ve probably seen notices such as these on software packages or startup
screens:

Works best with Netscape 4.0
Requires Windows 95 or greater
For use with Linux kernel 2.2.16

This information is part of the specification and tells the development and test teams what
they’re aiming for. Each platform has its own development criteria and it’s important, from a
project management standpoint, to make this platform list as small as possible but still fill the
customer’s needs.

Backward and Forward Compatibility

Two terms you’ll hear regarding compatibility testing are backward compatible and forward
compatible. If something is backward compatible, it will work with previous versions of the
software. If something is forward compatible, it will work with future versions of the software.

The simplest demonstration of backward and forward compatibility is with a . txt or text file.
As shown in Figure 9.2, a text file created using Notepad 98 running under Windows 98 is
backward compatible all the way back to MS-DOS 1.0. It’s also forward compatible to
Windows 2000 and likely will be beyond that.

FIGURE 9.2

Backward and forward compatibility define what versions will work with your software or data files.

SE—
Editexe
running on
MS-DOS 1.0
———————/

CE—
NotePad
running on
Windows 3.1
———————/

SE—
NotePad
running on
Windows 95

NoTE

—

Backward
Compatibility

NotePad 98
running on
Windows 98

)
WordPad

running on

Windows

2000

)
\ 272
MYDATA. TXT running on

0S 77??
—

Forward
Compatibility

Compatibility Testing

CHAPTER 9

It's not a requirement that all software or files be backward or forward compatible.
That's a product feature decision your software designers need to make. You should,
though, provide input on how much testing will be required to check forward and
backward compatibility for the software.

The Impact of Testing Multiple Versions

Testing that multiple versions of platforms and software applications work properly with each

other can be a huge task. Consider the situation of having to compatibility test a new version of

a popular operating system. The programmers have made numerous bug fixes and performance
improvements and have added many new features to the code. There could be tens or hundreds

of thousands of existing programs for the current versions of the OS. The project’s goal is to be

100 percent compatible with them. See Figure 9.3.

This is a big job, but it’s just another example of how equivalence partitioning can be applied
to reduce the amount of work.

149

DNILSA|
ALITIFILVAINOD

Applying Your Testing Skills
PArT llI

150

Word Spreadsheet
Processors Programs
Database Games
Painting N f
and Educational
Drawing [T\ [New Computing Platform 2004] 47 | Programs
Programs

FIGURE 9.3

If you compatibility test a new platform, you must check that existing software applications work correctly with it.

NoTEe

To begin the task of compatibility testing, you need to equivalence partition all the
possible software combinations into the smallest, effective set that verifies that your
software interacts properly with other software.

In short, you can’t test all the thousands of software programs on your operating system, so
you need to decide which ones are the most important to test. The key word is important. The
criteria that might go into deciding what programs to choose could be

* Popularity. Use sales data to select the top 100 or 1,000 most popular programs.
¢ Age. You might want to select programs and versions that are less than three years old.

» Type. Break the software world into types such as painting, writing, accounting, data-
bases, communications, and so on. Select software from each category for testing.

* Manufacturer. Another criteria would be to pick software based on the company that
created it.

Just as in hardware configuration testing, there is no right “textbook” answer. You and your
team will need to decide what matters most and then use that criteria to create equivalence par-
titions of the software you need to test with.

The previous example dealt with compatibility testing a new operating system platform. The
same issues apply to testing a new application (see Figure 9.4). You need to decide what plat-
form versions you should test your software on and what other software applications you
should test your software with.

Compatibility Testing

CHAPTER 9

Application
#3

Application Application

N T /U

New Software

Application Application
e | Application S|

[Platform 1.0] [Platform 1.0] [Platform 1.0]
FIGURE 9.4

Compatibility testing a new application may require you to test it on multiple platforms and with multiple applications.

Standards and Guidelines

So far in this chapter you’ve learned about selecting the software that you’ll compatibility test
with your program. Now, it’s time to look at how you’ll approach the actual testing. Your first
stop should be researching the existing standards and guidelines that might apply to your soft-
ware or the platform.

There are really two levels of these requirements: high-level and low-level. High-level
standards are the ones that guide your product’s general compliance, its look and feel, its
supported features, and so on. Low-level standards are the nitty-gritty details, such as the file
formats and the network communications protocols. Both are important and both need to be
tested to assure compatibility.

High-Level Standards and Guidelines

Will your software run under Windows, Mac, or Linux operating systems? Is it an Internet
application? If so, what browsers will it run on? Each of these is considered a platform and
most have their own set of standards and guidelines that must be followed if an application is
to claim that it’s compatible with the platform.

151

DNILSA|
ALITIFILVAINOD

Applying Your Testing Skills
PArT llI

152

An example of this is the Certified for Microsoft Windows logo (see Figure 9.5). To be
awarded this logo, your software must undergo and pass compatibility testing by an indepen-
dent testing laboratory. The goal is to assure that the software runs stably and reliably on the
operating system.

Certified For

B

il

‘Wiradows Professional
Windoves NT Worstation 4.0
Windows 18

‘Windows |

FIGURE 9.5
The Certified for Microsoft Windows logo signifies that the software meets all the criteria defined by the guidelines.

A few examples of the logo requirements are that the software

* Supports mice with more than three buttons

» Supports installation on disk drives other than C: and D:

 Supports long filenames

* Doesn’t read, write, or otherwise use the old system files win.ini, system.ini,

autoexec.bat, or config.sys

These may sound like simple, matter-of-fact requirements, but they’re only four items out of a
77-page document. It’s a great deal of work to assure that your software complies with all the
logo requirements, but it makes for much more compatible software.

NoTE

The details of the Windows logo can be obtained at
http://msdn.microsoft.com/certification/. Details for using the Apple Mac logo
are at http://developer.apple.com/mkt/maclogo.html.

Low-Level Standards and Guidelines

Low-level standards are, in a sense, more important than the high-level standards. You could
create a program that would run on Windows that didn’t have the look and feel of other
Windows software. It wouldn’t be granted the Certified for Microsoft Windows logo. Users
might not be thrilled with the differences from other applications, but they could use the
product.

Compatibility Testing

CHAPTER 9

If, however, your software is a graphics program that saves its files to disk as .pict files (a
standard Macintosh file format for graphics) but the program doesn’t follow the standard for
.pict files, your users won’t be able to view the files in any other program. Your software
wouldn’t be compatible with the standard and would likely be a short-lived product.

Similarly, communications protocols, programming language syntax, and any means that pro-
grams use to share information must adhere to published standards and guidelines.

These low-level standards are often taken for granted, but from a tester’s perspective must be
tested. You should treat low-level compatibility standards as an extension of the software’s
specification. If the software spec states, “The software will save and load its graphics files
as .bmp, .jpg, and .gif formats,” you need to find the standards for these formats and design
tests to confirm that the software does indeed adhere to them.

Data Sharing Compatibility

The sharing of data among applications is what really gives software its power. A well-written
program that supports and adheres to published standards and allows users to easily transfer
data to and from other software is a great compatible product.

The most familiar means of transferring data from one program to another is saving and load-
ing disk files. As discussed in the previous section, adhering to the low-level standards for the
disk and file formats is what makes this sharing possible. Other means, though, are sometimes
taken for granted but still need to be tested for compatibility. Here are a few examples:

e File save and file load are the data-sharing methods that everyone is aware of. You save
your data to a floppy disk (or some other means of network, magnetic, or optical storage)
and then transfer it over to another computer running different software. The data format
of the files needs to meet standards for it to be compatible on both computers.

e File export and file import are the means that many programs use to be compatible with
older versions of themselves and with other programs. Figure 9.6 shows the Microsoft
Word File Open dialog box and some of the 23 different file formats that can be
imported into the word processor.

153

DNILSA|
ALITIFILVAINOD

Applying Your Testing Skills

PArT llI
Dpen EE
Leak in: ||__|Chupt=r6 Fllem @ ¥ Ol - Toos -
TOPIC: 305 Control - Restriction &
] 0Efics.due on canrol structures
Histary 8] 9e3706.doc TS
The goto statement (and hence labels
ﬂ; a3 well) should not be used.
Fersanal The whi e loop should be used instead
of the do-whi e loop, exceptwhare the
logic of thi problem axalicily requires
doing the body al least once regardless
of the loop condition.
Irasingle 11 -else can replace a
continue, snif-else should be
Favorites ECE
JUSTIFICATION ;I
___' File nams: I j = oen |-
‘Wb Fr 5
eb Follers RS adl wiord Dicurmenis (¥ doc; *.dot; * hitm; *.he; =.ual;] =] cancal |
(wWeedParfect 6. (*.wpd;*.dac) -
Wudk\: F+.D|’\:lr Windows [:-WDSJ
. kd ‘i 3.0(*%,
Supported file formats ————{m o irises 30)
[weed (Asizn Yarsiors) 6.0095 (*.doe)
[Word 2. For Windows (*.doch -
FIGURE 9.6

Microsoft Word can import 23 different file formats.

To test the file import feature, you would need to create test documents in each compati-
ble file format—probably using the original software that wrote that format. Those docu-
ments would need to have equivalence partitioned samples of the possible text and
formatting to check that the importing code properly converts it to the new format.

* Cut, copy, and paste are the most familiar methods for sharing data among programs
without transferring the data to a disk. In this case, the transfer happens in memory
through an intermediate program called the Clipboard. Figure 9.7 shows how this trans-
fer occurs.

Multiple Data
Formats Single Data
Application #1 [Format Application #2
_— _—
P ——
———
System
Clipboard

FIGURE 9.7

The System Clipboard is a temporary hold place for different types of data that’s being copied from one application to
another.

Compatibility Testing

CHAPTER 9

The Clipboard is designed to hold several different data types. Common ones in
Windows are text, pictures, and sounds. These data types can also be different formats—
for example, the text can be plain old text, HTML, or rich text. Pictures can be bitmaps,
metafiles, or .tifs.

Whenever a user performs a cut or copy, the data that’s chosen is placed in the
Clipboard. When he does a paste, it’s copied from the Clipboard to the destination
software.

If you’re compatibility testing a program, you need to make sure that its data can be
properly copied in and out of the Clipboard to other programs. This feature is so fre-
quently used, people forget that there’s a lot of code behind making sure that it works
and is compatible across lots of different software.

DDE (pronounced D-D-E) and OLE (pronounced oh-lay) are the methods in Windows
of transferring data between two applications. DDE stands for Dynamic Data Exchange
and OLE stands for Object Linking and Embedding. Other platforms support similar
methods.

There’s no need to get into the gory details of these technologies in this book, but the
primary difference between these two methods and the Clipboard is that with DDE and
OLE data can flow from one application to the other in real time. Cutting and copying is
a manual operation. With DDE and OLE, the transfer can happen automatically.

An example of how these might be used could be a written report done in a word proces-
sor that has a pie-chart created by a spreadsheet program. If the report’s author copied
and pasted the chart into the report, it would be a snapshot in time of the data. If, how-
ever, the author linked the pie chart into the report as an object, when the underlying
numbers for the chart change, the new graphics will automatically appear in the report.

This is all pretty fancy, yes, but it’s also a testing challenge to make sure that the all the
object linking embedding and data exchanging happens correctly.

Summary

This chapter introduced you to the basics of compatibility testing. In reality, an entire book
could be written on the subject, and a single chapter doesn’t do the topic justice. Every plat-
form and every application is unique, and the compatibility issues on one system can be totally
different than on another.

As a new software tester, you may be assigned a task of compatibility testing your software.
That may seem strange, given that it’s potentially such a large and complex task, but you’ll
likely be assigned just a piece of the entire job. If your project is a new operating system, you
may be asked to compatibility test just word processors or graphics programs. If your project

155

DNILSA|
ALITIFILVAINOD

156 Applying Your Testing Skills

PART llI

is an applications program, you may be asked to compatibility test it on several different
platforms.

Each is a manageable task that you can easily handle if you approach your testing with these
three things in mind:

» Equivalence partition all the possible choices of compatible software into a manageable
set. Of course, your project manager should agree with your list and understand the risk
involved in not testing everything.

e Research the high-level and low-level standards and guidelines that might apply to your
software. Use these as extensions of your product’s specification.

e Test the different ways that data can flow between the software programs you're testing.
This data exchange is what makes one program compatible with another.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

1. True or False: All software must undergo some level of compatibility testing.

2. True or False: Compatibility is a product feature and can have different levels of
compliance.

3. If you’re assigned to test compatibility of your product’s data file formats, how would
you approach the task?

4. How can you test forward compatibility?

Foreign-Language Testing CHAPTER

IN THIS CHAPTER

¢ Making the Words and Pictures Make
Sense 158

¢ Translation Issues 159
¢ Localization Issues 165
¢ Configuration and Compatibility Issues 168

e How Much Should You Test? 171

158

Applying Your Testing Skills
PArT llI

Si tu eres fluente en mas de un idioma y competente en provando programas de computadora,
tu tienes una habilidad muy deceada en el mercado.

Wenn Sie eine zuverldfiig Software Priiferin sind, und flieflend eine fremd sprache, ausser
English, sprechen konnen, dann konnen Sie gut verdienen.

Translated roughly from Spanish and German, the preceding two sentences read: If you are a
competent software tester and are fluent in a language other than English, you have a very
marketable skill set.

Most software today is released to the entire world, not just to a certain country or in a specific
language. Microsoft shipped Windows 98 with support for 73 different languages, from
Afrikaans to Hungarian to Vietnamese. Most other software companies do the same, realizing
that the U.S. English market is less than half of their potential customers. It makes business
sense to design and test your software for worldwide distribution.

This chapter covers what’s involved in testing software written for other countries and lan-
guages. It might seem like a straightforward process, but it’s not, and you’ll learn why.

Highlights of this chapter include

* Why just translating is not enough

¢ How words and text are affected

* Why footballs and telephones are important
» The configuration and compatibility issues

* How large of a job testing another language is

Making the Words and Pictures Make Sense

Have you ever read a user’s manual for an appliance or a toy that was poorly converted word
for word from another language? “Put in a bolt number five past through green bar and tighten
no loose to nut.” Got it?

That’s a poor translation, and it’s what software can look like to a non-English speaker if little
effort is put into building the software for foreign languages. It’s easy to individually convert
all the words, but to make the overall instructions meaningful and useful requires much more
work and attention.

Good translators can do that. If they’re fluent in both languages, they can make the foreign text
read as well as the original. Unfortunately, what you’ll find in the software industry is that
even a good translation isn’t sufficient.

Take Spanish, for example. It should be a simple matter to convert English text to Spanish,
right? Well, which Spanish are you referring to? Spanish from Spain? What about Spanish

Foreign-Language Testing
CHAPTER 10

from Costa Rica, Peru, or the Dominican Republic? They’re all Spanish, but they’re different
enough that software written for one might not be received well by the others. Even English
has this problem. There’s not just U.S. English, there’s also Canadian, Australian, and British
English. It would probably seem strange to you to see the words colour, neighbour, and
rumour in your word processor.

What needs to be accounted for, besides the language, is the region or locale—the user’s coun-
try or geographic area. The process of adapting software to a specific locale, taking into
account its language, dialect, local conventions, and culture, is called localization. Testing the
software is called localization testing.

Translation Issues

Although translation is just a part of the overall localization effort, it’s an important one from a
test standpoint. The most obvious problem is how to test something that’s in another language.
Well, you or someone on your test team will need to be at least semi-fluent in the language
you’re testing, being able to navigate the software, read any text it displays, and type the neces-
sary commands to run your tests. It might be time to sign up for the community college course
in Slovenian you always wanted to take.

NoTE

It's important that you or someone on your test team be at least a little familiar with
the language you're testing. Of course, if you're shipping your program in 32 differ-
ent languages, they may be difficult. The solution is to contract out this work to a
localization testing company. Numerous such companies worldwide can perform test-
ing in nearly any language. For more information, search the Internet for “localiza-
tion testing.”

It’s not a requirement that everyone on the test team speak the language that the software is
being localized into; you probably need just one person. Many things can be checked without
knowing what the words say. It would be helpful, sure, to know a bit of the language, but
you’ll see that you might be able to do a fair amount of the testing without being completely
fluent.

Text Expansion

The most straightforward example of a translation problem that can occur is due to something
called text expansion. Although English may appear at times to be wordy, it turns out that when
English is translated into other languages, more characters are usually necessary to say the
same thing. Figure 10.1 shows how the size of a button needs to expand to hold the translated

159

Y
o

DNILST|
IDVNONV]

-NDITHO4

160

Applying Your Testing Skills
PArT llI

text of two common computer words. A good rule of thumb is to expect up to 100 percent
increase in size for individual words—on a button, for example. Expect a 50 percent increase
in size for sentences and short paragraphs—typical phrases you would see in dialog boxes and
error messages.

Engishe Mirimize |

Catalan: Ainplia a la grandbiiz mbkma I Rledueix ala grandiia mirina
Dubch: Masimalzeren Minimakzerzn |

Itakan: Ingrarddizzi | Riduzi aicana

Turkish: Elkerani Kapla | Simge Duumuna Kisgiit I

FiIGURE 10.1

When translated into other languages, the words Minimize and Maximize can vary greatly in size, often forcing the Ul
to be redesigned to accommodate them.

Because of this expansion, you need to carefully test areas of the software that could be
affected by longer text. Look for text that doesn’t wrap correctly, is truncated, or is hyphenated
incorrectly. This could occur anywhere—onscreen, in windows, boxes, buttons, and so on. Also
look for cases where the text had enough room to expand, but did so by pushing something
else out of the way.

Another possibility is that this longer text can cause a major program failure or even a system
crash. A programmer could have allocated enough internal memory for the English text mes-
sages, but not enough for the translated strings. The English version of the software will work
fine but the German version will crash when the message is displayed. A white-box tester
could catch this problem without knowing a single word of the language.

ASCII, DBCS, and Unicode

Chapter 5, “Testing the Software with Blinders On,” briefly discussed the ASCII character set.
ASCII can represent only 256 different characters—not nearly enough to represent all the pos-
sible characters in all languages. When software started being developed for different lan-
guages, solutions needed to be found to overcome this limitation. An approach common in the
days of MS-DOS, but still in use today, is to use a technique called code pages. Essentially, a
code page is a replacement ASCII table, with a different code page for each language. If your
software runs in Quebec on a French PC, it could load and use a code page that supports
French characters. Russian uses a different code page for its Cyrillic characters, and so on.

Foreign-Language Testing

CHAPTER 10

This solution is fine, although a bit clunky, for languages with less than 256 characters, but
Japanese, Chinese, and other languages with thousands of symbols cause problems. A system
called DBCS (for Double-Byte Character Set) is used by some software to provide more than
256 characters. Using 2 bytes instead of 1 byte allows for up to 65,536 different characters.

Code pages and DBCS are sufficient in many situations but suffer from a few problems. Most
important is the issue of compatibility. If a Hebrew document is loaded onto a German com-
puter running a British word processor, the result can be gibberish. Without the proper code
pages or the proper conversion from one to the other, the characters can’t be interpreted cor-
rectly, or even at all.

The solution to this mess is the Unicode standard.

Unicode provides a unique number for every character,
no matter what the platform,
no matter what the program,
no matter what the language.
“What is Unicode?”
from the Unicode Consortium Web site,
www.unicode.org

Because Unicode is a worldwide standard supported by the major software companies, hard-
ware manufacturers, and other standards groups, it’s becoming more commonplace. Most
major software applications support it. Figure 10.2 shows many of the different characters sup-
ported. If it’s at all possible that your software will ever be localized, you and the programmers
on your project should cut your ties to “ol” ASCII” and switch to Unicode to save yourself
time, aggravation, and bugs.

Symbol EHE
symicis | Specdl Characters |
Fork: [{noemal text) = subsets oy -

[CamEirirg Discrical Marks -
-lzla|zolr|nt]ala(r]alE|z (4] st aer 1
@|R|T|RT|Y|&) A1 0]ec| By |8l firen Extended
clolt|ule|x|wle]i]o]s]d]a] e[| {pasic Hebrew |
HEREEEEER - AR B EES acasaea =t
S(W|A|a|g|e(0 |o|e|®|s|uE|x|njvsfo|noplc|r |y |d)=|m|En
w|w|ule o fofals| |0 |e =i] |e|wnel#Fulc(c] []|
B I il T 3 =9l] O =1 e
nffafofvafalels|p[rfonnafe] o]z [T &)1 =
auacorect.. | shortaitker.. | shoret keys

Irsert I Cancel |

FiIGUre 10.2
This Microsoft Word 2000 dialog shows support for the Unicode standard.

161

Y
o

ONILST]
IDVNONVT]
-NDITHO4

162

Applying Your Testing Skills
PArT llI

Hot Keys and Shortcuts

In English, it’s Search. In French, it’s Réchercher. If the hotkey for selecting Search in the
English version of your software is Alt+S, that will need to change in the French version.

In localized versions of your software, you’ll need to test that all the hotkeys and shortcuts
work properly and aren’t too difficult to use—for example, requiring a third keypress. And,
don’t forget to check that the English hotkeys and shortcuts are disabled.

Extended Characters

A common problem with localized software, and even non-localized software, is in its han-
dling of extended characters. Referring back to that ancient ASCII table, extended characters
are the ones that are outside the normal English alphabet of A—Z and a—z. Examples of these
would be the accented characters such as the ¢ in José or the 7i in El Niio. If your software is
properly written to use Unicode or even if it correctly manages code pages or DBCS, this
shouldn’t be an issue, but a tester should never assume anything, so it’s worthwhile to check.

The way to test this is to look for all the places that your software can accept character input or
send output. In each place, try to use extended characters to see if they work just as regular
characters would. Dialog boxes, logins, and any text field are fair game. Can you send and
receive extended characters through a modem? Can you name your files with them or even
have the characters in the files? Will they print out properly? What happens if you cut, copy,
and paste them between your program and another one?

Tip

The simplest way to ensure that you test for proper handling of extended characters
is to add them to your equivalence partition of the standard characters that you test.
Along with those bug-prone characters sitting on the ASCII table boundaries, throw
inan 4, an @, and a 8.

Computations on Characters

Related to extended characters are problems with how they’re interpreted by software that per-
forms calculations on them. Two examples of this are word sorting and upper- and lowercase
conversion.

Does your software sort or alphabetize word lists? Maybe in a list box of selectable items such
as filenames or Web site addresses? If so, how would you sort the following words?

Foreign-Language Testing

CHAPTER 10

Kopiéren Reiste
Armlich Arg
Reiskorn résumé
Reifiaus kopieén
reiten Reisschnaps
reifien resume

If you’re testing software to be sold to one of the many Asian cultures, are you aware that the
sort order is based on the order of the brush strokes used to paint the character? The preceding
list would likely have a completely different sort order if written in Mandarin Chinese. Find
out what the sorting rules are for the language you’re testing and develop tests to specifically
check that the proper sort order occurs.

The other area where calculation on extended characters breaks down is with upper- and lower-
case conversion. It’s a problem because the “trick” solution that many programmers learn in
school is to simply add or subtract 32 to the ASCII value of the letter to convert it between
cases. Add 32 to the ASCII value of A and you get the ASCII value of a. Unfortunately, that
doesn’t work for extended characters. If you tried this technique using the Apple Mac extended
character set, you’d convert N (ASCII 132) to § (ASCII 164) instead of 7i (ASCII 150)—not
exactly what you’d expect.

Sorting and alphabetizing are just two examples. Carefully look at your software to determine
if there are other situations where calculations are performed on letters or words. Spell-
checking perhaps?

Reading Left to Right and Right to Left

A huge issue for translation is that some languages, such as Hebrew and Arabic, read from
right to left, not left to right. Imagine flipping your entire user interface into a mirror image of
itself.

Thankfully, most major operating systems provide built-in support for handling these lan-
guages. Without this, it would be a nearly impossible task. Even so, it’s still not a simple mat-
ter of translating the text. It requires a great deal of programming to make use of the OS’s
features to do the job. From a testing standpoint, it’s probably safe to consider it a completely
new product, not just a localization.

Text in Graphics

Another translation problem occurs when text is used in graphics. See Figure 10.3 for several
examples.

163

Y
o

DNILST|
IDVNONV]

-NDITHO4

164 Applying Your Testing Skills
PArT llI

FiGure 10.3

Word 2000 has examples of text in bitmaps that would be difficult to translate.

The icons in Figure 10.3 are the standard ones for selecting Bold, Italic, Underline, and Font
Color. Since they use the English letters B, I, U, and A, they’ll mean nothing to someone from
Japan who doesn’t read English. They might pick up on the meaning based on their look—the
B is a bit dark, the I is leaning, and the U has a line under it—but software isn’t supposed to be
a puzzle.

The impact of this is that when the software is localized, each icon will have to be changed to
reflect the new languages. If there were many of these icons, it could get prohibitively expen-
sive to localize the program. Look for text-in-graphic bugs early in the development cycle so
they don’t make it through to the end.

Keep the Text out of the Code

The final translation problem to cover is a white-box testing issue—keep the text out of the
code. What this means is that all text strings, error messages, and really anything that could
possibly be translated should be stored in a separate file independent of the source code. You
should never see a line of code such as:

Print "Hello World"

Most localizers are not programmers, nor do they need to be. It’s risky and inefficient to have
them modifying the source code to translate it from one language to another. What they should
modify is a simple text file, called a resource file, that contains all the messages the software
can display. When the software runs, it references the messages by looking them up, not
knowing or caring what they say. If the message is in English or Dutch, it gets displayed just
the same.

That said, it’s important for a white-box testers to search the code to make sure there are no
embedded strings that weren’t placed in the external file. It would be pretty embarrassing to
have an important error message in an Spanish program appear in English.

Another variation of this problem is when the code dynamically generates a text message. For
example, it might piece together snippets of text to create a larger message. The code could
take three strings:

1. “You pressed the”

2. a variable string containing the name of the key just pressed

3. “key justin time!”

Foreign-Language Testing
CHAPTER 10

165

and put them together to create a message. If the variable string had the value “stop nuclear
reaction,” the total message would read:

You pressed the stop nuclear reaction key just in time!

The problem is that the word order is not the same in all languages. Although it pieces together
nicely in English, with each phrase translated separately, it could be gibberish when stuck
together in Mandarin Chinese or even German. Don’t let strings crop into the code and don’t
let them be built up into larger strings by the code.

Localization Issues

As mentioned previously, translation issues are only half the problem. Text can easily be trans-
lated and allowances made for different characters and lengths of strings. The difficulty occurs
in changing the software so that it’s appropriate for the foreign market.

REMINDER

Remember those terms from Chapter 3: precision, accuracy, and reliability and
quality?

Well-translated and well-tested software is precise and reliable, but probably not accurate or of
high quality. It might look and feel great, read perfectly, and never crash, but to someone from
another locale, it might just seem plain-old wrong. Assuring that the product is correctly local-
ized gets you to this next step.

Content
What would you think of a new software encyclopedia for the U.S. English market if it had the

content shown in Figure 10.4?
m
AN

Y
o

Always drive
Football Our Queen Phone Booth on the left
7
FiGure 10.4 2
These content samples would seem strange in a U.S. English encyclopedia. 2

IDVNONVT]
-NDITHO4

166

Applying Your Testing Skills
PArT llI

In the United States, a soccer ball isn’t the same thing as a football! You don’t drive on the left!
These may not seem right to you, but in other countries they would be perfectly accurate. If
you're testing a product that will be localized, you need to carefully examine the content to
make sure it’s appropriate to the area where it will be used.

Content is all the other “stuff” besides the code that goes into the product (see Chapter 2, “The
Software Development Process”). The following list shows various types of content that you
should carefully review for localization issues. Don’t consider it a complete list; there can be
many more examples depending on the product. Think about what other items in your software
might be problematic if it was sent to another country.

Sample documents Icons

Pictures Sounds

Video Help files

Maps with disputed boundaries Marketing material
Packaging Web links

A Nose Too Long

In 1993, Microsoft released two products for kids called Creative Writer and Fine
Artist. These products used a helper character named McZee to guide the kids
through the software. A great deal of research went into the design of McZee to
select his look, color, mannerisms, personality, and so on. He turned out to be a
rather strange looking fellow with buck teeth, dark purple skin, and a big nose.

Unfortunately, after a great deal of work was done drawing the animations that
would appear on the screen, a call came in from one of Microsoft’s foreign offices.
They had received a preliminary version of the software and after reviewing it said
that it was unacceptable. The reason: McZee's nose was too long. In their culture,
people with large noses weren’t common and, right or wrong, they associated having
a large nose with lots of negative stereotypes. They said that the product wouldn't
sell if it was localized for their locale.

It would have been way too costly to create two different McZees, one for each mar-
ket, so the artwork completed up to that point was thrown out, and McZee had his
first nose job.

The bottom line is that the content that goes with the software, whether it’s text, graphics,
sounds, or whatever, is especially prone to having localization issues. Test the content with an
eye for these types of problems and, if you’re not experienced with the culture of the locale
that the software is destined for, be sure to call in someone who is.

Foreign-Language Testing
CHAPTER 10

Data Formats

Different locales use different formats for data units such as currency, time, and measurement.
Just as with content, these are localization, not translation, issues. A U.S. English publishing
program that works with inches couldn’t simply undergo a text translation to use centimeters.
It would require code changes to alter the underlying formulas, gridlines, and so on.

Table 10.1 shows many of the different categories of units that you’ll need to become familiar
with if you’re testing localized software.

TaBLE 10.1 Data Format Considerations for Localized Software

Unit Considerations

Measurements Metric or English

Numbers Comma, decimal, or space separators; how negatives are
shown; # symbol for number

Currency Different symbols and where they’re placed

Dates Order of month, day, year; separators; leading zeros; long
and short formats

Times 12-hour or 24-hour, separators

Calendars Different calendars and starting days

Addresses Order of lines; postal code used

Telephone numbers Parenthesis or dash separators

Paper sizes Different paper and envelope sizes

Fortunately, most operating systems designed for use in multiple locales support these different
units and their formats. Figure 10.5 shows an example from Windows 98. Having this built-in
support makes it easier, but by no means foolproof, for programmers to write localized
software.

NoTE

How a unit is displayed isn‘t necessarily how it's treated internally by the software.
For example, the Date tab on the Regional Settings program shows a short date style
of m/d/yy. That doesn’t imply that the operating system handles only a 2-digit year
(and hence is a Y2K bug). In this case, the setting means only a 2-digit year is dis-
played. The operating system still supports a 4-digit year for computations, which is
one more thing to consider when testing.

167

Y
o

ONILST]
IDVNONVT]
-NDITHO4

168

Applying Your Testing Skills
PArT llI

Regona Satings | Nurber Cuency | Tine | Data |

ample

Pasiive: |s1:5 4%, 739.00 Negalive |$1:54?6 35,00

i m Uriveresl carency sl
Cuirency sk [-
Posiion of cursncy sumkot [A1.1 5

Megalive rumber fomat:— [[21.1) -

Decimal symbot - i
Mo, of digitz afier decimal: |2 =

[Digh gravping symbat . =
Mumber of digitz n groupe |3 =

T I

FiGUurRe 10.5
The Windows 98 Regional Settings options allow a user to select how numbers, currency, times, and dates will be
displayed.

If you’re testing localized software, you’ll need to become very familiar with the units of mea-
sure used by the target locale. To properly test the software, you’ll need to create different
equivalence partitions of test data from the ones you create for testing the original version of
the software.

Configuration and Compatibility Issues

The information covered in Chapters 8 and 9 on configuration and compatibility testing is very
important when testing localized versions of software. The problems that can crop up when
software interacts with different hardware and software are amplified by all the new and differ-
ent combinations. Performing this testing isn’t necessarily more difficult, just a bit larger of a
task. It can also tax your logistical skills to locate and acquire the foreign version of hardware
and software to test with.

Foreign Platform Configurations

Windows 98 supports 73 different languages and 66 different keyboards. It does this, as shown
in Figure 10.6, through the Keyboard Properties dialog via Control Panel. The drop-down list
for languages runs from Afrikaans to Ukrainian and includes eight different versions of English
other than U.S. English (Australian, British, Canadian, Caribbean, Irish, Jamaican, New
Zealand, and South African), five different German dialects, and 20 different Spanish dialects.

Foreign-Language Testing
CHAPTER 10

Keyboard Properlies
Speed Language]
—Inataled kayboard languzges and lapauts

Language:
[ieiar [Swiss)

il

L

Monsagizn [Bakmall
OF. Cancel
£ LeftAbistr DSt o lioe
I | Erietre e e o ke
113 Cencel 2l

FIGURE 10.6
Windows 98 supports the use of different keyboards and languages through the Keyboard Properties dialog.

Figure 10.7 shows examples of three different keyboard layouts designed for different coun-
tries. You’ll notice that each has keys specific to its own language, but also has English charac-
ters. This is fairly common, since English is often spoken as a second language in many
countries, and allows the keyboard to be used with both native and English language software.

Keyboards are probably the piece of hardware with the largest language dependencies, but
depending on what you’re testing, there can be many others. Printers, for example, would need
to print all the characters your software sends to them and properly format the output on the
various paper sizes used in different countries. If your software uses a modem, there might be
issues related to the phone lines or communication protocol differences. Basically, any periph-
eral that your software could potentially work with needs to be considered for a place in your
equivalence partitions for platform configuration and compatibility testing.

NoTEe

When designing your equivalence partitions, don’t forget that you should consider all
the hardware and software that can make up the platform. This includes the hard-
ware, device drivers for the hardware, and the operating system. Running a French
printer on a Mac, with a British operating system, and a German version of your soft-
ware might be a perfectly legitimate configuration for your users.

169

Y
o

ONILST]
IDVNONVT]
-NDITHO4

170

Applying Your Testing Skills

PArT Il
IR A0 A S Y O i
sl]2 sl3 vla ¢|5 o6 |7 v|8 A9 io |- =
N +1o #lp S|t *
QUBWUQE&HJTJY&UEI nCICF' g
AJs ID IF lg¥H [y -[k ¢[L ¢
[I) I Y [) I
c . |v |BYN M _[¢
& 3] 1 Bl
|1 |2 3|4|5|E|?|B|EII] °|+
2 & Je ~™# e 0- e - Mg ~Na@)) 1= 3
A £ IE |IB |IT [U |l OF':gn
a s |b|F |G H |J |[K |L M?j‘
> WX I v IB M [?
<) [
! |@"| .'|$ n%:l" ,la N [
1 [2 |3 |4 |5 |6 |7 |8 |o
WEyFlKTEYHlurIm
DBFAGHHPJOK
LICCVM|BHNTMI:.
Ficure 10.7

The Arabic, French, and Russian keyboards support characters specific to those languages. Courtesy of Fingertip
Software, Inc. (www.fingertipsoft.com).

Data Compatibility

Just as with platform configuration testing, compatibility testing of data takes on a whole new
meaning when you add localization to the equation. Figure 10.8 shows how complex it can get
moving data from one application to another. In this example, a German application that uses
metric units and extended characters can move data to a different French program by saving
and loading to disk or using cut and paste. That French application can then export the data for
import to yet another English application. That English program, which uses English units and
non-extended characters, can then move it all back to original German program.

Foreign-Language Testing
CHAPTER 10

Export
Y
German French English
Application Application Application
#1 #2 #3
Paste A A
Save Load Import

Metric Units, English Units,
Extended Non-Extended
Characters Characters

FiGcure 10.8

Data compatibility testing of localized software can get fairly complex.

During this round and round of data transfers, with all the conversions and handling of mea-
surement units and extended characters, there are numerous places for bugs. Some of these
bugs might be due to design decisions. For example, what should happen to data moved from
one application to another if it needs to change formats? Should it be automatically converted,
or should the user be prompted for a decision? Should it show an error or should the data just
move and the units change?

These important questions need to be answered before you can start testing the compatibility
of your localized software. As soon as you have those specifications, your compatibility testing
should proceed as it normally would—just with more test cases in your equivalence partitions.

How Much Should You Test?

The big uncertainty that looms over localization testing is in determining how much of the
software you should test. If you spent six months testing the U.S. English version, should you
spend six months testing a version localized into French? Should you spend even more because
of additional configuration and compatibility issues?

This complex issue comes down to two questions:

e Was the project intended to be localized from the very beginning?

e Was programming code changed to make the localized version?

171

Y
o

ONILST]
IDVNONVT]
-NDITHO4

172

Applying Your Testing Skills
PArT llI

If the software was designed from the very beginning to account for all the things discussed in
this chapter, the risk is much smaller that a localized version will be very buggy and require
lots of testing. If, on the other hand, the software was written specifically for the U.S. English
market and then it was decided to localize it into another language, it would probably be wise
to treat the software as a completely new release requiring full testing.

The other question deals with what needs to change in the overall software product. If the
localization effort involves changing only content such as graphics and text—not code—the
test effort can sometimes be just a validation of the changes. If, however, because of poor
design or other problems, the underlying code must change, the testing needs take that into
account and check functionality as well as content.

NoTE

The amount of localization testing required is a risk-based decision, just as all testing
is. As you gain experience in testing, you'll learn what variables go into the decision-
making process.

NoTE

One method used by teams who know they are going to localize their product is to
test for localizability. That is, they test the first version of the product, assuming that
it will eventually be localized. The white-box testers examine the code for text
strings, proper handling of units of measure, extended characters, and other code-
level issues. They may even create their own “fake” localized version. The black-box
testers carefully review the spec and the product itself for localizing problems such as
text in graphics and configuration issues. They can use the “fake” version to test for
compatibility.

Eventually, when the product is localized, many of the problems that would have
shown up later have already been found and fixed, making the localization effort
much less painful and costly.

Summary

Ha On egy rdtermett és képzett softver ismerd, és folyékonyan beszél egy nyelvet az Angolon
kiviil, On egy nagyon piacképes szakképzett személy.

That’s the same first sentence of this chapter—only written in Hungarian this time. Don’t
worry if you can’t read it. You’ve learned in this chapter that knowing the language is only part

Foreign-Language Testing

CHAPTER 10

of the overall testing required for a localized product. Much work can be done by checking the
product for localizability and for testing language-independent areas.

If you are fluent in a language other than English, keep reading this book, and learn all you
can about software testing. With the global economy and the worldwide adoption of technol-
ogy and computers you will, as the Hungarian phrase roughly says, “have a very marketable
skill set.”

For more information on localization programming and testing for Windows, visit
www.microsoft.com/globaldev. For the Mac, consult the book Guide to Macintosh Software
Localization, published by Addison-Wesley.

Quiz

These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

What’s the difference between translation and localization?

Do you need to know the language to be able to test a localized product?

What is text expansion and what common bugs can occur because of it?

Identify several areas where extended characters can cause problems.

Why is it important to keep text strings out of the code?

A

Name a few types of data formats that could vary from one localized program to another.

173

Y
o

DNILST|
IDVNONV]
-NDITHO4

Usability Testing

IN THIS CHAPTER

¢ User Interface Testing 176
e What Makes a Good UI? 177

¢ Testing for the Disabled: Accessibility
Testing 184

CHAPTER

176

Applying Your Testing Skills
PArT llI

Software is written to be used. That sounds pretty obvious, but it’s sometimes forgotten in the
rush to design, develop, and test a complex product. So much time and effort is spent on the
technology aspects of writing the code that the development team ignores the most important
aspect of software—that someone will eventually use the stuff. It really doesn’t matter whether
the software is embedded in a microwave oven, a telephone switching station, or an Internet
stock trading Web site. Eventually the bits and bytes bubble up to where a live person will
interact with it. Usability is how appropriate, functional, and effective that interaction is.

You may have heard the term ergonomics, the science of designing everyday things so that
they’re easy and functional to use. An ergonomist’s main concern is in achieving usability.

Now, you’re not going to get the knowledge of a four-year ergonomics degree in the 15 or so
pages of this chapter, nor do you need to. Remember from Chapter 1 the fifth rule of what con-
stitutes a bug: The software is difficult to understand, hard to use, slow, or—in the software
tester’s eyes—will be viewed by the end user as just plain not right. That’s your blank check
for usability testing.

You’re likely the first person to use the software—hopefully, while it’s still in development and
can be fixed. You’ve become familiar with the specification and investigated who the customers
will be. If you have problems using the software while you’re testing it, odds are the customers
will, too.

Because there are so many different types of software, it’s impossible to go into detail about
usability issues for all of them. Usability of a nuclear reactor shutdown sequence is pretty dif-
ferent from usability of a voicemail menu system. What you’ll learn in this chapter are the
basics of what to look for—with a bias toward software that you use on your PC every day.
You can then take those ideas and apply them to whatever software you have to test.

Highlights of this chapter include

* What usability testing involves
* What to look for when testing a user interface

* What special usability features are needed by the disabled

User Interface Testing

The means that you use to interact with a software program is called its user interface, or Ul
All software has some sort of UL Purists might argue that this isn’t true, that software such as
what’s in your car to control the fuel/air ratio in the engine doesn’t have a user interface. In
truth, it doesn’t have a conventional UI, but the extra pressure you need to apply to the gas
pedal and the audible sputtering you hear from the tailpipe is indeed a user interface.

Usability Testing
CHAPTER 11

The computer UI we’re all familiar with has changed over time. The original computers had
toggle switches and light bulbs. Paper tape, punch cards, and teletypes were popular user inter-
faces in the ‘60s and ‘70s. Video monitors and simple line editors such as MS-DOS came next.
Now we’re using personal computers with sophisticated graphical user interfaces (GUIs).

Although these Uls were very different, technically they all provided the same interaction with
the computer—the means to give it input and receive output.

What Makes a Good UI?

Many software companies spend large amounts of time and money researching the best way to
design the user interfaces for their software. They use special usability labs run by ergonomic
specialists. The labs are equipped with one-way mirrors and video cameras to record exactly
how people use their software. Everything the users (subjects) do from what keys they press,
how they use the mouse, what mistakes they make, and what confuses them is analyzed to
make improvements to the UL

You may be wondering what a software tester could possibly contribute with such a detailed
and scientific process. By the time the software is specified and written, it should have the per-
fect UL But, if that’s the case, why are there so many VCRs blinking 12:00?

First, not every software development team designs their interface so scientifically. Many Uls
are just thrown together by the programmers—who may be good at writing code, but aren’t
necessarily ergonomics experts. Other reasons might be that technological limitations or time
constraints caused the UI to be sacrificed. As you learned in Chapter 10, “Foreign Language
Testing,” the reason might be that the software wasn’t properly localized. In the end, the soft-
ware tester needs to assume the responsibility of testing the product’s usability, and that
includes its user interface.

You might not feel that you’re properly trained to test a UI, but you are. Remember, you don’t
have to design it. You just have to pretend you’re the user and find problems with it.

NoTEe

Because of the subjectivity of usability bugs, disagreements commonly arise between
testers and Ul designers. A Ul is often considered art by the person who created it,
and a tester saying that something is wrong can come across as insulting to the
“artist.” Usability is a sensitive area for reporting bugs. See Chapter 18, “Reporting
What You Find,” for techniques you can use to make your point known without get-
ting someone upset.

Here’s a list of seven important traits common to a good UL It doesn’t matter if the Ul is on a
digital watch or is the Mac OS interface, they all still apply.

 Follows standards and guidelines * Flexible * Correct

* Intuitive * Comfortable e Useful

» Consistent

177

1

ONILS3|
Alriavsn

178

Applying Your Testing Skills
PArT llI

If you read a UI design book, you may also see other traits being listed as important. Most of
them are inherent or follow from these seven. For example, “easy to learn” isn’t listed above,
but if something is intuitive and consistent, it’s probably easy to learn. As a tester, if you con-
centrate on making sure your software’s Ul meets these criteria, you’ll have a darn good inter-
face. Each trait is discussed in detail in the following sections.

Follows Standards or Guidelines

The single most important user interface trait is that your software follows existing standards
and guidelines—or has a really good reason not to. If your software is running on an existing
platform such as Mac or Windows, the standards are set. Apple’s are defined in the book
Macintosh Human Interface Guidelines, published by Addison-Wesley, and Microsoft’s in the
book Microsoft Windows User Experience, published by Microsoft Press.

Each book goes into meticulous detail about how software that runs on each platform should
look and feel to the user. Everything is defined from when to use check boxes instead of an
option button (when both states of the choice are clearly opposite and unambiguous) to when
it’s proper to use the information, warning, and critical messages as shown in Figure 11.1.

Software Testing Sample Message

:\i) Thiz iz an infoimation maszaga.

Software Testing Sample Mestage

r'r! ': Thiz iz a waming messags.

Software Testing Sample Message

Q This iz a crfical mezsape.

FiIGURe 11.1

Did you ever notice that there are three different levels of messages in Windows? When and how to use each one is
defined in the user interface standards for Windows.

NoTE

If you're testing software that runs on a specific platform, you need to treat the stan-
dards and guidelines for that platform as an addendum to your product’s specifica-
tion. Create test cases based on it just as you would from the product’s spec.

Usability Testing

CHAPTER 11

These standards and guidelines were developed (hopefully) by experts in software usability.
They have accounted for a great deal of formal testing, experience, and trial and error to devise
rules that work well for their users. If your software strictly follows the rules, most of the other
traits of a good UI will happen automatically. Not all of them will because your team may
want to improvise on them a bit, or the rules may not perfectly fit with your software. In those
cases, you need to really pay attention to usability issues.

It’s also possible that your platform doesn’t have a standard, or maybe your software is the
platform. In those situations, your design team will be the ones creating the usability standards
for your software. You won’t be able to take for granted the rules that someone else has already
figured out, and the remaining traits of a good user interface will be even more important for
you to follow.

Intuitive

In 1975 the MITS (Micro Instrumentation Telemetry Systems) Altair 8800 was released as one
of the first personal computers. Its user interface (see Figure 11.2) was nothing but switches
and lights—not exactly intuitive to use.

FIGURE 11.2
The MITS Altair 8800 and its less-than-intuitive user interface. (Photo courtesy of the Computer Museum of America,
www . computer-museum.org.)

The Altair was designed for computer hobbyists, people who are a lot more forgiving of user
interface issues. Today, users want much more out of their software than what the Altair 8800
provided. Everyone from grandmothers to little kids to Ph.D.s are using computers in their
daily lives. The computers with the most intuitive Uls are the ones that people don’t even real-
ize they’re using.

When you’re testing a user interface, consider the following things and how they might apply

to gauging how intuitive your software is:

* Is the user interface clean, unobtrusive, not busy? The UI shouldn’t get in the way of
what you want to do. The functions you need or the response you’re looking for should
be obvious and be there when you expect them.

179

1

ONILS3|
ALIIavsn

180

Applying Your Testing Skills

PART llI

* Is the Ul organized and laid out well? Does it allow you to easily get from one function
to another? Is what to do next obvious? At any point can you decide to do nothing or
even back up or back out? Are your inputs acknowledged? Do the menus or windows go
too deep?

« Is there excessive functionality? Does the software attempt to do too much, either as a
whole or in part? Do too many features complicate your work? Do you feel like you’re
getting information overload?

« If all else fails, does the help system really help you?

Consistent

Consistency within your software and with other software is a key attribute. Users develop
habits and expect that if they do something a certain way in one program, another will do the
same operation the same way. Figure 11.3 shows an example of how two Windows applica-
tions, which should be following a standard, aren’t consistent. In Notepad, Find is accessed
through the Search menu or by pressing F3. In WordPad, a very similar program, it’s accessed
through the Edit menu or by pressing Ctrl+F.

4 Untitled - Notepad

FIGURE 11.3

Windows Notepad and WordPad are inconsistent in how the Find feature is accessed.

Inconsistencies such as this frustrate users as they move from one program to another. It’s even
worse if the inconsistency is within the same program. If there’s a standard for your software
or your platform, follow it. If not, pay particular attention to your software’s features to make
sure that similar operations are performed similarly. Think about a few basic items as you
review your product:

* Shortcut keys and menu selections. In a voicemail system, pressing 0, not other num-
bers, is almost always the “get-out” button that connects you to a real person. In
Windows, pressing F1 always gets you help.

Usability Testing

CHAPTER 11

e Terminology and naming. Are the same terms used throughout the software? Are fea-
tures named consistently? For example, is Find always called Find, or is it sometimes
called Search?

* Audience. Does the software consistently talk to the same audience level? A fun greeting
card program with a colorful user interface shouldn’t display error messages of arcane
technobabble.

* Placement and keyboard equivalents for buttons. Did you ever notice that when the
OK and Cancel buttons are in a dialog box, OK is always on the top or left and Cancel is
on the right or bottom? For the same reason, the keyboard equivalents are usually Esc for
Cancel and Enter for the dialog’s selected button. Consistency matters.

Flexible

Users like choices—not too many, but enough to allow them to select what they want to do and
how they want to do it. The Windows Calculator (see Figure 11.4) has two views: Standard and
Scientific. Users can decide which one they need for their task or the one they’re most com-
fortable using.

FIGURE 11.4

The Windows Calculator shows its flexibility by having two different views.

Of course, with flexibility comes complexity. In the Calculator example you’ll have a much
larger test effort than if there’s just one view. The test impact of flexibility is felt most in the
areas covered in Chapter 5, “Testing Software with Blinders On,” with states and with data:

¢ State jumping. Flexible software provides more options and more ways to accomplish
the same task. The result is additional paths among the different states of the software.
Your state transition diagrams can become much more complex and you’ll need to spend
more time deciding which interconnecting paths should be tested.

¢ State termination and skipping. This is most evident when software has power-user
modes where a user who’s very familiar with the software can skip numerous prompts or
windows and go directly to where they want to go. A voicemail system that allows you

181

1

ONILS3|
ALIIavsn

182

Applying Your Testing Skills
PArT llI

to directly punch in your party’s extension is an example. If you’re testing software that
allows this, you’ll need to make sure that all the state variables are correctly set if all the
intermediate states are skipped or terminated early.

Data input and output. Users want different ways to enter their data and see their
results. To put text into a WordPad document, you can type it, paste it, load it from six
different file formats, insert it as an object, or drag it with the mouse from another pro-
gram. The Microsoft Excel spreadsheet program allows you to view your data in 14 dif-
ferent standard and 20 different custom graphs. Who even knew there were that many
possibilities? Testing all the different ways to get data in and out of your software can
very quickly increase the effort necessary and make for tough choices when creating
your equivalence partitions.

Comfortable

Software should be comfortable to use. It shouldn’t get in the way or make it difficult for a
user to do his work. Software comfort is a pretty touchy-feely concept. Researchers have spent
their careers trying to find the right formula to make software comfortable. It can be a difficult
concept to quantify, but you can look for a few things that will give you a better idea of how to
identify good and bad software comfort:

* Appropriateness. Software should look and feel proper for what it’s doing and who it’s

for. A financial business application should probably not go crazy with loud colors and
sound effects. A space game, on the other hand, will have much more leeway with the
rules. Software should neither be too garish nor too plain for the task it’s intended to
perform.

Error handling. A program should warn users before a critical operation and allow users
to restore data lost because of a mistake. People take the Undo/Redo feature for granted
today, but it wasn’t long ago that these features didn’t exist.

Performance. Being fast isn’t always a good thing. More than one program has flashed
error messages too quickly to read. If an operation is slow, it should at least give the user
feedback on how much longer it will take and show that it’s still working and hasn’t
frozen. Status bars, as shown in Figure 11.5, are a popular way to accomplish this.

. = =
! !]
055 pox
From Chapter 5 to 'Chapier 5
[[T{TI(I]]] 1 T I
A0S econds Remsining

FIGURE 11.5

Status bars show how much of the work has been completed and how much is left to go.

Usability Testing
CHAPTER 11

Correct

The comfort trait is admittedly a bit fuzzy and often can be left to interpretation. Correctness,
though, isn’t. When you’re testing for correctness, you’re testing whether the UI does what it’s
supposed to do. Figure 11.6 is an example of a Ul that isn’t correct.

SeanTo

chbemphscan BWF

I “wiaiming LUp...

FIGURE 11.6

This software has a completely useless Abort button.

This figure shows a message box from a popular page-scanning program for Windows. The
box appears when a scan is started and is supposed to provide a way for the user to stop the
scan mid-process. Unfortunately, it doesn’t work. Note that the cursor is an hourglass. An
hourglass means (according to the Windows standard) that the software is busy and can’t
accept any input. Then why is the Abort button there? You can repeatedly click the Abort but-
ton during the entire scan, which can take a minute or more, and nothing happens. The scan
continues uninterrupted until it completes.

Correctness problems such as this are usually obvious and will be found in your normal course
of testing against the product specification. You should pay attention to some areas in particu-
lar, however:

* Marketing differences. Are there extra or missing functions, or functions that perform
operations different from what the marketing material says? Notice that you’re not com-
paring the software to the specification—you’re comparing it to the sales information.
They’re usually different.

* Language and spelling. Programmers know how to spell only computer language key-
words and often create some very interesting user messages. The following is an order
confirmation message from a popular e-commerce Web site—hopefully fixed by the time
you read this:

If there are any discreptency with the information below, please contact us immediately
to ensure timely delivery of the products that you ordered.

* Bad media. Media is any supporting icons, images, sounds, or videos that go with your
software’s UL Icons should be the same size and have the same palette. Sounds should
all be of the same format and sampling rate. The correct ones should be displayed when
chosen from the UL

183

1

DNILST |
Alriavsn

184

Applying Your Testing Skills
PArT llI

* WYSIWYG (what you see is what you get). Make sure that whatever the UI tells you
that you have is really what you do have. When you click the Save button, is the docu-
ment onscreen exactly what’s saved to disk? When you load it back, does it perfectly
compare with the original?

Useful

The final trait of a good user interface is whether it’s useful. Remember, you’re not concerned
with whether the software itself is useful, just whether the particular feature is. A popular term
used in the software industry to describe unnecessary or gratuitous features is dancing
bologna. It doesn’t matter whether the dancing bologna is in a solitaire program or a heart
monitor machine, it’s bad for the user and means extra testing for you.

When you’re reviewing the product specification, preparing to test, or actually performing your
testing, ask yourself if the features you see actually contribute to the software’s value. Do they
help users do what the software is intended to do? If you don’t think they’re necessary, do
some research to find out why they’re in the software. It’s possible that there are reasons you’re
not aware of, or it could just be dancing bologna.

Testing for the Disabled: Accessibility Testing

A serious topic that falls under the area of usability testing is that of accessibility testing, or
testing for the disabled. A 1994—-1995 government Survey of Income and Program Participation
(SIPP) used by the U.S. Census Bureau found that in 1994, about 54 million people in the
country had some sort of disability. Table 11.1 shows the complete breakdown.

TaBLE 11.1 People with Disabilities

Percentage of People

Age with Disabilities
0-21 10%

22-44 14.9%

45-54 24.5%

55-64 36.3%

65-79 47.3%

80+ 71.5%

With our aging population and the penetration of technology into nearly every aspect of our
lives, the usability of software becomes more important every day.

Usability Testing 185

CHAPTER 11

Although there are many types of disabilities, the following ones make using computers and 11
software especially difficult:

¢ Visual impairments. Color blindness, extreme near and far sightedness, tunnel vision,
dim vision, blurry vision, and cataracts are examples of visual limitations. People with
one or more of these would have their own unique difficulty in using software. Think
about trying to see where the mouse pointer is located or where text or small graphics
appear onscreen. What if you couldn’t see the screen at all?

ONILS3|
Alriavsn

* Hearing impairments. Someone may be partially or completely deaf, have problems
hearing certain frequencies, or picking a specific sound out of background noise. Such a
person may not be able to hear the sounds or voices that accompany an onscreen video,
audible help, or system alerts.

* Motion impairments. Disease or injury can cause a person to lose fine, gross, or total
motor control of his hands or arms. It may be difficult or impossible for some people to
properly use a keyboard or a mouse. For example, they may not be able to press more
than one key at a time or may find it impossible to press a key only once. Accurately
moving a mouse may not be possible.

* Cognitive and language. Dyslexia and memory problems may make it difficult for
someone to use complex user interfaces. Think of the issues outlined previously in this
chapter and how they might impact a person with cognitive and language difficulties.

It's the Law

Fortunately, developing software with a user interface that can be used by the disabled isn’t
just a good idea, a guideline, or a standard—it’s the law. In the United States, three laws apply
to this area:

* The Americans with Disability Act states that businesses with 15 or mores employees
must make reasonable accommodations for employees, or potential employees, with dis-
abilities. The ADA has recently been applied to commercial Internet Web sites, mandat-
ing that they be made accessible.

e Section 508 of the Rehabilitation Act is very similar to the ADA and applies to any orga-
nization that receives federal funding.

e Section 255 of the Telecommunications Act requires that all hardware and software that
transfers information over the Internet, a network, or the phone lines be made so that it
can be used by people with disabilities. If it’s not directly usable, it must be compatible
(see Chapter 8, “Configuration Testing,” and Chapter 9, “Compatibility Testing”) with
existing hardware and software accessibility aids.

186

Applying Your Testing Skills
PArT llI

Accessibility Features in Software

Software can be made accessible in one of two ways. The easiest is to take advantage of sup-
port built into its platform or operating system. Windows, Mac OS, Sun Java, and IBM OS/2
all support accessibility to some degree. Your software only needs to adhere to the platform’s
standards for communicating with the keyboard, mouse, sound card, and monitor to be accessi-
bility enabled. Figure 11.7 shows an example of Windows 98’s accessibility settings control
panel.

Keyboad | Sound| Disslay | Mouse | General|

Stickpkoys
g Use StickyKeys if you wanl to use Shill, T, or Al
m?ﬁ ke by pressing ore key &t a lima.

I~ il Sellings. .
FiterKeps

Kg Use Fikereys § pou wenl Windows to ignore biief or
4 repealed keystiokes, of dow Lhe repaat rale.

I~ Use Eiterkeys Saflings. .

Trgglekeys

-’-“’& Llse Tongket ey i you want o hesr bones when
=g presing Caps Lock, Mum Lock, end Scroll Lock.

[Lse Togolekeys Settipgs. .

I | Show extra keybazed help in programes

I Ok I Caneel S

FIGURE 11.7

The Windows accessibility features are set from this control panel.

If the software you’re testing doesn’t run on these platforms or is its own platform, it will need
to have its own accessibility features specified, programmed, and tested.

The latter case is obviously a much larger test effort than the first, but don’t take built-in sup-
port for granted, either. You’ll need to test accessibility features in both situations to make sure
that they comply.

NoTEe

If you're testing usability for your product, be sure to create test cases specifically for
accessibility. You'll feel good knowing that this area is thoroughly tested.

Each platform is slightly different in the features that it offers, but they all strive to make it eas-
ier for applications to be accessibility enabled. Windows provides the following capabilities:

Usability Testing
CHAPTER 11

* StickyKeys allows the Shift, Ctrl, or Alt keys to stay in effect until the next key is pressed.
* FilterKeys prevents brief, repeated (accidental) keystrokes from being recognized.

» ToggleKeys plays tones when the Caps Lock, Scroll Lock, or NumLock keyboard modes
are enabled.

» SoundSentry creates a visual warning whenever the system generates a sound.

e ShowSounds tells programs to display captions for any sounds or speech they make.
These captions need to be programmed into your software.

* High Contrast sets up the screen with colors and fonts designed to be read by the visu-
ally impaired. Figure 11.8 shows an example of this.

g = & O =
My Laptop Shor... Files Shor... Shor...
Com... Drive C to 3... to B... toC...
) 5 o &
Rec... Win... Vista... WS_...
Bin ' P%
Copy Ws_...
Utility Pro

e [

Inter... Micr...
Expl... Outl...
=
Migh... eFax

Mes.

Bk g

MS-D... Wor... Calc...
Prqmpt P Al =

ster] 5058 &)

7| Ty W 7:50 PM

FIGURE 11.8

The Windows desktop can be switched to this high contrast mode for easier viewing by the visually impaired.

* MouseKeys allows use of keyboard keys instead of the mouse to navigate.

» SerialKey sets up a communications port to read in keystrokes from an external non-
keyboard device. Although the OS should make these devices look like a standard key-
board, it would be a good idea to add them to your configuration testing equivalence
partitions.

For more information about the accessibility features built into the popular OS platforms, con-
sult the following Web sites:

187

1

ONILS3|
Alriavsn

188

Applying Your Testing Skills

PART llI

* http://www.microsoft.com/enable
e http://www.apple.com/education/ki12/disability
* http://www-3.ibm.com/able

* http://www.sun.com/tech/access

Summary

The software is difficult to understand, hard to use, slow, or—in the software tester’s eyes—
will be viewed by the end user as just plain not right.

As a software tester checking the usability of a software product, that’s your mantra. You're the
first person to use the product in a meaningful way, the first person to see it all come together
in its proposed final form. If it’s hard to use or doesn’t make sense to you, customers will have
the same issues.

Above all, don’t let the vagueness or subjectivity of usability testing hinder your test effort. It’s
vague and subjective by nature. Even the experts who design the user interfaces will admit to
that—well, some of them will. If you’re testing a new product’s UI, refer to the lists in this
chapter that define what makes for a good one. If it doesn’t meet these criteria, it’s a bug.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!
1. True or False: All software has a user interface and therefore must be tested for
usability.
2. Is user interface design a science or an art?
3. If there’s no definitive right or wrong user interface, how can it be tested?

4. List some examples of poorly designed or inconsistent Uls in products you’re familiar
with.

5. What four types of disabilities could affect software usability?

6. If you're testing software that will be accessibility enabled, what areas do you need to
pay close attention to?

Testing the Documentation CHAPTER

IN THIS CHAPTER

¢ Types of Software Documentation 190

e The Importance of Documentation
Testing 193

¢ What to Look for When Reviewing
Documentation 194

¢ The Realities of Documentation Testing 196

190

Applying Your Testing Skills
PArT llI

In Chapter 2, “The Software Development Process,” you learned that there’s a great deal of
work and a great number of non-software pieces that make up a software product. Much of that
non-software is its documentation.

In simpler days, software documentation was at most a readme file copied onto the software’s
floppy disk or a short 1-page insert put into the box. Now it’s much, much more, sometimes
requiring more time and effort to produce than the software itself.

As a software tester, you typically aren’t constrained to just testing the software. Your responsi-
bility will likely cover all the parts that make up the entire software product. Assuring that the
documentation is correct is your job, too.

In this chapter you’ll learn about testing software documentation and how to include it in your
overall software test effort. Highlights of this chapter include

 The different types of software documentation
* Why documentation testing is important

e What to look for when testing documentation

Types of Software Documentation

If your software’s documentation consists of nothing but a simple readme file, testing it would
not be a big deal. You’d make sure that it included all the material that it was supposed to, that
everything was technically accurate, and (for good measure) you might run a spell check and a
virus scan on the disk. That would be it. But, the days of documentation consisting of just a
readme file are gone.

Today, software documentation can make up a huge portion of the overall product. Sometimes, it
can seem as if the product is nothing but documentation with a little bit of software thrown in.

Here’s a list of software components that can be classified as documentation. Obviously, not all
software will have all the components, but it’s possible:

» Packaging text and graphics. This includes the box, carton, wrapping, and so on. The
documentation might contain screen shots from the software, lists of features, system
requirements, and copyright information.

* Marketing material, ads, and other inserts. These are all the pieces of paper you usu-
ally throw away, but they are important tools used to promote the sale of related soft-
ware, add-on content, service contracts, and so on. The information for them must be
correct for a customer to take them seriously.

* Warranty/registration. This is the card that the customer fills out and sends in to regis-
ter the software. It can also be part of the software and display onscreen for the user to
read, acknowledge, and even complete online.

Testing the Documentation
CHAPTER 12

191

* EULA. Pronounced “you-la,” it stands for End User License Agreement. This is the legal
document that the customer agrees to that says, among other things, that he won’t copy
the software nor sue the manufacturer if he’s harmed by a bug. The EULA is sometimes
printed on the envelope containing the media—the floppy or CD. It also may pop up
onscreen during the software’s installation. An example is shown in Figure 12.1.

Pleaze read the tollbwdng lcanse sgreament. Press the PAGE DOUWN key
to se= the rest of fhe agreemert,

EXCLUSION OF MCIDENTAL, CONSEQUENTIAL AND CERTAIN :I
OTHER DAMAGES, TO THE MAXRLIM EXTENT FERMITTED B 1
APPLICABLE LAW, IN MO EVENT SHALL MICROSOFT CRITS

SUPPLIERS BE LIABLE FOR ANY SPECIAL, NCDENTAL,

INDARECT, FUMITIVE O CONSEQUENTIAL DAMAGES

WHATSOEVER (NCLUCNG, BT NOT LIMITED TO, DAMAGES

FOR: LOSS OF PROFITS, LOSS OF CONFIDENTIAL CR OTHER
INFORMATION, RLIPTICH, IRILRY,

LOSS OF PRIVACY, FALURE TO MEET ANY DUTY (INCLUDING

OF GOODFATHOR OF REASONAELE CARE), NEGLIGENCE, |
AND ANY OTHER PECUNISRY OR OTHER LOSSWHATSOEVER)
ARSSING CUT OF OR IN AMY VA RELATED T0 THE USE OF

OR NASLITY TO USE THE OF COWPONENTS OR THE SUPFORT ll

Do you accept l the terms of the precading License Agreement? If you
chaose Mo, nstal wil chsz. To natal you must accept this agreement.

Sacurty Updste, June 2, 2000 ag
Securiy Update, May 19, 2000 1_‘

_w |

it/ windomeupdate micici [Intemet

FIGURE 12.1

The EULA is part of the software’s documentation and explains the legal terms of use for the software.

* Labels and stickers. These may appear on the media, on the box, or on the printed
material. There may also be serial number stickers and labels that seal the EULA enve-
lope. Figure 12.2 shows an example of a disk label and all the information that needs to
be checked.

* Installation and setup instructions. Sometimes this information is printed on the
media, but it also can be included as a separate sheet of paper or, if it’s complex soft-
ware, as an entire manual.

* User’s manual. The usefulness and flexibility of online manuals has made printed manu-
als much less common than they once were. Most software now comes with a small,
concise “getting started”’—type manual with the detailed information moved to online for-
mat. The online manuals can be distributed on the software’s media, on a Web site, or a
combination of both.

* Online help. Online help often gets intertwined with the user’s manual, sometimes even
replacing it. Online help is indexed and searchable, making it much easier for users to
find the information they’re looking for. Many online help systems allow natural lan-
guage queries so users can type Tell me how to copy text from one program to
another and receive an appropriate response.

NOILVINIWNNDOQ |N
JH1 DNILSI|

Applying Your Testing Skills

192
PART Il
Software Supported
title languages Disc information Supported platforms
rd | IJ Y
v é
= = o Disk 1 - Setup
=) % é :5- Windows® 95, Windows® 98, Windows NT® 4.0 Series
A o g 144MB Version 2.2 —
= 3 as
®
e $%
= g 5 % _Please refer to your Getting Started
2 o 2 " | documentation for setup instructions.
tsg
= gﬁ
S S Ef
X03-53826 DO NOT MAKE ILLEGAL COPIES
| © 1983-1998 Microsoft Co:poration. All rights reserved.)
Software part Installation Copyright information Software
number instructions version
FIGURE 12.2

There’s lots of documentation on a disk label for the software tester to check.

 Tutorials, wizards, and CBT (Computer Based Training). These tools blend program-
ming code and written documentation. They’re often a mixture of both content and high-
level, macro-like programming and are often tied in with the online help system. A user
can ask a question and the software then guides him through the steps to complete the
task. Microsoft’s Office Assistant, sometimes referred to as the “paper clip guy” (see
Figure 12.3), is an example of such a system.

* Samples, examples, and templates. An example of these would be a word processor
with forms or samples that a user can simply fill in to quickly create professional-looking
results. A compiler could have snippets of code that demonstrate how to use certain
aspects of the language.

* Error messages. These have already been discussed a couple times in this book as an
often neglected area, but they ultimately fall under the category of documentation.

Testing the Documentation

FIGURE 12.3

‘What would you like to do?

® Cet Halp without the Office
Assistant

® Hida the Office Assistant

@ Troublesnoot the Office
Assistant

® Have Microsoft Word mave
the Office Assistant and its
balloon

® Troubleshoot macro warnings
and sacurity levels

W Ses more...

How do T maks the Ofice
Asshtant go away?

Office Assistant

CHAPTER 12

The Microsoft Office Assistant is an example of a very elaborate help and tutorial system.

The Importance of Documentation Testing

Software users consider all these individual non-software components parts of the overall soft-
ware product. They don’t care whether the pieces were created by a programmer, a writer, or a
graphic artist. What they care about is the quality of the entire package.

NoTEe

193

If the installation instructions are wrong or if an incorrect error message leads them
astray, users will view those as bugs with the software—ones that should have been
found by a software tester.

Good software documentation contributes to the product’s overall quality in three ways:

It improves usability. Remember from Chapter 11, “Usability Testing,” all the issues
related to a product’s usability? Much of that usability is related to the software

documentation.

NOILVINIWNNDOQ |N

JH1 DNILSI|

194

Applying Your Testing Skills
PArT llI

» It improves reliability. Reliability is how stable and consistent the software is. Does it
do what the user expects and when he expects it? If the user reads the documentation,
uses the software, and gets unexpected results, that’s poor reliability. As you’ll see in the
rest of this chapter, testing the software and the documentation against each other is a
good way to find bugs in both of them.

* It lowers support costs. In Chapter 2 you learned that problems found by a customer
can cost 10 to 100 times as much as if they were found and fixed early in the product’s
development. The reason is that users who are confused or run into unexpected problems
will call the company for help, which is expensive. Good documentation can prevent
these calls by adequately explaining and leading users through difficult areas.

NoTE

As a software tester, you should treat the software’s documentation with the same
level of attention and give it the same level of effort that you do the code. They are
one and the same to the user.

What to Look for When Reviewing Documentation

Testing the documentation can occur on two different levels. If it’s non-code, such as a printed
user’s manual or the packaging, testing is a static process much like what’s described in

Chapters 4 and 6. Think of it as technical editing or technical proofreading. If the documenta-
tion and code are more closely tied, such as with a hyperlinked online manual or with a helpful
paper clip guy, it becomes a dynamic test effort that should be checked with the techniques you
learned in Chapters 5 and 7. In this situation, you really are testing software.

NoTE

Whether or not the documentation is code, a very effective approach to testing it is
to treat it just like a user would. Read it carefully, follow every step, examine every
figure, and try every example. With this simple real-world approach, you’ll find bugs
both in the software and the documentation.

Table 12.1 is a simple checklist to use as a basis for building your documentation test cases.

Testing the Documentation
CHAPTER 12

TAaBLE 12.1 A Documentation Testing Checklist

What to Check

What to Consider

Audience

Terminology

Content and subject
matter

Just the facts

Step by step

Figures and screen

captures

Samples and examples

Spelling and grammar

General Areas

Does the documentation speak to the correct level of audience,
not too novice, not too advanced?

Is the terminology proper for the audience? Are the terms used
consistently? If acronyms or abbreviations are used, are they
standard ones or do they need to be defined? Make sure that
your company’s acronyms don’t accidentally make it through.
Are all the terms indexed and cross-referenced correctly?

Are the appropriate topics covered? Are any topics missing?
How about topics that shouldn’t be included, such as a feature
that was cut from the product and no one told the manual writer.
Is the material covered in the proper depth?

Correctness

Is all the information factually and technically correct? Look for
mistakes caused by the writers working from outdated specs or
sales people inflating the truth. Check the table of contents, the
index, and chapter references. Try the Web site URLs. Is the
product support phone number correct? Try it.

Read all the text carefully and slowly. Follow the instructions
exactly. Assume nothing! Resist the temptation to fill in missing
steps; your customers won’t know what’s missing. Compare
your results to the ones shown in the documentation.

Check figures for accuracy and precision. Are they of the correct
image and is the image correct? Make sure that any screen cap-
tures aren’t from prerelease software that has since changed. Are
the figure captions correct?

Load and use every sample just as a customer would. If it’s
code, type or copy it in and run it. There’s nothing more embar-
rassing than samples that don’t work—and it happens all the
time!

In an ideal world, these types of bugs wouldn’t make it through
to you. Spelling and grammar checkers are too commonplace not
to be used. It’s possible, though, that someone forgot to perform
the check or that a specialized or technical term slipped through.
It’s also possible that the checking had to be done manually,
such as in a screen capture or a drawn figure. Don’t take it for
granted.

195

NOILVINIWNNDOQ |N

JH1 DNILSI|

196

Applying Your Testing Skills
PArT llI

Finally, if the documentation is software driven, test it as you would the rest of the software.
Check that the index list is complete, that searching finds the correct results, and that the
hyperlinks and hotspots jump to the correct pages. Use equivalence partition techniques to
decide what test cases to try.

The Realities of Documentation Testing

To close this chapter, it’s important for you to learn a few things that make documentation
development and testing a bit different from software development. Chapter 3 was titled “The
Realities of Software Testing.” You might call these issues the realities of documentation testing:

* Documentation often gets the least attention, budget, and resources. There seems to be
the mentality that it’s a software project first and foremost and all the other stuff is less
important. In reality, it’s a software product that people are buying and all that other stuff
is at least as important as the bits and bytes. If you’re responsible for testing an area of
the software, make sure that you budget time to test the documentation that goes along
with that code. Give it the same attention that you do the software and if it has bugs,
report them.

* It’s possible that the people writing the documentation aren’t experts in what the soft-
ware does. Just as you don’t have to be an accounting expert to test a spreadsheet pro-
gram, the writer doesn’t have to be an expert in the software’s features to write its
documentation. As a result, you can’t rely on the person creating the content to make
sense out of poorly written specs or complex or unclear product features. Work closely
with writers to make sure they have the information they need and that they’re up-to-date
with the product’s design. Most importantly, tell them about difficult-to-use or difficult-
to-understand areas of the code that you discover so they can better explain those areas
in the documentation.

* Printed documentation takes time to produce, sometimes weeks or even months.
Software, however, can now be published almost instantly to the Internet or CD. Because
of this time difference, a software product’s documentation may need to be finalized—
locked down—before the software is completed. If the software functionality changes or
bugs are discovered during this critical period, the documentation can’t be changed to
reflect them. That’s why the readme file was invented. It’s how those last-minute changes
are communicated to users. The solution to this problem is to have a good development
model, follow it, hold your documentation release to the last possible minute, and release
as much documentation as possible, online, with the software.

Summary

Hopefully this chapter opened your eyes to how much more there can be to a software product
than the code the programmers write. The software’s documentation, in all its forms, created

Testing the Documentation
CHAPTER 12

by writers, illustrators, indexers, and so on, can easily take more effort to develop and test than
the actual software.

From the user’s standpoint, it’s all the same product. An online help index that’s missing an
important term, an incorrect step in the installation instructions, or a blatant misspelling are
bugs just like any other software failure. If you properly test the documentation, you’ll find the
bugs before your users do.

In the next chapter you’ll learn about testing something that’s almost all documentation—
almost all text, graphics, and hyperlinks with a software platform underneath it. You’ll be able
to apply the techniques you’ve learned so far in this book to testing Internet Web sites.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers

to Quiz Questions,” for the answers—but don’t peek!

1. Start up Windows Paint (see Figure 12.4) and look for several examples of documenta-
tion that should be tested. What did you find?

untitled - Paint
Edit Wisw |mage Colors Help

Find
he
dacum erfodinn

<

1, T I I
R RN EC RS

|[For Help. cick Help Tapics onthe Help Mena. A

T
]

INREEEERE

i
o
&
4
>
N
=]
=]

FIGURE 12.4

What examples of documentation can you find in Windows Paint?

2. The Windows Paint Help Index contains more than 200 terms from adding custom colors
to zooming. Would you test that each of these takes you to the correct help topics? What
if there were 10,000 indexed terms?

3. True or False: Testing error messages falls under documentation testing.

4. In what three ways does good documentation contribute to the product’s overall quality?

197

NOILVINIWNNDOQ |N

JH1 DNILSI|

Web Site Testing CHAPTER

IN THIS CHAPTER

¢ Web Page Fundamentals 200

e Black-Box Testing 202

e Gray-Box Testing 207

¢ White-Box Testing 209

¢ Configuration and Compatibility Testing 211
e Usability Testing 213

¢ Introducing Automation 215

200

Applying Your Testing Skills
PArT llI

The testing techniques that you’ve learned in previous chapters have been fairly generic.
They’ve been presented by using small programs such as Windows WordPad, Calculator, and
Paint to demonstrate testing fundamentals and how to apply them. This final chapter of Part III
is geared toward testing a specific type of software—Internet Web pages. It’s a fairly timely
topic, something that you’re likely familiar with, and a good real-world example to apply the
techniques that you’ve learned so far.

What you’ll find in this chapter is that Web site testing encompasses many areas, including
configuration testing, compatibility testing, usability testing, documentation testing, and, if the
site is a worldwide site, localization testing. Of course, black-box, white-box, static, and
dynamic testing are always a given.

This chapter isn’t meant to be a complete how-to guide for testing Internet Web sites (that’s
another book) but it will give you a straightforward practical example of testing something real
and give you a good head start if your first job happens to be looking for bugs in someone’s
Web site.

Highlights of this chapter include

* What fundamental parts of a Web page need testing

e What basic white-box and black-box techniques apply to Web page testing
* How configuration and compatibility testing apply

* Why usability testing is the primary concern of Web pages

* How to use tools to help test your Web site

Web Page Fundamentals

In the most simple terms, Internet Web pages are just documents of text, pictures, sounds,
video, and hyperlinks—much like the CD-ROM multimedia titles that were popular in the mid
1990s. As in those programs, Web users can navigate from page to page by clicking hyper-
linked text or pictures, searching for words or phrases, and viewing the information they find.

The Internet, though, has introduced two twists to the multimedia document concept that revo-
lutionizes the technology:

» Unlike data that is stored solely on a CD-ROM, Web pages aren’t constrained to a single
PC. Users can link to and search worldwide across the entire Internet for information on
any Web site.

e Web page authoring isn’t limited to programmers using expensive and technical tools.
The average person can create a simple Web page almost as easily as writing a letter in a
word processor.

Web Site Testing
CHAPTER 13

201

But, just as giving someone a paint brush doesn’t make him an artist, giving someone the abil-

ity to create Web pages doesn’t make him an expert in multimedia publishing. Couple that with
the technology explosion that continually adds new Web site features, and you have the perfect
opportunity for a software tester.

Figure 13.1 shows a popular news Web site that demonstrates many of the possible Web page
features. A partial list of them includes

o Text of different sizes, fonts, and colors (okay, you can’t see the colors in this book)

* Graphics and photos

* Hyperlinked text and graphics

e Varying advertisements

* Drop-down selection boxes

¢ Fields in which the users can enter data

“J MSMBC Cover - Intemet Explorer

| Pl Edt Yiew Favoies Jook Hep

= .+ @ [E ™
Back SN Stop Refresh

Adebess &) htpe//wwew maric comews/delaull ssp =| &6

Updated: 10:13 ET Jun. 20, 2000 = 1 3

BREAKING-NEWS

OPEC likely to boost output
© But pain at pump to confinue

Microsoft stay granted

Judge in antitrust case puts penalties

on hold, refers case to Supreme Court
= = -

M.¥. sues gun makers

© Srmith & Wasson included
Know your current events?
© Take the Newsweek Quiz

Witness: Skakel confessed
© Hennedy kin cries in court

Video | Audio | E-mail

)

FiGUre 13.1

A typical Web page has many testable features.

A great deal of functionality also isn’t as obvious, features that make the Web site much more

complex:

» Customizable layout that allows users to change where information is positioned

onscreen

» Customizable content that allows users to select what news and information they want

to see

DNILS3] LIS 93N

202

Applying Your Testing Skills
PArT llI

¢ Dynamic drop-down selection boxes
* Dynamically changing text
* Dynamic layout and optional information based on screen resolution

» Compatibility with different Web browsers, browser versions, and hardware and software
platforms

* Lots of hidden formatting, tagging, and embedded information that enhances the Web
page’s usability

Granted, short of a secure e-commerce Web site, this is probably one of the more complex and
feature-rich Web pages on the Internet. If you have the tester mentality (and hopefully you’ve
gained it by reading this far in the book), looking at such a Web page should whet your
appetite to jump in and start finding bugs. The remainder of this chapter will give you clues on
where to look.

Black-Box Testing

Remember all the way back to Chapters 4 through 7, the ones that covered the fundamentals of
testing? In those vitally important chapters, you learned about black-box, white-box, static, and
dynamic testing—the raw skills of a software tester. Web pages are the perfect means to prac-
tice what you’ve learned. You don’t have to go out and buy different programs—you can sim-
ply jump to a Web page, one of your favorites or a completely new one, and begin testing.

The easiest place to start is by treating the Web page or the entire Web site as a black box. You
don’t know anything about how it works, you don’t have a specification, you just have the Web
site in front of you to test. What do you look for?

Figure 13.2 shows a screen image of Apple’s Web site, www.apple.com, a fairly straightforward
and typical Web site. It has all the basic elements—text, graphics, hyperlinks to other pages on
the site, and hyperlinks to other Web sites. A few of the pages have form fields in which users
can enter information and a few pages play videos. One interesting thing about this site that’s
not so common is that it’s localized for 27 different locales, from Asia to the UK.

If you have access to the Internet, take some time now and explore Apple’s Web site. Think
about how you would approach testing it. What would you test? What would your equivalence
partitions be? What would you choose not to test?

Web Site Testing
CHAPTER 13

3 Apple - Microsoft Intemet Explorer

| Fie Edt Wew Faoiiss Tock Heb |[Adoress B repsieacorpie comd Slet|[e-5-06 A7
é = Store T IReview T ITools T ICards TQulckTImeT Support TMac asx

Hot Mews Hiring Hardware Software Creative Small 81z Developer

©

\ =)
. Buey an iMdac DV and a Canon ZRI0 from the Apple Store

@] T @ e

FIGURE 13.2

What would you test in a straightforward Web site such as this?

After exploring a bit, what did you decide? Hopefully you realized that it’s a pretty big job. If
you looked at the site map (www.apple.com/find/sitemap.html), you found links to more
than 60 different sub-sites, each one with several pages.

NoTE

When testing a Web site, you first should create a state table (see Chapter 5, “Testing
the Software with Blinders On"), treating each page as a different state with the
hyperlinks as the lines connecting them. A completed state map will give you a better
view of the overall task.

Thankfully, most of the pages are fairly simple, made up of just text, graphics, links, and the
occasional form. Testing them isn’t difficult. The following sections give some ideas of what to

look for.

203

13

DNILS3] LIS 93N

204 Applying Your Testing Skills
PArT llI

Text

Web page text should be treated just like documentation and tested as described in Chapter 12,
“Testing the Documentation”. Check the audience level, the terminology, the content and sub-
ject matter, the accuracy—especially of information that can become outdated—and always,
always check spelling.

NoTE

Don't rely on spell checkers to be perfect, especially when they're used on Web page
content. They might only check the regular text but not what's contained in the
graphics, scrolling marquees, forms, and so on. You could perform what you think is a
complete spell check and still have misspellings on the page.

If there is contact information such as email addresses, phone numbers, or postal addresses,
check them to make sure that they’re correct. Make sure that the copyright notices are correct
and dated appropriately.

Test that each page has a correct title. This text appears in the browser’s title bar (upper-left
corner of Figure 13.2) and what is listed when you add the page to your favorites or book-
marks.

An often overlooked type of text is called ALT text, for ALTernate text. Figure 13.3 shows an
example of ALT text. When a user puts the mouse cursor over a graphic on the page he gets a
pop-up description of what the graphic represents. Web browsers that don’t display graphics
use ALT text. Also, with ALT text blind users can use graphically rich Web sites—an audible
reader interprets the ALT text and reads it out through the computer’s speakers.

Check for text layout issues by resizing your browser window to be very small or very large.
This will reveal bugs where the designer or programmer assumed a fixed page width or height.
It will also reveal hard-coded formatting such as line breaks that might look great with certain
layouts but not with others.

Hyperlinks

Links can be tied to text or graphics. Each link should be checked to make sure that it jumps to
the correct destination and opens in the correct window. If you don’t have a specification for
the Web site, you’ll need to test whether the jump worked correctly.

Make sure that hyperlinks are obvious. Text links are usually underlined, and the mouse
pointer should change to a hand pointer when it’s over any kind of hyperlink—text or graphic.

If the link opens up an email message, fill out the message, send it, and make sure you get a
response.

Web Site Testing

CHAPTER 13

ALT text
-ga‘.nnla - Software - WebObjects - Microzoft Internat Explorer
| Fle Edt Vew Fawiss Todk Heb |©
: = 0 @ @B o4 Qa |= 4
|Hddw|E hitpe v, apple. com/ webobjects/ N o P Siop Refesh Home | Search Floriss

i Store T iReview iTools T iCards TQnickTimeI Support TME:GS o

Hot News Hiring Hardware —Software— MadedMac Education Creative Small Biz Developey

WebObleLts

.

ehlbiectz. The smart way b bring aprlcations bo the
net

Th way to
bring applications
to the Internet.
Whether your comp:my wants to boost internal produetivity or
improve cust hips, a robust platform is tial for

your network appllcauons WebObjects software offers powerful
capabilities that are perfect for developing and deploying Internet,
intranet, extranet, and e-commerce applications. No wonder it has
become the world’s leading application server.

2] T Intemet

FIGURE 13.3

ALT text provides textual descriptions of graphics images on Web pages.

Look for orphan pages, which are part of the Web site but can’t be accessed through a hyper-
link because someone forgot to hook them up. You’ll likely need to get a list from the Web
site’s designer and compare that with your own state table. Even better, get a list of the actual
pages on the Web server and perform simple code-coverage analysis to determine if you
indeed are testing all the pages, that none are missing, and that there are no extra pages.

Graphics

Many possible bugs with graphics are covered later under usability testing, but you can check a
few obvious things with a simple black-box approach. For example, do all graphics load and
display properly? If a graphic is missing or is incorrectly named, it won’t load and the Web
page will display an error where the graphic was to be placed (see Figure 13.4).

If text and graphics are intermixed on the page, make sure that the text wraps properly around
the graphics. Try resizing the browser’s window to see if strange wrapping occurs around the
graphic.

How’s the performance of loading the page? Are there so many graphics on the page, resulting
in a large amount of data to be transferred and displayed, that the Web site’s performance is
too slow? What if it’s displayed over a slow dial-up modem connection on a poor-quality
phone line?

205

13

DNILS3] LIS 93N

206

Applying Your Testing Skills
PArT llI

| E Peifarmer’s Academy

FIGURE 13.4

If a graphic can’t load onto a Web page, an error box is put in its location.

Forms

Forms are the text boxes, list boxes, and other fields for entering or selecting information on a
Web page. Figure 13.5 shows a simple example from Apple’s Web site. It’s a signup form for
potential Mac developers. There are fields for entering your first name, middle initial, last
name, and email address. There’s an obvious bug on this page—hopefully it’s fixed by the time
you read this.

a Apple Developer Connection Member Sile - Microsoft... !E m
Ele Edt View Favories Toos Heb | s

Adthest [#] trps:/icarnest.appks cam/cgitin/wWeaDb = | | Ga ‘ B::k -

& ADC
Apple Developer Connection

VWelcome to the Apple Developer Connaction.
Please enter the fellowing information:
First Name M. 1. Last Mame

[Test First Name [Test Last Name
o

E-Mail Address

test@pmailaddrass foo
4

|
] Done ’_ ’g_ 4 Intermat 4

FiIGURE 13.5

Make sure your Web site’s form fields are positioned properly. Notice in this Apple Developer signup form that the
middle initial (M.1.) field is misplaced.

Test forms just as you would if they were fields in a regular software program—remember
Chapter 5? Are the fields the correct size? Do they accept the correct data and reject the wrong
data? Is there proper confirmation when you finally press Enter? Are optional fields truly
optional and the required ones truly required? What happens if you enter
99999999999999999999999999997

Objects and Other Simple Miscellaneous Functionality

Your Web site may contain features such as a hit counter, scrolling marquee text, changing
advertisements, or internal site searches (not to be confused with search engines that search

Web Site Testing

CHAPTER 13

the entire Web). When planning your tests for a Web site, take care to identify all the features
present on each page. Treat each unique feature as you would a feature in a regular program
and test it individually with the standard testing techniques that you’ve learned. Does it have
its own states? Does it handle data? Could it have ranges or boundaries? What test cases apply
and how should they be equivalence classed? A Web page is just like any other software.

Gray-Box Testing

You’re already familiar with black-box and white-box testing, but another type of testing, gray-
box testing, is a mixture of the two—hence the name. With gray-box testing, you straddle the
line between black-box and white-box testing. You still test the software as a black-box, but
you supplement the work by taking a peek (not a full look, as in white-box testing) at what
makes the software work.

Web pages lend themselves nicely to gray-box testing. Most Web pages are built with HTML
(Hypertext Markup Language). Listing 13.1 shows a few lines of the HTML used to create the
Web page shown in Figure 13.6.

ListinG 13.1 Sample HTML Showing Some of What's Behind a Web Page

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso0-8859-1">

<meta name="GENERATOR" content="Microsoft FrontPage 4.0">

<title>Superior Packing Systems</title>

<meta name="Microsoft Theme" content="sandston 111, default">

<meta name="Microsoft Border" content="t, default">

</head>

<body background="_themes/sandston/stonbk.jpg" bgcolor="#FFFFCC"
text="#333333" 1link="#993300" vlink="#666633" alink="#CC6633">
<!--msnavigation--><table border="0" cellpadding="0" cellspacing="0"
width="100%"><tr><td><!--mstheme-->

<h1 align="center"><!--mstheme-->
<img src="_derived/index.htm_cmp_sandston11@_bnr.gif" width="600"
height="60" border="0" alt="Superior Packing Systems">

<img src="_derived/home_cmp_sandston110_gbtn.gif" width="95"
height="20" border="0" alt="Home" align="middle">
<img src="_derived/services.htm_cmp_sandston110_gbtn.gif" width="95"
height="20" border="0" alt="Services" align="middle">
<img

src="_derived/contact.htm_cmp_sandston110_gbtn.gif"
width="95" height="20" border="0" alt="Contact Us" align="middle">
<!--mstheme- -></h1>

207

13

DNILS3] LIS 93N

Applying Your Testing Skills

208
ParT 11l
- Superior Packing Systems - Miciosoft Internet Explorer
| Bl Edt Wew Favoies Iodk Heb
Iﬁddeu@ hitpe v, dsos.cam/ N B:k - Fnr-::eud - é?\p Hﬁ@m Hﬂa 92‘* Faul?im &
Superior Packing Systems
THIS NEW SITE IS UNDER CONSTRUCTION
PLEASE COME BACK SOON
Welcome!
SPS provides wm-key dock-to-dock packing, warehousing, and shipping services for domestic and
intamatinnal transnor Wa levarane our 15 vaars of axnarience and contacts in Midwest racional tiicking fo =
T e Iniemet
FIGURE 13.6

Part of this Web page is created by the HTML in Listing 13.1.

NoOTE

If you're not familiar with creating your own Web site, you might want to read a lit-
tle on the subject. An introductory book such as Sams Teach Yourself to Create Web
Pages in 24 Hours, Second Edition, would be a great way to learn the basics and help
you discover a few ways to apply gray-box testing techniques.

HTML and Web pages can be tested as a gray box because HTML isn’t a programming lan-
guage—it’s a markup language. In the early days of word processors, you couldn’t just select
text and make it bold or italic. You had to embed markups, sometimes called field tags, in the
text. For example, to create the bolded phrase

This is bold text.
you would enter something such as this into your word processor:

[begin bold]This is bold text.[end bold]

Web Site Testing
CHAPTER 13

HTML works the same way. To create the line in HTML you would enter
This is bold text.

HTML has evolved to where it now has hundreds of different field tags and options, as evi-
denced by the HTML in Listing 13.1. But, in the end, HTML is nothing but a fancy old-word-
processor-like markup language. The difference between HTML and a program is that HTML
doesn’t execute or run, it just determines how text and graphics appear onscreen.

Tip

To see the HTML for a Web page using Internet Explorer, right-click a blank area of
the page (not on a graphic) and select View Source from the menu. Other Web
browsers vary slightly from this, but most offer some means to view the HTML that
creates the page.

Since HTML is so easy for you, as the tester, to view, you might as well take advantage of it
and supplement your testing. If you’re a black-box tester, it’s the perfect opportunity to start
moving toward white-box testing.

Start by learning to create your own simple Web pages. Learn the basic and common HTML
tags. Look at the HTML for many different pages on the Web, see what techniques are used
and how those techniques make things work on the page. Once you become familiar with
HTML, you’ll be able to look at the Web pages you’re testing in a whole new way and be a
more effective tester.

White-Box Testing

In Figure 13.1, you saw an example of a Web page with much static content in the form of text
and images. This static content was most likely created with straight HTML. That same Web
page also has customizable and dynamic changing content. Remember, HTML isn’t a pro-
gramming language—it’s merely a tagging system for text and graphics. To create these extra
dynamic features requires the HTML to be supplemented with programming code that can exe-
cute and follow decision paths.

You’ve likely heard of the popular Web programming languages that can create these types of
features: DHTML, Java, JavaScript, ActiveX, VBScript, Perl, CGI, ASP, and XML. As
explained in Chapters 6, “Examining the Code,” and 7, “Testing the Software with X-Ray
Glasses,” to apply white-box testing, you don’t necessarily need to become an expert in these
languages, just familiar enough to be able to read and understand them and to devise test cases
based on what you see in the code.

209

13

DNILS3] LIS 93N

210

Applying Your Testing Skills
PArT llI

This chapter can’t possibly go into all the details of white-box testing a Web site, but several
features could be more effectively tested with a white-box approach. Of course, they could also
be tested as a black-box, but the potential complexity is such that to really make sure you find
the important bugs that you have some knowledge of the Web site’s system structure and pro-
gramming:

Dynamic Content. Dynamic content is graphics and text that changes based on certain
conditions—for example, the time of day, the user’s preferences, or specific user actions.
It’s possible that the programming for the content is done in a simple scripting language
such as JavaScript and is embedded within the HTML. This is known as client-side pro-
gramming. You can apply gray-box testing techniques when you examine the script and
view the HTML. For efficiency, most dynamic content programming is located on the
Web site’s server; it’s called server-side programming and would require you to have
access to the Web server to view the code.

Database-Driven Web Pages. Many e-commerce Web pages that show catalogs or
inventories are database driven. The HTML provides a simple layout for the Web content
and then pictures, text descriptions, pricing information, and so on are pulled from a
database on the Web site’s server and plugged into the pages.

Programmatically Created Web Pages. Many Web pages, especially ones with
dynamic content, are programmatically generated—that is, the HTML and possibly even
the programming is created by software. A Web page designer may type entries in a data-
base and drag and drop elements in a layout program, press a button, and out comes the
HTML that displays a Web page. If this sounds scary, it’s really no different than a com-
puter language compiler creating machine code. If you’re testing such a system, you have
to check that the HTML it creates is what the designer expects.

Server Performance and Loading. Popular Web sites might receive millions of individ-
ual hits a day. Each one requires a download of data from the Web site’s server to the
browser’s computer. If you wanted to test a system for performance and loading, you’d
have to find a way to simulate the millions of connections and downloads.

Security. Web site security issues are always in the news as hackers try new and differ-
ent ways to gain access to a Web site’s internal data. Financial, medical, and other Web
sites that contain personal data are especially at risk and require intimate knowledge of
server technology to test them for proper security.

Web Site Testing
CHAPTER 13

The Security Testing Myth

There are often highly publicized stories about computer hackers breaking into
super-secure Web sites and obtaining secret or sensitive information. The press will
play up that the hackers did it with a simple three-line computer program or through
a blatant open back-door. It often seems as though the average person could have
found the hole. Don’t be misled—those hackers worked long and hard to discover
their way in. Sure, the end result might have been a three-line program, but e=mc’ is
only five characters and Einstein worked a long time to figure out that equation. As a
software tester, if you're looking for security holes in a Web site, be prepared for a
difficult challenge. It's not as easy as it seems.

Configuration and Compatibility Testing

It’s time to get back to what you can do, today, to test a Web page. Recall from Chapter 8,
“Configuration Testing,” and Chapter 9, “Compatibility Testing,” what configuration and
compatibility testing are. Configuration testing is the process of checking the operation of your
software with various types of hardware and software platforms and their different settings.
Compatibility testing is checking your software’s operation with other software. Web pages are
perfect examples of where you can apply this type of testing.

Assume that you have a Web site to test. You need to think about what the possible hardware
and software configurations might be that could affect the operation or appearance of the site.
Here’s a list to consider:

¢ Hardware Platform. Is it a Mac, PC, a TV browsing device, a hand-held, or a wrist-
watch? Each hardware device has its own operating system, screen layout, communica-
tions software, and so on. Each can affect how the Web site appears onscreen.

e Browser Software and Version. There are many different Web browsers and browser
versions. Some run on only one type of hardware platform, others run on multiple plat-
forms. Some examples are Netscape Navigator 3.04 and 4.05, Internet Explorer 3.02,
4.01, and 5.0, Mosaic 3.0, Opera, and Emacs.

Each browser and version supports a slightly different set of features. A Web site might
look great under one browser but not display at all under another. Web designers can
choose to design a site using the least common denominator of features so that it looks
the same on all of them, or write specialized code to make the site work best on each
one. How would this impact your testing?

211

13

DNILS3] LIS 93N

212 Applying Your Testing Skills
PArT llI

* Browser Plug-Ins. Many browsers can accept plug-ins or extensions to gain additional
functionality. An example of this would be to play specific types of audio or video files.

* Browser Options. Most Web browsers allow for a great deal of customization. Figure
13.7 shows an example of this. You can select security options, choose how ALT text is
handled, decide what plug-ins to enable, and so on. Each option has potential impact on
how your Web site operates—and, hence, is a test scenario to consider.

Intemnet Dplions K E
General | Sacuity | | Content | Canniections | Programe Advanced |

Seilings:

E Brawsng Bl
[Awias send UALs 2z UTFE
B Autamaticaly or Iniemet Explover updates
B Close unused faldess in Histary and Favarites
O Dizable scist desugang

O Dizolay a natfication aout every scrpt emor

[Enabile faker view for FTP shes

[Enable Inztall On Demand

[Enatle aifing items to be synchionized on a schedule
O Enable page hik counting

[Enable page banstions

0 Matity when downloads complebs

B Rewse wndows for launching shortcuts

[Shews channe! bar ok statuplf Active Deskbop is aff]
B Show tiendly HTTF 2mar messages

O Shews tiendly UALs

B Shews Go bution in Addvess bar ;I
Hestore Defauls
[e

FIGURE 13.7

This example shows how configurable the Internet Explorer Web browser is.

* Video Resolution and Color Depth. Many platforms can display in various screen reso-
lutions and colors. A PC running Windows, for example, can have screen dimensions of
640x480, 800x600, 1,024x768, 1280x1024, and up. Your Web site may look different, or
even wrong, in one resolution, but not in another. Text and graphics can wrap differently,
be cut off, or not appear at all.

The number of colors that the platform supports can also impact the look of your site.
24

There can be as few as 16 colors and as many as 2 . Could your Web site be used on a

system with only 16 colors?

¢ Text Size. Did you know that a user can change the size of the text used in the browser?
Could your site be used with very small or very large text? What if it was being run on a
small screen, in a low resolution, with large text?

¢ Modem Speeds. Enough can’t be said about performance. Someday everyone will have
high-speed connections with Web site data delivered as fast as you can view it. Until
then, you need to test that your Web site works well at a wide range of modem speeds.

Web Site Testing

CHAPTER 13

If you consider all the possibilities outlined here, testing even the simplest Web site can
become a huge task. It’s not enough that the Web site looks good on your PC—if you want to
ensure that it works well for its intended audience, you need to research the possible configura-
tions they might have. With that information, you can create equivalence partitions of the con-
figurations you feel are most important to test.

A good place to start your search is Georgia Tech’s Graphic, Visualization, & Usability
Center’s (GVU) annual WWW User Survey. It’s located at www.gvu.gatech.edu/user_
surveys. The technology demographics information lists platforms, connection speeds, types
of connections, browsers, email programs, video size and resolution, and many other attributes.
It’s a great first step in deciding what configurations to test.

Usability Testing

Usability and Web sites are sometimes mutually exclusive terms. You’ve no doubt seen pages
that are difficult to navigate, outdated, slow, or just plain ugly. Not surprisingly, these sites
were probably never seen by a software tester. A programmer or someone with little or no
design experience (or maybe too much design experience) created the pages and uploaded
them for the world to see without considering how usable they were.

As described in Chapter 11, “Usability Testing,” usability testing is a difficult process to
define. What looks bad to you might look great to someone else—some people think that Elvis
on velvet is art. Fortunately, following and testing a few basic rules can help make Web sites
more usable.

Jakob Nielsen, www.useit.com, a respected expert on Web site design and usability, has per-
formed extensive research on Web site usability. The following list is adapted from his Top Ten
Mistakes in Web Design:

e Gratuitous Use of Bleeding-Edge Technology. Your Web site shouldn’t try to attract
users by bragging about its use of the latest Web technology. It may attract a few nerds,
but mainstream users will care more about useful content and the site’s ability to offer
good customer service. Using the latest and greatest technology before it’s even released
is a sure way to discourage users; if their system crashes while visiting your site, you can
bet that many of them won’t be back. Unless you’re in the business of selling Internet
products or services, it’s better to wait until some experience has been gained with the
technology. When desktop publishing was young, people put 20 different fonts in their
documents; try to avoid similar design bloat on the Web.

¢ Scrolling Text, Marquees, and Constantly Running Animations. Never allow page
elements that move incessantly. Moving images have an overpowering effect on human
peripheral vision. A Web page shouldn’t emulate Times Square in New York City in its
constant attack on the human senses—give your user some peace and quiet to actually
read the text!

213

13

DNILS3] LIS 93N

214

Applying Your Testing Skills
PArT llI

Long Scrolling Pages. Users typically don’t like to scroll beyond the information visible
onscreen when a page comes up. All critical content and navigation options should be on
the top part of the page. Recent studies have shown that users are becoming more will-
ing to scroll now than they were in the early years of the Web, but it’s still a good idea to
minimize scrolling on navigation pages.

Non-Standard Link Colors. Hyperlinks to pages that users haven’t seen should be blue;
links to previously seen pages should be purple or red. Don’t mess with these colors
because the ability to understand which links have been followed is one of the few navi-
gational aids that’s standard in most Web browsers. Consistency is key to teaching users
what the link colors mean.

Outdated Information. Your development team should have a Web “gardener”—someone
to root out the weeds and replant the flowers as the Web site changes. Unfortunately, most
teams would rather spend their time creating new content than doing maintenance. In prac-
tice, maintenance is a cheap way of enhancing the content on your Web site since many old
pages keep their relevance and should be linked into the new pages. Of course, some pages
are better off being removed completely from the server after their expiration date.

Overly Long Download Times. Traditional human-factor guidelines indicate that 0.1 sec-
ond is about the limit for users to feel that the system is reacting instantaneously. One sec-
ond is about the limit for a user’s flow of thought to stay uninterrupted. Ten seconds is the
maximum response time before a user loses interest.

On the Web, users have been trained to endure so much suffering that it may be acceptable
to increase this limit to 15 seconds for a few pages. But don’t aim for this—aim for less.

Lack of Navigation Support. Don’t assume that users know as much about your site as
you do. They will always have difficulty finding information, so they need support in the
form of a strong sense of structure and place. Your site’s design should start with a good
understanding of the structure of the information space and communicate that structure
explicitly to users. Provide a site map to let users know where they are and where they
can go. The site should also have a good search feature because even the best navigation
support will never be enough.

Orphan Pages. Make sure that all pages include a clear indication of what Web site they
belong to since users may access pages directly without coming in through your home
page. For the same reason, every page should have a link to your home page as well as
some indication of where they fit within the structure of your information space.

Complex Web Site Addresses (URLs). Even though machine-level addressing like the
URL should never have been exposed in the user interface, it’s there and research has
found that users actually try to decode the URLs of pages to infer the structure of Web
sites. Users do this because of the lack of support for navigation (see above) and sense of
location in current Web browsers. Thus, a URL should contain human-readable names
that reflect the nature of the Web site’s contents.

Web Site Testing

CHAPTER 13

Also, users often type in a URL, so the Web site should try to minimize the risk of typos
by using short names with all lowercase characters and no special characters (many peo-
ple don’t know how to type a ~).

* Using Frames. Frames are an HTML technology that allows a Web site to display
another Web site within itself, hence the name frame—Ilike a picture frame. Splitting a
page into frames can confuse users since frames break the fundamental user model of the
Web page. All of a sudden they can’t bookmark the current page and return to it (the
bookmark points to another version of the frameset), URLs stop working, and printouts
become difficult. Even worse, the predictability of user actions goes out the door—who
knows what information will appear where and when they click a link?

If you’re testing a Web site, take advantage of your tester’s license to report bugs on usability.
Read up on basic user interface design techniques and learn what makes for good usability. A
good source of information is a Microsoft research document titled, “Improving Web Site
Usability and Appeal.” Its Web address is msdn.microsoft.com/workshop/management/
planning/improvingsiteusa.asp. This document provides a list of best practices that
Microsoft discovered while designing content for its MSN Web sites. Don’t be put off by the
date, 1997, on the document. Good design is timeless.

Introducing Automation

The last part of this chapter is somewhat a lead-in to the next chapter of the book, Chapter 14,
“Automated Testing and Test Tools.”

You may have wondered as you read this chapter how you could possibly have enough time to
thoroughly test a large and complex Web site. The simple act of clicking all the hyperlinks to
make sure that they’re valid could take a great deal of time. Add in testing the basic functional-
ity of the Web site’s features, doing configuration and compatibility testing, and figuring out a
way to test performance and loading by simulating thousands or even millions of users, and
you have a big job.

Thankfully, you don’t have to do all this testing manually. Testing tools are available, both free
and for purchase, that will make your job much easier. Two free ones are located at
www.netmechanic.com and websitegarage.netscape.com. Both sites provide easy-to-use
tools that will automatically examine your Web site and test it for things such as browser com-
patibility, performance problems, broken hyperlinks, HTML standard adherence, and spelling.
They can even tell you what graphics on your site are possibly too large and are causing it to
be slow. Such tools can save you many hours of what would normally be manual work. Look
at them for an idea of what you’ll learn about in Chapter 14.

215

13

DNILS3] LIS 93N

216

Applying Your Testing Skills

PART llI

Summary

This chapter wraps up Part III, “Applying Your Testing Skills.” Part IIT has covered a lot of
ground—from video card settings to Hungarian localization to ugly Web sites. These topics are
just a small piece of the total software world. That diversity is what makes software testing a
limitless challenge. Every day new and exciting types of software are released, always pushing
the technology forward and creating unique and interesting testing problems to solve. Web site
testing is a good topic for this chapter, today, but who knows what it will be in the future.

Hopefully in reading the chapters in Part III you realized that you or a small test team could
easily be overwhelmed by the magnitude of testing even a small software product or Web site.
A few hundred lines of code written by a single programmer with all its possible platforms,
configurations, languages, and users could require dozens or even hundreds of testers to thor-
oughly test them. The combinations and permutations are endless and, even with careful equiv-
alence partitioning to reduce the number of cases, the job can still seem too big to handle.

In the next two chapters, you’ll learn how to leverage both tools and people to bring this huge
task down to a manageable size.

Quiz

These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

What basic elements of a Web page can easily be tested with a black-box approach?
What is gray-box testing?

Why is gray-box testing possible with Web site testing?

Why can’t you rely on a spell checker to check the spelling on a Web page?

A

Name a few areas that you need to consider when performing configuration and compati-
bility testing of a Web site.

6. Which of Jakob Neilsen’s 10 common Web site mistakes would cause configuration and
compatibility bugs?

PART

Supplementing Your Testing

If an army of monkeys were strumming on typewriters, they might write
all the books in the British Museum.

—Sir Arthur Eddington, British astronomer and physicist

IN THIS PART

14 Automated Testing and Test Tools 219
15 Bug Bashes and Beta Testing 241

Automated Testing CHAPTER

and Test Tools

IN THIS CHAPTER

¢ The Benefits of Automation and Tools 220
e Test Tools 221

e Software Test Automation 228

¢ Random Testing: Monkeys and Gorillas 234

¢ Realities of Using Test Tools and
Automation 238

220

Supplementing Your Testing
PART IV

Testing software is hard work. If you’ve done some testing on your own while reading this
book, you’ve seen that the physical task of performing the tests can take a great deal of time
and effort. Sure, you could spend more time equivalence partitioning your test cases, reducing
the number that you run, but then you take on more risk because you’re reducing coverage,
choosing not to test important features. You need to test more, but you don’t have the time.
What can you do?

The answer is to do what people have done for years in every other field and industry—
develop and use tools to make the job easier and more efficient. That’s what this chapter is all
about.

Highlights of this chapter include

* Why test tools and automation are necessary
* Examples of simple test tools you can use

* How using tools migrates to test automation
* How to feed and care for “monkeys”

* Why test tools and automation aren’t a panacea

The Benefits of Automation and Tools

Think back to what you’ve learned about how software is created. In most software develop-
ment models, the code-test-fix loop can repeat several times before the software is released. If
you’re testing a particular feature, that means you may need to run your tests not once, but
potentially dozens of times. You’ll check that the bugs you found in previous test runs were
indeed fixed and that no new bugs were introduced. This process of rerunning your tests is
known as regression testing.

If a small software project had several thousand test cases to run, there might be barely enough
time to execute them just once. Running them numerous times might be impossible, let alone
monotonous. Software test tools and automation help solve this problem by providing a better
means to run your tests than by manual testing.

The principal attributes of tools and automation are

* Speed. Think about how long it would take you to manually try a few thousand test
cases for the Windows Calculator. You might average a test case every 5 seconds or so.
Automation might be able to run 10, 100, even 1000 times that fast.

« Efficiency. While you’re busy running test cases, you can’t be doing anything else. If
you have a test tool that reduces the time it takes for you to run your tests, you have
more time for test planning and thinking up new tests.

Automated Testing and Test Tools
CHAPTER 14

e Accuracy and Precision. After trying a few hundred cases, your attention span will
wane and you’ll start to make mistakes. A test tool will perform the same test and check
the results perfectly, each and every time.

e Relentlessness. Test tools and automation never tire or give up. They’re like that
battery-operated bunny of the TV commercials—they can keep going and going and....

All this probably sounds like great news. You could have test tools do all the work for you—
turn them loose and wait for the results. Unfortunately, it’s not that easy. Houses aren’t built
automatically, even though carpenters have power saws and nail guns. The tools just make it
easier for them to do their work and for the resulting work to be of higher quality. Software
test tools operate the same way.

Reminder

Software test tools aren’t a substitute for software testers—they just help software
testers perform their jobs better.

It’s important to note that using test tools isn’t always the right answer. Sometimes there’s no
substitute for manual testing. For now, take in the information about what tests tools can do
and how they work. Think about how you might use them to complement your testing tasks. At
the end of this chapter, you’ll learn about a few limitations and cautions to consider before you
embark on using tools on your projects.

Test Tools

As a software tester you’ll be exposed to a wide range of testing tools. The types of tools that
you’ll use are based on the type of software that you’re testing and whether you’re performing
black-box or white-box tests.

The beauty of test tools is that you don’t always need to be an expert in how they work or
exactly what they do to use them. Suppose that you’re testing networking software that allows
a computer to simultaneously communicate with up to 1 million other computers. It would be
difficult, if not impossible, to perform a controlled test with 1 million real connections. But, if
someone gave you a special tool that simulated those connections, maybe letting you dial up
the number from one to a million, you could perform your tests without having to set up a real-
world scenario. You don’t need to understand how the tool works, just that it does—that’s
black-box testing.

221

=

s100]
1s3] ANV SNILS)

dilvinoiny

222

Supplementing Your Testing
PART IV

On the other hand, a tool could be set up to monitor and modify the raw communications that
occurs among those million computers. You’d likely need some white-box skills and knowl-
edge of the low-level protocol to effectively use this tool.

NoOTE

This example brings up an important distinction between two types of tools—non-
invasive and invasive. If a tool is used only to monitor and examine the software
without modifying it, it's considered non-invasive. If, however, the tool modifies the
program code or manipulates the operating environment in any way, it's invasive.
There are varying degrees of invasiveness and testers usually try to use tools that are
as non-invasive as possible to reduce the possibility that their tools are affecting the
test results.

The next few pages will discuss the major classes of testing tools and how they’re used. Some
examples are based on tools that are included with most programming languages; others are
commercial tools sold individually. You may find, however, that your software or hardware is
unique enough that you’ll have to develop or have someone else develop custom tools that fit
your specific needs. They will likely, though, still fall into one of these categories.

Viewers and Monitors

A viewer or monitor test tool allows you to see details of the software’s operation that you
wouldn’t normally be able to see. In Chapter 7, “Testing the Software with X-Ray Glasses,”
you learned how code coverage analyzers provide a means for you to see what lines of code
are executed, what functions are run, and what code paths are followed when you run your
tests. A code coverage analyzer is an example of a viewing tool. Most code coverage analyzers
are invasive tools because they need to be compiled and linked into the program to access the
information they provide.

Figure 14.1 shows an example of another type of viewer—a communications analyzer (or
comm analyzer, for short). This tool allows you to see the raw protocol data moving across a
network or other communications cable. It simply taps into the line, pulls off the data as it
passes by, and displays it on another computer. If you’re testing such a system, you could enter
a test case on Computer #1, confirm that the resulting communications data is correct on
Computer #3, and check that the appropriate results occurred on Computer #2. You might also
use this system to investigate why a bug occurs. By looking at the data pulled off the wire, you
could determine if the problem lies in creating the data (Computer #1) or interpreting the data
(Computer #2). This type of system is non-invasive to the software.

Automated Testing and Test Tools

CHAPTER 14

Computer #1 Computer #2
Software Under Test Software Under Test

Communications Line

Tapped
Line

Computer #3
Viewer Test Tool

FIGURE 14.1

A communications analyzer provides a view into the raw data being transferred between two systems.

The code debuggers that come with most compilers are also considered viewers because they
allow programmers or white-box testers to view internal variable values and program states.
Anything that lets you see into the system and look at data that the average user wouldn’t be
able to see can be classified as a viewer test tool.

Drivers

Drivers are tools used to control and operate the software being tested. One of the simplest
examples of a driver is a batch file, a simple list of programs or commands that are executed
sequentially. In the days of MS-DOS, this was a popular means for testers to execute their test
programs. They’d create a batch file containing the names of their test programs, start the batch
running, and go home. With today’s operating systems and programming languages, there are
much more sophisticated methods for executing test programs. For example, a complex Perl
script can take the place of an old MS-DOS batch file, and the Windows Task Scheduler (see
Figure 14.2) can execute various test programs at certain times throughout the day.

Figure 14.3 shows another example of a driver tool. Suppose that the software you’re testing
requires large amounts of data to be entered for your test cases. With some hardware modifica-
tions and a few software tools, you could replace the keyboard and mouse of the system being
tested with an additional computer that acts as a driver. You could write simple programs on
this driver computer that automatically generate the appropriate keystrokes and mouse move-
ments to test the software.

223

s100]
1s3] ANV SNILS)

dilvinoiny

224

Supplementing Your Testing

PART IV

FIGURE 14.2

The Windows Task Scheduler allows you to schedule when programs or batch files are to run on your PC.

Normal System
Configuration

Test Driver
Configuration

FIGURE 14.3

A computer can act as a driver test tool to replace the keyboard and mouse of a system being tested.

You might be thinking, why bother with such a complicated setup? Why not simply run a pro-
gram on the first system that sends keystrokes to the software being tested? There are poten-
tially two problems with this:

* It’s possible that the software or operating system isn’t multitasking, making it impossi-
ble to run another driver program concurrently.

* By sending keystrokes and mouse movements from an external computer, the test system
is non-invasive. If a driver program is running on the same system as the software being
tested, it’s invasive and may not be considered an acceptable test scenario.

Automated Testing and Test Tools
CHAPTER 14

When considering ways to drive the software that you’re testing, think of all the possible meth-
ods by which your program can be externally controlled. Then find ways to replace that exter-
nal control with something that will automatically provide test input to it.

Stubs

Stubs, like drivers, were mentioned in Chapter 7 as white-box testing techniques. Stubs are
essentially the opposite of drivers in that they don’t control or operate the software being
tested; they instead receive or respond to data that the software sends. Figure 14.4 shows an
example that helps to clarify this.

Normal System Test Stub
Configuration Configuration

FIGURE 14.4

A computer can act as a stub, replacing a printer and allowing more efficient analysis of the test output.

If you’re testing software that sends data to a printer, one way to test it is to enter data, print it,
and look at the resulting paper printout. That would work, but it’s fairly slow, inefficient, and
error prone. Could you tell if the output had a single missing pixel or if it was just slightly off
in color? If you instead replaced the printer with another computer that was running stub soft-
ware that could read and interpret the printer data, it could much more quickly and accurately
check the test results.

Stubs are frequently used when software needs to communicate with external devices. Often
during development these devices aren’t available or are scarce. A stub allows testing to occur
despite not having the hardware and it makes testing more efficient.

NoTE

You may have heard the term emulator used to describe a device that’s a plug-in
replacement for the real device. A PC acting as a printer, understanding the printer
codes and responding to the software as though it were a printer, is an emulator. The
difference between an emulator and a stub is that the stub also provides a means for
a tester to view and interpret the data sent to it.

225

=

s100]
1s3] ANV SNILS)

dilvinoiny

226

Supplementing Your Testing
PART IV

Stress and Load Tools

Stress and load tools induce stresses and loads to the software being tested. A word processor
running as the only application on the system, with all available memory and disk space, prob-
ably works just fine. But, if the system runs low on these resources, you’d expect a greater
potential for bugs. You could copy files to fill up the disk, run lots of programs to eat up mem-
ory, and so on, but these methods are inefficient and non-exact. A stress tool specifically
designed for this would make testing much easier.

Figure 14.5 shows the Microsoft Stress utility that comes with its programming language
development software. Other operating systems and languages have similar utilities. The Stress
program allows you to individually set the amounts of memory, disk space, files, and other
resources available to the software running on the machine.

Seilings Oplions Help

Hesource Hemaining
Global 976816.00 KB
User 21 %%
GDI 43 %
Disk Space 2047.69 MB
File Handles 120
Wnd32 1943.03 KB
Menu32 1925.17 KB
GDI32 1930.84 KB

FIGURE 14.5

The Microsoft Stress utility allows you to set the system resources available to the software you're testing.

Setting the values to zero, or near zero, will make the software execute different code paths as
it attempts to handle the tight constraints. Ideally, the software will run without crashing or los-
ing data. It may run more slowly, or tell you that it’s running low on memory, but it should oth-
erwise work properly or degrade gracefully.

Load tools are similar to stress tools in that they create situations for your software that might
otherwise be difficult to create. For example, commercially available programs can be run on
Web servers to load them down by simulating a set number of connections and hits. You might
want to check that 10,000 simultaneous users and 1 million hits a day can be handled without
slowing response times. With a load tool, you can simply dial in that level, run your tests, and
see what happens.

Interference Injectors and Noise Generators

Another class of tools is interference injectors and noise generators. They’re similar to stress
and load tools but are more random in what they do. The Stress tool, for example, has an
executor mode that randomly changes the available resources. A program might run fine with

Automated Testing and Test Tools
CHAPTER 14

lots of memory and might handle low memory situations, but it could have problems if the
amount of available memory is constantly changing. The executor mode of stress would
uncover these types of bugs.

Similarly, you could make a slight change to the viewer tool setup shown in Figure 14.1 to cre-
ate a test configuration as shown in Figure 14.6. In this scenario, the viewer is replaced with
hardware and software that allows not only viewing the data on the communications line, but
also modifying it. Such a setup could simulate all types of communications errors caused by
data dropouts, noisy or bad cables, and so on.

Computer #1 Computer #2
Software Under Test Software Under Test

FIGURE 14.6

An interference injector hooked into a communications line could test that the software handles error conditions due to
noise.

When deciding where and how to use interference injectors and noise generators, think about
what external influences affect the software you’re testing, and then figure out ways to vary
and manipulate those influences to see how the software handles it.

Analysis Tools

You might call this last category of tools analysis tools, a best-of-the-rest group. Most software
testers use the following common tools to make their everyday jobs easier. They’re not neces-
sarily as fancy as the tools discussed so far. They’re often taken for granted, but they get the
job done and can save you a great deal of time.

* Word processing software

* Spreadsheet software

¢ Database software

* File comparison software

227

s100]
1s3] ANV SNILS)

dilvinoiny

228

Supplementing Your Testing
PART IV

¢ Screen capture and comparison software
* Debugger

* Binary-hex calculator

* Stopwatch

¢ VCR or camera

Of course, software complexity and direction change all the time. You need to look at your
individual situation to decide what the most effective tools would be and how best to apply
them.

Software Test Automation

Although test automation is just another class of software testing tools, it’s one that deserves
special consideration. The software test tools that you’ve learned about so far are indeed effec-
tive, but they still must be operated or monitored manually. What if those tools could be com-
bined, started, and run with little or no intervention from you? They could run your test cases,
look for bugs, analyze what they see, and log the results. That’s software test automation.

The next few sections of this chapter will walk you through the different types of automation,
progressing from the simplest to the most complex.

Macro Recording and Playback

The most basic type of test automation is recording your keyboard and mouse actions as you
run your tests for the first time and then playing them back when you need to run them again.
If the software you’re testing is for Windows or the Mac, recording and playing back macros is
a fairly easy process. On the Mac you can use QuicKeys; on Windows the shareware program
Macro Magic is a good choice. Many macro record and playback programs are available, so
you might want to scan your favorite shareware supplier and find one that best fits your needs.

Macro recorders and players are a type of driver tool. As mentioned earlier, drivers are tools
used to control and operate the software being tested. With a macro program you’re doing just
that—the macros you record are played back, repeating the actions that you performed to test
the software.

Figure 14.7 shows a screen from the Macro Setup Wizard, which walks you through the steps
necessary to configure and capture your macros.

Automated Testing and Test Tools

CHAPTER 14

FIGURE 14.7

The Macro Setup Wizard allows you to configure how your recorded macros are triggered and played back. (Figure
courtesy of lolo Technologies, www.iolo.com.)

The Macro Setup Wizard allows you to set the following options for your macros:

Name. Giving the macro a name provides a way to identify it later. Even for a small
software project you could write hundreds of macros.

Repetitions. Repetition testing is a great way to find bugs. You can set the number of
times the macro will repeat or loop when it runs.

Triggers. You can set how the macro is started. This can be by a hot key (for example,
Ctrl+Shift+T), by a set of typed-in characters (maybe run macro 1), by clicking a short-
cut, when a certain window is displayed (whenever Calculator is started, for example), or
when the system has idled unused for a certain length of time.

What’s captured. You can select to capture (record) just keystrokes or both keystrokes
and mouse actions such as moving and clicking.

Playback speed. The macro can play back from up to 20 percent slower to 500 percent
faster than how you originally recorded it. This is important if your software’s perfor-
mance can vary. What would happen if the software you’re testing became a bit slower
and the button the macro was to click on wasn’t yet onscreen?

Playback position. This option determines if the mouse movements and clicks should be
absolute or relative to a certain window onscreen. If you’re testing an application that
might change onscreen positions, making your movements relative to that application is
a good idea; otherwise, the mouse may not click where you would expect.

Now’s a good time to experiment with recording and playing back macros. Find and download
some macro software, try it out on a few simple programs such as Calculator or Notepad, and
see what you think. Think like a tester!

229

=

s100]
1s3] aNv oNILs3) [

dilvinoiny

Supplementing Your Testing
PART IV

230

What you’ll find is that although macros can do some automated testing for you, making it
much easier and faster to rerun your tests, they’re not perfect. The biggest problem is lack of
verification. The macros can’t check that the software does what it’s supposed to do. The
macro could type 100-99 into the Calculator, but it can’t test that the result is 1—you still need
to do that. This is an issue, sure, but many testers are happy just eliminating all the repetitive
typing and mouse moving. It’s a much easier job to simply watch the macros run and confirm
that the results are what’s expected.

Playback speed can be another difficulty with macros. Even if you can adjust the speed of
playback, it may not always be enough to keep the macros in sync. A Web page may take 1
second or 10 seconds to load. You could slow down your macros to account for the expected
worst case, but then they’d run slowly even if the software was running fast. And, if the Web
page unexpectedly took 15 seconds to load, your macros would still get confused—clicking the
wrong things at the wrong time.

NoOTE

Be careful if you use a macro recorder to capture mouse movements and clicks.
Programs don’t always start up or appear in the same place onscreen. Setting the
playback position to be relative to the program’s window rather than absolute to the
screen can help, but even then just a slight change in the GUI could throw off your
captured steps.

Despite these limitations, recording and playing back macros is a popular means to automate
simple testing tasks. It’s also a good place to start for testers learning how to automate their
testing.

Programmed Macros

Programmed macros are a step up in evolution from the simple record and playback variety.
Rather than create programmed macros by recording your actions as you run the test for the
first time, create them by programming simple instructions for the playback system to follow.
A very simple macro program might look like the one in Listing 14.1 (created with the Macro
Setup Wizard). This type of macro can be programmed by selecting individual actions from a
menu of choices—you don’t even need to type in the commands.

Automated Testing and Test Tools
CHAPTER 14

Listing 14.1 A Simple Macro That Performs a Test on the Windows Calculator

Calculator Test #2
<<EXECUTE:C:\WINDOWS\Calc.exe~~~~>>
<<LOOKFOR:Calculator~~SECS:5~~>>
123-100=

<<PROMPT:The answer should be 23>>
<<CLOSE:Calculator>>

O A ON =

Line 1 is a comment line identifying the test. Line 2 executes calc.exe, the Windows calcula-
tor. Line 3 waits up to 5 seconds for Calculator to start. It does this by pausing until a window
appears with the word Calculator in its title bar. Line 4 types the keys 123—-100=. Line 5 dis-
plays a message prompt stating that the answer should be 23. Line 6 closes the Calculator win-
dow and ends the test.

Notice that programmed macros such as this one have some real advantages over recorded
macros. Although they still can’t perform verification of the test results, they can pause their
execution to prompt the tester (see Figure 14.8) with an expected result and a query for him to
okay whether the test passed or failed.

@ The znswel shoud be 23
ez paused. Wiould you b b continus?

FIGURE 14.8

Simple programmed macros can’t verify the results of a test but can prompt the tester for confirmation. (Figure cour-
tesy of Iolo Technologies, www.iolo.com.)

Programmed macros can also solve many timing problems of recorded macros by not relying
on absolute delays but instead waiting for certain conditions to occur before they go on. In the
Calculator example, the macro waits for the program to load before it continues with the test—
a much more reliable approach.

So far, so good. With programmed macros you can go a long way toward automating your test-
ing. You have a simple macro language to use, generic commands for driving your software,
and a means to prompt you for information. For many testing tasks, this is more than sufficient
and you’ll save a great deal of time automating your tests this way.

You’re still missing two important pieces, though, to perform complex testing. First, pro-
grammed macros are limited to straight-line execution—they can only loop and repeat.
Variables and decision statements that you’d find in a regular programming language aren’t
available. You also don’t have the ability to automatically check the results of your test. For
these, you need to move to a comprehensive automated testing tool.

231

s100]
1s3] ANV SNILS)

dilvinoiny

232

Supplementing Your Testing
PART IV

Fully Programmable Automated Testing Tools

What if you had the power of a full-fledged programming language, coupled with macro com-
mands that can drive the software being tested, with the additional capacity to perform verifica-
tion? You’d have the ultimate bug-finding tool! Figure 14.9 shows an example of such a tool.

*s Microzoft Developer Studio - [L A Cabeulat.met]
[B) Fle Edi Wiew et Test Tosk ‘wWindow Hel TS|

gﬂnm[H%M|ﬂngﬁﬁr——————j_ingm_J

Elseif Not WCheckEnabled (CHE_ROUND_OFF) Then

Fail "The rounding check box is not snsbled *
End If

Scenario Clean

IF Failed THEN EndTest()

End Scenario

Scenario "2, Verify that the calculat= button sxists and is enabled *
If Fot WButtonExzists (BTN_CALCULATE) Then J
Fail "The caleulate button doss nob exist '
Elseif Not WButtonEnabled (BTH_CALCULATE] Then
Fail "The calculate button iz nob snabled *
End If

Scenario Cleanu

IF Failed THEN EndTest()

End Scenario fd
4

*
Fleady Lni16, Col5 [FEC [l [y JREAD L

FIGURE 14.9

Visual Test, originally developed by Microsoft and now sold by Rational Software, is an example of a tool that provides
a programming environment, macro commands, and verification capabilities in a single package.

Automated testing tools such as Visual Test provide the means for software testers to create
very powerful tests. Many are based on the BASIC programming language, making it very
easy for even non-programmers to write test code.

If you wanted to try typing the string Hello World! 10,000 times, you’d write a few lines of
code such as this:
FOR i=1 TO 10000

PLAY "Hello World!"
NEXT I

If you wanted to move your mouse pointer from the upper left of your 640x480 screen to the
lower right and then double-click, you could do it like this:
PLAY "{MOVETO 0,0}"

PLAY "{MOVETO 640,480}"
PLAY "{DBLCLICK}"

Automated Testing and Test Tools

CHAPTER 14

A testing language can also give you better control features than just clicking specific screen
areas or sending individual keystrokes. For example, to click an OK button, you could use the
command

wButtonClick ("OK")

You don’t need to know where onscreen the OK button is located. The test software would
look for it, find it, and click it—just like a user would. Similarly, there are commands for
menus, check boxes, option buttons, list boxes, and so on. Commands such as these provide
great flexibility in writing your tests, making them much more readable and reliable.

The most important feature that comes with these automation tools is the ability to perform
verification, actually checking that the software is doing what’s expected. There are several
ways to do this:

* Screen captures. The first time you run your automated tests, you could capture and
save screen images at key points that you know are correct. On future test runs, your
automation could then compare the saved screens with the current screens. If they’re dif-
ferent, something unexpected happened and the automation could flag it as a bug.

e Control values. Rather than capture screens, you could check the value of individual
controls in the software’s window. If you’re testing Calculator, your automation could
read the value out of the display field and compare it with what you expected. You could
also determine if a button was pressed or a check box was selected. Automation tools
provide the means to easily do this within your test program.

« File and other output. Similarly, if your program saves data to a file—for example, a
word processor—your automation could read it back after creating it and compare it to a
known good file. The same techniques would apply if the software being tested sent data
over a modem or a network. The automation could be configured to read the data back in
and compare it with the data that it expects.

Verification is the last big hurdle to overcome with automated software testing. Once you have
that, you can take nearly any test case and create automation that will make trying that case
either much easier or completely automatic.

To get more information about the popular test automation products available, visit the follow-
ing Web sites:

e Mercury Interactive at www.merc-int.com

e Rational Software Corporation at www.rational.com

» Segue Software at www.segue.com

233

s100]
1s3] ANV SNILS)

dilvinoiny

234

Supplementing Your Testing
PART IV

These packages can be a bit pricey for individuals since they’re targeted mainly at corporate
testing teams. But, if you’re interested in gaining some experience with them, contact the com-
pany and ask for an evaluation copy or, if you’re a student, ask for a student discount. Most
software tool companies will help you out in hopes that you’ll like their product and eventually
recommend it to others.

Random Testing: Monkeys and Gorillas

The test automation tools and techniques that you’ve learned about so far have concentrated on
making your job as a software tester easier and more efficient. They’re designed to help you in
running your test cases or, ideally, running your test cases automatically without the need for
constant attention.

Using tools and automation for this purpose will help you find bugs; while the tools are busy
doing regression testing, you’ll have more time to plan new tests and design new and interest-
ing cases to try. Another type of automated testing, though, isn’t designed to help run or auto-
matically run test cases. Its goal is to simulate what your users might do. That type of
automation tool is called a test monkey.

The term fest monkey comes from the idea that if you had a million monkeys typing on a million
keyboards for a million years, statistically, they might eventually write a Shakespearean play,
Curious George, or some other great work. All that random pounding of keys could accidentally
hit the right combination of letters and the monkeys would, for a moment, look brilliant—much
like the one in Figure 14.10.

FIGUre 14.10

Test monkeys will test forever as long as they have electricity and the occasional banana.

Automated Testing and Test Tools
CHAPTER 14

When your software is released to the public, it will have thousands or possibly millions of
people randomly pounding away on it. Despite your best efforts at designing test cases to find
bugs, some bugs will slip by and be found by those users. What if you could supplement your
test case approach with a simulation of what all those users would do, before you released
your product? You could potentially find bugs that would have otherwise made it past your
testing. That’s what a test monkey can do.

NoOTE

The use of a test monkey to simulate how your customers will use your software in
no way insinuates that computer users are related to apes.

Dumb Monkeys

The easiest and most straightforward type of test monkey is a dumb monkey. A dumb monkey
doesn’t know anything about the software being tested; it just clicks or types randomly. Listing
14.2 shows an example of Visual Test code that will randomly click and type 10,000 times.

LisTING 14.2 Just a Few Lines of Code Can Create a Dumb Monkey

RANDOMIZE TIMER
FOR i=1 TO 10000

PLAY "{CLICK "+STR$(INT(RND*640))+", "+STR$(INT(RND*480))+" }"
PLAY CHR$ (RND*256)

NEXT i

a bh WN =

Line 1 initializes the random numbers. Line 2 starts looping from 1 to 10,000 times. Line 3
selects a random point onscreen between 0,0 and 640,480 (VGA resolution) and clicks it. Line
4 picks a random character between 0 and 255 and types it in.

The software running on the PC doesn’t know the difference between this program and a real
person—except that it happens much more quickly. On a reasonably speedy PC it’ll run in just
a few seconds. Imagine how many random inputs you’d get if it ran all night!

Remember, this monkey is doing absolutely no verification. It just clicks and types until one of
two things happens—either it finishes its loop or the software or the operating system crashes.

NoTEe

If you don't believe that a dumb monkey can possibly find a serious bug, try running
one on your favorite computer game or multimedia program. It's very likely that it
won't last more than a few hours before crashing.

235

=

s100]
1s3] ANV SNILS)

dilvinoiny

236

Supplementing Your Testing
PART IV

It doesn’t seem to make sense that simple random clicking and typing could find a bug, but it
does for a couple reasons:

* Given enough time and attempts, just like the monkeys writing Shakespeare, the random
inputs will eventually stumble onto a magic sequence that the programmers and testers
didn’t think of. Maybe the monkey enters some data and immediately deletes it or types
in a huge string where a short one was expected. Who knows? It will find it, though.

* A dumb monkey, with its continuous repetition and use, can expose bugs such as mem-
ory leaks that might not occur until many hours or days of normal use. If you’ve ever
used software that seemed to become less and less stable the longer you used it, you’ve
seen a problem that could have been found with a dumb monkey.

Semi-Smart Monkeys

Dumb monkeys can be extremely effective. They’re easy to write and can find serious, crash-
ing bugs. They lack a few important features, though, that would make them even more effec-
tive. Adding these features raises your monkey’s IQ a bit, making him semi-smart.

Say that your monkey ran for several hours, logging thousands of random inputs before the
software crashed. You’d know there was a problem but you couldn’t show the programmer
exactly how to re-create it. You could rerun your monkey with the same random seed but if it
took several hours again to fail, you’d be wasting a lot of time. The solution is to add logging
to your monkey so that everything it does is recorded to a file. When the monkey finds a bug,
you need only to look at the log file to see what it was doing before the failure.

It’s also a good idea to program your monkey to operate only on the software you’re testing. If
it’s randomly clicking all over the screen, it could (and will eventually) click the exit command
and stop the program. Since the monkey doesn’t know that the program closed, it’ll keep on
going. Think about what would happen if the monkey was clicking all over your computer’s
screen—ouch! Most programmable automation tools provide a way to always target a specific
application, or to stop working if the application is no longer present.

Another good feature to make your monkey semi-smart is crash recognition. If you started
your monkey running for the night and it found a bug as soon as you walked out the door,
you’d lose many hours of valuable test time. If you can add programming to your monkey to
recognize that a crash has occurred, restart the computer, and start running again, you could
potentially find several bugs each night.

Smart Monkeys

Moving up on the evolutionary scale is the smart monkey. Such a monkey takes the effective-
ness of random testing from his less-intelligent brothers and adds to that an awareness of his

Automated Testing and Test Tools

CHAPTER 14

surroundings. He doesn’t just pound on the keyboard randomly—he pounds on it with a pur-
pose.

A true smart monkey knows

e Where he is

* What he can do there
e Where he can go

* Where he’s been

e If what he’s seeing is correct

Does this list sound familiar? It should. A smart monkey can read the software’s state transi-
tion map—the type of map described in Chapter 5, “Testing the Software with Blinders On.” If
all the state information that describes the software can be read by the monkey, it could bounce
around the software just like a user would, only much more quickly, and be able to verify
things as it went.

A smart monkey testing the Windows Calculator (see Figure 14.11) would know what buttons
are available to press, what menu items are present, and where to type in the numbers. If it
clicked the Help menu’s About Calculator option, it would know that the only ways out were
to click OK or the Close button. It wouldn’t randomly click all over the screen, eventually
stumbling onto one of them.

Close button

OK button

FIGURE 14.11

A smart monkey would know how to close the Calculator About dialog box.

237

s100]
1s3] ANV SNILS)

dilvinoiny

238

Supplementing Your Testing
PART IV

A smart monkey isn’t limited to just looking for crashing bugs, either. It can examine data as it
goes, checking the results of its actions and looking for differences from what it expects. If you
programmed in your test cases, the smart monkey could randomly execute them, look for bugs,
and log the results. Very cool!

Figure 14.12 shows a smart monkey called Koko, named after the gorilla that could speak in
sign language. To program Koko, you feed it the state table that describes your software by
defining each state, the actions that can be performed in that state, and claims that determine
whether the result of executing an action is right or wrong.

‘& Koko - CAWINDDWS\Profiles\ron\Deskloph\Test MDB

Options Databass Design | Resoision Adhistmert | Probsbies | Lot || Hew |

Cal ‘& Window Hande
| Nee | e | Close | cooped | Restors Vincow
[Descripton Mow [| p | Dest | v | Desorigion | Mew | ¥ x|
Oﬂml\b" Claim | % l
= Enakie | [+Erais | [
|| Mot |] [FurProaCrvniowencal Cave 0| o]
I | Kok s Always On Top

FIGURE 14.12

The Koko smart monkey can be programmed to know where it is and what it can do.

When Koko runs, it drives the software to a known state, randomly selects an action based on a
weighting that simulates real-world likelihood, performs that action, and then checks the result.
If the action results in the software changing states, Koko knows that and uses a new set of
actions that apply to that new state.

With such a system, you could simulate real-world usage of your software, compressing thou-
sands of hours of use into just a few hours. Smart monkeys are truly bug-finding machines!

Realities of Using Test Tools and Automation

Before you get all excited and want to run out and start using tools and automation on your
tests, you need to read this section and take it to heart. Test automation isn’t a panacea. You
should consider some important issues that can make it difficult to use before you begin using
the techniques described in this chapter:

» The software changes. Specifications are never fixed. New features are added late. The
product name can change at the last minute. What if you recorded thousands of macros
to run all your tests and a week before the product was to be released, the software was

Automated Testing and Test Tools

CHAPTER 14

changed to display an extra screen when it started up? All of your recorded macros
would fail to run because they wouldn’t know the extra screen was there. You need to
write your automation so that it’s flexible and can easily and quickly be changed if nec-
essary.

e There’s no substitute for the human eye and intuition. Smart monkeys can be pro-
grammed to be only so smart. They can test only what you tell them to test. They can
never see something and say, “Gee, that looks funny. I should do some more check-
ing”—at least, not yet.

e Verification is hard to do. If you’re testing a user interface, the obvious and simplest
method to verify your test results is capturing and comparing screens. But, captured
screens are huge files and those screens can be constantly changing during the product’s
development. Make sure that your tools check only what they need to and can efficiently
handle changes during product development.

e It’s easy to rely on automation too much. Don’t ever assume that because all your
automation runs without finding a bug that there are no more bugs to find. They’re still
in there. It’s the pesticide paradox.

e Don’t spend so much time working on tools and automation that you fail to test the soft-
ware. It’s easy and fun to start writing macros or programming a smart monkey, but
that’s not testing. These tools may help you be more efficient, but you’ll need to use
them on the software and do some real testing to find bugs.

e If you’re writing macros, developing a tool, or programming a monkey, you’re doing
development work. You should follow the same standards and guidelines that you ask of
your programmers. Just because you're a tester doesn’t mean you can break the rules.

* Some tools are invasive and can cause the software being tested to improperly fail. If you
use a tool that finds a bug, try to re-create that bug by hand without using the tool. It
might turn out to be a simple reproducible bug, or the tool might be the cause of the
problem.

Summary

Software test tools and automation can work for any type of software. Most examples pre-
sented in this chapter dealt with user interface testing but the same techniques can apply to
testing compilers to networks to Web servers. Just think about the testing tasks you need to
perform and how you could use software to make it easier and faster—those are the areas
to automate.

Sometimes you use your bare hand, sometimes you use a flyswatter, sometimes you (maybe
inappropriately) use a hammer. Knowing when to use a test tool and which one to use is an

239

=

s100]
1s3] ANV SNILS)

dilvinoiny

240 Supplementing Your Testing

PART IV

important skill for a software tester. Creating and using tools and test automation can be a fun
job. It’s very cool to see your computer running on its own, cursor flying around, characters
being entered automatically. You’ll get lots of satisfaction while you’re home in bed or out sip-
ping a latté that your automation is chugging along at work, finding bugs.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

1. Name a few benefits of using software test tools and automation.

2. What are a few drawbacks or cautions to consider when deciding to use software test
tools and automation?

3. What’s the difference between a tool and automation?
4. How are viewer tools and injector tools similar and different?

5. True or False: An invasive tool is the best type because it operates closest to the soft-
ware being tested.

6. What’s one of the simplest, but effective, types of test automation?

7. Name a few features that could be added to test automation you described in question 6
to make it even more effective.

8. What advantages do smart monkeys have over macros and dumb monkeys?

Bug Bashes and Beta Testing CHAPTER

15

IN THIS CHAPTER

e Only As Far As the Eye Can See 242
e Test Sharing 243
e Beta Testing 244

e Outsourcing Your Testing 246

242

Supplementing Your Testing

PART IV

In Chapter 14, “Automated Testing and Test Tools,” you learned how technology in the form of
tools and automation can help make your testing more efficient. Using software to test soft-
ware is a great way to speed up your work and to help find bugs that might otherwise be
missed.

Another means to be a more effective tester is to leverage other people. If you could get more
people, even if they aren’t professional testers, looking at your software before it’s released,
they may be able to find bugs that you and your fellow testers failed to see.

Highlights of this chapter include

* Why it’s important to have other people test
* How you can get others looking at your software
* What beta testing is and how testers are involved

* How to effectively outsource your test work

Only As Far As the Eye Can See

Figure 15.1 shows two almost identical views of the same scene. Get out your egg timer, set it
for one minute, and carefully examine both pictures looking for differences between the two.
Keep a list of the differences you find in the order that you discover them.

FIGURE 15.1

In one minute, try to find as many differences between the two scenes as you can. Figure courtesy of www.
cartoonworks. com.

Bug Bashes and Beta Testing

CHAPTER 15

After you finish looking, have several friends do the same search and compare your lists. What
you’ll find is that everyone has very different results. The number of differences found, the
order that they were found, even which ones were found will be different. Hopefully, if you
combine all the lists and throw out the duplicates, you’ll have a complete list of all the differ-
ences—but even then, there still may be a few that were missed.

Software testing works exactly the same way. You’re likely under a tight schedule, you find as
many bugs as possible in the time you have, but someone else can come in, test the same code,
and find additional bugs. It can be discouraging to see this happen. After all your hard work,
you’ll think, “How could I have missed such an obvious bug?” Don’t worry, it’s normal, and
there are several reasons and solutions for it:

* Having another set of eyes look at the software helps break the pesticide paradox. As
Figure 15.1 demonstrates, people notice different things. Bugs that were always present
that built up immunity to your view can be readily seen by a new person on the project.
It’s the “Emperor Has No Clothes” dilemma.

e Similarly, people don’t just see differently from each other, they go about their testing
differently, too. Despite your best efforts in reviewing the software’s specification and
deciding on your test cases, a new person can come in and find a bug by trying some-
thing that you never even considered—hitting a different key, clicking the mouse faster,
starting a function in a different way, and so on. It’s that pesticide paradox again.

* Having someone assist you in your testing helps eliminate boredom. It can get pretty
monotonous running the same tests over and over, using the same software features again
and again. The boredom will also cause your attention to wane and you might start miss-
ing obvious bugs.

e Watching how someone else approaches a problem is a great way to learn new testing
techniques. There are always new and different approaches to testing that you can add to
your bag of testing tricks.

It’s easy to fall into the trap of wanting to be solely responsible for testing your own piece of
the software, but don’t do it. There’s too much to gain by having others help you out.

Test Sharing

The odds are, unless your project is very small, there will be at least several testers testing the
software. Even if there are just a few, there are things you can do to get more than your eyes
looking at the code.

One common approach is to simply swap test responsibilities with another tester for a few
hours or a few days. Think of it as ““You run my tests and I’ll run yours.” You’ll both gain an
independent look at the software while still having the basic testing tasks completed. Each of

243

U1

ONILSI] viig
anv saHsvg ong

244

Supplementing Your Testing
PART IV

you will also learn about an area of the software that you might not be familiar with—which

could lead to you thinking up additional test cases to try. At a minimum, get someone else to

spend time reviewing your equivalence classes and test cases. Based on their experience, they
may be able to offer ideas of new and different areas to test.

A fun way to share the testing tasks is to schedule a bug bash. A bug bash is a period of time
(usually a couple hours) in which the entire test team stops their normally assigned testing
tasks to participate in the bash. In a bug bash, a specific area of the software is selected and all
the testers concentrate their testing on that one area or set of features. The selection might be
an area that’s been especially buggy to see if there are still more problems lurking about. Or, it
might be an area that’s suspiciously bug free. A bug bash could determine if the bugs have
been missed by normal testing or if it’s just well written code. There are lots of potential crite-
ria for choosing the area, but ultimately a bug bash gets many different people looking at one
particular area of the software for bugs.

One of your greatest allies in your quest to find bugs is your product support or customer ser-
vice team—the people who will talk with customers when they call or email with questions
and problems. These people are obviously very sensitive to bugs and are a great resource to
leverage for helping you test. Find out who will be supporting your product once it’s released
and ask them to participate in your test sharing activities. You’ll be amazed at the bugs they’ll
find for you.

NoTE

Probably the most common class of calls that product support people take is in the
area of usability problems. Many of the calls are from people simply trying to figure
out how to use the software. For this reason, it's a good idea to get your product
support team helping you test the product early in the design cycle to help identify
and fix usability bugs.

Beta Testing

The test sharing ideas presented so far have been internal methods—that is, the people that
would help you share the testing are either from your test team or the project development
team. Another common method for having others verify and validate the software is a process
called beta testing.

Beta testing is the term used to describe the external testing process in which the software is
sent out to a select group of potential customers who use it in a real-world environment. Beta
testing usually occurs toward the end of the product development cycle and ideally should just
be a validation that the software is ready to release to real customers.

Bug Bashes and Beta Testing

CHAPTER 15

The goals of a beta test can vary considerably from getting the press to write early reviews of
the software to user interface validation to a last-ditch effort in finding bugs. As a tester, you
need to make it known to the person managing the beta testing what, if anything, you want to
achieve from it.

From a test standpoint, there are several things to think about when planning for or relying on
a beta test:

e Who are the beta testers? Since a beta test can have different goals, it’s important to
understand who the beta participants are. For example, you may be interested in identify-
ing any remaining usability bugs left in the software, but the beta testers may all be
experienced techies who are more concerned with the low-level operation and not usabil-
ity. If your area of the software is to be beta tested, make sure that you define what types
of beta testers you need in the program so that you can receive the most benefit out of it.

* Similarly, how will you know if the beta testers even use the software? If 1,000 beta
testers had the software for a month and reported no problems, would that mean there
were no bugs, that they saw bugs but didn’t report them, or that the disks were lost in the
mail? It’s not uncommon for beta testers to let the software sit for days or weeks before
they try to use it, and when they do, only use it for a limited time and a limited set of
features. Make sure that you or someone running the beta program follows up with the
participants to make sure that they’re using the software and meeting the plan’s goals.

* Beta tests can be a good way to find compatibility and configuration bugs. As you
learned in Chapters 8, “Configuration Testing,” and 9, “Compatibility Testing,” it’s diffi-
cult to identify and test a representative sample of all the real-world hardware and soft-
ware setups. If your beta test participants have been wisely chosen to represent your
target customers, they should do a good job finding configuration and compatibility
problems for you.

» Usability testing is another area that beta testing can contribute to if the participants are
well chosen—a good mix of experienced and inexperienced users. They’ll be seeing the
software for the first time and will readily find anything that’s confusing or difficult
to use.

* Besides configuration, compatibility, and usability, beta tests are surprisingly poor ways
to find bugs. The participants often don’t have a lot of time to use the software, so they
won’t find much more than superficial, obvious problems—ones that you likely already
know about. And, because beta testing usually occurs near the end of the development
cycle, there’s not much time to fix bugs that are found.

245

U1

ONILSI] viig
anv saHsvg ong

246

Supplementing Your Testing
PART IV

NoTE

Trying to rely on beta testing as a substitute for real testing is one of the major pit-
falls of software product development. Don‘t do it! If such a process would work,
why not do the same with the software design and programming?

* A beta test program can take up a lot of a tester’s time. A common job for a new tester is
to work with the beta customers to help solve their problems, answer their questions, and
confirm the bugs they find. If you’re assigned this task, you’ll also need to work with
your fellow testers to understand how the bugs slipped through to the beta testers and
how to improve the test cases so that the bugs are found internally in the future. All this
can be a full-time job, leaving little room to do any real testing yourself.

If you and your team plan on holding a beta test program, make arrangements in advance,
preferably when the product’s schedule is being defined. Make sure that the beta test’s goals
mesh with goals that you and your testing team want out of it and work closely with the person
(or team) managing the beta program to keep testing’s voice heard.

Beta testing can prove to be a valuable method for getting solid, independent test data back on
your software, but to be effective it must be properly defined and managed—you could almost
say it needs to be tested.

Outsourcing Your Testing

A common practice in many corporations is to outsource or subcontract a portion of the test
work to other companies that specialize in various aspects of software testing. Although this
may sound more cumbersome and more expensive than having the work done by testers on the
product team, it can be an effective way to share the testing if done properly.

Configuration and compatibility testing are typically good choices for outsourcing. They usu-
ally require a large test lab containing many different hardware and software combinations and
a staff of several people to manage it. Most small software companies can’t afford the overhead
and expense for maintaining these test labs, so it makes more sense for them to outsource this
testing to companies who make it their business to perform configuration and compatibility
tests.

Localization testing is another example that often lends itself to outsourcing. Unless you have a
very large test team, it would be impossible to staff testers that speak all the different lan-
guages that your product supports. It would be beneficial to have a couple of foreign language
speaking testers on your team to look for fundamental localization problems, but it’s probably

Bug Bashes and Beta Testing

CHAPTER 15

more efficient to outsource the testing of the specific languages. A company that specializes in
localization testing would have testers on staff that speak many different languages who are
also experienced testers.

As a new software tester, you likely won’t be asked to make decisions on what testing tasks
will be outsourced, but you may need to work with an outsourcing company if it’s testing areas
of the software that you’re responsible for. The success, or failure, of the outsourcing job may
well depend on you. Here’s a list of things to consider and to discuss with your test manager or
project manager to help make the job run more smoothly:

* What exactly are the testing tasks that the testing company is to perform? Who will
define them? Who will approve them?

e What schedule will they follow? Who will set the schedule? What happens if the dead-
line is missed?

e What deliverables are you to provide to the testing company? The software’s specifica-
tion, periodic software updates, and test cases are some examples.

e What deliverables are they to provide to you? A list of the bugs they find would be the
minimum.

* How will you communicate with them? Phone, email, Internet, central database, daily
visit? Who are the points of contact at both ends?

e How will you know if the testing company is meeting your expectations? How will they
know if they’re meeting your expectations?

These aren’t rocket science issues, but they’re unfortunately often overlooked in the rush to
outsource a testing task. Throwing software over a wall and telling a company to “just test it”
is ripe for disaster. But, spending some time up-front planning the testing can make outsourc-
ing a very effective means to perform tests that you otherwise couldn’t handle because of lim-
ited resources.

Summary

What you should take away from this chapter and from Chapter 14 is that you should leverage
whatever means possible to be an effective tester. One situation might dictate using technology,
another might require extra people, another might need just plain old brute force manual test-
ing. Every software testing problem will be unique, and you’ll learn something new with each
one. Experiment, try different approaches, watch what others do, but always strive to find the
best way make your testing more efficient and more likely to locate those bugs.

This chapter wraps up the book’s topics on how to perform software testing. It’s been fun.
You’ve learned about the software development process, the basic techniques for software

247

U1

ONILSI] viig
anv saHsvg ong

248 Supplementing Your Testing

PART IV

testing, how to apply your skills, and how to supplement what you can do. In Part V, “Working
with Test Documentation,” you’ll see how to pull together everything you’ve learned so far:
how to plan and organize your testing tasks, how to properly record and track the bugs you
find, and how to make sure those bugs get fixed.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!
1. Describe the pesticide paradox and how bringing in new people to look at the software
helps solve it.
2. What are a few positives to having a beta test program for your software?
3. What are a few cautions to consider with a beta test program?

4. If you're testing for a small software company, why would it be a good idea to outsource
your configuration testing?

PART

Working with Test
Documentation

Nothing has really happened until it has been recorded.
—Virginia Woolf, British novelist, essayist, and critic

We have a habit in writing articles published in scientific journals to
make the work as finished as possible, to cover up all the tracks, to not
worry about the blind alleys or describe how you had the wrong idea at
first, and so on. So there isn’t any place to publish, in a dignified man-
ner, what you actually did in order to get to do the work.

—Richard Feynman, American physicist

IN THIS PART

16 Planning Your Test Effort 251
17 Writing and Tracking Test Cases 267
18 Reporting What You Find 281

19 Measuring Your Success 303

Planning Your Test Effort CHAPTER

16

IN THIS CHAPTER

¢ The Goal of Test Planning 252

e Test Planning Topics 253

252

Working with Test Documentation
PART V

This chapter marks the beginning of Part V, “Working with Test Documentation.” The topics
covered so far have given you the big picture of software testing and taught you the basics of
finding bugs—where to look, how to test, and how to test efficiently. The chapters in Part V
will round out your knowledge by showing you how all the tasks associated with software test-
ing are planned, organized, and communicated to your project team.

Remember what the goal of a software tester is:

The goal of a software tester is to find bugs, find them as early as possible, and make
sure they get fixed.

Properly communicating and documenting the test effort with well-constructed test plans, test
cases, and test reports will make it more likely that you and your fellow testers will achieve
this goal.

This chapter focuses on the test plan, the most fundamental test document that you’ll encounter
in your work. As a new tester you likely won’t be assigned to create the comprehensive test
plan for your project—your test lead or manager will do that. You will, however, likely assist in
its creation, and therefore need to understand what’s involved in planning a test effort and what
information goes into a test plan. That way, you can contribute to the planning process and use
the information you learn to organize your own testing tasks. Besides, it won’t be long until
you’re writing your own software test plans.

Highlights of this chapter include

* The purpose of test planning
e Why it’s the planning, not the plan, that matters
e The areas to consider in the planning process

* What a new tester’s role is with the test plan

The Goal of Test Planning

The testing process can’t operate in a vacuum. Performing your testing tasks would be very
difficult if the programmers wrote their code without telling you what it does, how it works, or
when it will be complete. Likewise, if you and the other software testers don’t communicate
what you plan to test, what resources you need, and what your schedule is, your project will
have little chance of succeeding. The software test plan is the primary means by which
software testers communicate to the product development team what they intend to do.

The ANSI/IEEE Standard 829/1983 for Software Test Documentation states that the purpose of
a software test plan is as follows:

Planning Your Test Effort

CHAPTER 16

To prescribe the scope, approach, resources, and schedule of the testing activities. To
identify the items being tested, the features to be tested, the testing tasks to be per-
formed, the personnel responsible for each task, and the risks associated with the plan.

If you read that definition and the ANSI/IEEE standard, notice that the form the test plan takes
is a written document. That shouldn’t be too surprising, but it’s an important point because
although the end result is a piece of paper (or online document or Web page), that paper isn’t
what the test plan is all about.

The test plan is simply a by-product of the detailed planning process that’s undertaken to
create it. It’s the planning process that matters, not the resulting document.

The title of this chapter is “Planning Your Test Effort,” not “Writing Your Test Plan.” The dis-
tinction is intentional. Too often a written test plan ends up as shelfware—a document that sits
on a shelf, never to be read. If the purpose of the planning effort is flipped from the creation of
a document to the process of creating it, from writing a test plan to planning the testing tasks,
the shelfware problem disappears.

This isn’t to say that a final test plan document that describes and summarizes the results of
the planning process is unnecessary. To the contrary, there still needs to be a test plan for refer-
ence and archiving—and in some industries it’s required by law. What’s important is that the
plan is the by-product of, not the fundamental reason for, the planning process.

The ultimate goal of the test planning process is communicating (not recording) the soft-
ware test team’s intent, its expectations, and its understanding of the testing that’s to be
performed.

If you spend time with your project team working through the topics presented in the remain-
der of this chapter, making sure that everyone has been informed and understands what the test
team is planning to do, you’ll go a long way in meeting this goal.

Test Planning Topics

Many software testing books present a test plan template or a sample test plan that you can
easily modify to create your own project-specific test plan. The problem with this approach is
that it makes it too easy to put the emphasis on the document, not the planning process. Test
leads and managers of large software projects have been known to take an electronic copy of a
test plan template or an existing test plan, spend a few hours cutting, copying, pasting, search-
ing, and replacing, and turn out a “unique” test plan for their project. They felt they had done a
great thing, creating in a few hours what other testers had taken weeks or months to create.
They missed the point, though, and their project showed it when no one on the product team
knew what the heck the testers were doing or why.

253

-
(=)

140443 153)
¥NOA ONINNV1d

254

Working with Test Documentation
PART V

For that reason, you won’t see a test plan template in this book. What follows, instead, is a list
of important topics that should be thoroughly discussed, understood, and agreed to among your
entire project team—including all the testers. The list may not map perfectly to all projects, but
because it’s a list of common and important test-related concerns, it’s likely more applicable
than a test plan template. By its nature, planning is a very dynamic process, so if you find
yourself in a situation where the listed topics don’t apply, feel free to adjust them to fit.

Of course, the result of the test planning process will be a document of some sort. The format
may be predefined—if the industry or the company has a standard. The ANSI/IEEE Standard
829/1983 for Software Test Documentation suggests a common form. Otherwise, the format
will be up to your team and should be what’s most effective in communicating the fruits of
your work.

High-Level Expectations

The first topics to address in the planning process are the ones that define the test team’s high-
level expectations. They’re fundamental topics that must be agreed to by everyone on the pro-
ject team, but they’re often overlooked. They might be considered “too obvious” and assumed
to be understood by everyone—but a good tester knows never to assume anything!

* What’s the purpose of the test planning process and the software test plan? You know the
reasons for test planning—okay, you will soon—but do the programmers know, do the
technical writers know, does management know? More importantly, do they agree with
and support the test planning process?

* What product is being tested? Of course you believe it’s the Ginsumatic v8.0, but is it,
for sure? Is this v8.0 release planned to be a complete rewrite or a just a maintenance
update? Is it one standalone program or thousands of pieces? Is it being developed in
house or by a third party? And what is a Ginsumatic anyway?

For the test effort to be successful, there must be a complete understanding of what the
product is, its magnitude, and its scope. The product description taken from the specifica-
tion is a good start, but you might be surprised if you show it to several people on the
team. It wouldn’t be the first programmer who proclaims, “The code I'm writing won’t
do that!”

* What are the quality and reliability goals of the product? This area generates lots of dis-
cussion, but it’s imperative that everyone agrees to what these goals are. A sales rep will
tell you that the software needs to be as fast as possible. A programmer will say that it
needs to have the coolest technology. Product support will tell you that it can’t have any
crashing bugs. They can’t all be right. How do you measure fast and cool? And how do
you tell the product support engineer that the software will ship with crashing bugs? Your
team will be testing the product’s quality and reliability, so you need to know what your
target is; otherwise, how will you know if the software is hitting it?

Planning Your Test Effort

CHAPTER 16

A result of the test planning process must be a clear, concise, agreed-on definition of the
product’s quality and reliability goals. The goals must be absolutes so that there’s no dis-
pute on whether they were achieved. If the salespeople want fast, have them define the
benchmark—able to process 1 million transactions per second or twice as fast as com-
petitor XYZ running similar tasks. If the programmers want whiz-bang technology, state
exactly what the technology is and remember, gratuitous technology is a bug. As for
bugs, you can’t guarantee that they’ll all be found—you know that’s impossible. You can
state, however, that the goal is for the test automation monkey to run 24 hours without
crashing or that all test cases will be run without finding a new bug, and so on. Be spe-
cific. As the product’s release date approaches, there should be no disagreement about
what the quality and reliability goals are. Everyone should know.

People, Places, and Things

Test planning needs to identify the people working on the project, what they do, and how to
contact them. If it’s a small project this may seem unnecessary, but even small projects can
have team members scattered across long distances or undergo personnel changes that make
tracking who does what difficult. A large team might have dozens or hundreds of points of
contact. The test team will likely work with all of them and knowing who they are and how to
contact them is very important. The test plan should include names, titles, addresses, phone
numbers, email addresses, and areas of responsibility for all key people on the project.

Similarly, where documents are stored (what shelf the test plan is sitting on), where the soft-
ware can be downloaded from, where the test tools are located, and so on need to be identified.
Think email aliases, servers, and Web site addresses.

If hardware is necessary for running the tests, where is it stored and how is it obtained? If there
are external test labs for configuration testing, where are they located and how are they sched-
uled?

This topic is best described as “pointers to everything that a new tester would ask about.” It’s
often a good test planning area for a new tester to be responsible for. As you find the answers
to all your questions, simply record what you discover. What you want to know is probably
what everyone will want to know, too.

Definitions

Getting everyone on the project team to agree with the high-level quality and reliability goals
is a difficult task. Unfortunately, those terms are only the beginning of the words and concepts
that need to be defined for a software project. Recall the definition of a bug from Chapter 1,
“Software Testing Background™:

255

-
(=)

140443 153)
¥NOA ONINNV1d

256

Working with Test Documentation
PART V

The software doesn’t do something that the product specification says it should do.
The software does something that the product specification says it shouldn’t do.

The software does something that the product specification doesn’t mention.

L=

The software doesn’t do something that the product specification doesn’t mention but
should.

Would you say that every person on the team knows, understands, and—more importantly—
agrees with that definition? Does the project manager know what your goal as a software tester
is? If not, the test planning process should work to make sure they do.

This is one of the largest problems that occurs within a project team—the ignorance of what
common terms mean as they apply to the project being developed. The programmers think a
term means one thing, the testers another, management another. Imagine the contention that
would occur if the programmers and testers didn’t have the same understanding of something
as fundamental as what a bug is.

The test planning process is where the words and terms used by the team members are defined.
Differences need to be identified and consensus obtained to ensure that everyone is on the
same page.

Here’s a list of a few common terms and very loose definitions. Don’t take the list to be com-
plete nor the definitions to be fact. They are very dependent on what the project is, the devel-
opment model the team is following, and the experience level of the people on the team. The
terms are listed only to start you thinking about what should be defined for your projects and
to show you how important it is for everyone to know the meanings.

¢ Build. A compilation of code and content that the programmers put together to be tested.
The test plan should define the frequency of builds (daily, weekly) and the expected
quality level.

¢ Test release document (TRD). A document that the programmers release with each
build stating what’s new, different, fixed, and ready for testing.

* Alpha release. A very early build intended for limited distribution to a few key
customers and to marketing for demonstration purposes. It’s not intended to be used in a
real-world situation. The exact contents and quality level must be understood by every-
one who will use the alpha release.

* Beta release. The formal build intended for widespread distribution to potential cus-
tomers. Remember from Chapter 15, “Bug Bashes and Beta Testing,” that the specific
reasons for doing the beta need to be defined.

Planning Your Test Effort

CHAPTER 16

e Spec complete. A schedule date when the specification is supposedly complete and will
no longer change. After you work on a few projects, you may think that this date occurs
only in fiction books, but it really should be set, with the specification only undergoing
minor and controlled changes after that.

* Feature complete. A schedule date when the programmers will stop adding new features
to the code and concentrate on fixing bugs.

* Bug committee. A group made up of the test manager, project manager, development
manager, and product support manager that meets weekly to review the bugs and deter-
mine which ones to fix and how they should be fixed. The bug committee is one of the
primary users of the quality and reliability goals set forth in the test plan.

Inter-Group Responsibilities

Inter-group responsibilities identify tasks and deliverables that potentially affect the test effort.
The test team’s work is driven by many other functional groups—programmers, project man-
agers, technical writers, and so on. If the responsibilities aren’t planned out, the project—
specifically the testing—can become a comedy show of “I’ve got it, no, you take it, didn’t you
handle, no, I thought you did,” resulting in important tasks being forgotten.

The types of tasks that need to be defined aren’t the obvious ones—testers test, programmers
program. The troublesome tasks potentially have multiple owners or sometimes no owner or a
shared responsibility. The easiest way to plan these and communicate the plan is with a simple
table (see Figure 16.1).

The tasks run down the left side and the possible owners are across the top. An X denotes the
owner of a task and a dash (—) indicates a contributor. A blank means that the group has
nothing to do with the task.

Deciding which tasks to list comes with experience. Ideally, several senior members of the
team can make a good first pass at a list, but each project is different and will have its own
unique inter-group responsibilities and dependencies. A good place to start is to question
people about past projects and what they can remember of neglected tasks.

What Will and Won't Be Tested

You might be surprised to find that everything included with a software product isn’t necessar-
ily tested. There may be components of the software that were previously released and have
already been tested. Content may be taken as is from another software company. An outsourc-
ing company may supply pre-tested portions of the product.

257

-
(=)

140443 153)
¥NOA ONINNV1d

258

Working with Test Documentation

Task

Program Management

Programmers

Test

Tech Writers

Product Support

Write vision statement for product

X | Marketing

Create list of product components

Create Contracts

Product design/features

Master project schedule

Produce and maintain product spec

X| X | X[X]| X

Review product spec

Internal product architecture

Design and code product

Test planning

Review test plan

Unit testing

General testing

Create configuration list

Config testing

Define performance benchmarks

Run benchmark tests

Content testing

Test code from external groups

Automate/maintain build process

Disk building/duplication

Disk QA

Create beta list

Manage beta program

Review printed material

Define demo version

Produce demo version

Test demo version

Bug Committee

Use a table to help organize inter-group responsibilities.

Planning Your Test Effort
CHAPTER 16

The planning process needs to identify each component of the software and make known
whether it will be tested. If it’s not tested, there needs to be a reason it won’t be covered. It
would be a disaster if a piece of code slipped through the development cycle completely
untested because of a misunderstanding.

Test Phases

To plan the test phases, the test team will look at the proposed development model and decide
whether unique phases, or stages, of testing should be performed over the course of the project.
In a code-and-fix model, there’s probably only one test phase—test until someone yells stop.
In the waterfall and spiral models, there can be several test phases from examining the product
spec to acceptance testing. Yes, test planning is one of the test phases.

The test planning process should identify each proposed test phase and make each phase
known to the project team. This process often helps the entire team form and understand the
overall development model.

NoTE

Two very important concepts associated with the test phases are the entrance and
exit criteria. The test team can’t just walk in to work on Monday morning, look at the
calendar and see that they’re now in the next phase. Each phase must have criteria
defined for it that objectively and absolutely declares if the phase is over and the
next one has begun.

For example, the spec review stage might be over when the minutes to the formal
spec review have been published. The beta test stage might begin when the testers
have completed an acceptance test pass with no new bugs found on the proposed
beta release build.

Without explicit entrance and exit criteria, the test effort will dissolve into single,
undirected test effort—much like the code-and-fix development model.

Test Strategy

An exercise associated with defining the test phases is defining the test strategy. The test strat-
egy describes the approach that the test team will use to test the software both overall and in
each phase. Think back to what you’ve learned so far about software testing. If you were pre-
sented with a product to test, you’d need to decide if it’s better to use black-box testing or
white-box testing. If you decide to use a mix of both techniques, when will you apply each and
to which parts of the software?

259

-
(=)

140443 153)
¥NOA ONINNV1d

260

Working with Test Documentation
PART V

It might be a good idea to test some of the code manually and other code with tools and
automation. If tools will be used, do they need to be developed or can existing commercial
solutions be purchased? If so, which ones? Maybe it would be more efficient to outsource the
entire test effort to a specialized testing company and require only a skeleton testing crew to
oversee their work.

Deciding on the strategy is a complex task—one that needs to be made by very experienced
testers because it can determine the success or failure of the test effort. It’s vitally important for
everyone on the project team to understand and be in agreement with the proposed plan.

Resource Requirements

Planning the resource requirements is the process of deciding what’s necessary to accomplish
the testing strategy. Everything that could possibly be used for testing over the course of the
project needs to be considered. For example:

* People. How many, what experience, what expertise? Should they be full-time, part-time,
contract, students?

* Equipment. Computers, test hardware, printers, tools.

» Office and lab space. Where will they be located? How big will they be? How will they
be arranged?

¢ Software. Word processors, databases, custom tools. What will be purchased, what needs
to be written?

* Qutsource companies. Will they be used? What criteria will be used for choosing them?
How much will they cost?

* Miscellaneous supplies. Disks, phones, reference books, training material. What else
might be necessary over the course of the project?

The specific resource requirements are very project-, team-, and company-dependent, so the
test plan effort will need to carefully evaluate what will be needed to test the software. It’s
often difficult or even impossible to obtain resources late in the project that weren’t budgeted
for at the beginning, so it’s imperative to be thorough when creating the list.

Tester Assignments

Once the test phases, test strategy, and resource requirements are defined, that information can
be used with the product spec to break out the individual tester assignments. The inter-group
responsibilities discussed earlier dealt with what functional group (management, test, program-
mers, and so on) is responsible for what high-level tasks. Planning the tester assignments iden-
tifies the testers (this means you) responsible for each area of the software and for each
testable feature. Table 16.1 shows a greatly simplified example of a tester assignments table for
Windows WordPad.

Planning Your Test Effort

CHAPTER 16

TABLE 16.1 High-Level Tester Assignments for WordPad

261

-
(=)

Tester Test Assignments

Al Character formatting: fonts, size, color, style
Sarah Layout: bullets, paragraphs, tabs, wrapping
Luis Configuration and compatibility

Jolie UI: usability, appearance, accessibility
Valerie Documentation: online help, rollover help
Ron Stress and load

A real-world responsibilities table would go into much more detail to assure that every part of
the software has someone assigned to test it. Each tester would know exactly what they were
responsible for and have enough information to go off and start designing test cases.

Test Schedule

The test schedule takes all the information presented so far and maps it into the overall project
schedule. This stage is often critical in the test planning effort because a few highly desired
features that were thought to be easy to design and code may turn out to be very time consum-
ing to test. An example would be a program that does no printing except in one limited,
obscure area. No one may realize the testing impact that printing has, but keeping that feature
in the product could result in weeks of printer configuration testing time. Completing a test
schedule as part of test planning will provide the product team and project manager with the
information needed to better schedule the overall project. They may even decide, based on the
testing schedule, to cut certain features from the product or postpone them to a later release.

An important consideration with test planning is that the amount of test work typically isn’t
distributed evenly over the entire product development cycle. Some testing occurs early in the
form of spec and code reviews, tool development, and so on, but the number of testing tasks
and the number of people and amount of time spent testing often increases over the course of
the project, with the peak being a short time before the product is released. Figure 16.2 shows
what a typical test resource graph may look like.

The effect of this gradual increase is that the test schedule is increasingly influenced by what
happens earlier in the project. If some part of the project is delivered to the test group two weeks
late and only three weeks were scheduled for testing, what happens? Does the three weeks of
testing now have to occur in only one week or does the project get delayed two weeks? This
problem is known as schedule crunch.

140443 153)
¥NOA ONINNV1d

Working with Test Documentation

262
PART V
Project XYZ Resources
@
2
173
@
12 3 45 6 7 8 9 101112 13 14 1516 17 18 19 20
Months
FIGURE 16.2

The amount of test resources on a project typically increases over the course of the development schedule.

One way to help keep the testing tasks from being crunched is for the test schedule to avoid
absolute dates for starting and stopping tasks. Table 16.2 is a test schedule that would surely
get the team into a schedule crunch.

TABLE 16.2 A Test Schedule Based on Fixed Dates

Testing Task Date

Test Plan Complete 3/5/2001

Test Cases Complete 6/1/2001

Test Pass #1 6/15/2001-8/1/2001
Test Pass #2 8/15/2001-10/1/2001
Test Pass #3 10/15/2001-11/15/2001

If the test schedule instead uses relative dates based on the entrance and exit criteria defined by
the testing phases, it becomes clearer that the testing tasks rely on some other deliverables
being completed first. It’s also more apparent how much time the individual tasks take. Table
16.3 shows an example of this.

Planning Your Test Effort

CHAPTER 16

TaBLE 16.3 A Test Schedule Based on Relative Dates

263

-
(=)

Testing Task Start Date Duration
Test Plan Complete 7 days after spec complete 4 weeks
Test Cases Complete Test plan complete 12 weeks
Test Pass #1 Code complete build 6 weeks
Test Pass #2 Beta build 6 weeks
Test Pass #3 Release build 4 weeks

Many software scheduling products will make this process easier to manage. Your project man-
ager or test manager is ultimately responsible for the schedule and will likely use such soft-
ware, but you will be asked to contribute to it to schedule your specific tasks.

Test Cases

You already know what test cases are from what you’ve learned in this book. Chapter 17,
“Writing and Tracking Test Cases,” will go further into detail about them. The test planning
process will decide what approach will be used to write them, where the test cases will be
stored, and how they’ll be used and maintained.

Bug Reporting

Chapter 18, “Reporting What You Find,” will describe the techniques that can be used to
record and track the bugs you find. The possibilities range from shouting over a cubical wall to
sticky notes to complex bug-tracking databases. Exactly what process will be used to manage
the bugs needs to be planned so that each and every bug is tracked from when it’s found to
when it’s fixed—and never, ever forgotten.

Metrics and Statistics

Metrics and statistics are the means by which the progress and the success of the project, and
the testing, are tracked. They’re discussed in detail in Chapter 19, “Measuring Your Success.”
The test planning process should identify exactly what information will be gathered, what
decisions will be made with them, and who will be responsible for collecting them.

Examples of test metrics that might be useful are

» Total bugs found daily over the course of the project
 List of bugs that still need to be fixed

e Current bugs ranked by how severe they are

140443 153)
¥NOA ONINNV1d

264

Working with Test Documentation
PART V

* Total bugs found per tester

* Number of bugs found per software feature or area

Risks and Issues

A common and very useful part of test planning is to identify potential problem or risky areas
of the project—ones that could have an impact on the test effort.

Suppose that you and 10 other new testers, whose total software test experience was reading
this book, were assigned to test the software for a new nuclear power plant. That would be a
risk. Maybe no one realizes that some new software has to be tested against 1,500 modems and
there’s no time in the project schedule for it. Another risk.

As a software tester, you’ll be responsible for identifying risks during the planning process and
communicating your concerns to your manager and the project manager. These risks will be
identified in the software test plan and accounted for in the schedule. Some will come true,
others will turn out to be benign. The important thing is to identify them early so that they
don’t appear as a surprise late in the project.

Summary

Developing a test plan, even for a small project, is a large task that can’t be taken lightly. Sure,
it would be easy to fill in a template’s blanks and in a few hours be printing out copies of a test
plan, but that’s missing the point. Test planning is a job that should involve all testers and key
players from across the entire product team. Taking the time to do it properly may take many
weeks or even months. But, building a comprehensive understanding and an agreement of
what’s to be tested, why it’s to be tested, and how it’s to be tested early in the product develop-
ment cycle will make the test effort run much more smoothly than if the process is rushed.

If you’re new to testing—and you probably are if you’re reading this book—you likely won’t
be responsible for developing an overall software test plan. You should, however, be prepared
to provide input on all the topics presented in this chapter to your test lead or manager. You’ll
be responsible for testing certain aspects and features of the software; the schedule you make,
the resources you need, and the risks you take will all eventually bubble up to the master test
plan.

Planning Your Test Effort

CHAPTER 16

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

1. What’s the purpose of a test plan?

2. Why is it the process of creating the plan that matters, not the plan itself?

3. Why is defining the software’s quality and reliability goals an important part of test
planning?

4. What are entrance and exit criteria?

5. Name a few typical testing resources that should be considered when test planning.

6. True or False: A schedule should be made to meet absolute dates so that there’s no
question when a testing task or phase is to start and when it is to end.

265

-
(=)

140443 153)
¥NOA ONINNV1d

Writing and Tracking Test CHAPTER

17

IN THIS CHAPTER

¢ The Goals of Test Case Planning 268
e Test Case Planning Overview 270

e Test Case Organization and Tracking 278

268

Working with Test Documentation
PART V

In Chapter 16, “Planning Your Test Effort,” you learned about the test planning process and the
creation of a project test plan. The details and information that the test plan communicates are

necessary for the project to succeed, but they are a bit abstract and high level for an individual

tester’s day-to-day testing activities.

The next step down in the test planning process, writing and tracking test cases, is one that
more directly influences your typical tasks as a software tester. Initially you may be involved
only in running test cases that someone else has written, but you’ll very soon be writing them
for yourself and for other testers to use. This chapter will teach you how to effectively develop
and manage those test cases to make your testing go as efficiently as possible.

Highlights of this chapter include

e Why writing and tracking test cases is important
* What a test design specification is

* What a test case specification is

* How test procedures should be written

* How test cases should be organized

The Goals of Test Case Planning

The early chapters of this book discussed the different software development models and the
various testing techniques that can be used, based on those models, to perform effective testing.
In a big-bang or code-and-fix model, the testers are at the mercy of the project, often having to
guess what testing to perform and whether what they find are indeed bugs. In the more disci-
plined development models, testing becomes a bit easier because there’s formal documentation
such as product specs and design specs. The software creation—the design, architecture, and
programming—becomes a true process, not just a chaotic race to get a product out the door.
Testing in that environment is much more efficient and predictable.

There’s the old saying, “What’s good for the goose is good for the gander,” meaning what’s
beneficial to one person or group is also beneficial to another. Hopefully, from what you’ve
learned so far, you would think it’s heresy for a programmer to take the product spec and
immediately start coding without developing a more detailed plan and distributing it for review.
A tester, then, taking the test plan and instantly sitting down to think up test cases and begin
testing should seem just as wrong. If software testers expect the project managers and the pro-
grammers to be more disciplined, instill some methods, and follow some rules to make the
development process run more smoothly, they should also expect to do the same.

Writing and Tracking Test Cases
CHAPTER 17

269

Carefully and methodically planning test cases is a step in that direction. Doing so is very
important for four reasons:

¢ Organization. Even on small software projects it’s possible to have many thousands of
test cases. The cases may have been created by several testers over the course of several
months or even years. Proper planning will organize them so that all the testers and other
project team members can review and use them effectively.

* Repeatability. As you’ve learned, it’s necessary over the course of a project to run the

same tests several times to look for new bugs and to make sure that old ones have been
fixed. Without proper planning, it would be impossible to know what test cases were last 1

run and exactly how they were run so that you could repeat the exact tests.

* Tracking. Similarly, you need to answer important questions over the course of a pro-
ject. How many test cases did you plan to run? How many did you run on the last soft-
ware release? How many passed and how many failed? Were any test cases skipped?
And so on. If no planning went into the test cases, it would be impossible to answer
these questions.

sasv)
1s3] ONDDVY] [~y

ANV SNILIHAAN

* Proof of testing (or not testing). In a few high-risk industries, the software test team
must prove that it did indeed run the tests that it planned to run. It could actually be ille-
gal, and dangerous, to release software in which a few test cases were skipped. Proper
test case planning and tracking provides a means for proving what was tested.

NoOTE

Don't confuse test case planning with the identification of test cases that you learned
in Part Il, “Testing Fundamentals.” Those chapters taught you how to test and how to
select test cases, similar to teaching a programmer how to program in a specific lan-
guage. Test case planning is the next step up and is similar to a programmer learning
how to perform high-level design and properly document his work.

Ad Hoc Testing

One type of software testing, called ad hoc testing, describes performing tests with-
out a real plan—no test case planning and sometimes not even a high-level test plan.
With ad hoc testing, a tester sits down with the software and starts banging the keys.
Some people are naturally good at this and can find bugs right away. It may look
impressive and may have some value as a supplement to planned tests—for example,
in a bug bash—but it's not organized, it's not repeatable, it can’t be tracked, and
when it's complete, there’s no proof that it was ever done. As a tester you don’t want
code that was written in an ad hoc manner, nor do your customers want software
that was tested exclusively in an ad hoc manner.

Working with Test Documentation
PART V

270

Test Case Planning Overview

So where exactly does test case planning fit into the grand scheme of testing? Figure 17.1
shows the relationships among the different types of test plans.

TEST PLAN

Increasing
Emphasis on
the Process of
Creating the

TEST DESIGN
Specification

TEST DESIGN
Specification

Plan
Increasing
Emphasis on
TEST CASE the Written
Specification Plan
TEST
PROCEDURE
Specification v
FiGUre 17.1
The different levels of test plans all interact and vary on whether their importance is the plan itself or the process of
creating it.

You’re already familiar with the top, or project level, test plan and know that the process of
creating it is more important than the resulting document. The next three levels, the test design
specification, the test case specification, and the test procedure specification are described in
detail in the following sections.

As you can see in Figure 17.1, moving further away from the top-level test plan puts less
emphasis on the process of creation and more on the resulting written document. The reason is
that these plans become useful on a daily, sometimes hourly, basis by the testers performing

Writing and Tracking Test Cases
CHAPTER 17

the testing. As you’ll learn, at the lowest level they become step-by-step instructions for exe-
cuting a test, making it key that they’re clear, concise, and organized—how they got that way
isn’t nearly as important.

The information presented in this chapter is adapted from the ANSI/IEEE Std 829-1983
Standard for Software Test Documentation (available from http://standards.ieee.org).
This standard is what many testing teams have adopted as their test planning documentation—
intentional or not—because it represents a logical and common-sense method for test planning.
The important thing to realize about this standard is that unless you’re bound to follow it to the
letter because of the type of software you’re testing or by your corporate or industry policy,
you should use it as a guideline and not a standard. The information it contains and approaches
it recommends are as valid today as they were when the standard was written in 1983. But,
what used to work best as a written document is often better and more efficiently presented
today as a spreadsheet or a database. You’ll see an example of this later in the chapter.

The bottom line is that you and your test team should create test plans that cover the informa-
tion outlined in ANSI/IEEE 829. If paper printouts work best (which would be hard to
believe), by all means use them. If, however, you think a central database is more efficient and
your team has the time and budget to develop or buy one, you should go with that approach.
Ultimately it doesn’t matter. What does matter is that when you’ve completed your work,
you’ve met the four goals of test case planning: organization, repeatability, tracking, and proof.

Test Design

The overall project test planis written at a very high level. It breaks out the software into spe-
cific features and testable items and assigns them to individual testers, but it doesn’t specify
exactly how those features will be tested. There may be a general mention of using automation
or black-box or white-box testing, but the test plan doesn’t get into the details of exactly where
and how they will be used. This next level of detail that defines the testing approach for indi-
vidual software features is the test design specification.

ANSI/IEEE 829 states that the test design specification “refines the test approach [defined in
the test plan] and identifies the features to be covered by the design and its associated tests. It
also identifies the test cases and test procedures, if any, required to accomplish the testing and
specifies the feature pass/fail criteria.”

The purpose of the test design spec is to organize and describe the testing that needs to be per-
formed on a specific feature. It doesn’t, however, give the detailed cases or the steps to execute
to perform the testing. The following topics, adapted from the ANSI/IEEE 829 standard,
address this purpose and should be part of the test design specs that you create:

271

sasv)
1s3] ONDDVY] [~y

ANV SNILIHAAN

272

Working with Test Documentation
PART V

¢ Identifiers. A unique identifier that can be used to reference and locate the test design

spec. The spec should also reference the overall test plan and contain pointers to any
other plans or specs that it references.

Features to be tested. A description of the software feature covered by the test design
spec—for example, “the addition function of Calculator,” “font size selection and display
in WordPad,” and “video card configuration testing of QuickTime.”

This section should also identify features that may be indirectly tested as a side effect of
testing the primary feature. For example, “Although not the target of this plan, the UI of
the file open dialog box will be indirectly tested in the process of testing the load and
save functionality.”

It should also list features that won’t be tested, ones that may be misconstrued as being
covered by this plan. For example, “Because testing Calculator’s addition function will
be performed with automation by sending keystrokes to the software, there will be no
indirect testing of the onscreen UI. The UI testing is addressed in a separate test design
plan—CalcUI12345.

Approach. A description of the general approach that will be used to test the features. It
should expand on the approach, if any, listed in the test plan, describe the technique to be
used, and explain how the results will be verified.

For example, “A testing tool will be developed to sequentially load and save pre-built
data files of various sizes. The number of data files, the sizes, and the data they contain
will be determined through black-box techniques and supplemented with white-box
examples from the programmer. A pass or fail will be determined by comparing the
saved file bit-for-bit against the original using a file compare tool.”

Test case identification. A high-level description and references to the specific test cases
that will be used to check the feature. It should list the selected equivalence partitions and
provide references to the test cases and test procedures used to run them. For example,

Check the highest possible value Test Case ID# 15326
Check the lowest possible value Test Case ID# 15327
Check several interim powers of 2 Test Case ID# 15328

It’s important that the actual test case values aren’t defined in this section. For someone
reviewing the test design spec for proper test coverage, a description of the equivalence
partitions is much more useful than the specific values themselves.

Pass/fail criteria. Describes exactly what constitutes a pass and a fail of the tested fea-
ture. This may be very simple and clear—a pass is when all the test cases are run without
finding a bug. It can also be fuzzy—a failure is when 10 percent or more of the test cases
fail. There should be no doubt, though, what constitutes a pass or a fail of the feature.

Writing and Tracking Test Cases
CHAPTER 17

Yes, a Crash Is a Failure

I was involved in a project that used an outsourced testing company for configuration
testing of a multimedia program. They weren't the best choice but were the only
ones available at the time. To make sure the job went smoothly, detailed test design
specs, test case specs, and test procedures were submitted to the testing company so
that there would be no question as to what would and wouldn’t be tested.

Several weeks passed and the testing seemed to be going smoothly—too smoothly—
when one day the lead tester on the project called. He reported on what his team
had found for the week, which wasn’t much, and just before hanging up asked if he
should be reporting bugs on things that weren't listed in the documentation. When
asked why, he said that since the first day they started testing his team had occasion-
ally seen these big white boxes that said something about a “general protection
fault.” They would dismiss them but eventually their PC screens would turn bright
blue with another cryptic serious failure error message and they would be forced to
reboot their machines. Since that specific error wasn’t listed as one of the fail criteria,
he wasn’t sure if it was important and thought he should check.

273

=

Test Cases

Chapters 4 through 7 described the fundamentals of software testing—dissecting a specifica-
tion, code, and software to derive the minimal amount of test cases that would effectively test
the software. What wasn’t discussed in those chapters is how to record and document the cases
you create. If you’ve already started doing some software testing, you’ve likely experimented
with different ideas and formats. This section on documenting test cases will give you a few
more options to consider.

ANSI/IEEE 8209 states that the test case specification “documents the actual values used for
input along with the anticipated outputs. A test case also identifies any constraints on the test
procedure resulting from use of that specific test case.”

Essentially, the details of a test case should explain exactly what values or conditions will be
sent to the software and what result is expected. It can be referenced by one or more test
design specs and may reference more than one test procedure. The ANSI/IEEE 829 standard
also lists some other important information that should be included:

¢ Identifiers. A unique identifier is referenced by the test design specs and the test proce-
dure specs.

sasv)
1s3] ONDDVY] [~y

ANV SNILIHAAN

274

Working with Test Documentation
PART V

 Test item. This describes the detailed feature, code module, and so on that’s being tested.
It should be more specific than the features listed in the test design spec. If the test
design spec said “the addition function of Calculator,” the test case spec would say
“upper limit overflow handling of addition calculations.” It should also provide refer-
ences to product specifications or other design docs from which the test case was based.

« Input specification. This specification lists all the inputs or conditions given to the soft-
ware to execute the test case. If you're testing Calculator, this may be as simple as 1+1.
If you’re testing cellular telephone switching software, there could be hundreds or thou-
sands of input conditions. If you’re testing a file-based product, it would be the name of
the file and a description of its contents.

* Output specification. This describes the result you expect from executing the test case.
Did 1+1 equal 2? Were the thousands of output variables set correctly in the cell soft-
ware? Did all the contents of the file load as expected?

* Environmental needs. Environmental needs are the hardware, software, test tools, facili-
ties, staff, and so on that are necessary to run the test case.

¢ Special procedural requirements. This section describes anything unusual that must be
done to perform the test. Testing WordPad probably doesn’t need anything special, but
testing nuclear power plant software might.

* Intercase dependencies. Chapter 1, “Software Testing Background,” included a descrip-
tion of a bug that caused NASA’s Mars Polar Lander to crash on Mars. It’s a perfect
example of an undocumented intercase dependency. If a test case depends on another test
case or might be affected by another, that information should go here.

Are you panicked yet? If you follow this suggested level of documentation to the letter, you
could be writing at least a page of descriptive text for each test case you identify! Thousands of
test cases could take thousands of pages of documentation. The project could be outdated by
the time you finish writing.

This is another reason why you should take the ANSI/IEEE 829 standard as a guideline and
not follow it to the letter—unless you have to. Many government projects and certain industries
are required to document their test cases to this level, but in most other instances you can take
some shortcuts.

Taking a shortcut doesn’t mean dismissing or neglecting important information—it means fig-
uring out a way to condense the information into a more efficient means of communicating it.
For example, there’s no reason that you’re limited to presenting test cases in written paragraph
form. Figure 17.2 shows an example of a printer compatibility matrix.

Writing and Tracking Test Cases
CHAPTER 17

Test Case ID Printer Mfg Model Mode Options
WP0001 Canon BJC-7000 B/W Text
WP0002 Canon BJC-7000 B/W Superphoto
WP0003 Canon BJC-7000 B/W Auto
WP0004 Canon BJC-7000 B/W Draft
WP0005 Canon BJC-7000 Color Text
WP0006 Canon BJC-7000 Color Superphoto
WP0007 Canon BJC-7000 Color Auto
WP0008 Canon BJC-7000 Color Draft
WPO0009 HP LaserJet IV High

WPO0010 HP LaserJet IV Medium

WPO0011 HP LaserJet IV Low

FIGURE 17.2

Test cases can be presented in the form of matrix or table.

Each line of the matrix is a specific test case and has its own identifier. All the other informa-
tion that goes with a test case—test item, input spec, output spec, environmental needs, special
requirements, and dependencies—are most likely common to all these cases and could be writ-
ten once and attached to the table. Someone reviewing your test cases could quickly read that
information and then review the table to check its coverage.

Other options for presenting test cases are simple lists, outlines, or even graphical diagrams
such as state tables or data flow diagrams. Remember, you’re trying to communicate your test
cases to others and should use whichever method is most effective. Be creative, but stay true to
the purpose of documenting your test cases.

Test Procedures

After you document the test designs and test cases, what remains are the procedures that need
to be followed to execute the test cases. ANSI/IEEE 829 states that the test procedure specifi-
cation “identifies all the steps required to operate the system and exercise the specified test
cases in order to implement the associated test design.”

The test procedure or fest script spec defines the step-by-step details of exactly how to perform
the test cases. Here’s the information that needs to be defined:

¢ Identifier. A unique identifier that ties the test procedure to the associated test cases and
test design.

» Purpose. The purpose of the procedure and reference to the test cases that it will exe-
cute.

* Special requirements. Other procedures, special testing skills, or special equipment
needed to run the procedure.

* Procedure steps. Detailed description of how the tests are to be run:

275

sasv)
1s3] ONDDVY] [~y

ANV SNILIHAAN

276

Working with Test Documentation
PART V

* Log. Tells how and by what method the results and observations will be recorded.
* Setup. Explains how to prepare for the test.

¢ Start. Explains the steps used to start the test.

* Procedure. Describes the steps used to run the tests.

* Measure. Describes how the results are to be determined—for example, with a
stopwatch or visual determination.

¢ Shut down. Explains the steps for suspending the test for unexpected reasons.

* Restart. Tells the tester how to pick up the test at a certain point if there’s a failure
or after shutting down.

 Stop. Describes the steps for an orderly halt to the test.
* Wrap up. Explains how to restore the environment to its pre-test condition.

¢ Contingencies. Explains what to do if things don’t go as planned.

It’s not sufficient for a test procedure to just say, “Try all the following test cases and report
back on what you see....” That would be simple and easy but wouldn’t tell a new tester any-
thing about how to perform the testing. It wouldn’t be repeatable and there’d be no way to
prove what steps were executed. Using a detailed procedure makes known exactly what will be
tested and how. Figure 17.3 shows an excerpt from a fictional example of a test procedure for
Windows Calculator.

Detail versus Reality

An old saying, “Do everything in moderation,” applies perfectly well to test case planning.
Remember the four goals: organization, repeatability, tracking, and proof. As a software tester
developing test cases, you need to work toward these goals—but their level is determined by
your industry, your company, your project, and your team. It’s unlikely that you’ll need to doc-
ument your test cases down to the greatest level of detail and, hopefully, you won’t be working
on an ad hoc seat-of-your-pants project where you don’t need to document anything at all.
Odds are, your work will lie somewhere in between.

The trick is finding the right level of moderation. Consider the test procedure shown in Figure
17.3 that requires Windows 98 to be installed on a PC to run the tests. The procedure states in
its setup section that Windows 98 is required—but it doesn’t state what version of Windows
98. What happens in a year or two when the next version comes out? Does the test procedure
need to be updated to reflect the change? To avoid this problem, the version could be omitted
and replaced with “latest available,” but then what happens if a new release comes out during
the product cycle? Should the tester switch OS releases in the middle of the project?

Writing and Tracking Test Cases
CHAPTER 17

Identifier: WinCalcProc98.1872

Purpose: This procedure describes the steps necessary to execute
the Addition function test cases WinCalc98.0051 through
WinCalc98.0185.

Special Requirements: No special hardware or software is required to
run this procedure other than what is outlined in the individual test
cases.

Procedure Steps:

Log: The tester will use WordPad with the Testlog template
as the means for taking notes while performing this procedure. All the
fields marked as required must be filled in. The Mantis bug tracking
system will be used to record any problems found while running the
procedure.

Setup: The tester must install a clean copy of Windows 98
on his or her machine prior to running this procedure. Use the test tools
WipeDisk and Clone before installing the latest version of Windows 98.
Refer to the test support doc titled “Starting Fresh” for more information
on these tools.

Start:

Boot up Windows 98.
Click the Start Button.
Select Programs.
Select Accessories.
Select Calculator.

Procedure: For each test case identified above,
enter the test input data using the keyboard (not the onscreen
numbers) and compare the results to the specified output.

Measure: ...
FIGURE 17.3

A fictional example of a test procedure shows how much detail can be involved.

Another issue is that the procedure tells the tester to simply install a “clean copy” of Win98.
What does clean copy mean? The procedure lists a couple of tools, WipeDisk and Clone, to be
used in the setup process and refers the tester to a document that explains how to use them.
Should the procedure steps be more detailed and explain exactly where to obtain this other
document and these tools? If you’ve ever installed an operating system, you know it’s a com-
plex process that requires the installer to answer many questions and decide on many options.
Should this procedure or a related procedure go into that level of detail? If it doesn’t, how can
it be known what configuration the tests were run on? If it does, and the installation process
changes, there could be hundreds of test procedures to update. What a mess.

277

=

sasv)
1s3] ONDDVY] [~y

ANV SNILIHAAN

278

Working with Test Documentation
PART V

Unfortunately, there is no single, right answer. Highly detailed test case specs reduce ambigu-
ity, make tests perfectly repeatable, and allow inexperienced testers to execute tests exactly as
they were intended. On the other hand, writing test case specs to this level takes considerably
more time and effort, can make updates difficult, and, because of all the details, bog down the
test effort, causing it to take much longer to run.

When you start writing test cases, your best bet is to adopt the standards of the project you’re
working on. If you’re testing a new medical device, your procedures will most likely need to
be much more detailed than if you're testing a video game. If you’re involved in setting up or
recommending how the test design, test cases, and test procedures will be written for a new
project, review the formats defined by the ANSI/IEEE 829 standard, try some examples, and
see what works best for you, your team, and your project.

Test Case Organization and Tracking

One consideration that you should take into account when creating the test case documentation
is how the information will be organized and tracked. Think about the questions that a tester or
the test team should be able to answer:

* Which test cases do you plan to run?
* How many test cases do you plan to run? How long will it take to run them?

* Can you pick and choose test suites (groups of related test cases) to run on particular fea-
tures or areas of the software?

* When you run the cases, will you be able to record which ones pass and which ones fail?
* Of the ones that failed, which ones also failed the last time you ran them?

* What percentage of the cases passed the last time you ran them?

These examples of important questions might be asked over the course of a typical project.
Chapter 19, “Measuring Your Success,” will discuss data collection and statistics in more
detail, but for now, consider that some sort of process needs to be in place that allows you to
manage your test cases and track the results of running them. There are essentially four possi-
ble systems:

* In your head. Don’t even consider this one, even for the simplest projects, unless you’re
testing software for your own personal use and have no reason to track your testing. You
just can’t do it.

* Paper/documents. It’s possible to manage the test cases for very small projects on paper.
Tables and charts of checklists have been used effectively. They’re obviously a weak
method for organizing and searching the data but they do offer one very important posi-
tive—a written checklist that includes a tester’s initials or signature denoting that tests
were run is excellent proof in a court-of-law that testing was performed.

Writing and Tracking Test Cases

279
CHAPTER 17
» Spreadsheet. A popular and very workable method of tracking test cases is by using a
spreadsheet. Figure 17.4 shows an example of this. By keeping all the details of the test
cases in one place, a spreadsheet can provide an at-a-glance view of your testing status.
They’re easy to use, relatively easy to set up, and provide good tracking and proof of
testing.
| Edk Mew Ivert Fomat Ik Deba Window Heb - =181
Dl gRY|[imedo-|g=-aam s =
A T8 ¢ [o 7 5 5
1 Purple Dinosour Test Tracking 1
Test Suite Test Pags | Teet Pass Teel Pass |
2 fCases 10M5/1937 | 11/30/1987 | 151558 |Bug ID List
| 3 |Basic Hardware Functionality
| 4 |Left Arm Mation Fass Fass Pasz
|5 |Right Arm Mation Pass |Pass Pass | la)
B |Head Wotion Fail Fass Pass 12 >
| 7 [Touch Sensors Pass Fass Pass 0
| 8 |FPeek-a-Eoo Sensor Pass Fass Pass m
| 87 |PC Radin Transmission Fail |Fail Pass 19,22
10| PC Radio Reception Pass Pass Pass
| 11 [T Radio Transmiszion Pass Fass Pass
| 12| T Radio Reception Pass |Pass Pass
| 13| Summary FAIL FAIL PASS
14
EU:S'H: Software Functionality
16| Songs Pass |Pass Pass |
17| Games Fail Fass Pass 13
| 18 |Peek-=-Eon Pass FPass Pass
| 18| Clesnup Song Pass Fass Pass
| 20| Timeowt Sleap Pass |Pass Pass
21| Commanded Sleep Pass Pass Pass -
| 22 |VCR Brosdcast Mods Pass Fail Fail 14,28
| 23 |PC Single Unit Mode Pass |Pass Pass
| 24 | Summary FAIL FAIL FAIL
25 -
|l Test Case Summary =l [
FIGURE 17.4

A spreadsheet can be used to effectively track and manage test suites and test cases.

* Custom database. The ideal method for tracking test cases is to use a database pro-
grammed specifically to handle test cases. Many commercially available applications are
set up to perform just this specific task. Visit some of the Web links listed in Chapter 21,
“Your Career as a Software Tester,” for more information and recommendations from
other testers. If you’re interested in creating your own tracking system, database software
such as Claris FileMaker Pro, Microsoft Access, and many others provide almost drag-
and-drop database creation that would let you build a database that mapped to the
ANSI/IEEE 829 standard in just a few hours. You could then set up reports and queries
that would allow you to answer just about any question regarding the test cases.

1s3] ONDDVY] [~y
aNV SNILIMAN

280

Working with Test Documentation

PART V

The important thing to remember is that the number of test cases can easily be in the thousands
and without a means to manage them, you and the other testers could quickly be lost in a sea
of documentation. You need to know, at a glance, the answer to fundamental questions such as,
“What will I be testing tomorrow, and how many test cases will I need to run?”

Summary

It’s time again to remind you of the four reasons for carefully planning your test cases: organi-
zation, repeatability, tracking, and proof of testing. These can’t be stressed enough because it’s
very easy to become lazy and neglect a very important part of a tester’s job—to document
exactly what you do.

You wouldn’t want to drive a car that was designed and tested by an engineering team that
scribbled their work on the back of a cocktail napkin or lived next to a nuclear power plant
where the control software was tested by a team of ad hoc testers. You would want the engi-
neers who built and tested those systems to use good engineering practices, to document their
work, and to make sure that they did what they originally planned.

As a new tester, you may not have control over what level of planning and documentation your
project is using, but you should work to make your job as efficient as possible. Find out what’s
necessary and what’s not, investigate ways to use technology to improve the process, but never
cut corners. That’s the difference between a professional and a hack.

This chapter and Chapter 16 dealt with planning and documenting what you intend to test. The
next two chapters will cover how to document the results of your testing and how to tell the
world that you found a bug.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!
1. What are the four reasons for test case planning?
What is ad hoc testing?
What’s the purpose of a test design specification?
What is a test case specification?
Other than a traditional document, what means can you use to present your test cases?

What’s the purpose of a test procedure specification?

N o kWD

At what level of detail should test procedures be written?

Reporting What You Find CHAPTER

IN THIS CHAPTER

¢ Getting Your Bugs Fixed 283

¢ Isolating and Reproducing Bugs 287

Not All Bugs Are Created Equal 289

A Bug’s Life Cycle 290

Bug-Tracking Systems 294

282

Working with Test Documentation
PART V

If you stand back and look at the big picture of software testing, you’ll see that it has three main
tasks: test planning, actual testing, and the subject of this chapter—reporting what you find.

On the surface, it may seem as though reporting the problems you discover would be the easi-
est of the three. Compared to the work involved in planning the testing and the skills necessary
to efficiently find bugs, telling the world that you found something wrong would surely be a
simpler and less time-consuming job. In reality, it may be the most important—and sometimes
most difficult—task that you, as a software tester, will perform.

In this chapter you’ll learn why reporting what you find is such a critical task and how to use
various techniques and tools to ensure that the bugs you find are clearly communicated and
given the best chance of being fixed the way they should.

Highlights of this chapter include

e Why all bugs aren’t always fixed

* What you can do to make it more likely that the bugs you find are fixed
* What techniques you can use to isolate and reproduce a bug

* What a bug’s life is like from birth to death

* How to track your bugs manually or with a database

Chicken Little Reports a Problem

Chicken Little was in the woods one day when an acorn fell on her head. It scared her
so much she trembled all over. She shook so hard, half her feathers fell out.

“Help! Help! The sky is falling! | have to go tell the king!” Chicken Little said.

So she ran in great fright to tell the king. Along the way she met Henny Penny.
“Where are you going, Chicken Little?” asked Henny Penny.

“Oh, help! The sky is falling!” said Chicken Little.

“How do you know?” asked Henny Penny.

“| saw it with my own eyes, and heard it with my own ears, and part of it fell on my
head!” said Chicken Little.

“This is terrible, just terrible! We’d better hurry up,” said Henny Penny. So they both
ran away as fast as they could.

In this excerpt from a popular children’s story, Chicken Little is startled when some-
thing unexpected occurs and proceeds to run off in hysteria, shouting to the world
what she thinks is happening. Imagine what Chicken Little would do if she found a
serious software bug! What do you think a project manager or a programmer would
do if they saw Chicken Little and Henny Penny running their way? There are lots of
interesting parallels between this simple fable and software testing. Keep it in mind
as you read the rest of this chapter.

Reporting What You Find

CHAPTER 18

Getting Your Bugs Fixed

Way back in Chapter 3, “The Realities of Software Testing,” you learned that despite your best
efforts at planning and executing your tests, not all the bugs you find will be fixed. Some may
be dismissed completely, and others may be deferred or postponed for fixing in a subsequent
release of the software. At the time, it may have been a bit discouraging or even frightening to
think that such a concept was a possibility. Hopefully, now that you know a great deal more
about software testing, you can see why not fixing all the bugs is a reality.

The reasons listed in Chapter 3 for not fixing a bug were:

¢ There’s not enough time. Every project always has too many software features, too few
people to code and test them, and not enough room left in the schedule to finish. If
you’re working on a tax-preparation program, April 15 isn’t going to move—you must
have your software ready in time.

¢ It’s really not a bug. Maybe you’ve heard the phrase, “It’s not a bug, it’s a feature!” It’s
not uncommon for misunderstandings, test errors, or spec changes to result in would-be
bugs being dismissed as features.

¢ It’s too risky to fix. Unfortunately, this is all too often true. Software is fragile, inter-
twined, and sometimes like spaghetti. You might make a bug fix that causes other bugs to
appear. Under the pressure to release a product under a tight schedule, it might be too
risky to change the software. It may be better to leave in the known bug to avoid the risk
of creating new, unknown ones.

e It’s just not worth it. This may sound harsh, but it’s reality. Bugs that would occur
infrequently or appear in little-used features may be dismissed. Bugs that have
workarounds, ways that a user can prevent or avoid the bug, often aren’t fixed. It all
comes down to a business decision based on risk.

One more item should be added to this list that can often be the contributing reason for all of
them:

* Bugs are reported ineffectively. The tester didn’t make a strong enough case that a par-
ticular bug should be fixed. As a result, the bug was misunderstood as not being a bug,
was deemed not important enough to delay the product, was thought to be too risky to fix,
or was just plain considered to not be worth fixing.

As in the case with Chicken Little, running around screaming that the sky is falling is usually
not an effective approach for communicating a problem (unless, of course, the sky really is
falling and it’s obvious that it is). Most bugs that you find won’t be as dramatic as this. They
will require you to clearly and succinctly communicate your findings to the team making the
fix/no-fix judgment so that they have all the information they need to decide what to do.

283

-
(o]

ani4 NOA
IVH/N ONILHOdIY

Working with Test Documentation
PART V

284

NoTE

Because of all the different software development models and possible team dynam-
ics, it's impossible to tell you exactly how the fix/no-fix decision-making process will
work for your team or project. In many cases, the decision lies solely with the project
manager, in others it's with the programmer, and in others, it's left to a committee.
What is universal, though, is that some person or group of people will review the
bugs you report and determine whether they will be fixed. The information you pro-
vide that describes the bug is used to make that decision.

You don’t need to be a lawyer or an ex-debate team captain to know how to persuade everyone
that your bugs need to be fixed. Common sense and basic communication skills will take you a
long way. Later in this chapter you’ll learn about the different systems for bug logging and
tracking, but for now, consider these fundamental principles for reporting a bug:

* Report bugs as soon as possible. This has been discussed many times before, but it
can’t be emphasized enough. The earlier you find a bug, the more time that remains in
the schedule to get it fixed. Suppose that you find an embarrassing misspelling in a Help
file a few months before the software is released. That bug has a very high likelihood of
being fixed. If you find the same bug a few hours before the release, odds are it won’t be
fixed. Figure 18.1 shows this relationship between time and bug fixing on a graph.

Serious Bug

Likelihood of Bug
Being Fixed

Minor Bug

>
>

Project Time Project
Start End

FIGURE 18.1

The later a bug is found, the less likely it is to be fixed, especially if it’s a very minor bug.

Reporting What You Find
CHAPTER 18

This may seem strange—the bug is still the same bug whether you find it today or three
months from now. Ideally, it shouldn’t matter when it’s found, just what the bug is. In
reality, however, the risks of fixing that bug go up over time and increasingly weigh on
the decision-making process.

 Effectively describe the bugs. Suppose that you were a programmer and received the
following bug report from a tester: “Whenever I type a bunch of random characters in
the login box, the software starts to do weird stuff.” How would you even begin to fix
this bug without knowing what the random characters were, how big a bunch is, and
what kind of weird stuff was happening?

An Effective Bug Description
Effective bug descriptions would be as follows:

e Minimal. It explains just the facts and the details necessary to demonstrate and
describe the bug. Stating “a bunch of random characters” isn‘t minimal. Give an
exact sequence of steps that shows the problem. If more than one set of inputs
or actions causes the bug, cite a couple of examples, especially if they show a
pattern or a clue that might help the programmer find the cause. Be short and
to the point.

e Singular. There should be only one bug per report. This sounds obvious, but it's
sometimes difficult to differentiate between similar looking bugs and in the
rush to get a product out it may seem easier to just lump them together. The
problem with reporting more than one bug in a single report is that it's usually
only the first bug that gets attention and is fixed—the others become forgotten
or ignored. It's also impossible to individually track multiple bugs that are listed
on the same report (more on this later).

It's easy to say that bugs should be reported individually and not grouped
together, but it's not always straightforward to do. Consider this bug report:
“The following five words are misspelled in the online help file:” That, obvi-
ously should be reported as five separate bugs. But what about, “The login dia-
log won't accept passwords or login IDs with uppercase characters”? Is that one
bug or two? From the user perspective, it looks like two, one against the pass-
words and another against the login IDs. But, at the code level, it may be just
one where the programmer didn’t handle uppercase characters correctly.

A quick tip: When in doubt, enter individual bugs. You're looking for symptoms,
not causes. Several bugs may turn out to have the same cause, but you can’t
know that until the bug is fixed. It's better to err on the side of individual
reports than delay or, worse, forget about fixing a bug because it was lumped
in with others.

285

-
(o]

ani4 NOA
IVH/N ONILHOdIY

286

Working with Test Documentation
PART V

¢ Obvious and general. A bug described with numerous complex, convoluted
steps that shows a very specific instance of a bug is less likely to get fixed than
one described with easily performed steps that shows the bug to be very gen-
eral and readily seen by a user.

Reporting bugs that your test tools or automation finds is a good example of
this. Your automation may have run for six hours before finding a bug. A pro-
ject manager deciding on a bug would be hesitant to fix one that takes six
hours of constant keyboard pounding to occur. If you spend some time analyz-
ing the results of your tool, however, you could find that it doesn’t take six
hours—it just takes 10 common and likely keystrokes. This process is known as
isolating a bug. Your automation just happened to stumble upon those key-
strokes while it ran. If you want this bug to get serious attention, your bug
report should list those 10 magic keystrokes, not the thousands that the
automation ran to get there.

¢ Reproducible. To be taken seriously, a bug report must show the bug to be
reproducible—following a predefined set of steps will cause the software to
achieve the same state and the bug to occur again. One of the more difficult,
but fun, areas of software testing is trying to isolate and reproduce what seems
like random software behavior—occasional crashes, chance data corruption, and
so on. Later in this chapter you'll learn a few techniques for doing this. Once
you reproduce the bug to its obvious and general steps, you can report it.

* Be nonjudgmental in reporting bugs. It’s easy for testers and programmers to form an

adversarial relationship. Reread Chapter 3 if you forget why. Bug reports can be viewed
by the programmers and others on the development team as the tester’s “report card” on
their work so they need to be nonjudgmental, nonpersonal, and noninflammatory. A bug
report that says, “Your code for controlling the printer is terrible, it just plain doesn’t
work. I can’t believe that you even checked it in for testing,” would be out of line. Bug
reports should be written against the product, not the person, and state only the facts. No
gloating, no grandstanding, no personalizing, no egos, no accusations. Tact and diplo-

macy are what matters.

Follow up on your bug reports. One thing worse than not finding an important bug is
finding a bug, reporting it, and then forgetting about it or losing track of it. You’ve
learned that testing software is hard work, so don’t let the results of your labor, the bugs
you find, become neglected. From the moment you find a bug, it’s your responsibility to
make sure that it’s reported properly and given the attention that it needs to be addressed.
A good tester finds and logs lots of bugs. A great tester finds and logs lots of bugs but
also continues to monitor them through the process of getting them fixed. You’ll learn
more about this later in the chapter.

Reporting What You Find
CHAPTER 18

These principles—report bugs as soon as possible, effectively describe them, be nonjudgmental
in reporting them, and follow up on them—should be common sense. You could apply these
rules to almost any communications task. It’s sometimes difficult, though, in the rush to create
a product to remember to apply them to your testing. However, if you want to be effective at
reporting your bugs and getting them fixed, these are fundamental rules to follow.

Isolating and Reproducing Bugs

You’ve just learned that to effectively report a bug, you need to describe it as obvious, general,
and reproducible. In many cases this is easy. Suppose that you have a simple test case for a
painting program that checks that all the possible colors can be used for drawing. If each and
every time you select the color red the program draws in the color green, that’s an obvious,
general, and reproducible bug.

What would you do, though, if this incorrect color bug only occurs after you’ve run several of
your other test cases and doesn’t occur if you run the specific failing test case directly after
rebooting the machine? What if it seems to occur randomly or only during a full moon? You’d
have some sleuthing to do.

Isolating and reproducing bugs is where you get to put on your detective hat and try to figure
out exactly what the steps are to narrow down the problem. The good news is that there’s no
such thing as a random software bug—if you create the exact same situation with the exact
same inputs, the bug will reoccur. The bad news is that identifying and setting up that exact sit-
uation and the exact same inputs can be tricky and time consuming. Once you know the
answer, it looks easy. When you don’t know the answer, it looks hard.

NoTEe

Some testers are naturally good at isolating and reproducing bugs. They can discover
a bug and very quickly narrow down the specific steps and conditions that cause the
problem. For others, this skill comes with practice after finding and reporting many
different types of bugs. To be an effective software tester, though, these are skills
that you'll need to master, so take every opportunity you can to work at isolating and
reproducing bugs.

A few tips and tricks will give you a good start if you find a bug that seems to take numerous
steps to reproduce or can’t seem to be reproduced at all. If you run into such a situation, try the
suggestions in this list as a first step in isolating the bug:

287

-
(o]

ani4 NOA
IVH/N ONILHOdIY

288

Working with Test Documentation
PART V

* Don’t take anything for granted. Keep notes of everything you do—every step, every
pause, everything. It’s easy to leave out a step or add one unintentionally. Have a co-
worker watch you try the test case. Use a keystroke and mouse recording program so that
you can record and playback your steps exactly. Use a video camera to record your test
session if necessary. The goal is to make sure that every detail of the steps necessary to
cause the bug are visible and can be analyzed from a different view.

* Look for time-dependent and race condition problems. Does the bug occur only at a cer-
tain time of day? Maybe it depends on how quickly you enter the data or the fact that
you’re saving data to a slower floppy instead of a fast hard drive. Was the network busy
when you saw the bug? Try your test case on slower or faster hardware. Think timing.

* White-box issues of stress- and load-related boundary condition bugs, memory leaks, and
data overflows can be slow to reveal themselves. You might perform a test that causes
data to be overwritten but you won’t know it until you try to use that data—maybe in a
later test. Bugs that don’t appear after a reboot but only after running other tests are usu-
ally in this category. If this happens, look at the previous tests you’ve run, maybe by
using some dynamic white-box techniques, to see if a bug has gone unnoticed.

» State bugs show up only in certain states of the software. Examples of state bugs would
be ones that occur only the first time the software is run or that occur only after the first
time. Maybe the bug happens only after the data was saved or before any key was
pressed. State bugs may look like a time-dependent or race condition problem but you’ll
find that time is unimportant—it’s the order in which things happen, not when they
happen.

» Consider resource dependencies and interactions with memory, network, and hardware
sharing. Does the bug occur only on a “busy” system that’s running other software and
communicating with other hardware? In the end, the bug may turn out to be a race condi-
tion, memory leak, or state bug that’s aggravated by the software’s dependency or inter-
action with a resource, but looking at these influences may help you isolate it.

* Don’t ignore the hardware. Unlike software, hardware can degrade and act unpredictably.
A loose card, a bad memory chip, or an overheated CPU can cause failures that look like
software bugs but really aren’t. Try to reproduce your bugs on different hardware. This is
especially important if you’re performing configuration or compatibility testing. You’ll
want to know if the bug shows up on one system or many.

If, after your best attempts at isolating the bug, you can’t produce a short, concise set of steps
that reproduce it, you still need to log the bug so you don’t risk losing track of it. It’s possible
that with just the information you’ve learned a programmer may still be able to figure out what
the problem is. Since the programmer is familiar with the code, seeing the symptom, the test
case steps, and especially the process you took attempting to isolate the problem, may give him

Reporting What You Find

CHAPTER 18

a clue where to look for the bug. Of course, a programmer won’t want to, nor should he have
to, do this with every bug you find, but sometimes those tough ones to isolate require a team
effort.

Not All Bugs Are Created Equal

You would probably agree that a bug that corrupts a user’s data is more severe than one that’s a
simple misspelling. But, what if the data corruption can occur only in such a very rare instance
that no user is ever likely to see it and the misspelling causes every user to have problems
installing the software? Which is more important to fix? The decisions become more difficult.

Of course, if every project had infinite time, both problems would be fixed, but that’s never the
case. As you learned earlier in this chapter, trade-offs must be made and risks must be taken in
every software project to decide what bugs to fix and what bugs not to fix or to postpone to a
later release of the software.

When you report your bugs, you’ll most often have a say in what should happen to them.
You’ll classify your bugs and identify in a short, concise way what their impact is. The com-
mon method for doing this is to give your bugs a severity and a priority level. Of course, the
specifics of the method vary among companies, but the general concept is the same:

» Severity indicates how bad the bug is and reflects its impact to the product and to the
user.

 Priority indicates how important it is to fix the bug and when it should be fixed.

The following list of common classification of severity and priority should help you better
understand the difference between the two. Keep in mind, these are just examples. Some com-
panies use up to ten levels and others use just three. No matter how many levels are used,
though, the goals are the same.

Severity

1. System crash, data loss, data corruption
2. Operational error, wrong result, loss of functionality
3. Minor problem, misspelling, Ul layout, rare occurrence
4. Suggestion
Priority
Immediate fix, blocks further testing, very visible
Must fix before the product is released

Should fix if time permits

Bl A e

Would like fix but can be released as is

289

-
(o]

ani4 NOA
IVH/N ONILHOdIY

290

Working with Test Documentation
PART V

A data corruption bug that happens very rarely might be classified as Severity 1, Priority 3. A
misspelling in the setup instructions that causes users to phone in for help might be classified
as Severity 3, Priority 2.

What about a release of the software for testing that crashes as soon as you start it up?
Probably Severity 1, Priority 1. If you think a button should be moved a little further down on
the page you might classify it as Severity 4, Priority 4.

This information is vital to the person or team reviewing the bug reports and deciding what
bugs should be fixed and in what order. If a programmer has 25 bugs assigned to him, he
should probably start working on the Priority 1’s first, instead of just fixing the easiest ones.
Similarly, two project managers—one working on game software and another on a heart moni-
tor—would use this same information but could make different decisions based on it. One
would likely choose to make the software look the best and run the fastest; the other would
choose to make the software as reliable as possible. The severity and priority information is
what they would use to make these decisions. You’ll see later in this chapter how these fields
are used in a real bug-tracking system.

NoTE

A bug’s priority can change over the course of a project. A bug that you originally
labeled as Priority 2 could be changed to Level 4 as time starts to run out and the
software release date looms. If you're the software tester who found the bug, you
need to continually monitor the bug’s status to make sure that you agree with any
changes made to it and to provide further test data or persuasion to get it fixed.

A Bug’s Life Cycle

In entomology (the study of real, living bugs), the term life cycle refers to the various stages
that an insect assumes over its life. If you think back to your high school biology class, you’ll
remember that the life cycle stages for most insects are the egg, larvae, pupae, and adult. It
seems appropriate, given that software problems are also called bugs, that a similar life cycle
system is used to identify their stages of life. A software bug’s stages don’t exactly match a
real bug’s, but the concept is the same. Figure 18.2 shows an example of the simplest, and
most optimal, software bug life cycle.

Reporting What You Find

CHAPTER 18

Bug Found Tester Finds and
Logs Bug
l Bug Assigned

to Programmer

Open
Programmer
Fixes Bug
Bug Assigned
Y to Tester
Resolved
Tester Confirms
Bug is Fixed
Tester
Y Closes Bug
Closed

FIGURE 18.2

A state table shows that a software bug has a life cycle similar to an insect.

This example shows that when a bug is first found by a software tester, it’s logged and
assigned to a programmer to be fixed. This state is called the open state. Once the programmer
fixes the code, he assigns it back to the tester and the bug enters the resolved state. The tester
then performs a regression test to confirm that the bug is indeed fixed and, if it is, closes it out.
The bug then enters its final state, the closed state.

In many instances, this is as complicated as a software bug’s life cycle gets: a bug is opened,
resolved, and closed. In some situations, though, the life cycle gets a bit more complicated, as

shown in Figure 18.3.

In this case, the life cycle starts out the same with the tester opening the bug and assigning it to
the programmer, but the programmer doesn’t fix it. He doesn’t think it’s bad enough to fix and
assigns it to the project manager to decide. The project manager agrees with the programmer
and places the bug in the resolved state as a “won’t-fix”” bug. The tester disagrees, looks for
and finds a more obvious and general case that demonstrates the bug, reopens it, and assigns it
to the project manager. The project manager, seeing the new information, agrees and assigns it
to the programmer to fix. The programmer fixes the bug, resolves it as fixed, and assigns it to
the tester. The tester confirms the fix and closes the bug.

291

-
(o]

ani4 NOA
IVH/N ONILHOdIY

Working with Test Documentation

292
PART V
Project Manager
Bug Found Tester Finds and Now Agrees Bug
Logs Bug Needs Fixed
l Bug Assigned Bug Assigned
to Programmer Y to Programmer
Open Open
Programmer
Thinks Bug Is Programmer
Too Minor to Fix Fixes Bug
Bug Assigned Bug Assigned
Y to Project Y to Tester
o Manager Resolved
pen As Fixed
Project Manager
Decides Bug Is Tester Confirms
Not Critical Bug Is Fixed
Bug Assigned Tester
Y to Tester Y Closes Bug
Resolved As Closed
Won'’t Fix As Fixed
Tester Disagrees.
Finds A General
Failure Case
Bug Assigned
Y to Project
Manager
Open
FiGure 18.3

A bug’s life cycle can easily become very complicated if the bug-fixing process doesn’t occur as smoothly as expected.

You can see that a bug might undergo numerous changes and iterations over its life, sometimes
looping back and starting the life cycle all over again. Figure 18.4 takes the simple model of
Figure 18.2 and adds to it the possible decisions, approvals, and looping that can occur in most
projects. Of course, every software company and project will have its own system, but this fig-
ure is fairly generic and should cover most any bug life cycle that you’ll encounter.

This generic life cycle has two additional states and extra connecting lines. The review state is
where the project manager or the committee, sometimes called a Change Control Board,
decides whether the bug should be fixed. In some projects all bugs go through the review state
before they’re assigned to the programmer for fixing. In other projects, this may not occur until
near the end of the project, or not at all. Notice that the review state can also go directly to the
closed state. This happens if the review decides that the bug shouldn’t be fixed—it could be too
minor, is really not a problem, or is a testing error. The other added state is deferred. The

Reporting What You Find
CHAPTER 18

review may determine that the bug should be considered for fixing at some time in the future,
but not for this release of the software.

Bug Found

l

Open - Review

1
1
1
AAl
A
y

Y

Resolved
Y Y
Closed Deferred

FIGURE 18.4

This generic bug life-cycle state table covers most of the possible situations that can occur.

The additional line from the resolved state back to the open state covers the situation where the
tester finds that the bug hasn’t been fixed. It gets reopened and the bug’s life cycle repeats. The
two dotted lines that loop from the closed state and the deferred state back to the open state
rarely occur but are important enough to mention. Since a tester never gives up, it’s possible
that a bug that was thought to be fixed, tested, and closed could reappear. Such bugs are often
called regressions. It’s also possible that a deferred bug could later be proven serious enough to
fix immediately. If either of these situations occurs, the bug is reopened and started through the
process again.

Most project teams adopt rules for who can change the state of a bug or assign it to someone
else. For example, maybe only the project manager can decide to defer a bug or only a tester is
permitted to close a bug. What’s important is that once you log a bug, you follow it through its
life cycle, don’t lose track of it, and provide the necessary information to drive it to being fixed
and closed.

293

-
(o]

ani4 NOA
IVH/N ONILHOdIY

294

Working with Test Documentation
PART V

Bug-Tracking Systems

By now it should be clear that the bug-reporting process is a complex beast that requires a
great deal of information, a high level of detail, and a fair amount discipline to be effective.
Everything you’ve learned so far in this chapter sounds good on the surface, but to put it into
practice requires some type of system that allows you to log the bugs you find and monitor
them throughout their life cycle. A bug-tracking system does just that.

The remainder of this chapter will discuss the fundamentals of a bug-tracking system and give
you examples of using a paper-based approach and a full-fledged database. Of course what you
use will likely be customized and specific to your company or project, but in general, the con-
cepts are consistent across the software industry so you should be able to apply your skills to
just about any system you’re asked to use.

The Standard: The Test Incident Report

Your good friend, the ANSI/IEEE 829 Standard for Software Test Documentation (available at
standards.iee.org), defines a document called the Test Incident Report whose purpose is “to
document any event that occurs during the testing process which requires investigation.” In
short, to log a bug.

Reviewing the standard is a good way to distill what you’ve learned about the bug-reporting
process so far and to see it all put into one place. The following list shows the areas that the
standard defines, adapted and updated a bit, to reflect more current terminology.

* Identifier. Specifies an ID that’s unique to this bug report that can be used to locate and
refer to it.

¢ Summary. Summarizes the bug into a short, concise statement of fact. References to the
software being tested and its version, the associated test procedure, test case, and the test
spec should also be included.

* Incident Description. Provides a detailed description of the bug with the following
information:

Date and time

Tester’s name

Hardware and software configuration used
Inputs

Procedure steps

Expected results

Actual results

Attempts to reproduce and description of what was tried

Reporting What You Find
CHAPTER 18

Other observations or information that may help the programmer locate the bug

* Impact. The severity and priority as well as an indication of impact to the test plan, test
specs, test procedures, and test cases.

Manual Bug Reporting and Tracking
The 829 standard doesn’t define the format that the bug report should take, but it does give an
example of a simple document. Figure 18.5 shows what such a paper bug report can look like.

WIDGETS SOFTWARE INC. BUG REPORT BUG#:

SOFTWARE: RELEASE: VERSION:

TESTER: DATE: ASSIGNED TO:

SEVERITY: 1 2 3 4 PRIORITY: 1 2 3 4 REPRODUCIBLE: Y N
TITLE:

DESCRIPTION:

RESOLUTION: FIXED DUPLICATE NO-REPRO CAN'T FIX DEFERRED WON'T FIX
DATE RESOLVED: RESOLVED BY: VERSION:

RESOLUTION COMMENT:

RETESTED BY: VERSION TESTED: DATE TESTED:
RETEST COMMENT:

SIGNATURES:
ORIGINATOR: TESTER:
PROGRAMMER: PROJECT MANAGER:
MARKETING: PRODUCT SUPPORT:

FIGURE 18.5

A sample bug report form shows how the details of a bug can be condensed to a single page of data.

295

-
(o]

ani4 NOA
IVH/N ONILHOdIY

296

Working with Test Documentation
PART V

Notice that this one-page form can hold all the information necessary to identify and describe a
bug. It also contains fields that you can use to track a bug through its life cycle. Once the form
is filed by the tester, it can be assigned to a programmer to be fixed. The programmer has
fields where she can enter information regarding the fix, including choices for the possible res-
olutions. There’s also an area where, once the bug is resolved, the tester can supply informa-
tion about his efforts in retesting and closing out the bug. At the bottom of the form is an area
for signatures—in many industries, you put your name on the line to reflect that a bug has been
resolved to your satisfaction.

For very small projects, paper forms can work just fine. As recently as the early 1990s, even
large, mission-critical projects with thousands of reported bugs used paper forms for bug
reporting and tracking. There still may be pockets of this today.

The problem with paper forms is that, well, they’re paper, and if you’ve ever walked into a
paper-run office and asked someone to find something, you know how inefficient such a sys-
tem can be. Think about the complex bug life cycles that can occur (an example of which was
shown in Figure 18.3), and you’ll wonder how a paper system can work. What if someone
wanted to know the status of Bug #6329 or how many Priority 1 bugs were left to fix? Thank
goodness for spreadsheets and databases.

Automated Bug Reporting and Tracking

Just as with the test case and test procedure documents described in Chapter 17, there’s no rea-
son that the ANSI/IEEE 829 standard can’t be brought up-to-date and adapted to work with
modern systems. After all, the information for tracking bugs, the data put on the form shown in
Figure 18.5, is just text and numbers—a perfect application for a database. Figure 18.6 shows
such an automated bug reporting and tracking system that represents the type you might
encounter in your work.

Figure 18.6 shows a top-level view of a bug database containing 3,263 bugs. The individual
bugs, their IDs, titles, status, priority, severity, and resolution are shown in a simple listing at
the top third of the screen. Further information about the selected bug entry is then shown on
the bottom part of the screen. At a glance you can see who opened the bug, who resolved it,
and who closed it. You can also scroll through details that were entered about the bug as it
went through its life cycle.

Notice that at the top of the screen there is a series of buttons that you can click to create
(open) a new bug or to edit, resolve, close, or reactivate (reopen) an existing bug. The next few
pages will show you the windows that appear when you select each option.

Reporting What You Find
CHAPTER 18

Individual
bug listings

N1 Mantiz User: Dave Ball Viewing: 136 records.

Priotiy Product
4-Can be shipped |#Suggesion | Nol el Res] Manlis
2-Musl d-Suggestion | 5-Duplcale Bhanlis
d f 2-Muzl fu d-Suggestion |Mol Yel FResd Manlis
MNew Praduct Biouping 2-Muzl 4Euggestion | T-Fied b anlic
b anlis ‘asigred to should be bzed when Product is sslected 4-Canbe shippad [4-Suggestion | 3-Nok Fized [Manlis
Manlis: Conweit common wid caids to TSOL i queas 3-Eheuid fix 1 lime | 3Minai Enor [Mot'vel Bes{Manlis
Manlis: fuealit it not iefieshied when produds sslectionis changad 3-Eheud fix 1 lime |2-Piogram Ence |Mot el Res{Manlis
Hanliz Dalabass Enoe 3-Shouid lix Flime [3-Minai Enor [Nol'Yal Res{ Manlis

By Todd B. Jacobs

Datec B/7/2000
Buid Mumbar:
Percent Complate: 100
Detailz Priotir 2-Must fix
Statuz: Closed Severiy 4-Suggestion
Froduct Mantis Aegiession Courker. 0
Arza API - Bad Argument Related Bug 3043 | Show Felabed Bug I
Varsion: 0 Projectad ‘Woek Days:
Azsignzd Tee Ron Rohr Frajacted Completion Datec

v Open TODJAC OR/07/Z2000 B:45 am ——
Dbjeclive:

2 a2 on the Edk soreen caly. Canwe add t i New and F 7 For tha Resobved screen only add the projected days. _|
ched days b i houis and nsist that the resobvar put something in to this fiskd if the iesalutian fsed? This would provide 2 way I
i geing inln féng bugs or cperalicnel issuss. The swag uss o priojeclad days is nol as uteful as getting aclual hours waiked

Azsigned bo Q4 on 06/07/2000 at 0855 am
——m Resolved DAVBAL 06ME/2000 1048 an ——- =l

| dug updated: B/B/O0 11:32 am Last Quesyr Mentis Achive Bugs st efresh /14400 259 pm
Life cycle Detailed bug information
summary
information
for the

selected bug

FIGURE 18.6
The main window of a typical bug-reporting database shows what an automated system can provide. (Mantis bug
database images in this chapter courtesy of Dave Ball and HBS International, Inc.)

Figure 18.7 shows the New Bug dialog box, in which information is entered to log a new bug
into the system. The top-level description of the bug includes its title, severity, priority, soft-
ware version info, and so on. The comment field is where you would enter the details of how
the bug was discovered. This database conveniently prefills the comment area with headers that
guide you in providing the necessary information. If you’re entering a new bug, all you need to
do is follow the prompts—entering your test’s objective, the setup steps, the steps that repro-
duce the bug, what result you expected, what result you saw, and what hardware and software
configurations you were using when you saw the bug.

297

-
(o]

=
m
<9
o3
c>
na
=2
SR
I
3

Working with Test Documentation

298
PART V
Top-level
bug information

ille: [pmnm:t: Here is where the bug title belongs

Severly: [Q-P\'Dgla'n Ennar =] Product: [1zn1is B | = I

Bt [3.5hculd fs f time = ecsion: [T

Cancel

e T [gn = Ageai [GU1-Lapout 5 _I
Maw Comments: Bk Number: (5777
.E_‘.:.i_..-_Uncn DAVBAL 07/14/2000 320 prn o]

eclive:
Setup stepx
]
Aeproduction steps:
1)
Expected resuls:
Actual results:

[05, R, videsa rasclulion)
Detailed input
and procedure steps
FiIGURE 18.7

A new bug starts its life cycle in the New Bug dialog box.

Once a bug is entered, and really anytime during its life cycle, new information may need to be
added to clarify the description, change the priority or severity, or make other minor tweaks to
the data. Figure 18.8 shows the window that provides this functionality.

Notice that this dialog box provides additional data fields over what the new bug window pro-
vided. Editing a bug allows you to relate this bug to another one if you find one that seems
similar. A programmer can add information about how much progress he’s made in fixing the
bug and how much longer it will take. There’s even a field that can put the bug “on hold,” sort
of freezing it in its current state in the life cycle.

An important feature shown in Figure 18.8 is in the Comments section. Each time a bug is
modified, when it’s opened, edited, resolved, and closed, that information is recorded in the
comment field. At a glance you can see what states the bug has been through over its life.

Reporting What You Find
CHAPTER 18

Additional edit fields
| | | |

wert commdn wild cards to TSOL in quesics

rEnor

She 4d fre if bme

Open DAVBAL 0B/22/2000 1232 pmi
Objechve: Ashun widcard queries as expected

Regroduction sleps:
1] Uge 2 common wikd card - * o 7

Evpected msubs
The " ghould rehuin iecords which malch [ary charachai) missing
The 7 shoud tesum recardz which match [one character] missing
Life cycle - Bcluiel iesuls:
t k Cunerty TSOL suppaits the undeizcole _ in place of a ? and % in place of *. Mantiz should perform a replacement
racking of* and ? 1o enable wid cards to woik = orpected

information Ervicrment (5, FIAM, viden eslutian]

- Azgigned to DavBal on 06/22/2000 at 1235 pm
oo Eclited DAVBAL 07/14/2000 3:24 pro -~

FIGURE 18.8

The Edit window allows you to add more information to an existing bug entry.

Figure 18.9 shows the dialog box used when someone, usually the programmer or project man-
ager, resolves a bug. A drop-down list provides different resolution choices from Fixed to
Can’t Fix to Duplicate. If the bug is fixed, the build—or version number that will contain the
fix—is entered, and information about what was fixed or how the fix was made is added to the
comment field. The bug is then reassigned to the tester for closing.

Many bug databases track not just comments about the fix, but also details of exactly what the
programmers did to make the fix. The line of code, the module, and even the type of error can
be recorded as it often provides useful information to the white-box tester.

After a bug is resolved, it’s typically assigned back to you, the tester, for closing. Figure 18.10
shows the bug Closing dialog box. Because the database tracked every modification to the bug
report since it was opened, you can see the decisions that were made along the way and what
exactly was fixed. It’s possible that the bug wasn’t fixed the way you expected, maybe a simi-
lar bug had been found and added by another tester, or maybe the programmer made a com-
ment about the fix being risky. All this information will assist you when you retest the bug to
make sure it’s fixed. If it turns out that it’s not fixed, you simply reopen the bug to start the life
cycle over again.

299

-
(o]

ani4 NOA
IVH/N ONILHOdIY

300 Working with Test Documentation
PART V

Ehs:llve Retum wild-card queries 25 expected

fleproduction step:
1) Us a common md caid - "

5 which match [ary chaiacteis] missing
ot which match [one character) missng

indesscore _inplace of & ? end % in place of . Mankis should perform a teplacement
to woek 33 espected
it (05, FAM, vides resclution}
- Agsigned to DavBal on 06/22/2000 at 1235 pm

Resolved DAVBAL 07714/2000 3.25 p
Ths suppait b i adoed and wil be avald:la in tamorlow’s buid|

FIGURE 18.9

The Resolving dialog box is typically used by the programmer to record information regarding the bug fix.

d cards to TSOL i

3-5houkd fix ¥ time:

Open DAVBAL 05/22/2000 12:32 pm
Objectiver Retum wikd-card quenies 2 expected.

Asproduction seps
1)Uz a common wid caid - =ar 7

14 recards which match [any chataclsts] missing
Tha ? ‘7 should retuin 1ecoeds which match [one charactar) mssng

sulls;

erilly TSOL suppeels lhe urderseoe _ inplacs of a 7 2rd X in place of *. Manlis should perferm 2 replacement
= and 7 bo enable wild cards bo work as espected.

E rwvranenent (05, FAM, vides resclution}
- Azsigned to DavBal on 0B/22/2000 at 1235 om

— Resolved DAVBAL 07714/2000 329 pm
Thiz wil be fivad in tamorow's buld,

-Assigned o QA on 07714/2000 at (0328 pm

e Clozed DAVBAL 07/14/2000 328 pm
Confimed az foaed within baid D715]

FiGure 18.10

A bug report ready for closing has its entire history available for review.

Reporting What You Find

CHAPTER 18

Once you use a real bug-tracking database, you’ll wonder how a software project’s bugs could
ever have been managed on paper. A bug-tracking database provides a central point that an
entire project team, not just the testers, can use to communicate the status of the project, tell
who’s assigned what tasks to perform, and, most importantly, assure that no bug falls through
the cracks. It’s the culmination of everything you’ve learned in this chapter about how to report
the bugs you find.

Summary

This chapter started out with an excerpt from the kids’ story about Chicken Little that
described her reaction when an acorn unexpectedly fell on her head. She thought she had dis-
covered a serious problem—a Severity 1, Priority 1 bug—and immediately began running
around screaming that the sky was falling.

As a software tester, it’s sometimes easy to get caught up in the moment when you find that
something in the program you’re testing doesn’t work as expected. What you’ve learned in this
chapter is that there’s a formal process that should be followed to properly isolate, categorize,
record, and track the problems you find to ensure that they’re eventually resolved and, hope-
fully, fixed.

Chicken Little has never read Chapter 18, so she didn’t know what to do other than tell every-
one she met what she thought was happening. She was wrong, of course. The sky wasn’t
falling. If she had at least stopped to isolate and reproduce the problem, she would have dis-
covered that it wasn’t really a problem at all—it was by design that the nut fell from the tree.
In the end, her panic and naiveté did her in. (If you’re unfamiliar with the story, she and her
barnyard friends eventually meet a hungry fox who invites them into his den to hear their
story.)

The moral of all this is that to be an effective tester, you need to not just plan your testing and
find bugs, but also to apply a methodical and systematic approach to reporting them. An exag-
gerated, poorly reported, or misplaced bug is no bug at all—and surely one that won’t be fixed.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

1. Cite a few reasons that a bug might not be fixed.

2. What basic principles can you apply to your bug reports to give them the best chance of
getting the bug fixed?

3. Describe a few techniques for isolating and reproducing a bug.

301

-
(o]

ani4 NOA
IVH/N ONILHOdIY

302 Working with Test Documentation

PART V

4. Suppose that you’re running tests on the Windows Calculator and find that 1+1=2,
2+42=5, 343=6, 4+4=9, 5+5=10, and 6+6=13. Write a bug title and bug description that
effectively describes this problem.

5. What severity and priority would you give to a misspelling in a company’s logo on the
software’s startup screen?

6. What are the three basic states of a software bug’s life cycle and the two common addi-
tional states?

7. List a few reasons that a database bug-tracking system is so much more useful than a
paper-based system.

Measuring Your Success CHAPTER

IN THIS CHAPTER

¢ Using the Information in the Bug Tracking
Database 304

e Metrics That You'll Use in Your Daily
Testing 306

e Common Project-Level Metrics 310

304

Working with Test Documentation
PART V

In Chapter 18 you learned the basics of reporting the bugs you find and how a specialized bug
database can be used to track them. Although most of your exposure to this database will be in
entering bugs, the indirect benefit to using it is the ability to extract all sorts of useful and
interesting data that can indicate the success (or failure) of the test effort and the project’s
progress.

By using the information in the bug-tracking database, you can perform queries that will tell
you what types of bugs you’re finding, what your bug find rate is, and how many of your bugs
have been fixed. Your test manager or the project manager can see if any trends in the data
show areas that may need more testing or whether the project is on track for its scheduled
release date. The data is all there, it’s just a matter of creating reports that will show the infor-
mation you’re after.

This chapter will introduce you to some of the popular queries and reports that you’re likely to
see as a software tester and give you examples of how they’re used in a typical software pro-
ject. Highlights of this chapter include

* What metrics and statistics can do for you

* Why caution needs to be exercised in data collecting and reporting

* How to use simple bug database queries and reports

* Some frequently used project-level measurements

Using the Information in the Bug Tracking
Database

Consider the following questions:

* What areas of the software you’re testing have the most bugs? The fewest bugs?
* How many resolved bugs are currently assigned to Martha?
* Bob is leaving for vacation soon. Will he likely have all his bugs fixed by then?
* How many bugs have you found this week? This month? On the entire project?
* Can you please bring a list of all the open Priority 1 bugs to the project review meeting?
* Does the software look like it’s on track to meet the scheduled release date?
These fundamental questions are routinely asked over the course of a software project. They

aren’t rocket science, they’re simple, straightforward questions to which you and the rest of
your test team and the project team will eventually need to know the answers.

It may be surprising that a bug-tracking database can become such a fundamental means for
measuring a project’s status and answering such important questions. If you didn’t know better,
you’d think it would be the master schedule or the project plan or something that the project

Measuring Your Success
CHAPTER 19

manager handled. In reality, though, those documents reflect the project’s original intentions—
the bug database reflects the project’s reality. If you want to choose a high-quality restaurant,
you could select one based on the chef’s résumé or the owner’s history. But, if you want to be
sure to pick a good one, you’d read the latest food critic review or the history of health inspec-
tion reports. The project’s bug database works the same way. It tells you what has happened in
the past, what’s happening now, and allows you to look at the data to make an educated guess
of the future.

NoTE

The term used to describe a measurement of a particular attribute of a software pro-
ject is a software metric. The average number of bugs per tester per day is a metric.
The number of bugs found per area of the software is a metric. The ratio of Severity
1 bugs to Severity 4 bugs is a metric.

Because the bug database is continually updated with new bugs, bug entry and fix dates, pro-
ject member names, bug assignments, and so on, it’s the natural means to pull all sorts of met-
rics that describe the project’s status—as well as an individual tester’s or programmer’s status.

Therein lies one of the potential problems with using the bug database for metrics. The same
database that can tell everyone how many Priority 1 bugs are still left to fix can also tell man-
agement how many bugs were created by a specific programmer. It can also tell your boss how
many bugs you entered compared to the other testers on your team. Is that a good thing?
Maybe, if the programmer and you are really good at your work, but, what if you’re testing
that good programmer’s code? There would be fewer bugs to find and your bug-find metrics
suddenly wouldn’t look so hot compared to other testers testing some really bug-ridden code.

It’s not the intent of this chapter to get into the moral and interpersonal issues that can arise
from how the data in the bug database is used. In general, though, it should primarily be
viewed as the means to track project-level metrics, not an individual person’s performance,
unless the metrics are private, understood, and unambiguous—does the data show a poor pro-
grammer or a good tester? If you’re working on a project that uses a bug-tracking database,
discuss with your manager and the project manager what information will be collected and
how it will be used so that there won’t be any surprises.

Politics aside, using the bug database as a source for metrics is a super-efficient means to
gauge a project’s status and your own progress. All the information is there, it’s just a matter of
pulling it out of the database and arranging it into a useful format. The remainder of this chap-
ter will discuss some of the common metrics that you’ll see used in software projects and
explain how they’re generated and interpreted. Of course, projects vary greatly, so don’t

305

19

$530N§
¥NOA SNINNSYIN

306

Working with Test Documentation
PART V

assume that these are the only metrics possible. Just when you think you’ve seen the weirdest
possible pie chart, someone will think up another that demonstrates a new and useful view into
the project’s data.

Metrics That You’ll Use in Your Daily Testing

Probably the most frequently used feature of a bug-tracking database that you’ll encounter
(besides entering bugs) is performing queries to obtain specific lists of bugs that you’re inter-
ested in. Remember, bug databases can potentially have many thousands of bugs stored in
them. Manually sorting through such a huge list would be impossible. The beauty of storing
bugs in a database is that performing queries becomes a simple task. Figure 19.1 shows a typi-
cal query building window with a sample query ready to be entered.

AT Mantis Query Buildes

F|Equale | Mantiz
Equalz Markis Wb
Equals laCel
*|Equals = Joskar
MatEquals Clozad

FIGURE 19.1

Most bug-tracking databases have a means to build queries that return the specific information you’re looking for.
(Mantis bug database images in this chapter courtesy of Dave Ball and HBS International, Inc.)

This bug database’s query builder, as with most others, uses standard Boolean ANDs, ORs, and
parentheses to construct your specific request. In this example, the tester is looking for a list of
all bugs that match the following criteria:

* The software product’s name is Mantis OR Mantis Web AND

* The bug was opened by either IraCol OR JosNar AND

* The bug’s status is currently Closed

Clicking the Run Query button causes the database to be searched for all the bugs that match
these criteria and return a list of bug ID numbers and bug titles for review.

The types of queries you can build are bounded only by the database’s fields, the values they
can hold, and the database tool you’re using. It’s possible to answer just about any question
you might have regarding your testing and how it relates to the project. For example, here’s a
list of questions easily answered through queries:

e What are the IDs for the resolved bugs currently assigned to me for closing?

* How many bugs have I entered on this project? In the previous week? Over the last
month? Between April 1 and July 317

Measuring Your Success
CHAPTER 19

e What bugs have I entered against the user interface that were resolved as won’t fix?
* How many of my bugs were Severity 1 or Severity 2?

Of all the bugs I've entered, how many were fixed? How many were deferred? How
many were duplicates?

The results of your query will be a list of bugs as shown in the bug-tracking database window
in Figure 19.2. All the bugs that matched the criteria in your query are returned in numerical
order. The gaps you see between the numbers—for example, the gap between 3238 and
3247—are simply bugs in the database that didn’t match the query.

Bug ID Number of bugs
numbers matching the query

B Mant i: Dave Ball Viewing: 13E records. HEE

N
-IE_-EIIIEM_
Product

Frioy
i less Ihan BOD = E00 4-Can be shippad li Nat el Res] Manlis
2-Musl ian | 5-Duplcale Bianlis
2-Musl Fix an | Mot 'Yl Resd Manlis
MNew Praduct Biouping 2-Muzl i 1-Fied b anlic
M anilis ‘Assigred o should be ibzied when Product is sslected 4-Canbe shippad i - ed [Manlis
anlis: Conweait commen wid caids o TEOL ik quevies 3-Eheuid fix 1 lime | 3Minai Enor [Mot'vel Bes{Manlis
Manlis: fuealit it not iefieshied when produds sslectionis changad 3-Eheud fix 1 lime |2-Piogram Ence |Mot el Res{Manlis
Hanliz Dalabass Enoe 3-Shouid lix Flime [3-Minai Enor [Nol'Yal Res{ Manlis

Tie: Mantis proj

By Todd B. Jacobs
Datec B/7/2000
Buid Mumber:
Percent Complate: 100]
Detailz Priotir 2-Must fix
Statuz: Closed Severiy 4-Suggestion
Froduct Mantis Aegiession Courker. 0
Az AP - Bad Argument Relaled Bug 3043 | Show Fehled Bug l
Varsion: 0 Projectad ‘Woek Days:
Azsigned To: Aon Rohr Frajacted Completion Datec

——= (pen TOMAL 05/07/2000 8:435 am
Olyective:

The projeched fisldz are on the Edk screen onl. Canwe add them to the New and Resclved scieans? For the Resabved screen orly add the projected days.
[we changs proected days bo achssl hours and nsst bt the resclbver put something in bo tris fizld if e resobtian = figed? This would provide s way o
calect meliics on how much slfaitis gring inlo ng bugs o operalicnal issuss, The swag use of piojecled day is nol as ussful as geting actusl hours waiked

Azsigned bo Q4 on 06/07/2000 at 0855 am

——— Reselved DAVBAL 0E/AE/2000 10048 an ;l
Iug vpdated: B/B/MD0 11:52 am Last Quesyr Mentis Achive Bugs Last Aelresh: 14400 259 pm
List of bugs

matching the query

FIGURE 19.2

The results of a query are returned as a list of bugs in the bug database’s main window.

Performing queries is a powerful feature of a bug-tracking database and can be very useful in
providing the information you need to perform your job and measure your success. Despite their
power, though, another step can be taken to make the information even more useful and that’s
taking the results of a query, or multiple queries, and turning it into printable reports and graphi-
cal forms. Figure 19.3 shows the method that this database uses for outputting its query results.

307

Y
(o)

$530N§
¥NOA SNINNSYIN

308

Working with Test Documentation

PART V

FIGURE 19.3

This bug database allows you to export all the database fields to either a common tab-delimited raw data file or a
word processing file.

In Figure 19.2 you saw that the query results list showed the bug ID number, title, status, prior-
ity, severity, resolution, and the product name. In many cases that may be all the information
you need, but in others you might want more or less detail. By exporting the data using the
export window shown in Figure 19.3, you can pick and choose the exact fields you want to
save to a file. If you’re just interested in the bugs assigned to you, you could export a simple
list of bug ID numbers and their titles. If you’re going to a meeting to discuss open bugs, you
might want to save the bug ID number, its title, priority, severity, and who it’s assigned to.
Such a list might look like the one in Table 19.1.

TaBLE 19.1 Open Bugs for Bug Committee Meeting

Bug# Bug Title Pri Sev Assigned To

005 Even numbers don’t add properly, 1 2 WaltP
although odd ones do

023 0 divided by O causes crash 1 1 EIP

024 Dead link to deleted topic exists in 3 3 BobH
help file calc.hlp

025 Dead link to unknown topic exists in 3 3 BobH
help file wcalc.hlp

030 Colors are wrong in 256 color mode 3 2 MarthaH

but OK in 16 color mode

Rather than save the query results in word processor format suitable for printing, you can save
the data in a raw, tab-delimited form that’s easily read into another database, spreadsheet, or
charting program. For example, you could create the following generic query:

Product EQUALS Calc-U-Lot AND
Version EQUALS 2.0 AND
Opened By EQUALS Pat

Measuring Your Success

CHAPTER 19

This would list all the bugs against a (fictitious) software product called Calc-U-Lot v2.0 that
were opened by someone named Pat. If you then exported the results of this query with the bug
severity data field, you could generate a graph such as the one shown in Figure 19.4.

Calc-U-Lot v2.0 - Pat’s Bugs By Severity

Severity 4
7%

Severity 3
16%

Severity 1
45%

Severity 2
32%

FIGURE 19.4

A bug-tracking database can be used to create individualized graphs showing the details of your testing.

This pie chart has no bug title or description information, no dates, no resolutions, not even
bug ID numbers. What you have is a simple overview of all the bugs that Pat has logged
against the Calc-U-Lot v2.0 software project, broken out by severity. Of Pat’s bugs, 45 percent
are Severity 1, 32 percent are Severity 2, 16 percent are Severity 3, and 7 percent are Severity
4. There are a lot of details behind these numbers, but on the surface you could say that most
of the bugs that Pat finds are fairly severe.

Similarly, Figure 19.5 shows another kind of graph generated by a different query that show’s
Pat’s bugs broken out by their resolution. The query to generate this data would be:

Product EQUALS Calc-U-Lot AND

Version EQUALS 2.0 AND

Opened By EQUALS Pat AND

Status EQUALS Resolved OR Status EQUALS Closed

309

Y
(o)

$s320N§
¥NOA ONINNSVIIA|

310

Working with Test Documentation
PART V

Exporting the resolution field to a charting program would generate the graph in Figure 19.5
showing that most of Pat’s bugs end up getting fixed (a good sign for a tester) and that only a
small percentage are resolved as not reproducible, duplicates, deferred, or for whatever reason,
not a problem.

Calc-U-Lot v2.0 - Pat’s Bug Resolutions

250
205
200
(2]
g
g 150
k]
>
€ 100
=]
z
50
22 18
15
10 I_l I_I
0 I 1 I I
Fixed No-Repro Duplicate Not a Problem Deferred
FIGURE 19.5

Different queries can generate different views of the bug data. In this case, you can see how one tester’s bugs were
resolved.

Once you start testing, you’ll find certain metrics that you like to use, or that your team uses,
to measure how the testing process is going. You might find that counting your bug finds per
day is useful or, as in the previous example, what your “fix ratio” is. The important thing is
that by extracting information from the bug database, you can build just about any metric that
you want. This leads to the next part of this chapter, which describes a few of the common
higher-level metrics that measure how the entire project is doing.

Common Project-Level Metrics

Put on your “big boss™ hat and think about the questions that managers mull over their coffee
every morning: Is the software project making progress? Will it be ready to release on sched-
ule? What’s the risk of it not hitting that date? What’s the overall reliability?

Management is fundamentally interested in the overall view of the project—what its quality
and reliability level is and whether it’s on track to be ready when scheduled. The bug-tracking
database is the perfect tool to provide this information.

Think back to Chapter 3, “The Realities of Software Testing,” where you learned one of the
basic rules of testing—the more bugs you find, the more bugs there are. This concept holds

Measuring Your Success
CHAPTER 19

whether you’re looking at just a small piece of the software or thousands of modules grouped
together. By following this concept, it’s easy to create metrics and graphs that can be used to
get a view into the software and determine the status of not just the test effort, but the entire
project.

NoTEe

Most likely it will be the test manager or project manager who builds up these met-
rics. It's important, however, for you to be familiar with them so that you know how
your test effort is affecting the overall project and whether your team is making
progress.

Figure 19.6 is a fundamental pie chart that shows a breakout of the bugs found against the
Calc-U-Lot v2.0 project. In this chart, the bugs are separated into the major functional areas of
the software in which they were found.

Calc-U-Lot v2.0 - Bugs By Software Area

Other
5%

Localization
7%

User Interface
26%

Integer Math
14%

Floating Point Math
20%

Compatibility
6%

Configuration
4%

Documentation
12%

Binary Math
6%

FIGURE 19.6

A project-level pie chart shows how many bugs were found in each major functional area of the software.

311

19

$s320N§
¥NOA SNINNSYIN

312

Working with Test Documentation
PART V

Assume that this graph was generated about halfway through the product development process.
By following the rule of “bugs follow bugs,” which areas do you think are most likely to still
have more bugs and probably need additional testing?

Three areas—the user interface, integer math, and floating-point math—make up 60 percent of
all the bugs found. If the test effort to date has been consistent across the entire product, there’s
a good chance that these three areas are indeed buggy and probably still have more bugs to
find.

NoTE

In reaching this conclusion, it's important to consider whether the test effort has
been consistent across the product. It's possible that the other areas weren’t yet thor-
oughly tested. This could be the reason for their disproportionately low bug counts.
Care should always be taken when generating and interpreting bug data to make
sure that all the underlying facts are known.

This data tells you and management a great deal about the project and is a good example of
how lots of bug information can be distilled down to something simple and easily understood.
This graph is a very common one used by many teams to understand where the bugs are com-
ing from and if there are areas of the project that need more or less testing attention. What this
graph doesn’t show is timing information. For example, it’s possible that the bug find rate for
the user interface areas is leveling off and that the find rate for localization is increasing. This
is something you can’t tell from the graph. For that reason, another basic set of graphs is often
used that shows bugs found over time. Figure 19.7 is an example of this type of graph.

In this graph, weekly dates from June 7 through September 6 are shown on the x-axis, and the
number of bugs found each day over that period are shown on the y-axis. You can see that at
the start of the project, the bug-find rate was low and steadily increased until it became fairly
consistent at around 15 bugs per day. Assume that the project schedule is targeting a release
date of September 15. By looking at the chart, do you think the software will be ready?

Most rational people wouldn’t think so. The graph clearly shows the bug-find rate remaining
constant over time with no hint of trending down. Of course, it’s possible that the downward
spike over the last three days might continue, but that could just be wishful thinking. Until
there’s a clear trend showing that the number of bugs is declining, there’s no reason to think
that the software is ready to go.

The clear trend that indicates progress is shown in the graph in Figure 19.8. This project starts
out the same as the one in Figure 19.7 but after the bug-find rate peaks in mid July, it starts to
trail off, eventually bouncing around one or two per day—an indication that bugs in the soft-
ware are becoming fewer and more difficult to find.

Measuring Your Success
CHAPTER 19

Calc-U-Lot v1.0 - Bugs Opened Over Time

25
" N
o
8 N\I\/\/\ /\M M Ahl\l\/\\
s \// Vv\/V \,/V\JV\/ V\/J\/J\
) \
10
@ |
| — Bugs Opened Each Day |
5 WAV
0
)) \) \) \} \} \} Q QO)) \) \) \}
O O N N O O O O O O O N N O
N N Q Q Q Q Q N N N Q Q
<\\‘7/ NV Q}"I/ \(o\‘]/ q/\q/ Q’\Q/ & \q)q/ \Q’\‘b & Q}"D N \Qa\q’
A S L U A N R G S LA
Date Opened
FIGURE 19.7
A graph that shows bugs opened over time can reveal a lot about a software project.
Calc-U-Lot v2.0 - Bugs Opened Over Time with Cumulative Line
25 900
- 800
20 A A —
-+ 700
o \A AA A A — Bugs Opened Each Day || 600
2 A m== Cumulative Opened Bugs | |
g 1° \ \ + 500
F v V \/\/ V\ A
2 + 400
2 10 N \
N Ny
5 A A + 200
W V \/\‘/\j'/\j\ >
0 0
\) O))) N N) O)) N \
N N O N O O O O N O O O O
Q N Q N N Q Q Q N N Q N
Q{b b{b N ‘b\‘b \(0\‘7/ q>‘7/ Q)\‘7/ 6‘7/ \q>‘7/ \o_,\q’ 6\‘7/ (.5‘7/ 0‘7/ \6\‘7/
L L A R\ A N LA GO
Date Opened
FIGURE 19.8

This graph shows a project that could make its scheduled release date of September 15.

This graph also has an additional line that shows the cumulative bugs found over time. You can
see the gentle slope up and then the flattening of the curve indicating the decreasing bug-find
rate. A project that makes it to this point is usually in a good position to be released.

313

Y
(o)

$s320N§
¥NOA SNINNSYIN

314

Working with Test Documentation
PART V

NoTEe

Be careful how you interpret the data. Consider the graph shown in Figure 19.8. It
shows the bug-find rate declining over time. The assumption is that this is due to the
product becoming more stable as bugs are found and fixed. But, it could also be due
to many of the testers being out of the office because of illness. If the testers aren’t
testing, there won't be anyone finding bugs and the graph of the bug data will look
just like one that says everything’s okay.

The simplified graphs shown in these examples have only the calendar dates across the x-axis.
In a graph for a real project, it would be important to map not just the dates but also the pro-
ject’s schedule and milestones, such as major releases of the software, the different test phases,
and so on. Doing so would help clarify why, for example, the trend line levels out earlier than
expected (maybe the end of a test phase has concluded and the testers are waiting for more
code to test) or why it climbs almost straight up (a lot of new, previous untested code became
available for testing). Again, the chart is just data. It needs to be clarified and thoroughly
understood to be successfully used.

One of the most effective bug graphs that reveals the status of a project is shown in Figure
19.9. This graph is similar to the one in Figure 19.8 but adds two more lines, one showing the
cumulative resolved bugs and another the cumulative closed bugs, with shading underneath to
show the space between them.

Calc-U-Lot v2.0 - Bugs Opened, Resolved, and Closed Over Time

900
800
700
© 600
@
c
g 500
o
o 400
o
@ 300
W Opened Bugs
200 [l Resolved Bugs
100 [C]Closed Bugs
0-
o N o N o N o o N o o o o
\ O N O O O O \) O O O O
Q Q Q Q Q Q Q Q Q
\‘7/ NN & \@\‘7/ qu A\ \f))q’ o A N
L S L N I\ L T S
Date Opened
FiGure 19.9

Is this the be-all-end-all software testing status graph? Maybe, maybe not. It’s very effective, though, at communicat-
ing the project’s status.

Measuring Your Success
CHAPTER 19

The top line is the same one as in Figure 19.8 and represents the bugs opened over time.
There’s no change here; it’s used the same way. The next line down represents the resolved
bugs over time—ones that the programmers have fixed or the review committee has deter-
mined aren’t to be addressed. As the bugs are resolved, this line moves up, hopefully tracking
the opened line. There’s a gap between the two lines (shown as the black filled area) because
the programmers and reviewers often can’t resolve the bugs as soon as they’re entered by the
testers. The bugs usually start to pile up and the gap widens between the two states of the bug’s
life cycle. Eventually the programmers and project managers catch up and the two lines
meet—the number of resolved bugs eventually equaling the number of opened bugs.

REMINDER

A resolved bug isn’t necessarily a fixed bug. Some bugs may be resolved as duplicates,
as "won't fix,” as by design, and so on.

The third line shows the bugs that are closed over time. Remember, once a bug is resolved it’s
assigned back to the tester for regression testing to ensure that it’s been fixed. If the bug fix
checks out, the bug is closed. This line lags the resolved line for the same reason the resolved
line lags the opened line—the testers usually can’t close bugs as fast as they’re resolved
because they’re still busy testing the rest of the software. Eventually the closed bugs catch up
to the resolved and opened bugs and the curves flatten out as fewer and fewer bugs are found,
resolved, and closed.

What does this graph tell you? In short, the filled-in areas show how much work is left for the
programmers and testers to do. A widening black area means that the programmers are getting
further and further behind in fixing bugs. A widening dark gray area means that the testers are
having trouble keeping up with the programmer’s fixes. If the curves are flattening out and
coming together, the project manager is sleeping better at night.

NoTEe

This graph is typically shown using colors. Red indicates opened bugs, yellow indi-
cates resolved bugs, and green indicates closed bugs. A quick glance can tell you the
project’s status. Lots of red means lots of programmer’s work. Lots of yellow means
lots of tester’s work. Lots of green means the project is getting close to release.

Adding the resolved and closed data lines to the opened data line and putting it all on the same
graph provides a comprehensive view of the overall project and helps minimize misinterpreta-
tion of the data. A previous note mentioned that a leveling of the bug open rate could mean that
the testers were either not finding bugs, or were out sick. The data couldn’t tell you which.

315

Y
(o)

$s320N§
¥NOA SNINNSYIN

316

Working with Test Documentation

PART V

Another possibility is that they decided to close out bugs for a few days and forgo new testing.
Having all the information on one graph would make it clearer as to what was happening.
Think about this and look for a question regarding it in the quiz section for this chapter.

Summary

The individual and project-level metrics presented here are by no means the definitive list.
They’re merely examples of common metrics used to track and measure software projects.
Each project team, test manager, and tester will use the ones that tell them the information they
want to know about the software they’re developing. To some people, tracking the average bug
severity may be important. To others, it may be how quickly bugs are resolved. You may want
to know how many bugs you find per day or what your open-to-fix ratio is. The goal of using
metrics is to measure your success and your project’s success, to know whether everything is
running according to plan, and if it’s not, what might be done to correct it.

Chapter 20, “Software Quality Assurance,” will introduce you to the next evolutionary step,
beyond software testing, where metrics are used not just to measure and correct a specific pro-
ject, but also to improve the overall development process.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

1. If you were using metrics from the bug-tracking database to measure your progress or
success at testing, why would just counting the number of bugs you find per day or com-
puting your average find rate be an insufficient measure?

2. Given your answer to question 1, list a few additional software metrics that could be
used to measure more accurately and precisely your personal progress or success at
testing.

3. What would a database query look like (any format you want) that would extract all the
resolved bugs assigned to Terry for the Calc-U-Lot v3.0 project?

4. If the bug-find rate for a project was decreasing like the one shown in Figure 19.8 and
everyone was excited that the project was getting close to releasing, what might be a
couple reasons why this wouldn’t be true, that the numbers were lying?

The Future

As soon as we started programming, we found out to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging had
to be discovered. I can remember the exact instant when I realized that a
large part of my life from then on was going to be spent in finding mis-
takes in my own programs.

—Maurice Wilkes, computer pioneer

IN THIS PART

20 Software Quality Assurance 319

21 Your Career as a Software Tester 335

PART

Vi

Software Quality Assurance CHAPTER

IN THIS CHAPTER

¢ Quality Is Free 320

e Testing and Quality Assurance in the
Workplace 322

¢ Test Management and Organizational
Structures 325

¢ Capability Maturity Model (CMM) 328
e |SO 9000 330

320

The Future
PART VI

This book’s focus so far has been on its title, Software Testing. You’ve learned how to plan
your testing, where to look for bugs, and how to find and report them. Because you’re new to
the field of software testing, you’ll most likely first apply your skills in these areas.

It’s important, though, to get a sense of the larger picture so that you can understand how much
more needs to be accomplished and how far you can go in your career. This chapter’s goal is to
give you an overview of the evolutionary steps beyond software testing, to show you what lies
ahead, to outline the challenges, and to hopefully motivate you to make improving software
quality your ultimate goal.

Highlights of this chapter include

* What it costs to create quality software

* How software testing varies from software quality assurance

* What different ways a software testing or quality group can fit into a project team
* How the software Capability Maturity Model is used

The ISO 9000 standard

Quality Is Free

Quality is free? Impossible? Nope, it’s true. In 1979, Philip Crosby1 wrote in his book Quality
is Free: The Art of Making Quality Certain, that indeed it costs nothing extra (actually it costs
less) to produce something of high quality versus something of low quality. Given what you’ve
learned so far about software testing and the work involved in finding and fixing bugs, this
may seem impossible, but it’s not.

Think back to the graph from Chapter 1 (repeated here as Figure 20.1) that showed the cost of
finding and fixing bugs over time. The later bugs are found, the more they cost—not just lin-
early more, but exponentially more.

Now, divide the cost of quality into two categories: the costs of conformance and the costs of
nonconformance. The costs of conformance are all the costs associated with planning and run-
ning tests just one time, to make sure that the software does what it’s intended to do. If bugs
are found and you must spend time isolating, reporting, and regression testing them to assure
that they’re fixed, the costs of nonconformance go up. These costs, because they are found
before the product is released, are classified as internal failures and fall mostly on the left side
of Figure 20.1.

IPhilip Crosby, Joseph Juran, and W. Edwards Deming are considered by many to be the “fathers of
quality.” They’ve written numerous books on quality assurance and their practices are in use through-
out the world. Although their writings aren’t specifically about software, their concepts—often in-your-
face common sense—are appropriate to all fields. Good reading.

Software Quality Assurance
CHAPTER 20

A

$100
$10
10 % y ™ ‘

Specification Design Code Test Release

Cost To Fix A Bug
2

o

Time When Bug Is Found

FiGure 20.1
This graph helps show that the cost of quality is free.

If bugs are missed and make it through to the customers, the result will be costly product sup-
port calls, possibly fixing, retesting, and releasing the software, and—in a worst-case sce-
nario—a product recall or lawsuits. The costs to address these external failures fall under the
costs of nonconformance and are the ones on the right side of Figure 20.1.

In his book, Crosby demonstrates that the costs of conformance plus the costs of nonconfor-

mance due to internal failures is less than the costs of nonconformance due to external failures.

Stomp out your bugs early, or ideally don’t have any in the first place, and your product will
cost less than it would otherwise. Quality is free. It’s common sense.

Unfortunately, portions of the software industry have been slow to adopt this simple philoso-
phy. A project will often start with good intentions and then as problems crop up and schedule
dates are missed, rules and reason go out the window. Regard for higher future costs is written
off in favor of getting the job done today. The trend is turning, however. Companies are now
realizing that their cost of quality is high, and that it doesn’t need to be. Customers are
demanding and their competitors are creating better quality software. Realization is setting in
that the words Crosby wrote more than 20 years ago for the manufacturing industry apply just
as well to the software industry today.

321

20

IDNVUNSSY
ALNVNO
JUVYMLIOS

322

The Future
PART VI

Testing and Quality Assurance in the Workplace

Depending on the company you work for and the project you’re working on, you and your
peers can have one of several common names that describes your group’s function: Software
Testing, Software Quality Assurance, Software Quality Control, Software Verification and
Validation, Software Integration and Test, or one of many others. Frequently these names are
used interchangeably or one is chosen over the others because it sounds more “official”—
Software Quality Assurance Engineer versus Software Tester, for example. It’s important to
realize, though, that these names have deeper meanings and aren’t necessarily plug-in replace-
ments for each other. On one hand there’s the philosophy that “it’s only a name,” that what you
ultimately do in your job is what counts. On the other hand, your job title or your group’s
name is what others on the project team see. That label indicates to them how they will work
with you and what expectations they will have, what deliverables you will provide to them, and
what they will give to you. The following sections define a few of the common software-test-
group names and should help clarify the differences among them.

Software Testing

It can’t be emphasized enough, so here it is, one more time:

The goal of a software tester is to find bugs, find them as early as possible, and make
sure they get fixed.

In this book you’ve learned about every part of this charter—how to accomplish this goal and
the reality and limitations in doing so. Maybe you’ve realized by now (and if you haven’t,
that’s okay) that software testing can be simply described as an assess, report, and follow-up
task. You find bugs, describe them effectively, inform the appropriate people, and track them
until they’re resolved.

NoOTE

The definition of a software tester’s job used in this book actually goes a step further
than assess, report, and follow-up by tacking on the phrase “and make sure they get
fixed.” Although there are test groups that would replace this phrase with simply
“and report them,” | believe that to be an effective tester you need to take personal
responsibility for the bugs you find, tracking them through their life cycle, and per-
suading the appropriate people to get them fixed. The easy way out is to simply stick
them in the bug database and hope that someone eventually notices and does some-
thing with them, but if that’s all there was to testing, you could argue, “Why bother
looking for bugs in the first place?”

Software Quality Assurance
CHAPTER 20

Being a software tester and working under this charter has a unique and very important charac-
teristic: You aren’t responsible for the quality of the software! This may sound strange, but it’s
true. You didn’t put the bugs in the software, you had your project manager and the program-
mers review and approve your test plan, you executed your plan to the letter and despite all
that effort, the software still had bugs. It’s not your fault!

Think about it. A doctor can’t make someone’s fever go down by taking her temperature. A
meteorologist can’t stop a tornado by measuring the wind speed. A software tester can’t make
a poor-quality product better by finding bugs. Software testers simply report the facts. Even if
a tester works hard to get the bugs he finds fixed, his efforts still can’t make an inherently
poor-quality product better. Quality can’t be tested in. Period.

NoOTE

Some companies do believe that quality can be tested in. Rather than improve the
process they use to create their software, they believe that adding more testers is the
solution. They think that more testers finding more bugs will make their product bet-
ter. Interestingly, these same people would never consider using more thermometers
to lower someone’s fever.

Ultimately, if you’re working in a group named “Software Testing,” it will be your test man-
ager’s responsibility to make sure that everyone on the project team understands this definition
of your role. It’s often a point of contention when schedules aren’t hit and bugs are missed so
it’s one that should be made perfectly clear up front, preferably in the project’s test plan.

Quality Assurance

Another name frequently given to the group that finds software bugs is “Software Quality
Assurance (QA).” Chapter 3 cited the following definition of a person in this role:

A Software Quality Assurance person’s main responsibility is to examine and measure
the current software development process and find ways to improve it with a goal of pre-
venting bugs from ever occurring.

Now that you know a lot more about software testing, this definition probably sounds a lot
more scary than when you first read it in Chapter 3. A software QA group has a much larger
scope and responsibility than a software testing group—or at least they should, according to
their job description. In addition to performing some or all of the software testingz, they’re
chartered with preventing bugs from ever occurring and assuring that the software is of some

’How much testing a software QA group performs is related to its maturity level. You’ll learn more
about maturity levels later in this chapter.

323

20

IDNVUNSSY
ALNVNO
JUVYMLIOS

324

The Future
PART VI

(presumably high) level of quality and reliability. They don’t just test and report—their respon-
sibility goes much deeper. You can see why, if your job is to perform software testing (and
that’s all your time and budget allows), you wouldn’t want to casually or arbitrarily assume
this more “prestigious” title.

You may be wondering, if software testing alone can’t guarantee a product’s quality, what a
Software QA group would do to achieve it. The answer is having nearly full control over the pro-
ject, instituting standards and methodologies, carefully and methodically monitoring and evaluat-
ing the software development process, suggesting solutions to the problems they find, performing
some of the testing (or overseeing it), and having the authority to decide when the product is ready
to release. It may be an oversimplification to say that it’s like having a project manager who’s pri-
mary goal is “no bugs” as opposed to keeping the product on schedule or under budget, but it’s a
pretty good description.

You’ll learn later in this chapter that moving from software testing to software quality assurance is
a gradual process, sort of achieving increasing levels of maturity. It’s not a single-step function—
yesterday you were a tester and today you’re a QAer.

Actually, some of the skills you’ve learned in this book can be considered software QA skills
depending on where you draw the line on bug prevention and where the separation occurs between
an internal failure and an external failure. If the goal of software QA is to prevent bugs, you could
argue that performing static testing on the product spec, design documents, and code (Chapters 4
and 6) is a type of software QA because you’re preventing bugs from occurring. Bugs found this
way never make it through to later be found by the testers testing the finished software.

Total Quality Management

You may have heard of a quality approach known as Total Quality Management
(TQM) or Total Quality Control (TQC). The basic philosophy behind this approach is
that having a centralized quality assurance group that’s responsible for quality isn"t
feasible because the people doing the work—writing the code or creating the wid-
gets—aren’t responsible for quality and therefore won't try to achieve it. To create
quality products, a quality culture needs to be instituted from management on down
so that everyone shares the responsibility for quality.

Although TQM/TQC has great implications to the mission of an existing Quality
Assurance group, it doesn’t eliminate the need for software testing. Quite to the con-
trary, the software testing role in such an environment is more clearly defined.
Despite the best efforts of any process, software is still created by people, and people
make mistakes. There's still a need for a group to concentrate on looking for bugs.
They may not find many, but that’s a good thing!

Software Quality Assurance

CHAPTER 20

Other Names for Software Testing Groups

Depending on where you work, your test group may use one of many other names to identify
itself. Software Quality Control (SQC) is one that’s frequently used. This name stems from the
manufacturing industry where QC inspectors sample products taken off the manufacturing line,
test them, and, if they fail, have the authority to shut down the line or the entire factory. Few, if
any, software test groups have this authority—even ones that call themselves Software QC.

Software Verification and Validation is also commonly used to describe a software test organi-
zation. This name is one that actually works pretty well. Although it’s a bit wordy, it states
exactly what the test group is responsible for and what they do. Look back to Chapter 3 for the
definitions of verification and validation. It’s even possible to have two groups, one for verifi-
cation and one for validation.

Integration and Test, Build and Test, Configuration Management and Test, Test and Lab
Management, and other compound unrelated names are often a sign of a problem. Many times
the software test group takes on roles (voluntarily or not) that are unrelated to testing. For
example, it’s not uncommon for a test group to own the job of configuration management or
building the product. The problem with this is twofold:

It takes away resources that should be used for testing the product.

e The test group’s goal is ultimately to break things, not to make things, and owning the
software’s build process creates a conflict of interest.

It’s best to let the programmers or a separate team build the software. Testing should concen-
trate on finding bugs.

Test Management and Organizational Structures

Besides a test group’s name and its assumed responsibilities, there’s another attribute that
greatly affects what it does and how it works with the project team. That attribute is where it
fits in the company’s overall management structure. A number of organizational structures are
possible, each having its own positives and negatives. Some are claimed to be generally better
than others, but what’s better for one may not necessarily be better for another. If you work for
any length of time in software testing, you’ll be exposed to many of them. Here are a few com-
mon examples.

Figure 20.2 shows a structure often used by small (fewer than 10 or so people) development
teams. In this structure, the test group reports to the Development Manager, the person manag-
ing the work of the programmers. Given what you’ve learned about software testing, this
should raise a red flag of warning to you—the people writing the code and the people finding
bugs in that code reporting to the same person has the potential for big problems.

325

20

IDNVUNSSY
ALNVNO
JUVYMLIOS

326

The Future
PART VI

Development Manager

Testers n Programmers

FIGURE 20.2

The organizational structure for a small project often has the test team reporting to the development manager.

There’s the inevitable conflict of interest. The Development Manager’s goal is to have his team
develop software. Testers reporting bugs just hinder that process. Testers doing their job well
on one side make the programmers look bad on the other. If the manager gives more resources
and funding to the testers, they’ll probably find more bugs, but the more bugs they find, the
more they’ll crimp the manager’s goals of making software.

Despite these negatives, this structure can work well if the development manager is very expe-
rienced and realizes that his goal isn’t just to create software, but to create quality software.
Such a manager would value the testers as equals to the programmers. This is also a very good
organization for communications flow. There are minimal layers of management and the testers
and programmers can very efficiently work together.

Figure 20.3 shows another common organizational structure where both the test group and the
development group report to the manager of the project. In this arrangement, the test group
often has its own lead or manager whose interest and attention is focused on the test team and
their work. This independence is a great advantage when critical decisions are made regarding
the software’s quality. The test team’s voice is equal to the voices of the programmers and
other groups contributing to the product.

The downside, however, is that the project manager is making the final decision on quality.
This may be fine, and in many industries and types of software, it’s perfectly acceptable. In the
development of high-risk or mission-critical systems, however, it’s sometimes beneficial to
have the voice of quality heard at a higher level. The organization shown in Figure 20.4 repre-
sents such a structure.

In this organization, the teams responsible for software quality report directly to senior man-
agement, independent and on equal reporting levels to the individual projects. The level of
authority is often at the quality assurance level, not just the testing level. The independence
that this group holds allows them to set standards and guidelines, measure the results, and
adopt processes that span multiple projects. Information regarding poor quality (and good qual-
ity) goes straight to the top.

Software Quality Assurance
CHAPTER 20

Project Manager

Test Manager/Test Lead Development Manager

Testers Programmers n

FiGURe 20.3

In an organization where the test team reports to the project manager, there’s some independence of the testers from

the programmers.

Executive Manager

QA/Test Managers Development Managers " Project Managers

FIGURE 20.4

A quality assurance or test group that reports to executive management has the most independence, the most authority,
and the most responsibility.

Of course, with this authority comes an equal measure of responsibility and restraint. Just
because the group is independent from the projects doesn’t mean they can set unreasonable and
difficult-to-achieve quality goals if the projects and users of the software don’t demand it. A
corporate quality standard that works well on database software might not work well when
applied to a computer game. To be effective, this independent quality organization must find
ways to work with all the projects they deal with and temper their enthusiasm for quality with
the practicality of releasing software. They must also strive to maintain a close working rela-
tionship with the programmers and other team members. As the lines of communication grow
further apart, this gets more difficult to do.

327

20

IDNVUNSSY
ALNVNO
JUVYMLIOS

328

The Future
PART VI

Keep in mind that these three organizational structures are just simplified examples of the
many types possible and that the positives and negatives discussed for each can vary widely. In
software development and testing, one size doesn’t necessarily fit all, and what works for one
team may not work for another. There are, however, some common metrics that can be used to
measure, and guidelines that can be followed, that have been proven to work across different
projects and teams for improving their quality levels. In the next two sections, you’ll learn a
little about them and how they’re used.

Capability Maturity Model (CMM)

The Capability Maturity Model’ for Software (CMM or SW-CMM) is an industry-standard
model for defining and measuring the maturity of a software company’s development process
and for providing direction on what they can do to improve their software quality. It was devel-
oped by the software development community along with the Software Engineering Institute
(SEI) and Carnegie Mellon University, under direction of the U.S. Department of Defense.

What makes CMM special is that it’s generic and applies equally well to any size software
company—from the largest in the world to the single-person consultant. Its five levels (see
Figure 20.5) provide a simple means to assess a company’s software development maturity and
determine the key practices they could adopt to move up to the next level of maturity.

CMM Software Maturity Levels

5 Continuous process improvement through Obtimizin

quantitative feedback and new approaches. P 9
Controlled process. Detailed measures and

4 Managed

understanding of process and product quality.

3 Organizational level thinking. Proactive. Defined
Documented and standardized.
2 Project level thinking. Reactive. Similar Repeatable

projects can repeat past success.

1 Ad hoc and chaotic process. A project’s

Initial
success depends on heroes and luck.

FIGURE 20.5

The Software Capability Maturity Model is used to assess a software company’s maturity at software development.

?CMM, Capability Maturity Model, and Carnegie Mellon are registered in the U.S. Patent and
Trademark Office.

Software Quality Assurance

CHAPTER 20

As you read on and learn what each of the five levels entails, think about the following: If you

take the entire universe of software companies today, most are at Maturity Level 1, many are at
Maturity Level 2, a few are at Maturity Level 3, a handful are at Maturity Level 4, and an elite

couple are at Maturity Level 5. Here are descriptions of the five CMM Maturity Levels:

e Level 1: Initial. The software development processes at this level are ad hoc and often
chaotic. The project’s success depends on heroes and luck. There are no general practices
for planning, monitoring, or controlling the process. It’s impossible to predict the time
and cost to develop the software. The test process is just as ad hoc as the rest of the
process.

e Level 2: Repeatable. This maturity level is best described as project-level thinking.
Basic project management processes are in place to track the cost, schedule, functional-
ity, and quality of the project. Lessons learned from previous similar projects are applied.
There’s a sense of discipline. Basic software testing practices, such as test plans and test
cases, are used.

¢ Level 3: Defined. Organizational, not just project specific, thinking comes into play at
this level. Common management and engineering activities are standardized and docu-
mented. These standards are adapted and approved for use on different projects. The
rules aren’t thrown out when things get stressful. Test documents and plans are reviewed
and approved before testing begins. The test group is independent from the developers.
The test results are used to determine when the software is ready.

* Level 4: Managed. At this maturity level, the organization’s process is under statistical
control. Product quality is specified quantitatively beforehand (for example, this product
won’t release until it has fewer than 0.5 defects per 1,000 lines of code) and the software
isn’t released until that goal is met. Details of the development process and the soft-
ware’s quality are collected over the project’s development, and adjustments are made to
correct deviations and to keep the project on plan.

¢ Level 5: Optimizing. This level is called Optimizing (not “optimized”) because it’s con-
tinually improving from Level 4. New technologies and processes are attempted, the
results are measured, and both incremental and revolutionary changes are instituted to
achieve even better quality levels. Just when everyone thinks the best has been obtained,
the crank is turned one more time, and the next level of improvement is obtained.

Do any of these levels sound like the process used at a software development company you
know? It’s scary to think that a great deal of software is developed at Level 1—but it’s often
not surprising after you use it. Would you want to cross a bridge that was developed at Level 1,
ride an elevator, fly on a plane? Probably not. Eventually—hopefully—consumers will demand
higher quality software and you’ll see companies start to move up in their software develop-
ment maturity.

329

20

IDNVUNSSY
ALNVNO
JUVYMLIOS

330

The Future
PART VI

NoTE

It's important to realize that it's not a software tester’s role to champion a company’s
move up in software development maturity. That needs to be done at a corporate
level, instituted from the top down. When you begin a new testing job, you should
assess where the company and your new team is in the different maturity levels.
Knowing what level they operate in, or what level they're striving for, will help you set
your expectations and give you a better understanding of what they expect from you.

For more information on the Capability Maturity Model, visit the Software Engineering
Institute’s Web site at www.sei.cmu.edu/cmm.

ISO 9000

Another popular set of standards related to software quality is the International Organization
for Standardization’s (ISO) 9000. ISO is an international standards organization that sets stan-
dards for everything from nuts and bolts to, in the case of ISO 9000, quality management and
quality assurance.

You may have heard of ISO 9000 or noticed it in advertisements for a company’s products or
services. Often it’s a little logo or note next to the company name. It’s a big deal to become
ISO 9000 certified, and a company that has achieved it wants to make that fact known to its
customers—especially if its competitors aren’t certified.

ISO 9000 is a family of standards on quality management and quality assurance that defines a
basic set of good practices that will help a company consistently deliver products (or services)
that meet their customer’s quality requirements. It doesn’t matter if the company is run out of a
garage or is a multi-billion-dollar corporation, is making software, fishing lures, or is deliver-
ing pizza. Good management practices apply equally to all of them.

ISO 9000 works well for two reasons:

It targets the development process, not the product. It’s concerned about the way an orga-
nization goes about its work, not the results of the work. It doesn’t attempt to define the
quality levels of the widgets coming off the assembly line or the software on the CD. As
you’ve learned, quality is relative and subjective. A company’s goal should be to create
the level of quality that its customers want. Having a quality development process will
help achieve that.

Software Quality Assurance
CHAPTER 20

* ISO 9000 dictates only what the process requirements are, not how they are to be
achieved. For example, the standard says that a software team should plan and perform
product design reviews (see Chapters 4 and 6), but it doesn’t say how that requirement
should be accomplished. Performing design reviews is a good exercise that a responsible
design team should do (which is why it’s in ISO 9000), but exactly how the design
review is to be organized and run is up to the individual team creating the product. ISO
9000 tells you what to do but not how to do it.

NoTE

A company receiving I1SO 9000 certification indicates that it has achieved a specified
level of quality control in its development process. This doesn't mean that its products
have achieved a specified level of quality—although it's probably a safe bet that its
products are of better quality than a company’s that hasn’t been ISO 9000 certified.

For this reason, especially in the European Union but becoming more frequent in the
U.S., customers are expecting their suppliers to be 1ISO 9000 certified. If two suppliers
are competing for the same contract, the one with ISO 9000 certification will have
the competitive edge.

The sections of the ISO 9000 standard that deal with software are ISO 9001 and ISO 9000-3.
ISO 9001 is for businesses that design, develop, produce, install, and service products. ISO
9000-3 is for businesses that develop, supply, install, and maintain computer software.

It’s impossible to detail all the ISO 9000 requirements for software in this chapter, but the fol-
lowing list will give you an idea of what types of criteria the standard contains. It will also,
hopefully, make you feel a little better, knowing that there’s an international initiative to help
companies create a better software development process and to help them build better quality
software.

Some of the requirements in ISO 9000-3 include

* Develop detailed quality plans and procedures to control configuration management,
product verification and validation (testing), nonconformance (bugs), and corrective
actions (fixes).

» Prepare and receive approval for a software development plan that includes a definition
of the project, a list of the project’s objectives, a project schedule, a product specifica-
tion, a description of how the project is organized, a discussion of risks and assumptions,
and strategies for controlling it.

331

20

IDNVUNSSY
ALOVNO
JUVYMLIOS

332

The Future
PART VI

* Communicate the specification in terms that make it easy for the customer to understand
and to validate during testing.

* Plan, develop, document, and perform software design review procedures.

* Develop procedures that control software design changes made over the product’s life
cycle.

* Develop and document software test plans.

* Develop methods to test whether the software meets the customer’s requirements.

* Perform software validation and acceptance tests.

* Maintain records of the test results.

» Control how software bugs are investigated and resolved.

* Prove that the product is ready before it’s released.

* Develop procedures to control the software’s release process.

¢ Identify and define what quality information should be collected.

» Use statistical techniques to analyze the software development process.

» Use statistical techniques to evaluate product quality.
These requirements should all sound pretty fundamental and common sense to you by now.
You may even be wondering how a software company could even create software without hav-
ing these processes in place. It’s amazing that it’s even possible, but it does explain why much
of the software on the market is so full of bugs. Hopefully, over time, competition and cus-

tomer demand will compel more companies in the software industry to adopt ISO 9000 as the
means by which they do business.

If you’re interested in learning more about the ISO 9000 standards for your own information or
if your company is pursuing certification, check out the following Web sites:

* International Organization for Standardization (ISO), www.iso.ch

e American Society for Quality (ASQ), www.asq.org

¢ American National Standards Institute (ANSI), www.ansi.org

Summary

One of Murphy’s laws states that there’s never enough time to do something right, but there’s
always enough time to do it over— sounds like a CMM Level 1 company, doesn’t it? Forget
about Murphy and think Philip Crosby. He was right when he declared that quality really is
free. It’s just a matter of the software development team following a process, taking their time,
being disciplined, and attempting to do it right the first time.

Software Quality Assurance 333

CHAPTER 20

Of course, despite everyone’s best efforts, mistakes will still be made, and bugs will still occur.
The goal of software quality assurance, though, is to make sure that they are truly mistakes and
aren’t caused by fundamental problems in the development process. Software testing will
always be necessary even in the best run organizations, but if everything runs perfectly, you
might be reduced to saying, “Nope, I didn’t find any bugs today, hopefully maybe tomorrow.”

You’ve almost completed this book and your tour of software testing. There’s one more chapter
to cover where you’ll learn how to gain more experience in software testing and where to look

for more information.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!

1. Why are there testing costs associated with the costs of conformance?
2. True or False: The test team is responsible for quality.

3.
4

. Why is it good for a test or quality assurance group to report independently to senior

Why would being called a QA Engineer be a difficult title to live up to?

management?

If a company complied with the ISO 9000-3 standard for software, what CMM level do
you think they would be in and why?

20

IDNVUNSSY

ALNVNO
JUVYMLIOS

Your Career as a Software CHAPTER

Tester

IN THIS CHAPTER

* Your Job as a Software Tester 336

¢ Finding a Software Testing Position 337
e Gaining Hands-On Experience 338

¢ Formal Training Opportunities 339

¢ Internet Links 341

¢ Professional Organizations 341

* Further Reading 342

336

The Future
PART VI

You’re now down to the final chapter of software testing. Well, okay, maybe the final chapter
of the book Software Testing, but definitely not of the job. Your work in that area has only just
begun.

You probably began reading this book with little knowledge of what software testing is all
about. You’ve likely experienced the minor little annoyances and the occasional crashes of the
software you use on your computer at home or at work. You’ve seen and heard news stories of
major software bugs and you know about the infamous Y2K bug, which, after all the last-
minute testing and preparation, didn’t bite as hard as expected.

Hopefully you’ve now been enlightened and understand why these bugs can still happen
despite the best efforts of the people behind the software. You’ve learned about the test plan-
ning process, where to look for bugs, and how to report them. You now understand the difficult
decision-making process that’s involved in determining which bugs to fix and which ones to
defer, and you’ve seen the graphs that show a product that’s ready to release and one that still
has a long way to go.

Above all else, you should now understand that software testing is a complex and difficult job.
To be successful at it requires discipline, training, and experience. Simply sitting down, pound-
ing the keys, and shouting over the wall to the programmer when you see something odd won’t
cut it. Software is too important. Businesses have failed, careers have been ruined, and people
have died because of software bugs. Your job as a software tester is to find those bugs, effi-
ciently and professionally, before they make it out the door.

This final chapter will give you pointers to more information about software testing, explain a
few of the possible career options, and leave you with an important message about software
quality. Highlights of this chapter include

» The career path options available for software testers

e Where to look for a testing job

* How to get more hands-on experience at finding bugs

* Where to learn more about software testing

e The Computer User’s Bill of Rights

Your Job as a Software Tester

One serious misconception about software testing is that it’s only an entry-level position in the
software industry. This erroneous belief persists because of the ignorance of what software
testing is and what it involves—mainly due to the number of companies still developing soft-
ware without any real process. They don’t yet know that they need software testers of all skill
levels to create great software. But, as more emphasis is put on creating software of higher and
higher quality, the value of software testing as a career is becoming understood.

Your Career as a Software Tester

CHAPTER 21

Because of this increased awareness, the opportunities are there for the taking. Software testers
with just a couple years of experience are highly sought after. Testers who can also program and
perform white-box testing or develop automated tests are even more in demand. And, if you’ve
been through a few product development cycles and can lead a small team of other testers,
you’re in a highly marketable position. It’s truly a job-hunter’s market for software testers.

Here’s a breakout of various software testing positions and their descriptions. Keep in mind, as
you learned in Chapter 20, “Software Quality Assurance,” the names vary and may not mean
exactly what the job really is, but ultimately most software testing jobs fall into these categories.

¢ Software test technician. This is often a true entry-level test position. You would be
responsible for setting up test hardware and software configurations, running simple test
scripts or test automation, and possibly working with beta sites to isolate and reproduce
bugs. Some work can become mundane and repetitive, but being a test technician is a
good way to become introduced to software testing.

* Software tester or software test engineer. Most companies have several levels of soft-
ware testers based on experience and expertise. An entry-level tester may perform the
duties of technician, working their way up to running more advanced and complex tests.
As you progress, you’ll write your own test cases and test procedures and might attend
design and specification reviews. You’ll perform testing and isolate, reproduce, and report
the bugs you find. If you have programming abilities, you’ll write test automation or test-
ing tools and work closely with the programmers as you perform white-box testing.

* Software test lead. A test lead is responsible for the testing of a major portion of a soft-
ware project or sometimes an entire small project. They often generate the test plan for
their areas and oversee the testing performed by other testers. They’re frequently
involved in collecting metrics for their products and presenting them to management.
They usually also perform the duties of a software tester.

* Software test manager. A test manager oversees the testing for an entire project or mul-
tiple projects. The test leads report to them. They work with the project managers and
development managers to set schedules, priorities, and goals. They’re responsible for
providing the appropriate testing resources—people, equipment, space, and so on—for
their projects. They set the tone and strategy for the testing their teams perform.

Finding a Software Testing Position

So where do you look for a software testing job? The answer is the same places you would
look for a programming job—with any business or company that develops software.

* Use the Internet. A quick search done using several job search engines just before this
book went to print found more than 1,000 open software testing positions at companies
all around the country. Many of these positions were for entry-level testers. There were

337

N
-

o)
=
-
230
_|—|>
"'Eﬁ
> m
;:v
>
n

338

The Future
PART VI

jobs testing music software, interactive TV, networking, medical equipment, Web sites,
and more. You name it.

* Look through newspapers and magazines. As with the Internet, most large city news-
papers list numerous software testing jobs every weekend in their high-tech or computer
help wanted ads. Computing and programming magazines are also a good source for
job ads.

» Simply call and ask. Do you like a certain technology or a specific software application,
or are you interested in a particular area of computing? Look up the company or compa-
nies writing that software, give them a call or send them your résumé. Often there are
open software testing jobs that never make it to the help wanted ads. Resourceful testers
grab them before anyone knows they’re available.

* Look into internships and co-ops. If you're in college, take a summer or a semester as
an intern or co-op at a software company as a software tester. Most provide great posi-
tions where you’ll actually be contributing to the success of a real product as you gain
experience in the field. If you work hard, you might be offered a full-time position after
you graduate.

» Take temporary jobs. Many software companies hire software testers under temporary
contracts to help run test scripts as a product nears completion. The jobs may last just
one month or several months, but you’ll gain valuable experience and can take on more
difficult jobs each time, learning as you go. Some software testers love to work this way
because it gives them the opportunity to work at different companies and try their hand
testing very different software.

Gaining Hands-On Experience

Software testing is just like most other computer topics—you can read about it all day, but
until you actually try the things you’ve read about, it’s difficult to comprehend. For this reason,
one of the best ways to learn software testing is to try it yourself, on your own computer with
your own software.

Choose a program you’re familiar with and enjoy using or one that you’ve never used before.
Read the manual and the help files as though they were the product specification. Put together
a test plan, design the test cases, and look for bugs. Use a spreadsheet or word processor to log
them and report what you find to the software company that wrote the application (almost all
software companies have a means for reporting problems, usually through their Web site).
You’ll be surprised what you find, and maybe the company will, too.

With a little experience at this type of testing, you could sign up to be a beta tester for new
software products. As you learned in Chapter 15, “Bug Bashes and Beta Testing,” beta testers
receive copies of the software before the general public does. You’ll have an opportunity to see

Your Career as a Software Tester
CHAPTER 21

and use software that’s not quite finished, find bugs that were missed by the company’s inter-
nal software testers, and, based on what you find, possibly have an impact on the product’s
design. Every software company has its own system for administering beta tests. Search their
Web site for “beta tester” or call them and ask to talk with someone about becoming a beta
tester.

339

N
-

NoTE

Be careful if you use beta software on your home or work PC. By its nature, beta soft-
ware isn't ready for public release and is full of bugs. Some of those bugs can cause
serious problems with your computer and existing software, including frequent
crashes and loss of data. Make backups of anything important before you run beta
software.

Becoming a usability test subject (see Chapter 11, “Usability Testing”) is another way to gain
some hands-on experience at software testing. Most large software companies making personal
computer software have usability labs or contract out to independent usability labs in their
area. If you’re interested in testing user interfaces, make some phone calls and inquire about
becoming a subject for software usability testing. Often you’ll be asked to fill out a form to
measure your experience and familiarity with certain types of software. As projects go to
usability testing, your profile will be reviewed to see if you’re the type of person they’re look-
ing for; depending on the product being tested, they may need absolute beginners all the way
to experts. If you’re a match, you’ll be called in to try out features in a new product or even a
prototype of a new product. The people administering the test will watch what you do, record
your actions, and observe how you react to the software. They may invite you back to try out
changes they make based on your findings and you’ll often be compensated for your time—
usually with free software.

Formal Training Opportunities

With the realization that software testing is an important field of study, many colleges and uni-
versities have begun to offer classes on the subject. If you’re currently in an engineering or
computer degree program, it would be well worth your time to enroll in one of these classes.
Even if your plans are to become a programmer or engineer, gaining a better knowledge of
software testing can help you perform your job even better.

Many community and technical colleges are now offering day and evening classes on software
testing and the use of popular software testing tools. Some even award associate degrees and
certificates in software testing.

¥alsay
FYVML40S V
SV H33MVD) HNOA

340

The Future
PART VI

Another option for training is to attend professional software testing conferences. Held
throughout the year and in various parts of the U.S. and even the world, these conferences pro-
vide an opportunity for you to hear speakers from across the testing industry. Class material
spans the entire range from very basic to very advanced and technical. The best part of these
conferences is having the opportunity to meet and talk with fellow software testers, sharing
ideas, war stories, and solutions. The following list represents some of the more popular con-
ferences, but definitely not all of them. Presence or absence doesn’t reflect an endorsement or
an opinion.

International Conference and Exposition on Testing Computer Software (TCS),
sponsored by the U.S. Professional Development Institute (www.uspdi.org). TCS fea-
tures international speakers, presentations of current software testing best practices by
experienced professionals, opportunities to share lessons and experiences with your
peers, and a vendor show of products and services.

International Quality Week, sponsored by Software Research, Inc. (www.soft.com).
The mission of the Quality Week and Quality Week Europe Conferences is to “bring
advanced technology R&D work relating to software quality, testing and process, con-
temporary software quality and testing needs, and knowledge and experience from the
software quality industry together in a balanced technical forum.”

International Software Testing Conference (ISTC), sponsored by the Quality
Assurance Institute (www.gaiusa.com). ISTC is a weeklong conference featuring expert
speakers from across the software testing and quality assurance industry. Topics range
from basic software testing to test automation to testing specific new technologies.

Software Testing Analysis & Review (STAR), sponsored by Software Quality
Engineering (www.sqge.com/stareast and www.sqe.com/starwest). The STAR confer-
ences are focused exclusively on software testing and software engineering. They provide
classes, tutorials, and discussions by software testing experts and hold an exposition
where test tool, technology, and service companies demonstrate their products.

International Conference on Software Quality (ICSQ), sponsored by the Software
Division of the American Society for Quality (www.asq-software.org). ICSQ, like the
other conferences, provides an opportunity to share testing ideas and methods with other
software testing and quality assurance professionals.

International Conference on Software Testing (ICSTEST), sponsored by Software
Quality Systems (www.icstest.com). ICSTEST is an international testing conference
held in Germany. It’s a forum for presentations, tutorials, discussions, and exchange of
experiences on software testing.

Your Career as a Software Tester

CHAPTER 21

The Second World Congress for Software Quality 2WCSQ) (www. juse.or.jp/
e-renmei/2WCSQMAIN.htm). 2WCSQ is a worldwide conference on software quality with
members from more than 27 countries. The year 2000 conference was held in Japan.

Internet Links

The Internet has a wealth of material on software testing. You could always do a search for
“software testing” or “software test,” but here’s a list of popular Web sites dedicated to soft-
ware testing and software bugs that will get you started:

BugNet (www.bugnet.com) publicizes bugs found in commercial software and points you
to the appropriate fixes.

Software Testing Hotlist (www.io.com/~wazmo/qa) lists dozens of pointers to software
testing—related Web sites and articles.

Software Testing Online Resources (www.mtsu.edu/~storm) is the self-proclaimed
“nexus of Software Testing Online Resources...designed to be a ‘first-stop’ on the Web
for software testing researchers and practitioners.”

QA Forums (www.qgaforums.com) provide ongoing discussions of software testing, auto-
mated testing, test management, test tools, and many other topics.

The newsgroup comp.software.testing and its FAQ (frequently asked questions) docu-
ment at www.faqgs.org/faqgs/software-eng/testing-faq provide lots of ongoing dis-
cussions by testers and test managers regarding tools, techniques, and projects.

The newsgroup comp.risks describes and analyzes recent software failures.

The Risks Digest (catless.ncl.ac.uk/Risks/) is a forum on risks to the public in com-
puters and related systems.

Professional Organizations

Several professional nonprofit organizations are dedicated to software, software testing, and
software quality assurance that may be of interest to you. Their Web sites provide details on
their specific area of coverage:

The American Society for Quality (ASQ) at www.asq.org and its software division at
www.asq-software.org sponsor the National Quality Forum annually in October
(national quality month). They publish journals and articles on quality and administer the
Certified Quality Engineer (CQE) and the Certified Software Quality Engineer (CSQE)
designation.

The Association of Computing Machinery (ACM) at www.acm.org and its Special
Interest Group on Software Engineering (SIGSOFT) at www.acm.org/sigsoft has more
than 80,000 members in educational and scientific computing. The software engineering

341

N
-

NEICERE

FYVML40S V
SV H33MVD) HNOA

342

The Future
PART VI

interest group publishes a bimonthly newsletter with a popular forum titled “Risks to the
Public,” which details recent serious software bugs.

* The Society for Software Quality (SSQ) at www. ssq.org lists its vision as “To be recog-
nized as the Society for those interested in promoting ‘quality’ as a universal goal for
software.”

Further Reading

Numerous books are available on the topics of software testing and software quality assurance.
Each has its own audience and approach. Some are very technical, whereas others are very
process and managerial oriented. Your best bet to find something that interests you is to visit a
large bookstore, university library, or favorite online bookstore and look for titles by Boris
Beizer, Rex Black, Bill Hetzel, Cem Kaner, Edward Kit, Glen Myers, and William Perry.

If you’re interested in learning more about general product quality assurance techniques, look
for titles by Philip Crosby, W. Edwards Deming, and Joseph Juran.

The following Sams Publishing titles are a sampling of some books that you might want to
look at to improve your understanding of computers and programming. These books were
specifically chosen to get you up to speed quickly and easily and are very appropriate reading
for the novice software tester:

o Sams Teach Yourself Beginning Programming in 24 Hours is a great introduction to the
basics of programming. You won’t become a white-box tester just by reading this book,
but you will gain a better insight into how software is written—which will help you
design better test cases.

e Sams Teach Yourself HTML in 24 Hours, Sams Teach Yourself Visual Basic in 24 Hours,
Sams Teach Yourself Java in 24 Hours, and Sams Teach Yourself C++ in 24 Hours are a
good next step once you’ve mastered the basics of programming.

* If your goal is to be a serious white-box tester, Sams Teach Yourself Visual Basic in 21
Days, Sams Teach Yourself Java in 21 Days, Sams Teach Yourself C in 21 Days, and
Sams Teach Yourself C++ in 21 Days will teach you the details of programming in spe-
cific languages.

o Sams Teach Yourself Upgrading and Fixing PCs in 24 Hours will teach you the basics of
adding new hardware and peripherals to your PC—a very important topic for a software
tester, especially if you’re interested in configuration testing.

e [Internationalization with Visual Basic

Your Career as a Software Tester
CHAPTER 21

NoTE

To keep up with the latest in programming titles, regularly check out Macmillan
Computer Publishing’s Web site at www.mcp.com.

Summary

It seems appropriate to close out this book with a mantra that sums up what you should hope
to achieve through your work as a software tester. Frequently throughout this book, qualifiers
such as “depending on your company or your project team” and “based on your industry” were
used when describing development processes, testing techniques, and quality levels. The use of
such qualifiers makes it impossible to universally define a common goal for software quality.
The qualifiers are necessary, though, because unfortunately, at least so far, the definition of
software quality “depends.”

In 1998, Dr. Clare-Marie Karat, a psychologist and user interface designer at IBM’s Thomas J.
Watson Research Center in Hawthorne, NY, proposed a computer user’s bill of rights. This bill
of rights sets a minimum quality bar, a minimum set of expectations that computer users
should have the rights to with the software they use. The computer industry has a long way to
2o to achieve this level of quality, but with your work as a software tester, you can help to
make it a reality.

The Computer User’s Bill of Rights (reprinted with Dr. Karat’s permission)l:
1. Perspective. The user is always right. If there’s a problem with the use of the system, the
system is the problem, not the user.
2. Installation. The user has the right to easily install and uninstall software and hardware
systems without negative consequences.
3. Compliance. The user has the right to a system that performs exactly as promised.

4. Instruction. The user has the right to easy-to-use instructions (user guides, online or
contextual help, error messages) for understanding and utilizing a system to achieve
desired goals and recover efficiently and gracefully from problem situations.

5. Control. The user has the right to be in control of the system and to be able to get the
system to respond to a request for attention.

6. Feedback. The user has the right to a system that provides clear, understandable, and accu-
rate information regarding the task it’s performing and the progress toward completion.

'Published with permission from IBM Corporation.

343

N
-

NEICERE

FYVML40S V
SV H33MVD) HNOA

344 The Future

PART VI

7. Dependencies. The user has the right to be clearly informed about all systems require-
ments for successfully using software or hardware.

8. Scope. The user has the right to know the limits of the system’s capabilities.

9. Assistance. The user has the right to communicate with the technology provider and
receive a thoughtful and helpful response when raising concerns.

10. Usability. The user should be the master of software and hardware technology, not vice
versa. Products should be natural and intuitive to use.

Quiz
These quiz questions are provided for your further understanding. See Appendix A, “Answers
to Quiz Questions,” for the answers—but don’t peek!
1. When looking for a software testing position on the Internet, what keywords should you
use in your search?

2. Name two ways that you can become involved in testing computer software before it is
released to the public.

3. What’s the goal of a software tester?

Answers to Quiz Questions

346

SOFTWARE TESTING

Chapter 1

1.

In the Year 2000 bug example, did Dave do anything wrong?

Not if the product spec and design goals for the software never stated that the product
should work beyond year 2000. A software tester should have tested for and found the
bug. The team could then decide whether to fix it.

. True or False: It’s important what term your company or team calls a problem in its

software.

False. It’s not important, but the term used often reflects the personality of the team and
how they approach the finding, reporting, and fixing of the problems.

. What’s wrong with just testing that a program works as expected?

At most, that’s only half the testing problem. Users don’t always follow the rules, and
testers need to prove out what happens when they don’t. Also, if testers don’t approach
their testing with a gotta-break-it attitude, they will miss bugs.

. How much more does it cost to fix a bug found after the product is released than it does

from the very start of the project?

From 10 to 100 times or even higher!

. What'’s the goal of a software tester?

The goal of a software tester is to find bugs, find them as early as possible, and make
sure they get fixed.

. True or False: A good tester relentlessly strives for perfection.

False. A good tester knows when perfection isn’t attainable and when “good enough” is
reached.

. Give several reasons why the product specification is usually the largest source of bugs

in a software product.

Often a spec isn’t even written—remember, if you can’t say it, you can’t do it. Other rea-
sons are that the spec exists but it isn’t thorough, it’s constantly changing, or it’s not
communicated to the rest of the development team.

Chapter 2

1.

Name several tasks that should be performed before a programmer starts writing the first
line of code.

The development team needs to understand the customer requirements and define the
features in a product spec. A detailed schedule should be created so team members know
what work has been completed and what work remains to be done. The software should
be architected and designed, and the test team should start planning their work.

Answers to Quiz Questions
APPENDIX A

. What disadvantage is there to having a formal, locked-down specification?

If the market changes because of the release of a competitor’s product or changing cus-
tomer needs, there’s no flexibility to adjust the software.

. What is the best feature of the big-bang model of software development?

It’s simple. Period.

. When using the code-and-fix model, how do you know when the software is ready to
release?

There’s no real exit criteria for the code-and-fix process except for when someone, or the
schedule, says that it’s time to stop.

. Why can the waterfall method be difficult to use?

Just like with salmon, it’s difficult to swim upstream. Each step is a discrete, standalone
process that follows the one before it. If you get to the end and find that something
should have happened further up, it’s too late to go back.

. Why would a software tester like the spiral model best?

They’re involved very early in the development process and have the opportunity to find
problems early, saving the project time and money.

Chapter 3

1. Given that it’s impossible to test a program completely, what information do you think

should be considered when deciding whether it’s time to stop testing?

There is no correct answer for when to stop testing. Each project is different. Examples
of the information that might go into the decision would be: Are lots of bugs still being
found? Is the team satisfied with the number and types of tests that have been run? Have
the reported bugs been evaluated to decide which ones to fix and which ones not to fix?
Has the product been validated against the user’s requirements?

. Start the Windows Calculator. Type 5,000-5= (the comma is important). Look at the
result. Is this a bug? Why or why not?

The answer you get is 0, not 4095 as you would expect. The reason is that the , (comma)
was automatically converted to a . (decimal point). What you calculated was 5.000-5=0,
not 5,000-5=4995. To determine if this is a bug, verify this operation against the product
specification. It might state that commas are to be converted to decimal points. You
should also validate this “feature” against the user requirements. Find out if most users
want this to occur or if it would be confusing.

. If you were testing a simulation game such as a flight simulator or a city simulator, what
do you think would be more important to test—its accuracy or its precision?

347

sNowsang zind | 2>
OL SHIMSNY

348

SOFTWARE TESTING

The purpose of a simulation game is to put the player into an artificial environment that
mimics a real-world scenario. Flying a flight simulator should look and feel like flying a
real plane. Running a city simulator should reflect what happens in a real city. What’s
most important is how accurately the simulator reflects reality. Does the plane fly like a
Boeing 757 or Piper Cub? Does the skyline of the city look like the city it represents?
After the software has accuracy, precision can follow. If you think about the advance-
ment of simulation games over the years, this is exactly what has happened.

. Is it possible to have a high-quality and low-reliability product? What might an exam-

ple be?

Yes, but it depends on the customer’s expectations for quality. Many people buy high-
performance sports cars that are considered to be high quality for their acceleration and
speed, their style, and their fit and finish. Often these same cars are notoriously unreli-
able, frequently breaking down and being expensive to repair. Their owners don’t con-
sider this poor reliability to be an aspect of quality.

. Why is it impossible to test a program completely?

With any software other than the smallest and simplest program, there are too many
inputs, too many outputs, and too many path combinations to fully test. Also, software
specs can be subjective and be interpreted in different ways.

. If you were testing a feature of your software on Monday and finding a new bug every

hour, at what rate would you expect to find bugs on Tuesday?

Two axioms come into play here. The first—that the number of bugs remaining is pro-
portional to the number of bugs you’ve already found—means that you won’t come in on
Tuesday and miraculously find the software to be perfect. The pesticide paradox tells you
that if you continue to run the same tests over and over that you eventually won’t find
new and different bugs until you add more tests. Given these two axioms, you will prob-
ably continue to find bugs at the same rate or slightly less.

Chapter 4

1. Can a software tester perform white-box testing on a specification?

Yes, if the tester is involved with the process used in defining the specification. He could
attend the focus groups, usability studies, and marketing meetings to understand the under-
lying process being used to design the features and the overall product. There is a risk,
though, that this information could bias the tester into assuming that the spec is correct.

Answers to Quiz Questions
APPENDIX A

349

2. Cite a few example of Mac or Windows standards or guidelines.
On the Mac, deleted files go to the Trash Can. In Windows, they go to the Recycle Bin.
Pressing F1 always displays Help for the software.
The File menu is always the far-left menu choice in Windows.

Selecting Help, About displays the software’s copyright, licensing, and version informa-
tion.

Ctrl+X performs a cut, Ctrl+C performs a copy, and Ctrl+V performs a paste.

3. Explain what’s wrong with this specification statement: When the user selects the

Compact Memory option, the program will compress the mailing list data as small as
possible using a Huffman-sparse-matrix approach.

It uses the phrase as small as possible. This is impossible to test because it’s not quantifi-
able and not precise. The spec should state exactly what level of compression will take
place.

sNowsang zind | 2>

Ol SHIMSNY

The statement also isn’t code-free. It explains how the feature will work on the algorithm
level. This doesn’t belong in a requirements document. The user doesn’t care how the
compaction occurs, just that it does.

4. Explain what a tester should worry about with this line from a spec: The software will
allow up to 100 million simultaneous connections, although no more than 1 million will
normally be used.

Testability. It doesn’t matter that typical usage is only 1 million connections. If the speci-
fication states that 100 million are possible, the 100 million must be tested. The tester
needs to find a way to test something this large or get the spec writer to reduce the maxi-
mum possible number to something closer to what’s typical.

Chapter 5

1. True or False: You can perform dynamic black-box testing without a product specifica-
tion or requirements document.

True. The technique is called exploratory testing, and you essentially use the software as
though it’s the product spec. It’s not an ideal process, but can work okay in a pinch. The
largest risk is that you won’t know if a feature is missing.

2. If you're testing a program’s ability to print to a printer, what generic test-to-fail test
cases might be appropriate?
You could attempt to print with no paper and with jammed paper. You could take the

printer offline, unplug its power, and disconnect its printer cable. You could try printing
with low ink or toner, maybe even with a missing cartridge. To identify all the

350

SOFTWARE TESTING

possibilities, you could look in the printer’s operator’s manual and see what errors it sup-
ports and attempt to create all of them.

. Start up Windows WordPad and select Print from the File menu. What boundary condi-

tions exist for the Print Range feature?

If you select the Pages option, the From and To fields are enabled. The obvious boundary
conditions would be 0 and 99999, the smallest and largest values that the fields will hold.
It would be wise to also test internal boundary conditions such as 254, 255, 256 and
1023, 1024, and 1025. There’s also another internal boundary condition. Try asking it to
print pages 1 through 8 of a 6-page document. Notice that in this case, the software has
to stop printing at page 6 because it’s out of data, not because it was told to stop at this
page. It’s a different, internal boundary. See if you can think of more.

4. Assume that you have a 10-character-wide ZIP code text box. What equivalence parti-

tions would you create for this text box?
You should have at least these equivalence partitions, although you may think of more:

 Valid 5-digit ZIP codes. Valid means that they’re numeric digits, not that they are
existing, in-use ZIP codes—although that could be another partition.

* Valid 9-digit (9 digits with a dash) ZIP codes
* Short 5-digit. Have only 4 numbers, for example.
 Short 9-digit.

* Long 5-digit. Have 8 digits without a dash, for example. Hmm, is this the same as
a short 9-digit partition?

* Long 9-digit. It may not be possible to type in more than 9 digits and a dash, but
you should try.

* 10 digits, no dash. This is a little different than a long 9-digit partition.

e The dash in the wrong place.

* More than one dash.

* Non-digit and non-dash entries.

5. True or False: Visiting all the states that a program has assures that you’ve also tra-

versed all the transitions among them.

False. Think of visiting 50 different cities spread out across the entire U.S. You could plan
a trip that would take you to each city, but it would be impossible for you to travel all the
roads that connect to all the cities—that would be all the roads in the entire country.

Answers to Quiz Questions
APPENDIX A

351

6. There are many different ways to draw state transition diagrams, but there are three
things that they all show. What are they?

* Each unique state that the software can be in.

» The input or conditions that make it move from one state to the next.

» Conditions, variables, or output that’s produced when a state is entered or exited.
7. What are some of the initial state variables for the Windows Calculator?

The initial displayed value and the internal partial result are set to 0. The memory regis-
ter (MC, MR, MS, and M+ buttons) is set to 0. The memory system Clipboard contents

(where data goes when you cut, copy, and paste) is left unchanged.

Another initial state variable is where the Calculator appears onscreen when it’s started.
Open up several copies of the Calculator and notice that the location isn’t always the
same (at least on Windows 95/98). As an exercise in exploratory testing, see if you can
figure out what the rules are for where the Calculator opens.

sNowsang zind | 2>

8. What actions do you perform on software when attempting to expose race condition
bugs?
You try doing multiple things at the same time. They could be related, like printing to
two printers at the same time from the same application. Or, they could be unrelated, like
pressing keys while a computation is taking place. What you want to do is force a situa-
tion where the software is competing (racing) with itself to perform some function.

9. True or False: It’s an unfair test to perform stress testing at the same time you perform
load testing.

False. No test is ever unfair. Your job is to find bugs.

Chapter 6

1. Name several advantages to performing static white-box testing.

Static white-box testing finds bugs early in the development cycle, making them less
time-consuming and less costly to fix. The software testers can gain information about
how the software works, what potential weaknesses and risky areas exist, and can build a
better working relationship with the programmers. Project status can be communicated to
all team members who participate in the testing.

2. True or False: Static white-box testing can find missing items as well as problems.
True. Missing items are arguably more important than normal problems and can be
found through static white-box testing. When the code is checked against published stan-
dards and guidelines and carefully analyzed in formal reviews, missing items become
obvious.

Ol SHIMSNY

352

SOFTWARE TESTING

3. What key element makes formal reviews work?

Process. Having a process that’s followed is what makes the difference between a formal
review and two pal programmers glancing over each other’s code.

. Besides being more formal, what’s the big difference between inspections and other types

of reviews?

The key difference is that with inspections, a person other than the original author of the
code is the presenter. This obliges another person to fully understand the software being
inspected. It’s much more effective than having others simply review the software for
bugs.

. If a programmer was told that he could name his variables with only eight characters

and the first character had to be capitalized, would that be a standard or a guideline?

That would be a standard. If he was allowed to name them with no less than eight char-
acters, but shorter was preferred, that would be a guideline.

. Should you adopt the code review checklist from this chapter as your team’s standard to

verify its code?

No! It’s provided as a generic example only. There are some good test cases in it that you
should consider when you test your code, but you should research and read about other
published standards before adopting your own.

Chapter 7

1. Why does knowing how the software works influence how and what you should test?

If you test only with a black-box view of the software, you won’t know if your test cases
adequately cover all the parts of the software nor if some of the cases are redundant. An

experienced black-box tester can design a fairly efficient suite of tests for a program but

he can’t know how good that suite is without some white-box knowledge.

. What'’s the difference between dynamic white-box testing and debugging?

Both processes overlap, but the goal of dynamic white-box testing is to find bugs and the
goal of debugging is to fix them. The overlap occurs in the area of isolating exactly
where and why the bug occurs.

. What are two reasons that testing in a big-bang software development model is nearly

impossible? How can these be addressed?

With the software delivered to you in one big piece, it’s difficult, if not impossible, to
figure out why a bug occurs—the needle-in-a-haystack problem. The second reason is
that there are so many bugs, some hide others. You’ll grab one and shout “gotcha” only
to discover that the software is still failing.

Answers to Quiz Questions
APPENDIX A

Methodically integrating and testing the modules as they are built allows you to find and
fix bugs before they start to become hidden or pile on top of each other.

. True or False: If your product development is in a hurry, you can skip module testing

and proceed directly to integration testing.

False! Unless, of course, your product is a module.

. What'’s the difference between a test stub and a test driver?

A test stub is used in top-down testing. It stubs out, or substitutes itself, for a low-level
module. It looks and acts to the higher-level code being tested just like the original low-
level module.

A test driver is the opposite of a stub and is used in bottom-up testing. It’s test code that
replaces higher-level software to more efficiently exercise a low-level module.

True or False: Always design your black-box test cases first.

True. Design your test cases based on what you believe the software is supposed to do.
Then use white-box techniques to check them and make them most efficient.

. Of the three code coverage measures described, which one is the best? Why?

Condition coverage is the best because it also incorporates branch coverage and state-
ment coverage. It assures you that all the conditions within decision logic, such as if -
then statements, are verified, as well as all branches from those statements and the lines
of code.

What’s the biggest problem of white-box testing, either static or dynamic?

You can easily become biased. You might look at the code and say, “Oh, I see, I don’t
need to test that case, the code handles it properly.” In reality, you were blinded by the
light and eliminated necessary test cases. Be careful!

Chapter 8

1.

What’s the difference between a component and a peripheral?

Generally, a component is a hardware device internal to a PC. A peripheral is external to
the PC. The lines can become blurry, though, depending on the type of hardware.

. How can you tell if a bug you find is a general problem or a specific configuration

problem?

Rerun the exact same steps that revealed the bug on several different configurations. If
the problem doesn’t occur on those, it’s very likely a configuration bug. If it occurs on
the different configurations, it’s likely a general problem. Be careful, though. It could be
a configuration problem across an entire equivalence class. For example, it’s possible
that the bug shows up only on laser printers, but not inkjet printers.

353

sNowsang zind | 2>

Ol SHIMSNY

354

SOFTWARE TESTING

3. How could you guarantee that your software would never have a configuration problem?

This is sort of a trick question. You’d need to ship the hardware and software together as
one package, the software would only work on that hardware, and the hardware would
have to be completely sealed, not having a single interface to the outside world.

. True or False: A cloned sound card doesn’t need to be considered as one of the configu-

rations to test.

It depends. A cloned hardware device is internally identical to another but has a different
name and possibly a different case. Often they are 100 percent functionally equivalent,
but sometimes the device drivers are different, allowing one to support more or different
features than the other.

. In addition to age and popularity, what other criteria might you use to equivalence parti-

tion hardware for configuration testing?

Region or country is a possibility as some hardware devices such as CD-ROM players
only work with CDs in their region. Another might be consumer or business. Some hard-
ware is specific to one, but not the other. Think of others that might apply to your soft-
ware.

. Is it acceptable to release a software product that has configuration bugs?

Yes. You’ll never be able to fix them all. As in all testing, the process is risk based. You
and your team will need to decide what you can fix and what you can’t. Leaving in an
obscure bug that only appears with a rare piece of hardware is an easy decision. Others
won’t be as easy.

Chapter 9

1. True or False: All software must undergo some level of compatibility testing.

False. There will be a few rare, standalone, proprietary first versions of software out
there that don’t interact with anything. For the other 99 percent of the world, though,
some level of compatibility testing will be necessary.

. True or False: Compatibility is a product feature and can have different levels of compli-

ance.

True. The level of compatibility that your software has is based on your customers’
needs. It may be perfectly fine for a word processor to not be compatible with a competi-
tor’s file format or for a new operating system to not support a certain class of gaming
software. As a tester, you should provide input to these decisions by determining how
much work would be involved in checking that compatibility.

. If you’re assigned to test compatibility of your product’s data file formats, how would

you approach the task?

Answers to Quiz Questions
APPENDIX A

Research whether your program follows existing standards for its files. If so, test that it
meets those standards. Equivalence partition the possible programs that would read and
write your program’s files. Design test documents with representative samples of the
types of data that your program can save and load. Test the transfer of these files
between your program and the other programs.

. How can you test forward compatibility?

Testing forward compatibility is tough—after all, how can you test against something
that doesn’t exist yet? The answer is to make sure that what you’re testing is thoroughly
and carefully defined to the point that it could be deemed a standard. That standard then
becomes the means for assuring that what you’re testing is forward compatible.

Chapter 10

1.

What’s the difference between translation and localization?

Translation is concerned only with the language aspects—translating the words.
Localization takes into account the customs, conventions, and culture of the region or
locale.

Do you need to know the language to be able to test a localized product?

No, but someone on the test team needs to be fluent. You can test the non-language-
specific portions of the software, but knowing a bit of the language will help you be
more efficient.

What is text expansion and what common bugs can occur because of it?

Text expansion occurs when English text is translated into another language. The length
of text strings can grow 100 percent or more. Text that used to fit onscreen, in dialog
boxes, in buttons, and so on no longer does. It can be truncated or cause other text to roll
off. It’s even possible to have the software crash because the extra long text no longer fits
in the memory set aside for the string and other memory is overwritten.

. Identify several areas where extended characters can cause problems.

The order of sorted or alphabetized words and phrases, conversion between upper- and
lowercase, and just general display and printing issues.

. Why is it important to keep text strings out of the code?

Localizing becomes much easier if the person doing the work has to modify only a text
file rather than the programming code. It also makes the testing work easier because
you’ll know that the code didn’t change on the localized version of the software.

355

sNowsang zind | 2>

Ol SHIMSNY

356

SOFTWARE TESTING

6. Name a few types of data formats that could vary from one localized program to another.

Measurements such as pounds, inches, and gallons. Time in 24-hour or 12-hour format.
Currency has recently become important now that many European countries have con-
verted to the Euro. There are many others.

Chapter 11

1.

True or False: All software has a user interface and therefore must be tested for
usability.

True. Eventually, even the most deeply embedded software is exposed, in some way, to a
user. Keep in mind that the UI may be as simple as a switch and a light bulb or as com-
plex as a flight simulator. Even if the software is a single module of code, its interface, in
the form of variables and parameters, is exposed to the programmer.

Is user interface design a science or an art?

It’s a little bit of both. Many user interface designs have been thoroughly tested in the
labs, been through rigorous studies, only to be complete failures in the marketplace.

. If there’s no definitive right or wrong user interface, how can it be tested?

Software testers should check that it meets seven important criteria: That it follows stan-
dards and guidelines, that it’s intuitive, consistent, flexible, comfortable, correct, and
useful.

List some examples of poorly designed or inconsistent Uls in products you’re familiar
with.

This answer will vary based on the products you use but think about these: Try setting
the time on your car radio’s clock—can you do it without using the manual?

A few Windows dialog boxes have the OK button on the left and the Cancel button on
the right, whereas others have Cancel on the left and OK on the right. If you get used to
one layout and click without looking, you could lose your work!

Did you ever accidentally hang up on someone when you clicked the receiver hook on
your phone to use call waiting or conference calling?

And, the best one of all time...is up to you to find!

. What four types of disabilities could affect software usability?

Visual, hearing, motion, and cognitive impairments.
If you're testing software that will be accessibility enabled, what areas do you need to
pay close attention to?

Areas dealing with the keyboard, mouse, sound, and display. If the software was written
to a popular platform that supports accessibility, the test effort will be a bit easier than if
the accessibility features were programmed entirely from scratch.

Answers to Quiz Questions
APPENDIX A

Chapter 12

1.

Start up Windows Paint and look for several examples of documentation that should be
tested. What did you find?

Here are a few examples: There’s rollover help—the little pop-up descriptions you get
when you hold the cursor over a painting tool. Selecting About from the Help menu dis-
plays a window with copyright and licensing information. Pressing F1 starts the online
help system where you can read the manual, select from an index, or type in words to
search for. There’s also function help—for example, if you select Edit Colors from the
Colors menu, click the ? in the title bar, and then click one of the colors, you’ll get help
about choosing and creating colors.

. The Windows Paint Help Index contains more than 200 terms from adding custom colors

to zooming. Would you test that each of these takes you to the correct help topics? What
if there were 10,000 indexed terms?

Every testing task is a risk-based problem. If you have time to test all the index entries,
you might choose to do so. If you can’t test them all, you’ll have to create equivalence
partitions of the ones you think are important to check. You could base your decision on
information you get from the programmers on how the index system works. You might
talk with the writer to find out how the entries were generated. You might try one of each
starting letter, or the 1st, 2nd, 4th, 8th, 16th, ... and last. You could even wait until you
read Chapter 14, “Automated Testing and Test Tools.”

. True or False: Testing error messages falls under documentation testing.

True. But, it’s not just documentation testing. The content of the message needs to be
tested as documentation, but forcing the message to appear and assuring that the correct
message is displayed is testing the code.

In what three ways does good documentation contribute to the product’s overall quality?

Improved usability, improved reliability, and lower support costs.

Chapter 13

1.

What basic elements of a Web page can easily be tested with a black-box approach?

The static elements that are similar to what’s in multimedia CD-ROM software—text,
graphics, and hyperlinks.

What is gray-box testing?

Gray-box testing is when you can take a peek at the underlying code and use that infor-

mation to help you test. It’s different from white-box testing in that you’re usually look-

ing at simple scripting code, not a complex, compiled language such as C++. You're also
not examining it to the same level of detail as you would with white-box testing.

357

sNowsang zind | 2>

Ol SHIMSNY

358

SOFTWARE TESTING

3. Why is gray-box testing possible with Web site testing?

Because many Web sites are principally created with easily viewable HTML, a mark-up
language, not an executable program.

. Why can’t you rely on a spell checker to check the spelling on a Web page?

Because a spell checker can only check ordinary text. It can’t check graphical letters or
dynamically generated text.

. Name a few areas that you need to consider when performing configuration and compat-

ibility testing of a Web site.
The hardware platform, the operating system, the Web browser, browser plug-ins,

browser options and settings, video resolution and color depth, text size, and modem
speeds.

Which of Jakob Neilsen’s 10 common Web site mistakes would cause configuration and
compatibility bugs?

Gratuitous use of bleeding-edge technology. Existing hardware and software is always
susceptible to new technology being run on it for the first time. This was a bit of a trick
question—it wasn’t mentioned in the chapter, but hopefully you could arrive at the
answer by applying what you’ve learned in Part III of the book.

Chapter 14

1. Name a few benefits of using software test tools and automation.

They can speed up the amount of time it takes to run your test cases. They can make you
more efficient by giving you more time for test planning and test case development.
They’re accurate, precise, and relentless.

What are a few drawbacks or cautions to consider when deciding to use software test
tools and automation?

Because software can change during the product’s development, your test tools will need
to change, too. You can fall into a trap of spending too much time designing tools and
automation, neglecting actual testing. It’s easy to rely on automation too much. There’s
no substitute for testing the software yourself.

What'’s the difference between a tool and automation?

A test tool will help you test, making it easier for you to perform a manual testing task.
Automation is also a tool, but it will run without your intervention. Think power saw and
hammer building a house while the carpenter sleeps.

4. How are viewer tools and injector tools similar and different?

Answers to Quiz Questions
APPENDIX A

Both types of tools hook into the software at points not normally accessible to the aver-
age user. Viewer tools are non-invasive as they allow you to see only what’s happening.
Injector tools are invasive—they allow you not only to see what’s happening, but also to
manipulate it. You can try test cases that might otherwise be difficult or impossible to
perform at the normal user level.

. True or False: An invasive tool is the best type because it operates closest to the soft-
ware being tested.

False. Being invasive or non-invasive doesn’t make a tool good or bad. The software
being tested and the test case that needs to be performed will dictate the best choice of
tool.

What’s one of the simplest, but effective, types of test automation?

Keystroke and mouse action record and playback are the simplest type of automation
that can effectively find bugs.

. Name a few features that could be added to test automation you described in question 6
to make it even more effective.

Simple programming of steps rather than captured steps. The ability to pause or wait for
the software to react to the actions. Some type of simple verification so that the macros
know whether a bug has occurred.

. What advantages do smart monkeys have over macros and dumb monkeys?

They’re almost self-aware. They know the software’s state table so they know where they
are and what they can do.

Chapter 15

1. Describe the pesticide paradox and how bringing in new people to look at the software

helps solve it.

The pesticide paradox (described in Chapter 3, “The Realities of Software Testing”) is
the situation that occurs if you continue to test software with the same tests, or the same
people. Eventually, the software seems to build up an immunity to the tests because no
new bugs are found. If you change the tests or bring in new testers, you’ll find new bugs.
The bugs were always there, it’s just that the new approach made them visible.

. What are a few positives to having a beta test program for your software?

It gets lots of additional people looking at the software. It’s a good way to find configu-
ration and compatibility problems.

359

sNowsang zind | 2>

Ol SHIMSNY

360

SOFTWARE TESTING

3.

What are a few cautions to consider with a beta test program?

A beta test is no substitute for an organized, planned, methodical test approach—it’s not
good at general bug finding. You should know who the beta testers are in regards to their
experience level, equipment, and needs to ensure that you get what you expect out of the
test.

If you’'re testing for a small software company, why would it be a good idea to outsource
your configuration testing?

The expense and overhead to stock and manage a configuration testing lab is very high
and would likely be prohibitive for a small company or project.

Chapter 16

1.

What’s the purpose of a test plan?

To paraphrase the ANSI/IEEE definition, the purpose of a test plan is to define the scope,
approach, resources, and schedule of the testing activities and to identify the items being
tested, the features to be tested, the testing tasks to be performed, the personnel responsi-
ble for each task, and the risks associated with the plan. In short, to tell and get agree-
ment from the rest of the project team exactly how the heck the test team intends to test
the software.

Why is it the process of creating the plan that matters, not the plan itself?

Because all the issues and questions defined in a test plan either impact or are influenced
by other project functional groups or team members. Getting everyone to understand and
agree to the contents of the plan is what matters. Privately creating a paper document and
putting it on a shelf is not just a waste of time, but also jeopardizes the project.

Why is defining the software’s quality and reliability goals an important part of test
planning ?

Because left to their own, everyone will have different ideas of what quality and reliabil-
ity mean to them. Since they’re all different, they all can’t be achieved.

What are entrance and exit criteria?

These requirements must be met to move from one testing phase to another. A phase
can’t be left until its exit criteria are met. A new phase can’t be entered until its entrance
criteria are met.

Name a few typical testing resources that should be considered when test planning.

People, equipment, offices and labs, software, outsourcing companies, and miscellaneous
supplies.

6.

Answers to Quiz Questions
APPENDIX A

True or False: A schedule should be made to meet absolute dates so that there’s no
question when a testing task or phase is to start and when it’s to end.

False. Because testing depends so much on other aspects of the project (for example, you

can’t test something until it’s coded), a test schedule is best made relative to the delivery
dates.

Chapter 17

1.

What are the four reasons for test case planning?

Organization, repeatability, tracking, and proof of testing.

. What is ad hoc testing?

Ad hoc testing is testing without a plan. It’s easy and fun but it’s not organized, it’s not
repeatable, it can’t be tracked, and when it’s over, there’s no proof that it was ever done.

What'’s the purpose of a test design specification?

The purpose of the test design spec is to organize and describe the testing that needs to
be performed on a specific feature. It outlines the features to be tested and the approach
to be used. It identifies the test cases, but doesn’t specify them, and what the pass/fail
criteria is.

What is a test case specification?

This document defines the actual input values used for testing and the expected outputs.
It also lists any special environmental needs or procedure requirements and any inter-
dependencies among test cases.

. Other than a traditional document, what means can you use to present your test cases?

Tables, matrices, lists, graphical diagrams—whatever means most efficiently presents the
test cases to you, other testers, and other members of your product team.

What'’s the purpose of a test procedure specification?

The purpose of the test procedure spec is to identify all the steps required to perform the
test cases, including how to set up, start, run, and shut down the test. It also explains
what to do in case the test doesn’t go as planned.

. At what level of detail should test procedures be written?

That’s a question without a specific answer. It greatly depends on who will be using the
procedures. Too little detail makes the test procedures ambiguous and variable. Too
much detail can bog down the test process. The level of detail should be set by the indus-
try, the company, the project, and the test team.

361

sNowsang zind | 2>

Ol SHIMSNY

362

SOFTWARE TESTING

Chapter 18

1. Cite a few reasons that a bug might not be fixed.

There’s not enough time in the schedule, it’s not a bug, it’s too risky, it’s not worth it,
and the bug wasn’t reported properly.

. What basic principles can you apply to your bug reports to give them the best chance of

getting the bug fixed?

Log them as soon as possible. Effectively describe the bug, making sure it’s minimal,
singular, obvious and general, and reproducible. Be nonjudgmental in your approach.
Follow the report through its life cycle.

. Describe a few techniques for isolating and reproducing a bug.

Record what you do and review it carefully. Use white-box test techniques to look for
race conditions, boundary conditions, memory leaks, and other similar problems. See if
the bug is state related, such as initial state or later state dependent. Consider resource
dependencies and even hardware problems as the source of the bug.

. Suppose that you’re running tests on the Windows Calculator and find that 1+1=2,

2+2=5, 34+43=6, 4+4=9, 5+5=10, and 6+6=13. Write a bug title and bug description
that effectively describes this problem.

Title: Adding a pair of even numbers gives an answer that’s one too much.
Description:

Test Case: Simple addition

Setup Steps: Start Version 1.0 of Calculator

Repro Steps: Try adding pairs of even number such as 2+2, 4+4, and 10+10. Also try

adding pairs of odd numbers such as 3+3, 5+5, and 13+13 and pairs of mixed odd and
even numbers such as 1+2, 5+6, and 12+13.

Expected Result: Correct answer for all pairs—2+2=4, 4+4=8...

Actual Result: For pairs of even numbers, the answer is one too high—2+2=5, 4+4=9,
10+10=21, and so on.

Other Info: This wasn’t tried exhaustively, but the bug occurred in many instances from
2+2 to 65536. The bug doesn’t seem to occur with odd numbers or mixed pairs.

. What severity and priority would you give to a misspelling in a company’s logo on the

software’s start-up screen?

Probably Severity 3 (minor problem), Priority 2 (must fix before release).

. What are the three basic states of a software bug’s life cycle and the two common addi-

tional states?

Answers to Quiz Questions
APPENDIX A

Open, Resolved, and Closed are the basic states. Review and Deferred are two possible
other states.

. List a few reasons that a database bug-tracking system is so much more useful than a
paper-based system.

You can see at a glance what a bug’s life cycle has been—even if it has been complex.
The current status of a bug can be instantly known. Bugs can’t be lost or neglected as
easily.

Chapter 19

1. If you were using metrics from the bug-tracking database to measure your progress or

success at testing, why would just counting the number of bugs you find per day or com-
puting your average find rate be an insufficient measure?

It doesn’t tell the entire story. You could be testing the most complex area of the soft-
ware. Your area could have been written by the most experienced programmer. It could
have been written by the least experienced programmer. The code you’re testing may
have already been tested or may be brand new.

. Given your answer to question 1, list a few additional software metrics that could be
used to measure more accurately and precisely your personal progress or success at
testing.

Average number of bugs found per day. Total bugs found so far. Ratio of fixed bugs to all
bugs found. Ratio of Severity 1 or Priority 1 bugs to all bugs found. Average time from
the Resolved state to the Closed state.

. What would a database query look like (any format you want) that would extract all the
resolved bugs assigned to Terry for the Calc-U-Lot v3.0 project?

Product EQUALS Calc-U-Lot AND

Version EQUALS 3.0 AND

Status EQUALS Resolved AND

Assign TO EQUALS Terry

. If the bug-find rate for a project was decreasing like the one shown in Figure 19.8 and
everyone was excited that the project was getting close to releasing, what might be a
couple reasons why this wouldn’t be true, that the numbers were lying?

It’s possible that the software was released to testing in phases and not all the software
was tested yet—it might only be leveling off for the current phase. The testers might be
busy regressing and closing bugs and not looking for new ones. It could have been a very
warm and sunny week or the testers might be out on vacation.

363

sNowsang zind | 2>

Ol SHIMSNY

364

SOFTWARE TESTING

Chapter 20

1.

Why are there testing costs associated with the costs of conformance?

Because no matter how good the development process is, testing still needs to be per-
formed one time to verify the product against the product specification and validate it
against the user requirements. If no bugs are found, great, but all the costs associated
with planning, developing, and executing the tests contribute to the costs of confor-
mance.

True or False: The test team is responsible for quality.

False! Testing looks for bugs. Testers didn’t put the bugs in the product and can’t guaran-
tee when they’re done testing that no more bugs exist.

Why would being called a QA Engineer be a difficult title to live up to?

Because it implies that you are the one guaranteeing the product’s quality. Are you ready
for that responsibility?

Why is it good for a test or quality assurance group to report independently to senior
management?

If they report to the development manager or the project manager, there’s a conflict of
interest between finding bugs and the creation of the software or the meeting of the
schedule.

If a company complied with the 1SO 9000-3 standard for software, what CMM level do
you think they would be in and why?

They would probably be at CMM Level 3, possibly touching some of the Level 4
requirements. They aren’t at Level 2 because Level 2 is just concerned with the project
level. Level 3 deals with the entire organization or company. Level 4 is where statistical
control starts to come into play.

Chapter 21

1.

2.

When looking for a software testing position on the Internet, what keywords should you
use in your search?

Since the job names and descriptions for software testers are variable, you should try
looking for software test, software testing, quality assurance, and QA.

Name two ways that you can become involved in testing computer software before it is
released to the public.

Beta testing and usability testing.

Answers to Quiz Questions
APPENDIX A

3. What'’s the goal of a software tester?

The goal of a software tester is to find bugs, find them as early as possible, and make
sure they get fixed.

365

sNowsang zind | 2>

Ol SHIMSNY

A

accessibility testing
disabled users, 184
legal issues, 185
making software accessible, 186
accuracy, 46
software testing, 221
Web site testing, 204
ACM (Association for Computing
Machinery), 101, 341
ActiMates Barney (Microsoft), 133-134
ad hoc testing, 269
Add New Hardware Wizard (Windows),
134
adding logging to test monkeys, 236
addresses, localizing, 167
advertisements (Web sites), 206
alpha releases, 256
alphabetizing word lists, 162
ALT text, 204
Altair 8800 (MITS), 179
American National Standards Institute
(ANSI), 101, 332
American Society for Quality (ASQ),
332, 341
Americans with Disability Act, 185
analysis (structural), 94. See also static
white-box testing
anomalies, 14
ANSI (American National Standards
Institute), 101, 332

INDEX

368

ANSI/IEEE 829 Standard for Software Test Documentation

ANSI/IEEE 829 Standard
for Software Test
Documentation, 271

Test Incident Report,
294
test plans, 253

APIs (Application
Programming
Interfaces), 109

Apple Hardware Web
site, 142

Apple Web site, 202

Application
Programming
Interfaces (APIs), 109

applications

compatibility, 147-148
multitasking, 86
testing
data sharing
compatibility,
153-154
multiple versions,
149-150
standards and
guidelines, 151-152

appropriateness, 182

architects, 30

architecture
documents, 27

ASCII, 160

character table, 77

to integer conversion
test cases, 115

versus Unicode, 161

ASQ (American Society
for Quality), 332

Association for
Computing Machinery
(ACM), 101, 341

atio() function, 113

audience (software
documentation), 195
audience level, 204
authoring Web sites,
200
automation
software testing,
220-221, 228-234
Web sites, 215
automation tools,
232-234
dumb monkeys,
235-236
smart monkeys, 236,
238
test monkeys, 234-235

backward
compatibility, 148
bad timing, 85
Barney (Microsoft
ActiMates), 133-134
batch files (drivers),
223
behavioral testing. See
dynamic black-box
testing
beta testing, 19, 244
considerations, 245
goals, 245
signing up to be a tester,
338
big-bang model, 31,
11
black-box testing, 55,
115
dynamic, 64
equations and formulas,
118

static, 57
tools, 221
Web sites, 202-207
blank condition, 78
books
software testing
resources, 342
user interface standards,
178
borrowing
configurations, 141
bottom modules, 114
bottom-up testing
(incremental), 112
boundary conditions,
71-72. See also
sub-boundary
conditions
bugs, 71
test examples, 75
testing edges, 74
types, 73
branch coverage, 122
browsers, 211-212
bubble charts, 27
buddy reviews. See
peer reviews
bug report documents,
28
bug-tracking
databases, 304
cautions, 305
charting results, 309
metrics, 305-306
queries, 306-308
BugNet Web site, 341
bugs, 13
beta software, 339
boundary conditions,
71-73
bug bashes, 244
bug committee, 257

CBT 369

causes, 16
coding errors, 18
design, 17
configuration
determining, 132-134
versus regular, 132
cost, 18, 320
databases, 299. See also
bug-tracking databases
deferred state, 293
definitions, 15, 256
The Emperor Has No
Clothes dilemma, 243
equivalence
partitions, 74
error-forcing, 67
external failures, 321
find rates, 313
fix/no-fix judgments,
283
fixing, 42
fresh eyes, 243
grouping, 41
impossibility of catching
all, 38
inconsistencies, 180
individualizing, 285
Intel Pentium floating-
point division, 11
internal failures, 320
Internet resources, 341
isolating, 287-288
life cycles, 290-292
looking where they have
already been found, 88
metrics, 305, 310-312,
315
Microsoft (ActiMates
Barney), 133-134
open state, 291
pesticide paradox, 42,
243

priority levels, 289-290
product
specifications, 15
queries, 306-309
questions to ask
yourself and others,
304
reasons for not fixing,
283
regressions, 293
relationships
between, 41
reporting, 283-284
automated, 297-299
being non-
Jjudgmental, 286
descriptions, 285
follow ups, 286
isolating the bug,
286
manually, 295-296
reproducibility, 286
Test Incident Report,
294
reproducing, 287-288
resolution, 299
resolved state, 291
review state, 292
rules, 15
searching, 132-133
dumb monkeys, 236
pesticide paradox,
239
severity levels, 289-290
software failure
terminology, 14
software testing goal,
19
software updates, 238
state, 288
sub-boundaries, 117

Test Incident Report,
295
testing limitations, 41
tracking systems, 294
versus configuration
bugs, 132
when a bug’s a bug,
43-44
workarounds, 283
Y2K, 13
builders, 30
builds, 256
buttons, text
expansion, 160
bytes, 76

C

C language, 99-101
C++ Programming
Guidelines,
99-100
calendars, localizing,
167
Capability Maturity
Model. See CMM,
328-329
capitalizing characters,
163
career opportunities,
336
categories, 337
finding, 337
formal training, 339
gaining hands-on
experience, 338
temporary jobs, 338
CBT (Computer Based
Training), 192

370

certification

certification (ISO 9000),
331
Certified for Microsoft
Windows logo, 152
Change Control Boards,
292
character sets, 160
characters
computations, 162-163
extended
capitalizing, 163
testing, 162
charting project-level
metrics, 312
checking spelling, 204
checklists, 102-105
clear-box testing.
See white-box testing
client-side program-
ming (Web sites), 210
Clipboard utility, 155
clones (hardware), 136
CMM (Capability
Maturity Model),
328-329
code, 102. See also
programming
commenting, 27
coverage analyzers,
121-123
debuggers, 223
errors, 18
organization, 164-165
software documentation,
194
source code, 209
stubs, 112
testing, 120
code coverage
analyzers, 120
path testing, 122-123
statement/line
coverage, 121

code pages, 160-161
code-and-fix model, 32
coders, 30
color (Web sites), 212
commented code, 27
communication, 96,
252, See also test
planning
communications
analyzer (monitor),
222
communications
protocols, 153
comp.risks news-
groups, 341
comp.software.testing
newsgroup, 341
comparison errors
(programming),
103-104
compatibility
code pages, 161
data, 170-171
DBCS, 161
software, 105
compatibility testing,
146
data, 170
data sharing, 153-154
forward/backward
compatibility, 148
multiple versions of
platforms/applications,
149-150
outsourcing, 246
overview, 146
platforms, 147-148
standards and guide-
lines, 151
high-level, 152
low-level, 152
Web sites, 211-213

compilers, 120
complexity, 60, 201-202
components
configuration
possibilities, 129
programming standards,
100
comprehensive
configuration testing,
134-135
computations
characters, 162-163
errors (programming),
103
Computer Based
Training (CBT), 192
computers
as drivers, 223-224
Mark II, 10
condition coverage,
123
configuration
management, 30
configuration testing,
128-132
bugs
determining, 132-134
versus regular bugs,
132
comprehensive, 134-135
contracting, 142
equivalence partitioning,
135
hardware
miscellaneous,
142-143
obtaining, 140-142
online registration, 136
organizing, 137-138
outsourcing, 246
planning, 135-140

dates 371

resolving problems,
132-134
test cases
designing, 139-140
executing, 140
test combinations, 135
VCRs, 141
Web sites, 211-213
configurations
borrowing, 141
foreign platform,
168-169
possibilities, 128-130
purchasing, 141
conformance (cost of),
320
connections (interface),
130
consistency
user interfaces, 180
Web sites, 214
contact information
(Web sites), 204
content
software, localizing,
165-166
Web sites, 214
dynamic, 210
testing, 204
contracting
configuration testing,
142
localization testing, 159
control flow errors
(programming), 104
control values
(automated testing),
233
controlling software,
109
conversions (data), 171

converting strings to
integer values, 113
copy function, 154
copyright notices (Web
sites), 204
corporate terminology
and conventions, 59
correctness, 183
cost
bugs, 18, 43
conformance, 320
external failures, 321
nonconformance, 320
crash recognition, 236
creating dumb
monkeys, 235
Crosby, Philip, 320
currency, localizing,
167
customer
requirements, 25
customer support as
testing aides, 244
customizing dumb
monkeys, 236
cut function, 154

D

data, 116-118

ASCII versus
Unicode, 78

bug-tracking databases,
305

compatibility, 170-171

conversions, testing,
171

declaration errors
(programming),
102-103

error forcing, 119
examples of what can be
tested, 71
flow coverage, 117
flow diagrams, 27
formats, 167-168
formulas and equations,
118
project-level metrics,
312
protocol, 222
reference errors
(programming), 102
testing. See data testing
data sharing
compatibility, 153-154
data testing, 70
boundary conditions,
71-72
test examples, 75
testing edges, 74
types, 73
equivalence partitioning
default, empty, blank,
null, zero, or none
conditions, 78
invalid, wrong,
incorrect, and
garbage
conditions, 79
sub-boundary
conditions, 75
ASCII character
table, 77
powers-of-two, 76-77
database-driven Web
sites, 210
databases
bug, 299
tracking test cases, 279
dates, localizing, 167

372 DBCS

DBCS (Double-Byte
Character Set), 161
DDE (Dynamic Data
Exchange), 155
debuggers
code, 223
code testing, 120
debugging versus
dynamic white-box
testing, 110
tracing variable values,
117
default condition, 78
defects, 14
deferred state (bugs),
293
defining guidelines
and standards for
testing purposes, 59
definitions, 255
deliverable
software, 24
dependencies,
languages, 169
design (software), 24.
See also development
accessibility, 186
causing bugs, 17
legal accessibility
issues, 185
software documentation,
196
user interfaces, 177
design documents
(software), 27
designing test cases
(configuration
testing), 139-140
determining
bugs, 132-134

hardware
availability, 136
necesslty, 136
options, 137
requirements (systems),
128
developers, 30
development
(software), 24
customer
requirements, 25
focus groups, 25
lifecycle models, 30
big-bang model, 31
code-and-fix
model, 32
spiral model, 35
waterfall model, 33
product parts, 28
project staff, 30
schedules, 26
software
CMM, 328
design
documents, 27
specs, 26
test documents, 28
devices
drivers, configuration
possibilities, 130
external ,testing, 225
diagnosing bugs, 44
dialog box text drivers,
115
dirty document
flags, 85
disabled users, 184
display versus internal
treatment, 167

documentation, 190
error messages, 192
EULA, 191
installation instructions,

191
marketing material, 190
online help, 191
packaging text and
graphics, 190
printed, 196
test cases, presentation,
275
testing
checklist, 195
importance of,
193-194
reality of, 196
what to look for, 194
TRD, 256
tutorials, wizards, and
CBT, 192
types, 190
user’s manual, 191
warranty/registration,
190

documents
multimedia, 200
software design, 27
specs, 54
test, 28

Double-Byte Character

Set (DBCS), 161
download times (Web
sites), 214

drivers
batch files, 223
computers as, 223-224
configuration

possibilities, 130
test (modules), 112
versus stubs, 225

failures 373

dumb monkeys
(automation tools),
235-236
bugs, searching for, 236
creating, 235
customizing, 236
dynamic black-box
testing, 64-65
dynamic content (Web
sites), 209-210
Dynamic Data
Exchange (DDE), 155
dynamic testing, 56
dynamic white-box
testing, 108-110. See
also structural testing

E

embedded strings,
localizing, 164

embedding, markups,
208

The Emperor Has No
Clothes dilemma, 243

empty condition, 78

emulators versus stubs,
225

End User License
Agreement (EULA),
191

entrance criteria, 259

environmental needs,
274

equations, 118

equivalence
partitioning, 68-69

adding/removing test
cases, 116

boundary conditions,
71-72
test examples, 75
testing edges, 74
types, 73
cautions, 70
configuration testing,
135
data testing, 71
default, empty, blank,
null, zero, or none
conditions, 78
example, 70
invalid, wrong,
incorrect, and garbage
conditions, 79
state transition maps,
82-85
sub-boundary
conditions, 75
ASCII character
table, 77
powers-of-two, 76-77
testing software logic
flow, 81
ergonomics, 176
error case studies
(software), 10
Disney’s Lion King, 10
Intel Pentium floating-
point division bug, 11
NASA Mars Polar
Lander, 12
Patriot Missile Defense
System, 13
Y2K bug, 13
error messages
software
documentation, 192
testing, 29

error-forcing, 67, 119
errors
handling, 182
programming
comparison, 103-104
computation, 103
control flow, 104
data declaration,
102-103
data reference, 102
input/output, 105
subroutine
parameter, 104
EULA (End User License
Agreement), 191
executing test cases
(configuration
testing), 140
exit criteria, 259
expansions (text),
159-160
exploratory testing, 66
extended characters
capitalizing, 163
testing, 162
external devices, 225
external failures, 321
external influences,
227
external testing,
244-247

F

failures, 14
bugs
causes, 16-18
cost, 18
product
specifications, 15

374

failures

external, 321
types of, 14
familiarity (languages),
159
faults, 14
feature complete, 257
features
dynamic (Web sites),
209
software, identifying
unique, 139
Web sites, 201-202
feedback, 25
field tags, 208
file export/import
methods, 153
file save/file load
methods, 153
files (resource), 164
FilterKeys, 187
find rates (bugs), 313
fix/no-fix judgments,
283
fixed dates, 262
flags (dirty document),
85
flexibility of user
interfaces, 181
floating-point division
bug, 11
flow charts, 27
focus groups, 25
follow-ups in bug
reporting, 286
foreign languages, 158
foreign platform
configurations,
168-169
formal reviews (static
white-box testing), 98
advantages, 96-97
communication, 96

preparing for, 95
quality, 96
rules, 95
solutions, 97
summarizing, 96
teamwork, 97
forms (Web sites), 206
formulas, 118
forward compatibility,
148
frames (Web sites), 215

G

Gantt charts, 26

garbage condition, 79

general bug
descriptions, 286

generating Web sites
programmatically, 210

generators, noise
(software testing
tool), 226-227

Georgia Tech's Graphic,
Visualization, &
Usability Center
(GVu), 213

government standards,
59

Graphical User
Interfaces (GUIs), 59

graphics

text in, 163-164
Web sites, 205

graphs (bug), 314

gray-box testing,
207-209

groups. See quality
assurance

guidelines, 151
examples, 59
hardware, 131
high-level, 152
low-level, 152
programming, 98-99
researching, 58-59

GUIs (Graphical User

Interfaces), 59

GVU Web site, 213

H

hardware
availability, 136
clones, 136
configuration testing,
140-142
guidelines, 131
miscellaneous,
configuration testing,
142-143
necessity, 136
options, 137
platforms, 211
standardization, 58-59
standards, 131, 142
hearing impairments,
185
High Contrast, 187
high-level
expectations, 254
defining testing targets,
254
tester assignments, 260
high-level standards
and guidelines, 152
high-level testing, 57
hit counters (Web
sites), 206

language dependencies

hot keys, localizing,
162

HTML (Hypertext
Markup Language),
207-207

hyperlinks, 204-205

identifying
problems, 95
standards (hardware),
142
unique features of
software, 139
IEC (International
Engineering
Consortium), 101
IEEE (Institute of
Electrical and
Electronics Engineers,
Inc.), 101
illustrators, 30
Improving Web Site
Usability and Appeal,
215
incidents, 14
incorrect condition, 79
incremental testing,
111-113
industry requirements,
59
injectors, interface
(software testing
tool), 226-227
input specification, 274
input/output errors
(programming), 105
inspections (reviews),
98

Institute of Electrical
and Electronics
Engineers, Inc. (IEEE),
101

integration testing,
112

integer values, con-
verting to strings, 113

Intel product recall,
11-12

inter-group
responsibilities, 257

intercase dependency,
274

interface injectors
(software testing
tool), 226-227

interfaces,
configuration
possibilities, 130

internal boundary con-
ditions. See sub-
boundary conditions

internal failures, 320

internal treatment
versus display, 167

International
Conference and
Exposition on Testing
Computer Software
(TCS), 340

International
Conference on
Software Quality
(1CsQ), 340

International
Conference on
Software Testing
(ICSTEST), 340

International
Engineering
Consortium (IEC), 101

International
Organization for
Standardization (ISO),
101, 332

International Quality
Week, 340

International Software
Testing Conference
(ISTC), 340

Internet

job searches, 337

links to sites related to
software testing, 341

software documentation
(online help), 191

internships, 338

intuition (user inter-
faces), 179

invalid condition, 79

invasive tools, 222

ISO (International
Organization for
Standardization), 101,
332

ISO 9000, 330-332

1ISO 9000-3, 331

isolating bugs, 287-288

J-K-L

job searches, 337-338

Keyboard Properties
dialog box, 168

keyboards, language
dependencies, 169

Koko (smart monkey),
238

language
dependencies, 169

375

376

language/reading impairments

language/reading
impairments, 185
languages
accommodating, 159
C programming
standards, 99, 101
familiarity, 159
foreign, building
software for, 158
markup versus
programming, 208-209
read right to left,
translating, 163
software, 105
Windows 98, 168
legal issues,
accessibility, 185
levels
of maturity (software
development), 329-330
test plans, 270
life cycles (bugs),
290-292
lifecycle models
(software
development), 30
big-bang model, 31
code-and-fix model, 32
spiral model, 35
waterfall model, 33
limitations
macros, 230
test monkeys, 239
line coverage, 121
links, 204. See also
hyperlinks
Lion King (Disney), 10
listings
boundary condition
bugs, 71
dumb monkeys,
creating, 235

line coverage, 121
macro to test Windows
Calculator, 231
sample HTML, 207
load tests, 86-87
load tools (software
testing), 226
locales,
accommodating, 159
localization testing,
158, 171-172
contracting, 159
outsourcing, 246
troubleshooting, 172
localizing
addresses, 167
calendars, 167
currency, 167
dates, 167
hot keys, 162
measurements, 167
numbers, 167
paper sizes, 167
shortcuts, 162
software
content, 165-166
data formats,
167-168
embedded strings,
164
resource files, 164
sorting rules, 163
telephone numbers, 167
times, 167
units, 167
logic flow, 81-85
low-level standards
and guidelines, 152
low-level testing, 60-61

M

Mac World, 136
Macintosh Human
Interface Guidelines,
178
Macmillan Computer
Publishing Web site,
343
Macro Magic, 228
Macro Setup Wizard,
228-229
macros
limitations, 230
Macro Magic, 228
mouse movements, 230
playback speed, 230
playing, 228-230
programmed, 230-231
QuicKeys, 228
recording, 228-230
testing Windows
Calculator, 231
maintainability, 99
manual writers, 30
Mark 11, 10
marketing material,
190
markup languages
versus programming
languages, 208-209
markups, embedding,
208
measurements,
localizing, 167
media, 183
memory
configuration
possibilities, 130
leaks, 87

PC Design Guide Web site 377

Mercury Interactive
Web site, 233
messages (error)
forcing, 119
software documentation,
192
metrics, 28, 305-306
determining usefulness,
310
project-level, 310-312,
315
Microsoft ActiMates
Barney, 133-134
Microsoft Stress utility,
226
Microsoft Web site, 142
Microsoft Windows
User Experience, 178
minimal bug
descriptions, 285
miscellaneous
hardware, configura-
tion testing, 142-143
MITS Altair 8800, 179
modem speed, 212
moderators, 98
module testing,
113-116
modules
bottom, 114
test drivers, 112
monitors, 222-223
motion impairments,
185
mouse movements, 230
MouseKeys, 187
multimedia documents,
200
multitasking, 85

N

NASA Mars Polar
Lander, 12

National Committee
for Information
Technology Standards
(NCITS), 101

navigation support
(Web sites), 214

Net Mechanic Web
site, 215

networking standards,
59

New Bug dialog box,
297

Nielsen, Jakob, 213

noise generators
(software testing
tool), 226-227

non-invasive tools, 222

nonconformance
(cost of), 320

none condition, 78

null condition, 78

numbers, localizing,
167

O

Object Linking and
Embedding (OLE), 155
obtaining
hardware for
configuration testing,
140-142
programming standards,
101
OLE (Object Linking
and Embedding), 155

online registration, 136
open state (bugs), 291
options
configuration
possibilities, 130
hardware, 137
organization
code, 164-165
configuration testing,
137-138
quality assurance teams,
326
test cases, 269, 278
orphan pages (Web
sites), 205, 214
OS accessibility
features, 187
output
automated testing, 233
specification, 274
outsourcing, 246-247

P

packaging text and
graphics, 190. See
also documentation
paper sizes, localizing,
167
partitioning,
equivalence. See
equivalence partiting
paste function, 154
path testing
branch coverage, 122
condition coverage, 123
Patriot Missile Defense
System, 13
PC Design Guide Web
site, 142

378

PC Magazine

PC Magazine, 136
PCs, configuration
possibilities, 128
peer reviews, 97
performance, 182
peripherals, configura-
tion possibilities, 130
pesticide paradox, 42,
239, 243
phases (test), 259
planning
configuration testing,
135-140
test cases, 268
ANSI/IEEE Std
829/1983, 271
detail versus reality,
276-278
documentation, 273
importance of, 269
levels, 270
organization and
tracking, 278
overview, 270
test design spec,
271-272
test plans, 253
agreeing on
definitions, 255
deciding what is to
be tested, 257
high-level
expectations, 254,
260
inter-group
responsibilities, 257
people, places, and
things, 255
resource
requirements, 260
risks and issues, 264
strategies, 259

task definition, 257
templates, 253
terms, 256
test phases, 259
test schedule, 261
tester assignments,
260
platforms
accessibility features,
186
compatibility issues,
147
data sharing,
153-154
forward/backward
compatibility, 148
platform/application
versions, 148
standards and guide-
lines, 151-152
testing multiple
versions, 149-150
standards, 178
playing macros,
228-230
plug-ins, 212
Plum, Thomas, 99-100
portability
programming, 99
software, 105
powers-of-two, 76-77
precision (software
testing), 46, 221
preparing for formal
reviews, 95
printers
language dependencies,
169
testing, 225
priority levels (bugs),
289-290

problems
configuration, resolving,
132-134
identifying, 95
producers, 30
product specifications.
See specs
products
specs. See specs
standards and guide-
lines, 59
testing, researching
similar products, 59
professional
organizations
(software testing and
quality assurance),
341
program managers, 30
programmatically
generating Web sites,
210
programmed macros,
230-231
programmers, 30, 110
programming
C language standards,
99, 101
client-side (Web sites),
210
errors
comparison, 103-104
computation, 103
control flow, 104
data declaration,
102-103
data reference, 102
input/output, 105
subroutine
parameter, 104
further reading, 342
guidelines, 98-99

resolving problems in configuration

379

HTML, 209
languages, versus
markup languages,
208-209
maintainability, 99
portability, 99
readability, 99
reliability, 99
reviews, checklist,
102-105
server-side (Web sites),
210
standards, 98-99
components, 100
obtaining, 101
style, 101
project-level metrics,
310, 312, 315
projects
managers, 30, 326
staff (software
development), 30
test plans, 271
test schedule, 261
without specs, 57
proof of testing, 269
protocol data, viewing,
222
purchasing
configurations, 141

Q

QA Forums Web site,
341
quality, 48
formal reviews, 96
spec testing, 58

quality assurance, 49,
320
group names and
differences, 322-325
ISO 9000, 330-332
organization of teams,
326
test management and
organizational
structures, 325-326
TQM/TQC, 324
Quality Assurance
Institute, 340
Quality is Free: The Art
of Making Quality
Certain, 320
queries, 306-309
QuicKeys, 228

R

race conditions, 85

random testing
(software), 234-238

Rational Software
Corporation Web site,
233

readability, 99

reading/language
impairments, 185

readme files, 190. See
also documentation

recorded macros versus
programmed macros,
231

recorders
(inspections), 98

recording macros,
228-230

registration, 136, 190

regression testing, 220
regressions (bugs), 293
Rehabilitation Act
(Section 508), 185
relative dates, 262
relentlessness
(software testing),
221
reliability, 48, 99
repeatability (test
cases), 269
repetition tests, 86-87
reporting bugs, 283
as soon as possible, 284
automated, 297-299
being non-judgmental,
286
descriptions, 285
follow ups, 286
isolating the bugs, 286
manually, 295-296
reproducibility, 286
Test Incident Report,
294
reproducing bugs,
286-288
requirements
(systems), 128
requirements
documents. See specs
researching
existing standards and
guidelines, 58-59
high-level specification
reviews, 58
similar software, 59
resolution (video), 212
resolved state (bugs),
291
resolving problems in
configuration,
132-134

380

resource files

resource files,
localizing, 164
resource requirements,
260
review state (bugs),
292
reviews
formal, 98
advantages, 96-97
communication, 96
preparing for, 95
quality, 96
rules, 95
solutions, 97
summarizing, 96
teamwork, 97
inspections, 98
peer, 97
walkthroughs, 97
rework, 98
risks and issues (test
plans), 264
Risks Digest Web site,
341
rules
formal reviews, 95
software bugs, 15

S

Saks, Dan, 99-100

sample HTML, 207

Sams Teach Yourself
Beginning
Programming in 24
Hours, 102, 342

Sams Teach Yourself to
Create Web Pages in
24 Hours, Second
Edition, 208

Sams Teach Yourself
Upgrading and Fixing
PCs in 24 Hours, 342

scale, 60

schedule crunch, 261

schedules (software
development), 26

screen captures, 233

searching

bugs, 132-133
dumb monkeys, 236
pesticide paradox,
239
for software testing
opportunities, 337
Web sites, 206

Second World congress
for Software Quality
(2WcCsQ), 341

Section 255
(Telecommunications
Act), 185

Section 508
(Rehabilitation Act),
185

security (Web sites),
210-211

Segue Software Web
site, 233

SEI (Software
Engineering
Institute), 328

selecting

software programs to
test compatibility
issues on, 150

test cases, 65

serialKeys, 187

server-side
programming (Web
sites), 210

servers (Web sites), 210
severity levels (bugs),
289-290
sharing testing
responsibilities,
243-244
shelfware, 253
shortcuts, localizing,
162
ShowSounds, 187
singular bug
descriptions, 285
sites. See Web sites,
201
smart monkeys
(automation tools),
236-238
Society for Software
Quality (55Q), 342
software, 24
alpha release, 256
appropriateness, 182
big-bang models, 111
boundary conditions
test examples, 75
testing edges, 74
types, 73
browsers, 211-212
bugs, 11, 13
automated
reporting/tracking,
297-299
causes, 16-18
cost, 18
definition, 15
fixing, 42
grouping, 41
keeping the peace in
the project team, 45
life cycles, 290-292
pesticide paradox, 42

software 381

product
specifications, 15
reasons for not
fixing, 283
regressions, 293
reporting/tracking
manually, 295-296
resolution, 299
rules, 15
state, 288
testing limitations, 41
tracking systems, 294
when a bug’s a bug,
43-44
builds, 256
CMM, 328
comfort, 182
comparisons, 60
compatibility, 105
consistency, 180
controlling, 109
correctness, 183
deliverable, 24
development, 24, 328
customer
requirements, 25
focus groups, 25
lifecycle models,
30-35
product parts, 28
project staff, 30
schedules, 26
software design
documents, 27
test documents, 28
documentation, 190
checklist, 195
error messages, 192
EULA, 191
importance of testing,
193-194

installation
instructions, 191
marketing material,
190
online help, 191
packaging text and
graphics, 190
printed, 196
reality of, 196
tutorials, wizards,
and CBT, 192
types, 190
user’s manual, 191
warranty/
registration, 190
what to look for in
testing, 194
embedded strings,
localizing, 164
equivalence partitioning
default, empty, blank,
null, zero, or none
conditions, 78
invalid, wrong,
incorrect, and
garbage
conditions, 79
error case studies, 10
Disney’s Lion
King, 10
Intel Pentium float-
ing-point division
bug, 11
NASA Mars Polar
Lander, 12
Patriot Missile
Defense System, 13
Y2K bug, 13
error messages, 29
failure terminology, 14
flexibility, 181

foreign languages, 158
GUIs, 59
languages, 105
localization, 158
content, 165-166
data formats,
167-168
resource files, 164
testing, 171-172
logic flow, 81-85
non-software pieces, 29
performance, 182
platforms
accessibility features,
186
standards, 178
portability, 105
programmers versus
testers, 110
quality, 324
quality assurance, 49,
320, 330-332
specs, 26, 44, 58
standardization, 58
state, 80
state transition maps,
82-83
stereotypes, 166
sub-boundaries, 117
sub-boundary
conditions, 75
ASCII character
table, 77
powers-of-two, 76-77
testing. See testing,
software
text conversion, 78
translations, 159
unique features, 139
updates, 238

382

Software Division of the American Society for Quality

Software Division of
the American Society
for Quality, 340

Software Engineering
Institute (SEI), 328

Software QA groups,
323

Software Quality
Engineering, 340

Software Research,
Inc., 340

software test plans.
See test planning

Software Testing
Analysis & Review
(STAR), 340

Software Testing
Hotlist Web site, 341

Software Testing
Online Resources Web
site, 341

Software Testing
Techniques, 42

sorting

rules, localization, 163
word lists, 162

SoundSentry, 187

source code, viewing,
209

Special Interest Group
on Software
Engineering
(SIGSOFT), 341

specification attributes
checklist, 60

specification
terminology
checklist, 61
specs, 15, 26
causing bugs, 16
complete date, 257
exploratory testing, 66

finality (lack of), 44
input, 274
locked down, 26
purpose, 55
testing, 54
customer
perspective, 58
high-level reviews,
57
low-level reviews,
60-61
specification
attributes
checklist, 60
specification
terminology
checklist, 61
static black-box, 57
test design, 271-272
test procedure,
275-276
understanding, 58
unwritten (mental), 57
variance, 57
verification, 48
written sample, 54
speed
modems, 212
playback (macros), 230
software testing,
automation, 220
spell checking (Web
sites), 204
spiral model, 35
spreadsheets, tracking
test cases, 279
standards, 151
Americans with
Disability Act, 185
examples, 59
hardware, 131, 142
high-level, 152

ISO 9000, 330-332
low-level, 152
programming, 98-99
C language, 99-101
components, 100
obtaining, 101
researching, 58-59
software standards, 178
user interfaces, 178
STAR (Software Testing
analysis & Review),
340
state bugs, 288
state jumping, 181
state tables (Web
sites), 203
state testing, 80-81
equivalence partitioning,
81-85
race conditions and bad
timing, 86
repetition, stress, and
load, 86-87
state transition maps,
27, 82-85
state variables, 84-85
statement coverage,
121
static testing, 56
black-box, 57
white-box testing, 94
advantages, 94-95
Sformal reviews,
95-97
misconceptions, 95
statistics, 28
status, bug graphs, 314
stereotypes (software),
166
StickyKeys, 187
stress tests, 86-87

test planning 383

stress tools (software
testing), 226
Stress utility
(Microsoft), 226
strings
converting to integer
values, 113
embedded, localizing,
164
structural analysis, 94
structural testing, 108
stubs
code, 112
software testing tool,
225
style (programming),
101
sub-boundaries, 117
sub-boundary condi-
tions, 75
ASCII character
table, 77
powers-of-two, 76-77
subroutine parameter
errors (programming),
104
summaries, 28, 96
supplementing HTML
with programming
code, 209
systems
engineers, 30
requirements, 128
testing, 112

T

tags (field), 208
tasks, defining in test
plans, 257

teamwork, formal
reviews, 97
technical writers, 30
Telecommunications
Act (Section 255), 185
telephone numbers,
localizing, 167
templates (test
planning), 253
temporary jobs, 338
terminology
software
documentation, 195
Web sites, 204
terms, 256
test cases, 65, 268
ad hoc testing, 269
configuration testing
designing, 139-140
executing, 140
documenting, 28, 273
presentation, 275
shortcuts, 274
environmental needs,
274
equivalence
partitioning, 68-70
identification, 272
intercase dependency,
274
organization and
tracking, 278
planning, 269
ANSI/IEEE std
829/1983, 271
detail versus reality,
276-278
overview, 270
test design spec,
271-272
selecting, 65

specs, 273
state transition maps, 83
test procedure
specification, 275-276
test suites, 278
test-to-pass testing, 67
test combinations
(configuration
testing), 135
test design spec,
271-272
test drivers (modules),
112
Test Incident Report,
294-295
test management and
organizational
structures, 325-326
test monkeys
(automation tools),
234-235
crash recognition, 236
dumb monkeys,
235-236
limitations, 239
logging, 236
smart monkeys, 236-238
test phases, 259
test plan
documents, 28
test planning, 252
agreeing on definitions,
255
defining what is to be
tested, 257
goal, 253
high-level expectations,
254
defining testing
targets, 254
tester assignments,
260

test planning

inter-group
responsibilities, 257
levels, 270
people, places, and
things, 255
purpose, 253
resource requirements,
260
risks and issues, 264
task definitions, 257
templates, 253
terms, 256
test phases, 259
test schedule, 261
test strategies, 259
tester assignments, 260
test procedure
specification, 275-276
test release document
(TRD), 256
test sharing, 243
beta testing, 244
considerations, 245
goals, 245
customer support, 244
outsourcing, 246-247
test strategy, 259
test-to-pass/test-to-fail
testing, 66-67
testability, 60
testers versus
programmers, 110
testing
accessibility
disabled users, 184
legal issues, 185
making software
accessible, 186
ad hoc, 269
adjusting, 109
APIs, 109
automated, 233

becoming a beta tester,
338
black-box, 55, 115, 221
characters (extended),
162
code considerations,
120
code coverage
analyzers, 120
path testing, 122-123
statement/line
coverage, 121
compatibility, 146
data sharing,
153-154
forward/backward
compatibility, 148
multiple versions of
platforms/
applications,
149-150
overview, 146
platforms, 147
selecting platforms/
application ver-
sions, 148
standards and
guidelines, 151-152
configuration testing,
128-132
comprehensive,
134-135
contracting, 142
designing test cases,
139-140
equivalence
partitioning, 135
executing test cases,
140
miscellaneous
hardware, 142-143

obtaining hardware,
140-142
online registration,
136
organizing, 137-138
planning, 135-140
test combinations,
135
VCRs, 141
data, 116
compatibility testing,
170
conversions, 171
flow coverage,
117-119
devices, external, 225
documentation, 190-191
checklist, 195
importance of,
193-194
printed
documentation, 196
reality of, 196
types, 190
what to look for, 194
dynamic, 56
black-box, 64-65
white-box, 108-110
error messages, 29
error-forcing, 67
exploratory, 66
external, 244
external influences, 227
incremental, 111-113
integration, 112
localization testing, 158,
171
contracting, 159
troubleshooting, 172
media, 183
module, 112-116
printers, 225

testing 385

projects without
specs, 57
regression testing, 220
researching existing
standards and
guidelines, 58-59
software, 49, 109
accuracy, 46
ANSI/IEEE Std 829-
1983, 271
automation, 220-221,
228-234
beta testing, 244-245
big-bang models, 111
boundary conditions,
71-75
bug bashes, 244
bug priority levels,
289-290
bugs. See bugs
career opportunities,
336-338
conferences, 340
data, 70-72
default, empty, blank,
null, zero, or none
conditions, 78
development maturity
level, 330
dumb users, 88
entrance/exit criteria,
259
equivalence parti-
tioning, 68-70
fresh eyes, 243
further reading, 342
group names and
differences, 322-325
Internet resources,
341
intuition, 89

invalid, wrong,
incorrect, and
garbage
conditions, 79
isolating and
reproducing bugs,
286-287
keeping the peace in
the project team, 45
leveraging customer
support, 244
metrics, 305-306,
310-312, 315
newsgroups, 341
organization of
teams, 326
outsourcing, 246-247
pesticide paradox, 42
plans. See test
planning
precision, 46
process hindrances,
326
professional
organizations, 341
project manager
control, 326
proof of testing, 269
quality, 48
querying for bug
information,
307-309
questioning status,
304
race conditions, 86
random, 234-238
reliability, 48
repetition, stress and
load, 86-87
reporting bugs,
284-286

reproducible bugs,
286
researching similar
products, 59
specs, 44
state, 80-85
status, 305
sub-boundary
conditions, 75-77
terms and
definitions, 46
test cases. See test
cases
Test Incident Report,
294
test management and
organizational
structures, 325-326
test procedure spec,
276
test schedule, 261
test sharing, 243
tester assignments,
260
tools, 220-228
specs, 54
customer perspective,
58
high-level reviews, 57
low-level reviews,
60-61
specification
attributes
checklist, 60
specification
terminology
checklist, 61
static, 56-57
static white-box, 94
advantages, 94-95
formal reviews,
95-97
misconceptions, 95

386 testing

structural, 108
system, 112
test-to-pass/test-to-fail,
66-67
tools
automated, 232-234
invasive, 222
non-invasive, 222
unit, 112
usability, 176
becoming a test
subject, 339
user interfaces,
176-184
Web sites, 200-202
advertisements, 206
approaches, 202
black-box testing,
202-207
compatibility testing,
211-213
configuration testing,
211-213
forms, 206
graphics, 205
gray-box testing,
207-209
hit counters, 206
hyperlinks, 204-205
scrolling marquee
text, 206
searches, 206
state tables, 203
text, 204
tools, 215
usability testing,
213-215
white-box testing,
209-211

white-box, 55, 115
risk, 56
sub-boundaries, 118
tools, 222

Windows Calculator,

231
testing-to-pass/
testing-to-fail, 85
text

ALT text, 204

conversion, 78

expansion, 159-160

in graphics, 163-164

scrolling marquees, 206

size, 212

Web sites, 204

times, localizing, 167
ToggleKeys, 187
tools

automation, 232-234
dumb monkeys,

235-236
smart monkeys, 236,
238
test monkeys,
234-235
black-box testing, 221
dynamic white-box
testing, 110

invasive, 222

non-invasive, 222

software testing,

220-222, 227-228
drivers, 223, 225
interface injectors,
226-227
load, 226
monitors, 222-223
noise generators,
226-227

stress, 226
stubs, 225
testing Web sites, 215
white-box testing, 222
Top Ten Mistakes in
Web Design, 213-215
top-down testing
(incremental), 112
Total Quality
Management (TQM),
324
TQC (Total Quality
Control), 324
TQM (Total Quality
Management), 324
tracking
bugs manually, 295-296
data through software,
116
test cases, 269, 278
training opportunities,
339
translations
languages, 163
software, 159
text expansion
buttons, 160
troubleshooting,
159-160
text in graphics,
163-164
TRD (test release
document), 256
troubleshooting
localization testing, 172
monkeys, 236
translations, text
expansion, 159-160
URLs, 214
Web site usability,
213-215
tutorials, 192

Web sites 387

U

U.S. Professional
Development
Institute, 340

Ul (user interfaces), 176

Unicode, 78, 161

Unicode Consortium
Web site, 161

unique features
(software), 139

unit testing, 112

URLs (Uniform
Resource Locators),
214

usability testing, 176,
184. See also
accessibility testing

testing becoming a test
subject, 339
user interfaces, 176
comfort, 182
consistency, 180
correctness, 183
designing, 177
flexibility, 181
intuitive, 179
standards, 178
traits of good Ul, 178
Web sites, 213-215
Use It Web site, 213
usefulness, 184
metrics, 310
Web sites, 213-215

user assistance, 30

user education, 30

user interfaces, 176

accessibility testing
disabled users, 184
legal issues, 185
making accessible,
186

Altair 8800 (MITS),
179
comfort, 182
consistency, 180
correctness, 183
designing, 177
flexibility, 181
intuitive, 179
standards, 178
traits of good UI, 178
usefulness, 184
user’'s manuals, 191.
See also documenta-
tion

Vv

validation, 48
variables (state), 84-85
variance, 14
VCRs, configuration
testing, 141
verification, 48
automated testing, 233
software testing, 239
video resolution (Web
sites), 212
View Source command
(shortcut menu), 209
viewers, code
debuggers, 223
viewing
data (protocol), 222
source code, 209
visual impairments,
185
Visual Test (automated
testing tool), 232

w

walkthroughs
(reviews), 97
warranties, 190
waterfall model, 33
Web site Garage Web
site, 215
Web sites
accessibility features,
187
ACM, 101
ALT text, 204
American National
Standards Institute,
332
American Society for
Quality, 332
ANSI, 101
Apple, 202
authoring, 200
automation, 215
browsers, 211-212
BugNet, 341
client-side
programming, 210
color depth, 212
complexity, 201-202
consistency, 214
content, 210, 214
database-driven, 210
download times, 214
features, 201-202, 209
frames, 215
generating
programmatically, 210
GVU, 213
hardware platforms, 211
1IEC, 101
IEEE, 101
IEEE standards, 271

388

Web sites

International
Conference on
Software Testing, 340

International
Organization for
Standardization, 332

ISO, 101

Macmillan Computer
Publishing, 343

Mercury Interactive,
233

modem speed, 212

NCITS, 101

Net Mechanic, 215

orphan pages, 205, 214

professional
organizations, 341

QA Forums, 341

Quality Assurance
Institute, 340

Rational Software
Corporation, 233

Risks Digest, 341

Second World Congress
for Software Quality
(2WCSQ), 341

security, 210-211

Segue Software, 233

SEI, 330

server-side
programming, 210

servers, 210

Software Division of the
American Society for
Quality, 340

Software Research, Inc.,
340

Software Testing
Hotlist, 341

Software Testing Online
Resources, 341

spell checking, 204

Software Quality
Engineering, 340
testing, 200-202
advertisements, 206
approaches, 202
black-box testing,
202-207
compatibility testing,
211-213
configuration testing,
211-213
forms, 206
graphics, 205
gray-box testing,
207-209
hit counters, 206
hyperlinks, 204-205
scrolling marquee
text, 206
searches, 206
state tables, 203
text, 204
tools, 215
usability testing,
213-215
white-box testing,
209-211
text, 212
U.S. Professional
Development Institute,
340
usability, 213-215
Use It, 213
video resolution, 212
Web site Garage, 215

what you see is what
you get (WYSIWYG),
184

white-box testing, 55,
115

code considerations,
120

code coverage
analyzers, 120
path testing, 122-123
statement/line
coverage, 121
data considerations, 116
data flow coverage,
117
error forcing, 119
Sformulas and
equations, 118
dynamic, 108-110
risk, 56
static, 94
advantages, 94-95
Sformal reviews,
95-97
misconceptions, 95
sub-boundaries, 118
tools, 222
Web sites, 209-211
Windows
accessibility features,
187
Certified for Microsoft
Windows logo, 152
DDE/OLE, 155
Windows 98, 168
Windows Add New
Hardware Wizard, 134
Windows Paint, 84
Windows Paint
Attributes dialog box,
78
wizards, 192
Macro Setup, 228-229
Windows Add New
Hardware, 134
word lists, 162
alphabetizing
sorting, 162

zero condition
389

wrong condition, 79

WYSIWYG (what you
see is what you get),
184

X-Y-2

Y2K bug, 13

zero condition, 78

