
HAL Id: hal-00757488
https://hal.inria.fr/hal-00757488

Submitted on 28 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contracts for System Design
Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone,

Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli,
Werner Damm, Thomas Henzinger, Kim Guldstrand Larsen

To cite this version:
Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste Raclet, et al..
Contracts for System Design. [Research Report] RR-8147, INRIA. 2012, pp.65. �hal-00757488�

https://hal.inria.fr/hal-00757488
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
81

47
--

FR
+E

N
G

RESEARCH
REPORT
N° 8147
November 2012

Project-Teams S4

Contracts for Systems
Design
Albert Benveniste, Benoît Caillaud, Dejan Nickovic
Roberto Passerone, Jean-Baptiste Raclet, Philipp Reinkemeier
Alberto Sangiovanni-Vincentelli, Werner Damm
Tom Henzinger, Kim Larsen

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Contracts for Systems Design

Albert Benveniste∗, Benoît Caillaud†, Dejan Nickovic‡

Roberto Passerone§, Jean-Baptiste Raclet¶, Philipp Reinkemeier‖

Alberto Sangiovanni-Vincentelli∗∗, Werner Damm††

Tom Henzinger‡‡, Kim Larsen

Project-Teams S4

Research Report n° 8147 — November 2012 — 64 pages

This work was funded in part by the European STREP-COMBEST project number 215543, the European projects CESAR of the ARTEMIS Joint
Undertaking and the European IP DANSE, the Artist Design Network of Excellence number 214373, the MARCO FCRP TerraSwarm grant, the iCyPhy
program sponsored by IBM and United Technology Corporation, the VKR Center of Excellence MT-LAB, and the German Innovation Alliance on Embedded
Systems SPES2020.

∗ INRIA, Rennes, France. corresp. author: Albert.Benveniste@inria.fr
† INRIA, Rennes, France
‡ Austrian Institute of Technology (AIT)
§ University of Trento, Italy
¶ IRIT-CNRS, Toulouse, France
‖ Offis and University of Oldenburg
∗∗ University of California at Berkeley
†† Offis and University of Oldenburg
‡‡ IST Austria, Klosterneuburg

Aalborg University, Danmark

Abstract: Systems design has become a key challenge and differentiating factor over the last decades
for system companies. Aircrafts, trains, cars, plants, distributed telecommunication military or health care
systems, and more, involve systems design as a critical step. Complexity has caused system design times
and costs to go severely over budget so as to threaten the health of entire industrial sectors. Heuristic
methods and standard practices do not seem to scale with complexity so that novel design methods and
tools based on a strong theoretical foundation are sorely needed.
Model-based design as well as other methodologies such as layered and compositional design have been
used recently but a unified intellectual framework with a complete design flow supported by formal
tools is still lacking albeit some attempts at this framework such as Platform-based Design have been
successfully deployed.
Recently an ”orthogonal” approach has been proposed that can be applied to all methodologies proposed
thus far to provide a rigorous scaffolding for verification, analysis and abstraction/refinement: contract-
based design. Several results have been obtained in this domain but a unified treatment of the topic that
can help in putting contract-based design in perspective is still missing. This paper intends to provide
such treatment where contracts are precisely defined and characterized so that they can be used in design
methodologies such as the ones mentioned above with no ambiguity. In addition, the paper provides an
important link between interfaces and contracts to show similarities and correspondences. Examples of
the use of contracts in design are provided as well as in depth analysis of existing literature.

Key-words: system design, component based design, contract, interface.

Contrats pour la conception de systèmes
Résumé : Cet article fait le point sur le concept de contrat pour la conception de systèmes. Les contrats que nous proposons
portent, non seulement sur des propriétés de typage de leurs interfaces, mais incluent une description abstraite de comportements.
Nous proposons une méta-théorie, ou, si l’on veut, une théorie générique des contrats, qui permet le développement séparé de
sous-systèmes. Nous montrons que cette méta-théorie se spécialise en l’une ou l’autre des théories connues.

Mots-clés : conception des systèmes, composant, contrat, interface.

Contracts for System Design 4

CONTENTS

I Introduction 6
I-A The Present: System Design 6
I-B The Future: CPS and SoS 6
I-C The Need for a Methodological Effort . 6
I-D Contract based design 7
I-E Reader’s guide 7

II System Design Challenges 8
II-A Complexity of Systems 8
II-B Complexity of OEM-Supplier Chains . 9
II-C Managing Requirements 9
II-D Managing Risks 10
II-E System-wide Optimization 10

III How Challenges have been addressed so far 10
III-A Complexity of Systems and System-

wide Optimization 10
III-A1 Layered design 11
III-A2 Component-based design . . 11
III-A3 The V-model process 11
III-A4 Model-Based Design 12
III-A5 Virtual Integration 12
III-A6 Platform Based Design . . . 13

III-B Complexity of OEM-Supplier Chains:
Standardization and Harmonization . . . 13
III-B1 Standardization of design

entities 13
III-B2 Harmonization of processes

and certification 14
III-C Managing Requirements: Traceability

and Multiple Viewpoints 14
III-D Cross-company Shared Risk Management 14
III-E The Need for Contracts 15

IV Contracts: what? why? where? and how? 16
IV-A Contracts 16

IV-A1 Components and their Envi-
ronment, Contracts 16

IV-B Contract Operators 17
IV-B1 Contract Composition and

System Integration 17
IV-B2 Contract Refinement and In-

dependent Development . . . 18
IV-B3 Contract Conjunction and

Viewpoint Fusion 18
IV-C Contracts in requirement engineering . . 19
IV-D Contract Support for Design Method-

ologies 20
IV-D1 Supporting open systems . . 20
IV-D2 Managing Requirements and

Fusing Viewpoints 20
IV-D3 Design Chain Management,

Re-using, and Independent
Development 21

IV-D4 Deployment and Mapping . . 21
IV-E Bibliographical note 23

V A Mathematical Meta-theory of Contracts 24
V-A Components and their composition . . . 24
V-B Contracts 25
V-C Refinement and conjunction 25
V-D Contract composition 26
V-E Quotient 27
V-F Discussion 27
V-G Observers 27
V-H Bibliographical note 28

VI Panorama of concrete theories 29

VII Panorama: Assume/Guarantee contracts 29
VII-A Dataflow A/G contracts 30
VII-B Capturing exceptions 30
VII-C Dealing with variable alphabets 31
VII-D Synchronous A/G contracts 32
VII-E Observers 32
VII-F Discussion 32
VII-G Bibliographical note 32

VIII Panorama: Interface theories 33
VIII-A Components as i/o-automata 33
VIII-B Interface Automata with fixed alphabet 34
VIII-C Modal Interfaces with fixed alphabet . . 35
VIII-D Modal Interfaces with variable alphabet 37
VIII-E Projecting and Restricting 38
VIII-F Observers 40
VIII-G Bibliographical note 40

IX Panorama: Timed Interface Theories 42
IX-A Components as Event-Clock Automata . 42
IX-B Modal Event-Clock Specifications . . . 43
IX-C Bibliographical note 43

X Panorama: Probabilistic Interface Theories 44
X-A Components as Probabilistic Automata . 44
X-B Simple Modal Probabilistic Interfaces . 45
X-C Bibliographical note 45

XI The Parking Garage, an example in Require-
ments Engineering 45

XI-A The contract framework 45
XI-B Top level requirements 46
XI-C Formalizing requirements as contracts . 46
XI-D Sub-contracting to suppliers 48
XI-E The four “C” 49

XI-E1 Consistency & Compatibility 49
XI-E2 Correctness 50
XI-E3 Completeness 50

XI-F Discussion 50

RR n° 8147

Contracts for System Design 5

XII Contracts in the context of AUTOSAR 50
XII-A The AUTOSAR context 50
XII-B The contract framework 51
XII-C Exterior Light Management System . . 51

XII-C1 Function and timing 51
XII-C2 Safety 56

XII-D Integrating Contracts in AUTOSAR . . . 58
XII-E Summary and discussion 59

XIII Conclusion 59
XIII-A What contracts can do for the designer 59
XIII-B Status of research 59
XIII-C Status of practice 59
XIII-D The way forward 59

References 60
*

RR n° 8147

Contracts for System Design 6

I. INTRODUCTION

A. The Present: System Design

System companies such as automotive, avionics and con-
sumer electronics companies are facing significant difficulties
due to the exponentially raising complexity of their products
coupled with increasingly tight demands on functionality,
correctness, and time-to-market. The cost of being late to
market or of imperfections in the products is staggering as
witnessed by the recent recalls and delivery delays that system
industries had to bear.

In 2010, Toyota had to recall 10 Million cars worldwide
for reasons that ranged from the infamous sticky accelerator
pedals to steering and engine problems. The last recall at
the end of August 2010 was for the engine control module.
Toyota is not alone in this situation. Most of the automotive
makers had one or more major recalls in the recent past
(see e.g., http://www.autorecalls.us) involving electronics as
well as mechanical parts. Boeing and Airbus Industries had
significant delays in the delivery of their latest planes (787
and A380). For the A380, underlying causes were cited as
issues in the cabling system, configuration management and
design process. In particular, the complexity of the cabin
wiring (100,000 wires and 40,300 connectors) was considered
a major issue (see http://en.wikipedia.org/wiki/Airbus_A380).
The delays caused the departure of both the EADS and Airbus
CEOs and of the program manager for the A380 and caused an
overall earning shortfall of 4.8 Billion Euros. Boeing originally
planned the first flight of the 787 for August 2007 (see
http://en.wikipedia.org/wiki/Boeing_787), but after a stream
of delay announcements, the actual first flight occurred on
December 15, 2009. The delays were caused by a number of
unfortunate events and design errors and caused at least a 2.3
Billion USD write-off not counting the claim of Air India of
1 Billion USD damages for delayed delivery and the revenue
shortfalls.

These are examples of the devastating effects that design
problems may cause. The specific root causes of these prob-
lems are complex and relate to a number of issues ranging
from design processes and relationships with different depart-
ments of the same company and with suppliers to incomplete
requirement specification and testing.

B. The Future: CPS and SoS

Many products and services require to take into considera-
tion the interactions of computational and physical processes.
Systems where this interaction is tight and needs special care
are called Cyber-Physical Systems (CPS) [133]. The broad
majority of these new applications can be classified as “dis-
tributed sense and control systems” that go substantially be-
yond the “compute” or “communicate” functions, traditionally
associated with information technology. These applications
have the potential to radically influence how we deal with a
broad range of crucial problems facing our society today: for
example, national security and safety, including surveillance,
energy management and distribution, environment control,

efficient and reliable transportation and mobility, and effective
and affordable health care. A recurring property of these
applications is that they engage all the platform components
simultaneously—from data and computing services on the
cloud of large-scale servers, data gathering from the sensory
swarm, and data access on mobile devices—with significant
heterogeneity. These large scale systems composed of subsys-
tems that are themselves systems are now called Systems of
Systems (SoS) and are heavily investigated.

As the complexity of these systems increases, our inability
to rigorously model the interactions between the physical and
the cyber sides creates serious vulnerabilities. Systems become
unsafe, with disastrous inexplicable failures that could not have
been predicted. The challenges in the realization and operation
of these CPS and SoS are manifold, and cover a broad range of
largely unsolved design and run-time problems. These include:
modeling and abstraction, verification, validation and test,
reliability and resiliency, multi-scale technology integration
and mapping, power and energy, security, diagnostics, and
run-time management. Failure to address these challenges
in a cohesive and comprehensive way will most certainly
delay if not prohibit the widespread adoption of these new
technologies.

C. The Need for a Methodological Effort

We believe the most promising means to address the chal-
lenges in systems engineering is to employ structured and
formal design methodologies that seamlessly and coherently
combine the various dimensions of the design space (be it
behavior, space or time), that provide the appropriate abstrac-
tions to manage the inherent complexity, and that can pro-
vide correct-by-construction implementations. The following
technology issues must be addressed when developing new
approaches to the design of complex systems, CPS and SoS:
• The overall design flows for heterogeneous systems—

meant here both in a technical and also an organiza-
tional sense—and the associated use of models across
traditional boundaries are not well developed and un-
derstood. Relationships between different teams inside a
same company, or between different stake-holders in the
supplier chain, are not well supported by solid technical
descriptions for the mutual obligations.

• System requirement capture and analysis is in large
part a heuristic process, where the informal text and
natural language-based techniques in use today are facing
significant challenges. Formal requirement engineering
is in its infancy: mathematical models, formal analysis
techniques and links to system implementation must be
developed.

• Dealing with variability, uncertainty, and life-cycle issues,
such as extensibility of a product family, are not well-
addressed using available systems engineering methodol-
ogy and tools.

• Design-space exploration is rarely performed adequately,
yielding suboptimal designs where the architecture se-
lection phase does not consider extensibility, re-usability,

RR n° 8147

http://www.autorecalls.us
http://en.wikipedia.org/wiki/Airbus_A380
http://en.wikipedia.org/wiki/Boeing_787

Contracts for System Design 7

and fault tolerance to the extent that is needed to reduce
cost, failure rates, and time-to-market.

• The verification and validation of “complex systems,”
particularly at the system integration phase, where any
interactions are complicated and extremely costly to
address, is a common need in defense, automotive, and
other industries.

The challenge is to address the entire process and not to
consider only point solutions of methodology, tools, and
models that ease part of the design.

D. Contract based design

It is our goal to offer a new approach to the system design
problem that is rigorous and effective in dealing with the
problems and challenges described before, and that, at the
same time, does not require a radical change in the way
industrial designers carry out their task as it cuts across design
flows of different type: contract-based design.

Contracts in the layman use of the term are established
when an OEM must agree with its suppliers on the subsystem
or component to be delivered. Contracts involve a legal part
binding the different parties and a technical annex that serves
as a reference regarding the entity to be delivered by the
supplier—in this work we focus on the technical facet of
contracts. Contracts can also be used through their technical
annex in concurrent engineering, when different teams develop
different subsystems or different aspects of a system within a
same company.

In this paper, we argue that contracts can be actually used
almost everywhere and at nearly all stages of system design,
from early requirements capture, to embedded computing
infrastructure and detailed design involving circuits and other
hardware. Contracts explicitly handle pairs of properties, re-
spectively representing the assumptions on the environment
and the guarantees of the system under these assumptions.
Intuitively, a contract is a pair

C = (A,G) of {Assumptions, Guarantees},

characterizing in a formal way 1) under which context the
design is assumed to operate, and 2) what its obligations are.
Assume/Guarantee reasoning has been known for quite some
time, but it has been used mostly as verification mean for the
design of software. Our purpose is more ambitious: contract
based design with explicit assumptions is a philosophy that
should be followed all along the design, with all kinds of
models, whenever necessary. Here, the models we mean are
rich—not only profiles, types, or taxonomy of data, but also
models describing the functions, performances of various
kinds (time and energy), and safety. The consideration of rich
contracts as above in the industry is still in its infancy. To
make contract-based design a technique of choice for system
engineers, we must develop:
• Mathematical foundations for contract representation and

requirement engineering that enable the design of frame-
works and tools;

• A system engineering framework and associated method-
ologies and tool sets that focus on system requirement
modeling, contract specification, and verification at mul-
tiple abstraction layers. The framework should address
cross-boundary and cross-organizational design activities.

This paper intends to provide a unified treatment of contracts
where they are precisely defined and characterized so that they
can be used in design with no ambiguity. In addition, the paper
provides an important link between interfaces and contracts
to show similarities and correspondences. Examples of the use
of contracts in design will be provided as well as in depth
analysis of existing literature.

E. Reader’s guide

The organization of the paper is explained in Table I.
In Section II a review of the challenges that are faced by the

system industry is proposed, followed, in Section III, by an
analysis of the design methodologies that have been deployed
to cope with them.

Section IV develops a primer on contracts by using a very
simple example requiring only elementary mathematical back-
ground to be followed. Its purpose is to smoothly introduce
the different concepts and operations we need for a contract
framework—the restricted case considered is by no means
representative of the kind of system we can address using
contracts. We then introduce a motivating example repre-
sentative of requirement engineering. In a third sub-section,
“requirements” on a theory of contracts are identified from
analyzing what is expected from contract-based design, and
in particular the support for: 1) the development of different
aspects or viewpoints of a system such as its function, safety,
timing, and resource use, by different teams and how to fuse
these different aspects, and 2) the possibility for different
suppliers to develop independently the different subsystems
subcontracted to them. This section concludes with the related
bibliography.

Section V is the cornerstone of this paper and it is a new
vista on contracts. The so-called “meta-theory” of contracts
is introduced and developed in detail. By meta-theory we
mean the collection of concepts, operations, and properties
that any formal contract framework should offer. Concepts,
operations, and properties are thus stated in a fairly generic
way. Every concrete framework compliant with this meta-
theory will inherit these generic properties. The meta-theory
focuses on assumptions and guarantees, its formalizes how
different aspects or viewpoints of a specification can be
integrated, and on which basis independent development by
different suppliers can be safely performed.

So far the meta-theory is non effective in that it is not
said how component and contracts are effectively represented
and manipulated. The subsequent series of sections propose a
panorama of major concrete contract frameworks. Section VII
develops the Assume/Guarantee contracts. This framework is
the most straightforward instance of the meta-theory. It deals
with pairs (A,G) of assumptions and guarantees explicitly,
A and G being both expressed as properties. This framework

RR n° 8147

Contracts for System Design 8

Section methodological / tutorial fundamental technical application
Section II
challenges
Section III
addressing the challenges
Section IV
why contracts, where, and how?

Section V
contract meta-theory

Section VII
Assume/Guarantee contracts
Section VIII
Interface theories
Section IX
timed
Section X
probabilistic

Section XI
requirements engineering
Section XII
AUTOSAR

Section II
↓

Section III ↘
Section IV↙

Section V↙ ↘
Section VII — Section VIII
↓ ↓

Section XII Section XI

Section IX — Section X
↓ ↓

Section Section

Section II
↓

Section III ↘
Section IV↙

Section V↙ ↘
Section XI Section XII

Table I
READER’S GUIDE: CATEGORIZATION OF THE DIFFERENT SECTIONS (TOP), AND

DEPENDENCIES (BOTTOM LEFT: IN-DEPTH READING; BOTTOM-RIGHT: QUICK READING)

is flexible in that it allows for different styles of description
of such properties—computational efficiency depends on the
style adopted. Section VIII develops the Interface theories,
in which assumptions and guarantees are specified by means
of a single object: the interface. Interface theories turn out
to include the most effective frameworks. They can easily be
adapted to encompass timing (Section IX) and probabilistic
(Section X) characteristics of systems.

In Section XI, a toy example in requirements engineering
is developed. This example is simple but rich enough to illus-
trate the very difficulties in formalizing requirements. It also
illustrates well the added value of contract based requirements
engineering. First, the different responsibilities (assumptions
versus obligation or guarantees) that requirement implicit refer
to are made explicit and captured in our contract framework.
Second, contracts offer a formal meaning for documents of
requirements structured into chapters or viewpoints. Contracts
offer formal support for checking important properties such
as consistency, compatibility, completeness, and more. Finally,
contracts offer significant assistance in the process of deduc-
ing, from the top specification, an architecture of specifications
for the different sub-systems for independent development.
While our application example is a toy one, is it nevertheless
too complex for dealing with it by hand. We handle it by using
a proof-of-concept tool for contract management.

Finally, Section XII develops a case study in the context
of AUTOSAR. AUTOSAR is a recently established standard
in the automobile sector. This standard was developed with
the objective of allowing for better flexibility in component
reuse and OEM/supplier relations. This section illustrates how
contracts can be used to break into simple pieces of reasoning
the difficult task of correct system integration.

II. SYSTEM DESIGN CHALLENGES

Many challenges face the system community to deliver
products that are reliable and effective. We summarize some
of them below.

A. Complexity of Systems

The ever-expanding use of electronic embedded systems to
control increasingly many aspects of the real world, and the
trend to interconnect more and more such systems (often from
different manufacturers) into a global network are creating a
challenging scenario for system designers. In this scenario, the
three challenges that are taking center stage are as follows.

The Hardware Platform Complexity: Most system com-
panies rely on Components off-the-shelf (COTS) and pro-
grammability to implement their applications. For companies
who build “physically large” systems such as avionics and au-
tomotive companies, the complexity of the hardware platform

RR n° 8147

Contracts for System Design 9

Design task Tasks Tasks Tasks Tasks Tasks Tasks
delayed delayed delayed causing delay causing delay causing delay
automotive automation medical automotive automation medical

System integration 63.0% 56.5% 66.7% 42.3% 19.0% 37.5%
test, and verification
System architecture 29.6% 26.1% 33.3% 38.5% 42.9% 31.3%
design and specification
Software application 44.4% 30.4% 75.0% 26.9% 31.0% 25.0%
and/or middleware
development and test
Project management 37.0% 28.3% 16.7% 53.8% 38.1% 37.5%
and planning

Table II
DIFFICULTIES RELATED TO SYSTEM INTEGRATION

is reflected in the number of Electronic Control Units and in
their interconnections. For a top-of-the-line automobile, the
number of processors to manage and interconnect is above
50. The layout of the cables that connect these processing
elements with sensors and actuators is a serious concern. Initial
production of the Airbus A380 was troubled by delays in part
attributed to the 530 km (330 mi) of wiring in each aircraft.

The Embedded Software Complexity: Given the cost and
risks associated to developing hardware solutions, system com-
panies are selecting hardware platforms that can be customized
by reconfiguration and/or by software programmability. In
particular, software is taking the lion’s share of the implemen-
tation budgets and cost. In cell phones, more than 1 million
lines of code is standard today, while in automobiles the
estimated number of lines by 2010 is in the order of hundreds
of millions and in the Boeing 787 is in the order of 20 million
lines. However, as this happens, the complexity explosion of
the software component causes serious concerns for the final
quality of the products and the productivity of the engineering
teams.

The Integration Complexity: A standard technique to deal
with complexity consists in decomposing top-down the system
into subsystems. This approach, which has been customar-
ily adopted by the semiconductor industry for years, has a
limitation as a designer or a group of designers has to fully
comprehend the entire system and to partition appropriately its
various parts, a difficult task given the enormous complexity
of today’s systems.

Hence, the future is one of developing systems by compos-
ing pieces that all or in part have already been predesigned
or designed independently by other design groups or even
companies. This has been done routinely in vertical design
chains for example in the avionics and automotive sectors,
albeit in a heuristic and ad hoc way. The resulting lack of an
overall understanding of the interplay of the subsystems and of
the difficulties encountered in integrating very complex parts
cause system integration to become a nightmare in the system
industry, as demonstrated by Table II.1

In addition, heterogeneity comes into play. Integration of

1VDC research, Track 3: Embedded Systems Market Statistics Exhibit II-13
from volumes on automotive/industrial automation/medical, 2008

electronic and mechanical design tools and frameworks will be
essential in the near future. Integration of chemical, electronic,
and biology tools will be essential in the further future for
nano-systems. Data integration and information flow among
the companies forming the chain have to be supported. In
other words, it is essential that the fundamental steps of system
design (functional partitioning, allocation on computational
resources, integration, and verification) be supported across
the entire design development cycle and across different dis-
ciplines.

B. Complexity of OEM-Supplier Chains

The source of the above problems is clearly the increase in
complexity. It is, however, also the difficulty of the OEMs in
managing the integration and maintenance process with sub-
systems that come from different suppliers who use different
design methods, different software architectures, and different
hardware platforms.

There are also multiple challenges in defining technical
annexes to commercial contracts between OEM and suppli-
ers. Specifications used for procurement should be precise,
unambiguous, and complete. However, a recurrent reason for
failures causing deep iterations across supply chain boundaries
rests in incomplete characterizations of the environment of
the system to be developed by the supplier, such as missing
information about failure modes and failure rates, missing in-
formation on possible sources for interferences through shared
resources, and missing boundary conditions. This highlights
the need to explicate assumptions on the design context in
OEM-supplier commercial contracts. In light of an increased
sharing of hardware resources by applications developed by
multiple suppliers, a contract-based approach seems indispens-
able for resolving liability issues and allowing applications
with different criticality levels to co-exist (such as ASIL
levels[175], [13] in automotive).

C. Managing Requirements

We argued that the design chains should connect seamlessly
to minimize design errors and time-to-market delays. Yet, the
boundaries among companies and between different divisions
of the same company are often not as clean as needed and
design specs move from one company (or one division) to the

RR n° 8147

Contracts for System Design 10

next in non-executable and often unstable and imprecise forms,
thus yielding misinterpretations and consequent design errors.
In addition, errors are often caught only at the final integration
step as the specifications were incomplete and imprecise;
further, nonfunctional specifications (e.g., timing, power con-
sumption, size) are difficult to trace. Further, it is common
practice to structure system level requirements into several
“chapters”, “aspects”, or “viewpoints”. Examples include the
functions, safety, timing, and energy viewpoints. Quite often,
these different viewpoints are developed by different teams
using different skills, frameworks, and tools. Yet they are not
unrelated, as we already mentioned. Without a clean approach
to handle multiple viewpoints, the only sensible way is to
collect these viewpoints into a single requirements document,
which is then seen as a flat collection of requirements for
subsequent design. Since this is clearly impracticable, the
common practice instead is to discard some of the viewpoints
in a first stage, e.g., by considering only functions and safety.
Designs are then developed based on these only viewpoints.
Other viewpoints are subsequently taken into account (timing,
energy), thus resulting in late and costly modifications and
re-designs.

Requirement engineering is a discipline that aims at improv-
ing this situation by paying close attention to the management
of the requirement descriptions and traceability support (e.g.,
using commercial tools such as DOORS2 in combination
with Reqtify3) and by inserting whenever possible precise
formulation and analysis methods and tools. Research in this
area is active but we believe more needs to be done to make
this essential step a first class citizen in system design. Indeed,
if the specification quality is low, then the entire design process
is marred since the very beginning! The overall system product
specification is somewhat of an art today since to verify its
completeness and its correctness there is little that it can be
used to compare with.

D. Managing Risks

System design processes are highly concurrent, distributed,
and typically multi-domain, often involving more than one
hundred sub-processes. The complexity of the entire design
process and of the relationships between players in the supply
chain creates the need to elaborate risk sharing and risk
management plans because of the potential enormity of the
impact that design errors and supplier solidity may have on
the economics of a company. Risk management has thus
become a requirement of most of public companies, as fi-
nancial, social and political risks are analyzed and appropriate
countermeasures have to be prepared as a requirement from
the regulatory bodies. Risk mitigation measures typically cover
all phases of design processes, ranging from assuring high
quality initial requirements to early assessments of risks in
meeting product requirements during the concept phase, to
enforcing complete traceability of such requirements with

2 http://www-01.ibm.com/software/awdtools/doors/productline/
3http://etc

requirements management tools, to managing consistency and
synchronization across concurrent sub-processes using PLM
tools.4 If we will be able to change the design process
along the lines of more formal approaches, better complexity
handling, better requirement engineering, then risks will be
substantially lower than they are today.

E. System-wide Optimization

We believe that since the design process is fragmented,
product optimization is rarely carried out across more than
one company boundary and even then, it is limited due to:
• The lack of appropriate models encompassing both func-

tional and non-functional (Quality of Service) aspects,
covering both internal use and export outside the com-
pany;

• The time pressure to meet the product deadlines;
• The functional description that is over-constrained by

architectural considerations which de facto eliminate po-
tentially interesting implementation alternatives.

If the design process were carried out as in a unique, well-
integrated, virtual company including all the players shown
above, the overall ecosystem would greatly benefit. The issue
here is to allow a reasonably efficient design space exploration
by providing a framework where different architectures could
be quickly assembled and evaluated at each layer of abstraction
corresponding to the design task being considered in the chain.

III. HOW CHALLENGES HAVE BEEN ADDRESSED SO FAR

In this section we present a review and a critical analysis
of the design methodologies that have been deployed to cope
with the challenges exposed in the previous section.

A. Complexity of Systems and System-wide Optimization

Multiple lines of attack have been developed by research
institutions and industry to cope with the exponential growth in
systems complexity, starting from the iterative and incremental
development several decades ago [123]. Among them, of
particular interest to the development of embedded controllers
are: Layered design, Component-based design, the V-model
process, model-based development, virtual integration and
Platform-Based Design (PBD). There are two basic princi-
ples followed by these methods: abstraction/refinement and
composition/decomposition. Abstraction and refinement are
processes that relate to the flow of design between different
layers of abstraction (vertical process) while composition
and decomposition operate at the same level of abstraction
(horizontal process). Layered design, the V-model process,
and model-based development focus on the vertical process
while component-based design deals principally with the hor-
izontal process. PBD combines the two aspects in a unified
framework and hence subsumes and can be used to integrated

4 PLM: Product Lifecycle Management. PLM centric design is used in
combination with virtual modeling and digital mockups. PLM acts as a data
base of virtual system components. PLM centric design is, for example,
deployed at Dassault-Aviation http://www.dassault-aviation.com/en/aviation/
innovation/the-digital-company/digital-design/plm-tools.html?L=1

RR n° 8147

http://www-01.ibm.com/software/awdtools/doors/productline/
http://etc
http://www.dassault-aviation.com/en/aviation/innovation/the-digital-company/digital-design/plm-tools.html?L=1
http://www.dassault-aviation.com/en/aviation/innovation/the-digital-company/digital-design/plm-tools.html?L=1

Contracts for System Design 11

the other methodologies. Contracts are ideal tools to solidify
both vertical and horizontal processes providing the theoretical
background to support formal methods.

1) Layered design: Layered design copes with complexity
by focusing on those aspects of the system pertinent to support
the design activities at the corresponding level of abstraction.
This approach is particularly powerful if the details of a
lower layer of abstraction are encapsulated when the design
is carried out at the higher layer. Layered approaches are well
understood and standard in many application domains. As
an example, consider the AUTOSAR standard.5 This standard
defines several abstraction layers. Moving from “bottom”
to “top”, the micro-controller abstraction layer encapsulates
completely the specifics of underlying micro-controllers, the
second layer abstracts from the concrete configuration of the
Electronic Control Unit (ECU), the employed communication
services and the underlying operating system, whereas the
(highest) application layer is not aware of any aspect of
possible target architectures, and relies on purely virtual com-
munication concepts in specifying communication between
application components. Similar abstraction levels are defined
by the ARINC standard in the avionic domains.

The benefits of using layered design are manifold. Using the
AUTOSAR layer structure as example, the complete separation
of the logical architecture of an application (as represented by
a set of components interconnected using the so-called virtual
function bus) and target hardware is a key aspect of AUTOSAR,
in that it supports decoupling of the number of automotive
functions from the number of hardware components. In par-
ticular, it is flexible enough to mix components from different
applications on one and the same ECU. This illustrates the
double role of abstraction layers, in allowing designers to focus
completely on the logic of the application and abstracting from
the underlying hardware, while at the same time imposing a
minimal (or even no) constraint on the design space of possible
hardware architectures. In particular, these abstractions allow
the application design to be re-used across multiple platforms,
varying in number of bus-systems and/or number and class of
ECUs. These design layers can, in addition, be used to match
the boundaries of either organizational units within a company,
or to define interfaces between different organizations in the
supply chain. The challenge, then, rests in providing the proper
abstractions of lower-level design entities.

2) Component-based design: Whereas layered designs de-
compose complexity of systems “vertically”, component-based
approaches reduce complexity “horizontally” whereby designs
are obtained by assembling strongly encapsulated design enti-
ties called “components” equipped with concise and rigorous
interface specifications. Re-use can be maximized by finding
the weakest assumptions on the environment sufficient to es-
tablish the guarantees on a given component implementation.
While these interface specifications are key and relevant for
any system, the “quality attribute” of perceiving a subsystem
as a component is typically related to two orthogonal criteria,

5See http://www.autosar.org/

that of “small interfaces”, and that of minimally constraining
the deployment context, so as to maximize the potential for re-
use. “Small interfaces”, i.e., interfaces which are both small
in terms of number of interface variables or ports, as well
as “logically small”, in that protocols governing the invoca-
tion of component services have compact specifications not
requiring deep levels of synchronization, constitute evidence
of the success of encapsulation—still, small interfaces must
encompass dynamic properties of the system. The second
quality attribute is naturally expressible in terms of interface
specifications, where re-use can be maximized by finding the
weakest assumptions on the environment sufficient to establish
the guarantees on a given component implementation.

One challenge, then, for component-based design of em-
bedded systems, is to provide interface specifications that are
rich enough to cover all phases of the design cycle. This
calls for including non-functional characteristics as part of
the component interface specifications, which is best achieved
by using multiple viewpoints. Current component interface
models, in contrast, are typically restricted to purely functional
characterization of components, and thus cannot capitalize on
the benefits of virtual integration testing, as outlined above.

The second challenge is related to product line design,
which allows for the joint design of a family of variants of a
product. The aim is to balance the contradicting goals of striv-
ing for generality versus achieving efficient component im-
plementations. Methods for systematically deriving “quotient”
specifications to compensate for “minor” differences between
required and offered component guarantees by composing a
component with a wrapper component (compensating for such
differences as characterized by quotient specifications) exists
for restricted classes of component models [155].

3) The V-model process: A widely accepted approach to
deal with complexity of systems in the defense and trans-
portation domain is to structure product development processes
along variations of the V diagram originally developed for
defense applications by the German DoD.6

Its characteristic V-shape splits the product development
process into a design and an integration phase. Specifically,
following product level requirement analysis, subsequent steps
would first evolve a functional architecture supporting product
level requirements. Sub-functions are then re-grouped taking
into account re-use and product line requirements into a
logical architecture, whose modules are typically developed by
different subsystem suppliers. The realization of such modules
often involves mechanical, hydraulic, electrical, and electronic
system design. Subsequent phases would then unfold the
detailed design for each of these domains, such as the design
of the electronic subsystem involving among others the design
of electronic control units. These design phases are paralleled
by integration phases along the right-hand part of the V,
such as integrating basic- and application software on the
ECU hardware to actually construct the electronic control unit,
integrating the complete electronic subsystems, integrating the

6See e.g. http://www.v-model-xt.de

RR n° 8147

http://www.autosar.org/
http://www.v-model-xt.de

Contracts for System Design 12

mechatronic subsystem to build the module, and integrating
multiple modules to build the complete product. Not shown,
but forming an integral part of V-based development processes
are testing activities, where at each integration level test-
suites developed during the design phases are used to verify
compliance of the integrated entity to their specification.

This presentation is overly simplistic in many ways. The
design of electronic components in complex systems such
as aircrafts inherently involves multi-site, multi-domain and
cross-organizational design teams, reflecting, e.g., a partition-
ing of the aircraft into different subsystems (such as primary
and secondary flight systems, cabin, fuel, and wing), different
domains such as the interface of the electronic subsystem to
hydraulic and/or mechanical subsystems, control-law design,
telecommunications, software design, hardware design, diag-
nostics, and development-depth separated design activities car-
ried out at the OEM and supplier companies. This partitioning
of the design space (along perspectives and abstraction layers)
naturally lends itself to a parallelization of design activities,
a must in order to achieve timely delivery of the overall
product, leading often into the order of hundreds of concurrent
design processes. To summarize, while being popular and
widely referenced, the V-model process has become a “slogan”
hiding the complexity of actual design processes. In reality,
large system companies develop their own processes and then
struggle for their application, both in-house and across the
supplier chain.

4) Model-Based Design: Model-based design (MBD) is to-
day generally accepted as a key enabler to cope with complex
system design due to its capabilities to support early require-
ment validation and virtual system integration. MBD-inspired
design languages and tools such as SysML7 [149] and/or
AADL [152] for system level modeling, Catia and Model-
ica [93] for physical system modeling, Matlab-Simulink [118]
for control-law design, and UML8 [44], [147] Scade [32]
and TargetLink for detailed software design, depend on de-
sign layer and application class. The state-of-the-art in MBD
includes automatic code-generation, simulation coupled with
requirement monitoring, co-simulation of heterogeneous mod-
els such as UML and Matlab-Simulink, model-based analy-
sis including verification of compliance of requirements and
specification models, model-based test-generation, rapid pro-
totyping, and virtual integration testing as further elaborated
below.

In MBD today non-functional aspects such as performance,
timing, power or safety analysis are typically addressed in
dedicated specialized tools using tool-specific models, with
the entailed risk of incoherency between the correspond-
ing models, which generally interact. To counteract these
risks, meta-models encompassing multiple views of design
entities, enabling co-modeling and co-analysis of typically
heterogeneous viewpoint specific models have been developed.
Examples include the MARTE UML [148] profile for real-time

7http://www.omg.org/spec/SysML/
8http://www.omg.org/spec/UML/

system analysis, the SPEEDS HRC metamodel [156] and the
Metropolis semantic meta-model [19], [67], [16], [170]. In
Metropolis multiple views are accommodated via the concept
of “quantities” that annotate the functional view of a design
and can be composed along with subsystems using a suitable
algebra. The SPEEDS meta-model building on and extending
SysML has been demonstrated to support co-simulation and
co-analysis of system models for transportation applications
allowing co-assessment of functional, real-time and safety re-
quirements. It forms an integral part of the meta-model-based
inter-operability concepts of the CESAR reference technology
platform.9

Meta-modeling is also at the center of the model driven
(software) development (MDD) methodology. MDD is based
on the concept of the model-driven architecture (MDA), which
consists of a Platform-Independent Model (PIM) of the ap-
plication plus one or more Platform-Specific Models (PSMs)
and sets of interface definitions. MDA tools then support
the mapping of the PIM to the PSMs as new technologies
become available or implementation decisions change [146].
The Vanderbilt University group [119] has evolved an em-
bedded software design methodology and a set of tools based
on MDD. In their approach, models explicitly represent the
embedded software and the environment it operates in and
capture the requirements and the design of the application,
simultaneously, using domain-specific languages (DSL). The
generic modeling environment (GME) [119] provides a frame-
work for model transformations enabling easy exchange of
models between tools and offers sophisticated ways to sup-
port syntactic (but not semantic) heterogeneity. The KerMeta
metamodeling workbench [91] is similar in scope.

5) Virtual Integration: Rather than “physically” integrating
a system from subsystems at integration stages, model-based
design allows systems to be virtually integrated based on the
models of their subsystem and the architecture specification
of the system. Such virtual integration thus allows detecting
potential integration problems up front, in the early design
phases. Virtual system integration is often a source of het-
erogeneous system models, such as when realizing an aircraft
function through the combination of mechanical, hydraulic,
and electronic systems. Heterogeneous composition of models
with different semantics was originally addressed in Ptolemy
[88], Metropolis [20], [67], [16], [48], and in the SPEEDS
meta-model of heterogeneous rich components [65], [29], [31],
albeit with different approaches. Virtual integration involves
models of the functions, the computer architecture with its
extra-functional characteristics (timing and other resources),
and the physical system for control. Some existing frameworks
offer significant support for virtual integration: Ptolemy II,
Metropolis, and RT-Builder. Developments around Catia and
Modelica as well as the new offer SimScape by Simulink
provide support for virtual integration of the physical part at
an advanced level.

9www.cesarproject.eu

RR n° 8147

http://www.omg.org/spec/SysML/
http://www.omg.org/spec/UML/
www.cesarproject.eu

Contracts for System Design 13

6) Platform Based Design: Platform-based design was in-
troduced in the late 1980s to capture a design process that
could encompass horizontal (component-based design, virtual
integration) and vertical (layered and model-based design)
decompositions, and multiple viewpoints and in doing so,
support the supply chain as well as multi-layer optimization.

The idea was to introduce a general approach that could
be shared across industrial domain boundaries, that would
subsume the various definition and design concepts, and that
would extend it to provide a framework to reason about
design. Indeed, the concepts have been applied to a variety of
very different domains: from automotive, to System-on-Chip,
from analog circuit design, to building automation to synthetic
biology.

The basic tenets of platform-based design are as follows:
The design progresses in precisely defined abstraction layers;
at each abstraction layer, functionality (what the system is
supposed to do) is strictly separated from architecture (how
the functionality could be implemented). This aspect is clearly
related to layered design and hence it subsumes it.

Each abstraction layer is defined by a design platform. A
design platform consists of
• A set of library components. This library not only con-

tains computational blocks that carry out the appropriate
computation but also communication components that are
used to interconnect the computational components.

• Models of the components that represent a characteri-
zation in terms of performance and other non-functional
parameters together with the functionality it can support.
Not all elements in the library are pre-existing com-
ponents. Some may be “place holders” to indicate the
flexibility of “customizing” a part of the design that is
offered to the designer. In this case the models represent
estimates of what can be done since the components are
not available and will have to be designed. At times, the
characterization is indeed a constraint for the implementa-
tion of the component and it is obtained top-down during
the refinement process typical of layered designs. This
layering of abstractions based on mathematical models is
typical of model-based methods and the introduction of
non-functional aspects of the design relates to viewpoints.

• The rules that determine how the components can be
assembled and how the the functional and non-functional
characteristics can be computed given the ones of the
components to form an architecture.Then, a platform
represents a family of designs that satisfies a set of
platform-specific constraints [15]. This aspect is related
to component-based design enriched with multiple view-
points.

This concept of platform encapsulates the notion of re-use as
a family of solutions that share a set of common features (the
elements of the platform). Since we associate the notion of
platform to a set of potential solutions to a design problem, we
need to capture the process of mapping a functionality (what
the system is supposed to do) with the platform elements that
will be used to build a platform instance or an “architecture”

(how the system does what it is supposed to do). The strict
separation between function and architecture as well as the
mapping process have been highly leveraged in AUTOSAR.
This process is the essential step for refinement and provides a
mechanism to proceed towards implementation in a structured
way. Designs on each platform are represented by platform-
specific design models. A design is obtained by a designer’s
creating platform instances (architectures) via composing plat-
form components (process that is typical of component-based
design), by mapping the functionality onto the components of
the architecture and by propagating the mapped design in the
design flow onto subsequent abstraction layers that are dealt
with in the same way thus presenting the design process as
an iterative refinement. This last point dictates how to move
across abstraction layers: it is an important part of design space
exploration and offers a way of performing optimization across
layers. In this respect PBD supports multiple viewpoints in a
general way.

B. Complexity of OEM-Supplier Chains: Standardization and
Harmonization

So far the main answer to the complexity of OEM-supplier
chains has been standardization. Standardization concerns both
the design entities and the design processes, particularly
through the mechanism of certification.

1) Standardization of design entities: By agreeing on (do-
main specific) standard representations of design entities,
different industrial domains have created their own lingua
franca, thus enabling a domain wide shared use of design
entities based on their standardized representation. Exam-
ples of these standards in the automotive sector include the
recently approved requirement interchange format standard
RIF10, the AUTOSAR11 de-facto standard, the OSEK12 operat-
ing system standard, standardized bus-systems such as CAN13

and Flexray14, standards for “car2X” communication, and
standardized representations of test supported by ASAM15.
Examples in the aerospace domain include ARINC stan-
dards16 such as the avionics applications standard interface,
IMA, RTCA17 communication standards. In the automation
domain, standards for interconnection of automation devices
such as Profibus18 are complemented by standardized design
languages for application development such as Structured Text.

As standardization moves from hardware to operating sys-
tem to applications, and thus crosses multiple design layers,
the challenge increases to incorporate all facets of design
entities required to optimize the overall product, while at
the same time enabling distributed development in complex

10http://www.w3.org/2005/rules/wiki/RIF_Working_Group
11http://www.autosar.org/
12http://www.osek-vdx.org/
13http://www.iso.org/iso/search.htm?qt=Controller+Area+

Network&searchSubmit=Search&sort=rel&type=simple&published=true
14http://www.flexray.com/
15http://www.asam.net/
16http://www.aeec-amc-fsemc.com/standards/index.html
17http://www.rtca.org/
18http://www.profibus.com/

RR n° 8147

http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.autosar.org/
http://www.osek-vdx.org/
http://www.iso.org/iso/search.htm?qt=Controller+Area+Network&searchSubmit=Search&sort=rel&type=simple&published=true
http://www.iso.org/iso/search.htm?qt=Controller+Area+Network&searchSubmit=Search&sort=rel&type=simple&published=true
http://www.flexray.com/
http://www.asam.net/
http://www.aeec-amc-fsemc.com/standards/index.html
http://www.rtca.org/
http://www.profibus.com/

Contracts for System Design 14

supply chains. As an example, to address the different view-
points required to optimize the overall product, AUTOSAR
extended in transitioning from release 3.1 to 4 its capability
to capture timing characteristics of design entities, a key
prerequisite for assessing alternate deployments with respect
to their impact on timing. More generally, the need for overall
system optimization calls for the standardization of all non-
functional viewpoints of design entities, an objective yet to
be achieved in its full generality. in order to allow cross
layer optimization. Within the EDA domain, such richness
of design interface specifications is industrial practice. Within
the systems domain, the rich component model introduced in
the Integrated Projects SPEEDS tackles this key objective: in
covering multiple design layers (from product requirements to
deployment on target architectures) and in providing means of
associating multiple viewpoints with each design entity, it is
expressive enough to allow for cross-supply chain optimization
of product developments. This approach is further elaborated
and driven towards standardization in the Artemis flagship
project CESAR.

2) Harmonization of processes and certification: Harmo-
nizing or even standardizing key processes (such as devel-
opment processes and safety processes) provides for a fur-
ther level of optimization in interactions across the supply
chain. As an example, Airbus Directives and Procedures
(ADBs) provide requirements for design processes of equip-
ment manufactures. Often, harmonized processes across the
supply chain build on agreed maturity gates with incremental
acceptance testing to monitor progress of supplier development
towards final acceptance, often building on incremental proto-
types. Shared use of Product Lifcycle Management (PLM)19

databases across the supply chain offers further potentials
for cross-supply chain optimization of development processes.
Also, in domains developing safety related systems, domain
specific standards clearly define the responsibilities and duties
of companies across the supply chain to demonstrate func-
tional safety, such as in the ISO 2626220 for the automotive
domain, IEC 6150821 for automation, its derivatives Cenelec
EN 50128 and 5012622 for rail, and Do 178 B23 for civil
avionics.

Yet, the challenge in defining standards rests in balancing
the need for stability with the need of not blocking process
innovations. As an example, means for compositional con-
struction of safety cases are seen as mandatory to reduce
certification costs in the aerospace and rail domains. Similarly,
the potential of using formal verification techniques to cope
with increasing system complexity is considered in the move
from DO 178 B to DO 178 C standards.

19See [162] and also footnote 4.
20http://www.iso.org/iso/catalogue_detail.htm?csnumber=43464
21http://www.iec.ch/functionalsafety/
22http://www.cenelec.eu/Cenelec/CENELEC+in+action/Web+Store/

Standards/default.htm
23http://www.do178site.com/

C. Managing Requirements: Traceability and Multiple View-
points

Depending on application domains, up to 50% of all er-
rors result from imprecise, incomplete, or inconsistent and
thus unfeasible requirements. Requirements are inherently ill
structured. They must address all aspects of the system and
thus cannot be constrained by the lingua franca of a partic-
ular domain. They are fragmented in the form of large and
sometimes huge DOORS files,24 structured into viewpoints.
Two issues have thus been identified by systems industries as
essential for requirement management: powerful and flexible
traceability tools to relate requirements between them and to
link them to tests for validation purposes, and the development
of domain specific ontologies as part of the PLM suite.
Further, based on an assessment by the system companies
processes in the CESAR project25 and the German Embedded
Systems Innovation alliance26, and building on the finding of
the Integrated Project SPEEDS27, multiple viewpoints have
been categorized into perspectives and aspects to provide a
solid requirement and property modeling scaffold. Perspectives
are viewpoints relevant to architecture modeling, as carried
out by different stake-holders during the development process.
Aspects are viewpoints that are orthogonal to the system
structure. Aspects are used to demonstrate compliance of the
architecture to end-user concerns. Example of aspects are
safety, cost, maintainability, performance, and weight. The
meta-model underlying the CESAR RTP is able to maintain
links such as the satisfy, derive, verify, refine and allocate
relationships between design artifacts of different perspectives
and across abstraction layers.

In addition, to cope with the inherently unstructured prob-
lem of (in)completeness of requirements, industry has set
up domain- and application-class specific methodologies. As
particular examples, we mention learning process, such as
employed by Airbus to incorporate the knowledge base of
external hazards from flight incidents, the Code of Practice
proposed by the Prevent Project28 using guiding questions to
assess the completeness of requirements in the concept phase
of the development of advanced driver assistance systems.
Use-case analysis methods as advocated for UML based
development process follow the same objective. All together,
requirement engineering misses the support of formal ap-
proaches for its structuring and analysis.

D. Cross-company Shared Risk Management

The realization of complex systems calls for design pro-
cesses that mitigate risks in highly concurrent, distributed,
and typically multi-domain engineering processes, often in-
volving more than one hundred sub-processes. Risk mitigation

24Typical sub-systems in aeronautics would have a few thousands top-level
requirements. An aircraft can have up to several hundred thousands of them.

25www.cesarproject.eu
26http://spes2020.informatik.tu-muenchen.de
27http://www.speeds.eu.com
28Albert: http://...

RR n° 8147

http://www.iso.org/iso/catalogue_detail.htm?csnumber=43464
http://www.iec.ch/functionalsafety/
http://www.cenelec.eu/Cenelec/CENELEC+in+action/Web+Store/Standards/default.htm
http://www.cenelec.eu/Cenelec/CENELEC+in+action/Web+Store/Standards/default.htm
http://www.do178site.com/
www.cesarproject.eu
http://spes2020.informatik.tu-muenchen.de
http://www.speeds.eu.com
http://...

Contracts for System Design 15

measures typically cover all phases of design processes, rang-
ing from ensuring high quality initial requirements to early
assessments of risks in realizability of product requirements
during the concept phase, to enforcing complete traceability
of such requirements with requirements management tools, to
managing consistency and synchronization across concurrent
sub-processes using PLM tools. A key challenge rests in
balancing risk reduction versus development time and effort:
completely eliminating the risks stemming from concurrent
engineering essentially requires a complete synchronization
along a fine-grained milestone structure, which would kill any
development project due to the induced delays. Another key
challenge is the “not my fault” syndrome in the OEM-supplier
chain when errors call for costly re-design and the issue of
penalties arises. Properly assigning responsibilities to risks is
still out of reach today.

E. The Need for Contracts

The way system design challenges have been addressed so
far leaves huge opportunities for improvements by relying on
contract-based design. In this section we briefly summarize,
for each existing approach to address the design challenges,
how contracts could improve the current situation.

Contribution 1: Addressing Complexity of Systems and
System-wide Optimization.
While layered design (Section III-A1) and component based
design (Section III-A2) have been critical steps in breaking
systems complexity, they do not by themselves provide the
ultimate answer. When design is being performed at a consid-
ered layer, implicit assumptions regarding other layers (e.g.,
computing resources) are typically invoked by the designer
without having these explicated. Hence, actual properties of
these other layers cannot be confronted against these hidden
assumptions. Similarly, when components or sub-systems are
abstracted via their interfaces in component based design, it
is generally not true that such interfaces provide sufficient
information for other components to be safely implemented
based on this sole interface. Contract-based design provides
the due discipline, concepts, and techniques to cope with these
difficulties.

Model-based development (Section III-A4) has reached sig-
nificant maturity by covering nearly all aspects of the system
(physics, functions, computing resources), albeit not yet in a
fully integrated way. To offer a real added value, any newly
proposed technology should be rich enough for encompassing
all these aspects as well. Contract-based design offers, in large
part, this desirable feature.

Virtual integration and virtual modeling (Section III-A5) is
a step beyond basic model-based development, by offering an
integrated view of all the above different aspects, e.g., physics
+ functions + performances. Contract-based design supports
the fusion of different systems aspects.

Contract-based design is compliant with the V-model pro-
cess (Section III-A3), just because it does not impose any
particular design process. Using contracts only imposes a

small set of rules that any process should accommodate, see
Section IV-D for a discussion of this.

Finally, Platform-Based Design (PBD, Section III-A6),
which is being deployed in some large systems industries such
as United Technologies Corporation (UTC), is a systematic
and comprehensive methodology that unifies the various de-
sign methodologies that have been described in this section.
Contracts offer theory and methodological support for both
the successive refinement aspect, the composition aspect and
the mapping process of PBD allowing formal analysis and
synthesis processes.

Contribution 2: Addressing the Complexity of OEM-
Supplier Chains.
The problems raised by the complexity of OEM-Supplier
Chains (Section II-B) are indeed the core target of contract-
based design. By making the explication of implicit assump-
tions mandatory, contracts help assigning responsibilities to
a precise stake holder for each design entity. By supporting
independent development of the different sub-systems while
guaranteing smooth system integration, they orthogonalize the
development of complex systems. Contracts are thus adequate
candidates for a technical counterpart of the legal bindings
between partners involved in the distributed and concurrent
development of a system.

Contribution 3: Managing Requirements.
So far the task of getting requirements right and managing
them well (Section III-C) has only got support for sorting
the complexity out (traceability services and ontologies, which
is undoubtely necessary). However, requirements can only be
tested on implementations and it is not clear whether proper
distinctions are made when performing tests regarding the
following: fusing the results of tests associated to different
chapters or viewpoints of a requirement document versus
fusing the results of tests associated to different sub-systems;
testing a requirement under the responsibility of the designer
of the considered sub-system versus testing a requirement
corresponding to an assumption regarding the context of use
of this sub-system—such distinctions should be made, as we
shall see. Also, requirements are barely executable and cannot,
in general, be simulated. Requirements engineering is the other
primary target of contract-based design: the above issues are
properly handled by contracts and contracts offer improved
support for evidencing the satisfaction of certification con-
straints.

Contribution 4: Managing Risks.
Risk metrics and risk mitigation measures are the essential
tools in managing risks (Section III-D). By offering improved
support for sub-contracting and distributing design to different
teams, contracts are likely to significantly reduce the “not my
fault” syndrome.

Contribution 5: Addressing Certification.
As explained in Section III-B2, the design of critical sys-
tems is subject to a number of certification standards. While
certification steps are mostly concerned with the processes,
not the designs themselves, the recent move from DO 178B
to DO 178C for level A critical systems in aeronautics has

RR n° 8147

Contracts for System Design 16

shown for the first time the consideration of formal proofs
or validations as valid evidences. We believe that the same
will eventually hold for contracts. In particular, by providing
adequate formal support for completeness, consistency, com-
patibility, and more, for sets of requirements, contracts would
provide a valuable contribution to certification.

IV. CONTRACTS: WHAT? WHY? WHERE? AND HOW?
As we argued in the previous section, there are two basic

principles followed by design methods so far developed: ab-
straction/refinement and composition/decomposition. Abstrac-
tion and refinement are processes that relate to the flow of de-
sign between different layers of abstraction (vertical process)
while composition and decomposition operate at the same level
of abstraction (horizontal process). In this section, we present
briefly contracts and the basic operations they support and
then me make the point that contracts are ideal tools to solidify
both vertical and horizontal processes providing the theoretical
background to support formal methods. We conclude the
section by providing a (non exhaustive) bibliography on the
general concept of contract.

A. Contracts

Here we propose a “primer” on contracts using a simple
example as the reference for their use.

1) Components and their Environment, Contracts: We start
from a model that consists of a universal set M of com-
ponents, each denoted by the symbol M . A component M
is typically an open system, i.e., it contains some inputs
that are provided by other components in the system or the
external world and it generates some outputs. This collection
of other components and the exterior world is referred to as the
environment of the component. The environment is often not
completely known when the component is being developed.
Although components cannot constrain their environment, they
are designed to be used in a particular context.

In the following example, we define a component M1 that
computes the division between two real inputs x and y, and
returns the result through the real output z. The underlying
assumption is that M1 will be used within a design context
that prevents the environment from giving the input y = 0.
Since M1 cannot constrain its input variables, we handle the
exceptional input y = 0 by generating an arbitrary output:

M1 :

variables:

{
inputs: x, y

outputs: z

types: x, y, z ∈ R
behaviors: (y 6= 0→ z = x/y) ∧ (y = 0→ z = 0)

A contract contract, denoted by the symbol C, is a de-
scription of a component with the following characteristic
properties:

1) Contracts are intentionally abstract;
2) Contracts distinguish responsibilities of a component

from that of its environment
Property 1) of a contract highlights the goal of handling
complexity of the systems. Thus, contracts expose enough

information about the component, but not more than necessary
for the intended purpose. We can see a contract as an under-
specified description of a component that can be either very
close to the actual component, or specify only a single
property of a component’s behavior. Regarding Property 2),
and in contrast to components, a contract explicitly makes a
distinction between assumptions made about the environment,
and guarantees provided, mirroring different roles and respon-
sibilities in the design of systems.

A contract can be implemented by a number of different
components and can operate in a number of different envi-
ronments. Hence, we define a contract C at its most abstract
level as a pair C = (EC ,MC) of subsets of components that
implement the contract and of subsets of environments in
which the contract can operate. We say that a contract C is
consistent if MC 6= ∅ and compatible if EC 6= ∅.

This definition of contracts and the implementation relation
is very general and, as such, it is not effective. In concrete
contract- based design theories, a contract needs to have a
finite description that does not directly refer to the actual
components, and the implementation relation needs to be
effectively computable and establish the desired link between
a contract and the underlying components that implement it.

For our present simple example of static systems, we
propose the following way to specify contracts:

C1 :

variables:

{
inputs: x, y

outputs: z

types: x, y, z ∈ R
assumptions: y 6= 0

guarantees: z = x/y

C1 defines the set of components having as variables
{inputs: x, y; output: z} of type real, and whose behaviors
satisfy the implication

“assumptions⇒ guarantees”

i.e., for the above example, y 6= 0⇒ z = x/y. Intuitively,
contract C1 specifies the intended behavior of components that
implement division. It explicitly makes the assumption that the
environment will never provide the input y = 0 and leaves the
behavior for that input undefined.

This contract describes an infinite number of environments
in which it can operate, namely the set EC1

of environments
providing values for x and y, with the condition that y 6=0. It
describes an infinite number of components that implement
the above specification, where the infinity comes from the
underspecified case on how an implementation of C1 should
cope with the illegal input y = 0. In particular, we have that
M1 implements C1. Thus, contract C1 is consistent. We now
show a variant of contract C1 that is not consistent:

C′1 :

variables:

{
inputs: x, y

outputs: z

types: x, y, z ∈ R
assumptions: T

guarantees: z = x/yRR n° 8147

Contracts for System Design 17

where symbol T denotes the boolean constant “true”. In
contrast to C1, the contract C′1 makes no assumption on values
of the input y. Hence, every component that implements C′1
has to compute the quotient x/y for all values of y, including
y = 0, which makes no sense.

B. Contract Operators

There are three basic contract operators that are used in
support of the design methodologies we presented previously:
composition, refinement and conjunction.

1) Contract Composition and System Integration: Intu-
itively, the composition operator supports component-based
design and, in general, horizontal processes. The composition
operator, that we denote by the symbol ×, is a partial function
on components. The composition is defined with respect to a
composability criterion, where two components M and M ′

are composable if their variable types match. Composability
is a syntactic property on pairs of components that defines
conditions under which the two components can interact.
Composition × must be both associative and commutative in
order to guarantee that different composable components may
be assembled together in any order.

Consider the component M2, defined as follows:

M2 :

variables:

{
inputs: x

outputs: y

types: x, y ∈ R
behaviors: y = ex

The component M2 computes the value of the output variable
y as the exponential function of the input variable x. M1 and
M2 are they are composable, since both common variables x
and y have the same type, x is an input variable to both M1

and M2, and the output variable y of M2 is fed as an input to
M1. It follows that their composition M1 ×M2 has a single
input variable x, and computes the output z as a function of
x, that is z = x/ex.

Now, consider component M ′2 that consists of an input
variable x and an output variable z, both of type real, where
z = abs(x):

M ′2 :

variables:

{
inputs: x

outputs: z

types: x, z ∈ R
behaviors: z = abs(x)

The component M ′2 is not composable with M1, because
the two components share the same output variable z. Their
composition is illegal, as it would result in conflicting rules
for updating z.

We now lift the above concepts to contracts. The compo-
sition operator between two contracts, denoted by ⊗, shall
be a partial function on contracts involving a more subtle
compatibility criterion. Two contracts C and C′ are compatible
if their variable types match and if there exists an environment
in which the two contracts properly interact. The resulting
composition C ⊗ C′ should specify, through its assumptions,

this set of environments. By doing so, the resulting contract
will expose how it should be used. Unlike component com-
posability, contract compatibility is a combined syntactic and
semantic property.

Let us formalize this. For C a contract, let AC and GC be
its assumptions and guarantees and define

GC1⊗C2 = GC1∧GC2

AC1⊗C2 = max

A
∣∣∣∣∣∣
A∧GC2⇒AC1
and
A∧GC1⇒AC2

 (1)

where “max” refers to the order of predicates by implica-
tion; thus AC1⊗C2 is the weakest assumption such that the
two referred implications hold. Thus, this overall assumption
will ensure that, when put in the context of a component
implementing the second contract, then the assumption of
the first contract will be met, and vice-versa. Since the two
assumptions were ensuring consistency for each contract, the
overall assumption will ensure that the resulting composition
is consistent. This definition of the contract composition
therefore meets our previously stated requirements. The two
contracts C1 and C2 are called compatible if the assumption
computed as in (1) differs from F, the “ false” predicate.

Consider contracts C2 and C′2 that we define as follows:

C2 :

variables:

{
inputs: u

outputs: x

types: u, x ∈ R
assumptions: T

guarantees: x > u

C′2 :

variables:

{
inputs: v

outputs: y

types: v, y ∈ R
assumptions: T

guarantees: y = −v

C2 specifies components that for any input value u, generate
some output x such that x > u and C′2 specifies components
that generate the value of the output variable y as function
y = −v of the input v. Observe that both C2 and C′2 are
consistent. A simple inspection shows that C1 and C2 can be
composed and their composition yields:

C1 ⊗ C2 :

variables:

{
inputs: u, y

outputs: x, z

types: x, y, u, z ∈ R
assumptions: y 6= 0

guarantees: x > u ∧ z = x/y

C1 and C′2 can also be composed and their composition yields:

C1 ⊗ C′2 :

variables:

{
inputs: v, x

outputs: y, z

types: v, x, y, z ∈ R
assumptions: v 6= 0

guarantees: y = −v ∧ z = x/yRR n° 8147

Contracts for System Design 18

Both compositions possess a non-empty assumption (observe
also that they are both free of exception), reflecting that the
two pairs (C1, C2) and (C1, C′2) are compatible.

In our example, we require that compositions C1⊗(C2⊗C3)
and (C1 ⊗ C2) ⊗ C3 result in equivalent contracts, as well as
compositions C1⊗C2 and C2⊗C1, thus providing support for
incremental system integration.

A quotient operation can be defined that is dual to the
composition operation. Given a system-wide contract C and
a contract C1 that specifies pre-existing components and their
interactions, the quotient operation C/C1 defines the part of
the system-wide contract that still needs to be implemented.
It formalizes the practice of “patching” a design to make it
behave according to another contract.

2) Contract Refinement and Independent Development:
In all vertical design processes, the notions of abstraction
and refinement play a central role. The concept of contract
refinement must ensure the following: if contract C′ refines
contract C, then any implementation of C′ should 1) implement
C and, 2) be able to operate in any environment for C. Hence
the following definition for refinement pre-order � between
contracts: we say that the contract C′ refines the contract C, if
EC′ ⊇ EC andMC′ ⊆MC . Since � is a pre-order, refinement
is a transitive relation. For our current series of examples, and
using previous notations, C′ � C amounts to requiring that 1/
AC implies AC′ , and 2/ AC′⇒GC′ implies AC⇒GC .

In Figure 4 we start with the contract C1 that represents
the general system-wide requirements. We decompose these
requirements into requirements of three subsystems, resulting
in three contracts C11, C12 and C13, with the property that
C11⊗C12⊗C13 � C1. Now, these three contracts can be handed
to different design teams and refined further independently.
In particular, C12 is further decomposed into contracts C121

and C122 such that C121 ⊗ C122 � C12, and similarly, C13 is
further decomposed into contracts C131 and C132 such that
C131 ⊗ C132 � C13.

For all contracts C1, C2, C′1 and C′2, if C1 is compatible with
C2 and C′1 � C1 and C′2 � C2, then C′1 is compatible with C′2
and C′1 ⊗ C′2 � C1 ⊗ C2.

We now give a concrete example, where we start with
very abstract requirements for a component that implements
a function z = x/ex. Consider contracts C′′1 and C′′2 , that we
define as follows:

C′′1 :

variables:

{
inputs: y

outputs: z

types: y, z ∈ R
assumptions: y 6= 0

guarantees: z ∈ R

C′′2 :

variables:

{
inputs: x

outputs: y

types: x, y ∈ R
assumptions: T

guarantees: y > 0

The contract C′′1 formalizes the most crude and abstract
requirements for a divider. It requires that the denominator
value (input variable y) is not equal to 0, and only ensures
that the output value of z is any real. Note that the contract
C′′1 does not declare the nominator input variable x. The
contract C′′2 specifies components that have an input variable
x and an output variable of type y. The only requirement on
the behavior of C′′2 is that y is strictly greater than 0. The
composition C′′1 ⊗ C′′2 is well defined. The contract C1 refines
C′′1 , since it allows more inputs (the nominator input variable x)
and restricts the behavior of the output variable z, by defining
its behavior as the division x/y. It follows that C1 is also
compatible with C′′2 and that C1 ⊗ C′′2 � C′′1 ⊗ C′′2 . Finally, we
have that M1 and M2 are implementations of their respective
contracts. It follows that M1 ×M2 implements C1 ⊗ C′′2 .

3) Contract Conjunction and Viewpoint Fusion: We now
introduce the conjunction operator between contracts, denoted
by the symbol ∧. Conjunction is complementary to composi-
tion:

1) In the early stages of design, the system-level speci-
fication consists of a requirements document that is a
conjunction of requirements;

2) Full specification of a component can be a conjunction
of multiple viewpoints, each covering a specific (func-
tional, timing, safety etc.) aspect of the intended design
and specified by an individual contract; see Figure 4 for
an illustration.

3) Conjunction supports reuse of a component in different
parts of a design; see Figure 5 for an illustration.

We state the desired properties of the conjunction operator
as follows: Let C1 and C2 be two contracts. If C1 and C2 are
shared refinable, then C1 ∧C2 � C1 and C1 ∧C2 � C2, and for
all contracts C, if C � C1 and C � C2, then C � C1 ∧ C2.

To illustrate the conjunction operator, we consider a contract
CT1 that specifies the timing behavior associated with C1. For
this contract, we introduce additional ports that allow us to
specify the arrival time of each signal.

CT1 :

variables:

{
inputs: tx, ty

outputs: tz

types: tx, ty, tz ∈ R+

assumptions: T
guarantees: tz≤max(tx, ty) + 1

The contract CT1 is shared refinable with C1. Their conjunction
C1 ∧ CT1 yields a contract that guarantees, in addition to C1
itself, a latency with bound 1 (say, in ms) for it. Because
there are no assumptions, this timing contract specifies the
same latency bound also for handling the illegal input y = 0.
In fact, the contract says more: because it does not mention
the input y, it assumes any value of y is acceptable. As
a result, the conjunction inherits the weakest T assumption
of the timing contract, and cancels the assumption of C1.
This, however, is clearly not the intent, since the timing
contract is not concerned with the values of the signals, and
is a manifestation of the weakness of this simple contract

RR n° 8147

Contracts for System Design 19

framework in dealing with contracts with different alphabets
of ports and variables. We will further explain this aspect, and
show how to address this problem, in Section VII. For the
moment, we can temporarily fix the problem by introducing y
in the interface of the contract, and use it in the assumptions,
as in the following contract CT2

CT2 :

variables:

{
inputs: y, tx, ty

outputs: tz

types: y ∈ R; tx, ty, tz ∈ R+

assumptions: y 6=0
guarantees: tz≤max(tx, ty) + 1

Note that this timing contract does not specify any bound for
handling the illegal input y = 0, since the promise is not
enforced outside the assumptions.

So far this example was extremely simple. In particular,
it was stateless. Extension of this kind of Assume/Guarantee
contracts to stateful contracts will be indeed fully developed
in the coming sections and particularly in Section VII.

C. Contracts in requirement engineering

In this section we introduce a motivating example that is
representative of early requirements capture—the specification
of a parking garage. Its full development requires technical
material that we introduce later and we thus defer it to
Section XI. This example illustrates the following features of
contract based requirements capture, namely:
• Top-level system specification is by writing a require-

ments document. Different formalisms may be used for
different kinds of requirements. Here we illustrate this
by blending textual requirements written in constrained
English (possibly obtained using boilerplates) with small
sized automata.

• The document itself is structured into chapters describing
various aspects of the system, such as how gates should
behave, how payment should proceed, plus some overall
rules.

• Some requirements are under the responsibility of the
system under development; they contribute to specifying
the guarantees that the system offers. Other requirements
are not under the responsibility of the system under
development; they contribute to defining the assumptions
regarding the context in which the system should operate
as specified.

• Requirements are written in constrained English language
or by using automata.

We now begin with the top-level requirements. The system
under specification is a parking garage subject to payment
by the user. At its most abstract level, the requirements
document comprises the different chapters gate, payment, and
supervisor, see Table III. The gate chapter will collect the
generic requirements regarding entry and exit gates. These
generic requirements will then be specialized for entry and
exit gates, respectively.

Focus on the “gate” chapter. It consists of the three require-
ments shown on Table III. Requirement Rg.1 is best described

gate
Rg.1:“vehicles shall not pass when gate is closed”, see Fig. 7
Rg.2: after ?vehicle_pass ?vehicle_pass is forbidden
Rg.3: after !gate_open !gate_open is forbidden and

after !gate_close !gate_close is forbidden
payment
supervisor

Table III
THE TOP-LEVEL SPECIFICATION, WITH CHAPTER gate EXPANDED;

REQUIREMENTS WRITTEN IN italics ARE ASSUMPTIONS UNDER WHICH
gate SHOULD OPERATE.

0

!gate_close

1!gate_open
!gate_close

?vehicle_pass
!gate_open

Figure 1. Requirement Rg.1 specified as an i/o-automaton. Prefix “?”
indicates an input and prefix “!” indicates an output.

by means of an i/o-automaton, shown in Figure 1—we provide
an informal textual explanation for it, between quotes. Suppose
that some requirement says: “?gate_open never occurs”. This
is translated by having no mention of ?gate_open in the
corresponding i/o-automaton. To express this “negative” fact
we must keep track of the fact that ?gate_open belongs to
the alphabet of actions of the i/o-automaton. Thus, when per-
forming the translation, the explicit list of inputs and outputs
should be explicitly given. To avoid such additional notational
burden, we have cheated by omitting this unless necessary.
The other two requirements are written using constrained
natural language, which can be seen as a boilerplate style
of specification. Prefix “?” indicates an input and prefix “!”
indicates an output.

The first two requirements are not under the responsibility
of the system, since they rather concern the car driver. Thus it
does not make sense to include them as part of the guarantees
offered by the system. Should we remove them? This would
be problematic. If drivers behave the wrong way unexpected
things can occur for sure. The conclusion is that 1) we should
keep requirements Rg.1 and Rg.2, and 2) we should handle
them differently than Rg.3, which is a guarantee offered by the
system. Indeed, Rg.1 and Rg.2 are assumptions under which
the gate operates as guaranteed. We take the convention that
assumptions are written in italics.

So far we have specified gate as a list of requirements.
Requirement Rg.1 specified as an i/o-automaton can be con-
sidered formal. Requirements Rg.2 and Rg.3 are formulated
in constrained natural language and are ready for subsequent
formalization, e.g., as i/o-automata. Are we done? Not yet!
We need to give a formal meaning to what it means to have
a collection of requirements, and what it means to distinguish
assumptions from guarantees. Similarly, we must give a formal
meaning to what it means to combine different chapters of a
requirements document. Intuitively, all requirements must be

RR n° 8147

Contracts for System Design 20

met for a chapter to be satisfied, and, similarly, all chapters
must be satisfied for the whole specification to be correctly
implemented. Thus, we propose to write the top-level specifi-
cation C as the following conjunction:

C = Cgate ∧ Cpayment ∧ Csupervisor

As we said, formally defining what conjunction ∧ is, requires
technical material that is developed later in this paper. The
following issues arise regarding this top-level specification.
First of all, since a conjunction operator is involved in the
construction of C, there is a risk of formulating contradicting
requirements—this is referred to as the issue of consistency.
Second, are we sure that the top-level specification C is
complete, i.e., precise enough to rule out undesirable imple-
mentations? One good way of checking for completeness is to
be able to execute or simulate this top-level specification C.
We provide answers to all these issues in Section XI, where
this example is fully developed.

?request enter

!ticket issue

!entry gate open

!entry gate close
EntryGate

?vehicle enter

?vehicle exit

?exit ticket insert ExitGate
!exit gate open

!exit gate close

?ticket insert payment

?coin insert payment
PaymentMachine !exit ticket issue

Figure 2. System architecture as specified by the designer.

Having the top-level specification C at hand, the designer
then specifies an architecture “à la SysML”, as shown on
Figure 2. Some comments are in order regarding this archi-
tecture. The considered instance of a parking garage consists
of one entry gate, one exit gate, and one payment machine.
Compare with the top-level specification of Table III. The
latter comprises a generic gate, a payment machine, and a
supervisor, each one with its set of requirements. In contrast,
the architecture of Figure 2 involves no supervisor. The
supervisor is meant to be distributed among the two gates.
The architecture of Figure 2 seems to be very loosely coupled.
First, the PaymentMachine seems to be totally independent. In
fact, the ticket that is inserted in the exit gate must coincide
with the one issued by the PaymentMachine. It turns out that
this reflects a missing assumption regarding the environment
of the system (namely the user of the parking). Then, the
two gates seem to have the shared input “?vehicle exit” as
their only interaction. But this shared input is involved in

requirement Rs.3, which forbids the entry if the parking is
full.

The next step in the design consists in subcontracting
the development of each of the three sub-systems of the
architecture of Figure 2. This amounts to specifying three
subcontracts CEntryGate, CExitGate, and CPaymentMachine,
such that:

CEntryGate ⊗ CExitGate ⊗ CPaymentMachine � C (2)

The symbol � in (2) means that any implementation of the
left hand side is also a valid implementation of the top-
level C. Then, the contract composition operator ⊗ ensures
that each supplier can develop its sub-system based on its
own sub-contract only, and, still, integrating the so designed
sub-systems yields a correct implementation of the top-level
specification. Once the three sub-contracts are found, checking
that they satisfy (2) requires formalizing the contract compo-
sition operator ⊗. Furthermore, guessing such sub-contracts
is a difficult task. In our development of this example in
Section XI, we propose adequate answers to these issues.

D. Contract Support for Design Methodologies

The three operators introduced above fit naturally in any
design methodology developed so far. In particular, contract
composition and conjunction supports horizontal processes
and contract refinement supports vertical processes. We show
how this is so by first analyzing the use of contract conjunc-
tion for requirement management, then of composition and
refinement for design chain management, re-use and indepen-
dent development to close with conjunction, composition and
refinement for deployment and mapping.

1) Supporting open systems: When designing components
for reuse, their context of use is not fully known in advance.
We thus need a specification of components exposing both
the guarantees offered by the component and the assumptions
on its possible context of use—its “environment”. This states
what contracts should be.

2) Managing Requirements and Fusing Viewpoints: Re-
ferring to Section III-C, complex systems involve a number
of viewpoints (or aspects) that are generally developed by
different teams using different skills. As a result, there is a
need for fusing these viewpoints in a mathematically sound
way. Structuring requirements or specifications is a desirable
objective at each step of the design. Finally, we must formal-
ize some key properties that must be evidenced as part of
certification processes.

This process is illustrated in Figure 3. In this figure, we
show three viewpoints: the behavioral viewpoint where the
functions are specified, the timing viewpoint where timing
budgets are allocated to the different activities, and the safety
viewpoint where fault propagation, effect, and handling, are
specified. Typically, different viewpoints are developed by
different teams using different frameworks and tools. Devel-
opment of each viewpoint is performed under assumptions
regarding its context of use, including the other viewpoints. To

RR n° 8147

Contracts for System Design 21

VIEWPOINT VIEWPOINT VIEWPOINT
BEHAVIORAL TIMING SAFETY

is a conjunction
every contract

C =
∧

i Ci

CB1 CB2 CT CS1 CS2

CB1 ∧ CB2 ∧ CT ∧ CS1 ∧ CS2

Figure 3. Conjunction of requirements and viewpoints in top-level design

get the full system specification, the different viewpoints must
be fused. As the notations of Figure 3 suggest, conjunction
is used for fusing viewpoints, thus reflecting that the system
under design must satisfy all viewpoints. Similarly, each
viewpoint is itself a conjunction of requirements, seen as the
“atomic” contracts—all requirements must be met.

3) Design Chain Management, Re-using, and Independent
Development: In Figure 4, we show three successive stages of
the design. At the top level sits the overall system specification
as developed by the OEM. As an example, it can be obtained as
the conjunction of several viewpoints as illustrated on Figure 3.

is delegated for
implementation by a supplier

is delegated for
implementation by a supplier

C11 ⊗ (C121 ⊗ C122)⊗ (C131 ⊗ C132)

C11

C12

C13

C11

C121 C122 C131 C132

C121 ⊗ C122 C131 ⊗ C132

C11 ⊗ C12 ⊗ C13

C1

is refined by the OEM

Figure 4. Stepwise refinement

As a first design step, the OEM decomposes its system into
an architecture made of three sub-systems for independent
development by (possibly different) suppliers. For each of
these sub-systems, a contract C1j , j = 1, 2, 3 is developed.
A contract composition, denoted by the symbol “⊗”,

C11 ⊗ C12 ⊗ C13

mirrors the composition of sub-systems that defines the archi-
tecture. For our method to support independent development,

this contract composition operator must satisfy the following:

if designs are independently performed for each
sub-contract C1j , j = 1, 2, 3, then integrating
these sub-systems yields an implementation that
satisfies the composed contract C11 ⊗ C12 ⊗ C13 .

(3)

This contract composition must then be qualified against the
top-level contract C1. This qualification must ensure that any
development compliant with C11 ⊗ C12 ⊗ C13 should also
comply with C1. To ensure substitutability in any legal context,
compliance concerns both how the system behaves and what
its allowed contexts of use are: any legal context for C1 should
be also legal for C11⊗C12⊗C13 and, under any legal context,
the integrated system should behave as specified by C1. This is
formalized as the refinement relation, denoted by the symbol
�:

C11 ⊗ C12 ⊗ C13 � C1 (4)

Overall, the satisfaction of (4) guarantees the correctness of
this first design step performed by the OEM.

Obtaining the three sub-contracts C11, C12, and C13, is the art
of the designer, based on architectural considerations. Contract
theories, however, offer the following services to the designer:
• The formalization of parallel composition and refinement

for contracts allows the designer to firmly assess whether
(4) holds for the decomposition step or not.

• In passing, the compatibility of the three sub-contracts
C11, C12, and C13, can be formally checked.

• Using contracts as a mean to communicate specifications
to suppliers guarantees that the information provided to
the supplier is self-contained: the supplier has all the
needed information to develop its sub-system in a way
that subsequent system integration will be correct.

Each supplier can then proceed with the independent devel-
opment of the sub-system it is responsible for. For instance, a
supplier may reproduce the above procedure.

Alternatively, this supplier can develop some sub-systems
by reusing off-the-shelf components. For example, contract
C121 would be checked against the interface specification of a
pre-defined component M121 available from a library, and the
following would have to be verified: does component M121

satisfy C121? In this context, shared implementations are of
interest. This is illustrated on Figure 5 where the same off-
the-shelf component implements the two referred contracts.

To conclude on this analysis, the two notions of refinement,
denoted by the symbol “�”, and composition of contracts,
denoted by the symbol “⊗”, are key. Condition (3) ensures
independent development holds.

4) Deployment and Mapping: Here we address a specific
but important point related to Contribution 1. At some point
in the design of the system, specifications must be realized by
using resources. Resources can be pre-defined sub-systems or
components, or they can consist of computing resources com-
prising computing units and communication media (networks,
busses, and protocols). This methodology was advocated and

RR n° 8147

Contracts for System Design 22

C11

C121 C122 C131 C132

C11 ⊗ (C121 ⊗ C122)⊗ (C131 ⊗ C132)

C121 ⊗ C122 C131 ⊗ C132

C122 ∧ C132

Figure 5. Conjunction for component reuse

systematically exploited in Platform Based Design [171] or
PLM-centric design, see footnote 4 in Section II. How such
a step can be captured in contract based design is explained
next.

When deploying an application over a computing plat-
form, in addition to the functional viewpoint, non-functional
viewpoints (safety, timing, energy and possibly other) are
of importance as well. The safety viewpoint is concerned
with the risk of primary faults and failures, how they could
propagate throughout the system, and what the consequences
for the resilience of the overall system would be in terms
of failure probability. The timing viewpoint collects timing
requirements regarding the application (requirements on la-
tencies, throughput, jitter, and schedulability). The effective
satisfaction of safety or timing viewpoints by a considered
deployment depends on 1) the supporting execution platform
and 2) the mapping of the application to this execution
platform. We thus need to formalize what “mapping” means.
The reader is referred to Figure 6 for the following discussion.

M4M3

M5M6

M1

M2

M3

M1

M4

M2

M5

M6
x34

xd
63 xo

63

x34

C2 C1

C3

P

C

xo63

xd63

Figure 6. Mapping the application to the execution platform as C ∧ P .

Suppose one has a virtual model of the execution platform

as an architecture composed of several components. Such
components would, in the context of Figure 6, consist of a
description of the available computing units, a description
of the bus protocol and frame structure, and/or a library of
RTOS (Real-Time Operating System) services. The resulting
components are enhanced with timing information (for the
timing viewpoint) and fault propagation information (for the
safety viewpoint). Application contracts are attached to the
different sub-systems or components as described on the top
part of the figure. Similarly, platform contracts are attached
to the different sub-systems or components of the execution
platform, as described on the bottom part of the figure.
Accordingly, we assume

C =
∧
k

(⊗
i∈Ik Cik

)
P =

⊗
j∈J

(∧
`∈Lj

Pj`
)

where:

• The overall platform contract P decomposes as
⊗

j∈J Pj
(e.g., the bus and the different computing units in
Figure 6) where each Pj is the conjunction of its different
viewpoints (the function: what can be computed; and the
associated performance: how much time it takes and how
much energy it consumes);

• The overall application contract is the conjunction of
its different viewpoints Ci with their own architectural
decomposition.

In Figure 6 we only show a single viewpoint29 and we assume
that distant communication between C2 and C3 has already
been refined to a communication medium compliant with the
communication resources offered by the execution platform.

The mapping of the application over the architecture is
modeled by the conjunction C∧P defined by the following set
of synchronization tuples,30 depicted in red in the Figure 6:

• The wire x34 linking M3 to M4 in the application is
synchronized, in the deployment P , with the variable
x34 of the left computing unit, where x34 represents the
output of the module implementing M3 and the input of
the module implementing M4. And similarly for the wire
linking M5 to M6.

• In the deployment, the wire x63 linking M6 to M3

must traverse the bus. To capture this, we first refine
the application architecture by distinguishing the origin
xo63 of this wire from its destination xd63. In the refined
application architecture, we assume that xo63 and xd63 are
related by some buffer of bounded size. The deployment
is then captured by synchronizing xo63 with the output xo63

of the module implementing M6 in the right computing
unit, and by synchronizing xd63 with the input xd63 of the
module implementing M3 in the left computing unit.

29Here we assume that the different application viewpoints are developed
for the whole application and then combined by conjunction—this is just a
methodological proposal; we could proceed differently.

30In in a synchronization tuple, both occurrences and values of the different
elements are unified.

RR n° 8147

Contracts for System Design 23

This formalizes the deployment as the conjunction

C ∧ P =
[∧

k

(⊗
i∈Ik Cik

)]∧ [⊗
j∈J
(∧

`∈Lj
Pj`
)]

ensuring that C ∧ P refines C, by construction. There is,
however, no free lunch. The formula C ∧ P expressing de-
ployment involves a conjunction, and is, as such, a possible
source of inconsistencies. If this happens, then C ∧ P cannot
be implemented. Finding an execution platform P causing
no inconsistency in C ∧ P requires a good understanding of
the application and its needs. The more advanced techniques
developed in Section XI provide assistance for this.

Since C ∧ P relates application and computing platform—
which sit at different layers of the design—we call such
contracts vertical contracts. Contracts that are not vertical are
sometimes called horizontal, in that they are meant to relate
components sitting at a same level of the design hierarchy—
application level, or computing platform level, or ECU (Elec-
tronic Computing Unit) level.

Techniques of mapping application to its execution platform
that are similar to the above one, are used in the RT-Builder
tool 31 and in the Metropolis platform [20], [80].

E. Bibliographical note

Having collected the “requirements” on contract theories, it
is now timely to confront these to the previous work referring
to or related to the term “contract”.

It is difficult to write a comprehensive bibliography on
the general aspects of contract based design. The topic is
multi faceted and has been addressed by several communities:
software engineering, language design, system engineering,
and formal methods in a broad sense. We report here a partial
and limited overview of how this paradigm has been tackled
in these different communities. While we do not claim being
exhaustive, we hope that the reader will find her way to the
different literatures.

Contracts in SW engineering: This part of the biblio-
graphical note was inspired by the report [168]. Design by
Contract is a software engineering technique popularized by
Bertrand Meyer [139], [140] following earlier ideas from
Floyd-Hoare logic [169], [113]. Floyd-Hoare logic assigns
meaning to sequential imperative programs in the form of
triples of assertions {P,C,Q} consisting of a precondition
on program states and inputs, a command, and a postcondi-
tion on program states and outputs. Meyer’s contracts were
developed for Object-Oriented programming. They expose
the relationships between systems in terms of preconditions
and postconditions on operations and invariants on states. A
contract on an operation asserts that, given a state and inputs
which satisfy the precondition, the operation will terminate
in a state and will return a result that satisfy the postcondi-
tion and respects any required invariant properties. Contracts
contribute to system substitutability. Systems may be replaced
by alternative systems or assemblies that offer the same or

31http://www.geensoft.com/en/article/rtbuilder

substitutable functionality with weaker or equivalent precon-
ditions and stronger/equivalent postconditions. With the aim
of addressing service oriented architectures, Meyer’s contracts
were proposed a multiple layering by Beugnard et al. [37].
The basic layer specifies operations, their inputs, outputs and
possible exceptions. The behavior layer describes the abstract
behavior of operations in terms of their preconditions and
postconditions. The third layer, synchronisation, corresponds
to real-time scheduling of component interaction and message
passing. The fourth, quality of service (QoS) level, details
non-functional aspects of operations. The contracts proposed
by Beugnard et al. are subscribed to prior to service invo-
cation and may also be altered at runtime, thus extending
the use of contracts to Systems of Systems [141]. So far
contracts consisting of pre/postconditions naturally fit imper-
ative sequential programming. In situations where programs
may operate concurrently, interference on shared variables
can occur. Rely/Guarantee rules [115] were thus added to
interface contracts. Rely conditions state assumptions about
any interference on shared variables during the execution of
operations by the system’s environment. Guarantee conditions
state obligations of the operation regarding shared variables.

The concepts of interface and contract were subse-
quently further developed in the Model Driven Engineering
(MDE) [120], [172], [131]. In this context, interfaces are
described as part of the system architecture and comprise
typed ports, parameters and attributes. Contracts on interfaces
are typically formulated in terms of constraints on the en-
tities of components, using the Object Constraint Language
(OCL) [150], [180]. Roughly speaking, an OCL statement
refers to a context for the considered statement, and expresses
properties to be satisfied by this context (e.g., if the context is
a class, a property might be an attribute). Arithmetic or set-
theoretic operations can be used in expressing these properties.
This method, however, does not account for functional and
extra-functional properties of interfaces, i.e., for behavior and
performance. To account for behavior, the classical approach
in MDE consists in enriching components with methods that
can be invoked from outside, and/or state machines. Likewise,
attributes on port methods have been used to represent non-
functional requirements or provisions of a component [51].
The effect of a method is made precise by the actual code
that is executed when calling this method. The state machine
description and the methods together provide directly an
implementation for the component — actually, several MDE
related tools, such as GME and Rational Rose, automatically
generate executable code from this specification [21], [132],
[161]. The notion of refinement is replaced by the concept of
class inheritance. From a contract theory point of view, this
approach has several limitations. Inheritance, for instance, is
unable to cover aspects related to behavior refinement. Nor
is it made precise what it means to take the conjunction
of interfaces, which can only be approximated by multiple
inheritance, or to compose them.

In a continuing effort since his joint work with W. Damm
on Life Sequence Charts (LSC) in 2000 [64] with its Play-

RR n° 8147

http://www.geensoft.com/en/article/rtbuilder

Contracts for System Design 24

Engine implementation [107], David Harel has developed the
concept of behavioral programming [108], [106], [109], which
puts in the forefront scenarios as a program development
paradigm—not just a specification formalism. In behavioral
programming, b-threads generate a flow of events via an
enhanced publish/subscribe protocol. Each b-thread is a pro-
cedure that runs in parallel to the other b-threads. When a
b-thread reaches a point that requires synchronization, it waits
until all other b-threads reach synchronization points in their
own flow. At synchronization points, each b-thread specifies
three sets of events: requested events: the thread proposes that
these be considered for triggering, and asks to be notified
when any of them occurs; waited-for events: the thread does
not request these, but asks to be notified when any of them
is triggered; and blocked events: the thread currently forbids
triggering any of these events. When all b-threads are at a
synchronization point, an event is chosen (according to some
policy), that is requested by at least one b-thread and is not
blocked by any b-thread. The selected event is then triggered
by resuming all the b-threads that either requested it or are
waiting for it. This mechanism was implemented on top of
Java and LSCs. The execution engine uses planning and model
checking techniques to prevent the system from falling into
deadlock, where all requested events are blocked. Behavioral
programming is incremental in that new threads can be added
to an existing program without the need for making any change
to this original program: new deadlocks that are created by
doing so are pruned away by the execution engine. While
behavioral programming cannot be seen as a paradigm of
contracts, it shares with contracts the objectives of incremental
design and declarative style of specification.

Our focus—contracts for systems and CPS: The frame-
works of contracts developed in the area of Software En-
gineering have established as useful paradigms for compo-
nent based software system development. In this paper, we
target the wider area of computer controlled systems, more
recently referred to as Cyber-Physical systems, where reactive
systems [104], [110], [100], [136] are encountered, that is
systems that continuously interact with some environment,
as opposed to transformational systems [100], considered in
Object-Oriented programming. For reactive systems, model-
based development (MBD) is generally accepted as a key
enabler due to its capabilities to support early validation
and virtual system integration. MBD-inspired design lan-
guages and tools include SysML [149] or AADL [152] for
system level modeling, Modelica [93] for physical system
modeling, Matlab-Simulink [118] for control-law design, and
Scade [144], [32] and TargetLink for detailed software design.
UML-related standardisation efforts in this area also include
the MARTE UML32 profile for real-time systems. Contract
theories for model based development were considered in
the community of formal verification. They were initially
developed as specification formalisms able to refuse certain
inputs from the environment. Dill proposed asynchronous

32 www.omgmarte.org

trace structures with failure behaviors [81]. A trace structure
is a representation of a component or interface with two sets
of behaviors. The set of successes are those behaviors which
are acceptable and guaranteed by the component. Conversely,
the set of failures are behaviors which drive the component
into unacceptable states, and are therefore refused. This work
focuses primarily on the problem of checking refinement, and
does not explore further the potentials of the formalism from
a methodological point of view. The work by Dill was later
extended by Wolf in the direction of synchronous systems.
Negulescu later generalizes the algebra to Process Spaces
which abstract away the specifics of the behaviors, and derives
new composition operators [143]. This particular abstraction
technique was earlier introduced by Burch with Trace Algebras
to construct conservative approximations [47], and later gen-
eralized by Passerone and Burch [154] to study generic trace
structures with failure behaviors and to formalize the problem
of computing the quotient (there called mirror) [153]. This
paper aims at proposing, for model based design of systems
and CPS, a new vista on contracts. In the next section, we
propose an all encompassing meta theory of contracts.

V. A MATHEMATICAL META-THEORY OF CONTRACTS

In software engineering, meta-models are “models of mod-
els”, i.e., formal ways of specifying a certain family of
models. Similarly, we call here meta-theory a way to specify
a particular family of theories. In this section we propose
a meta-theory of contracts. This meta-theory is summarized
in Table IV. It comes as a few primitive concepts, on top
of which derived concepts can be built. A number of key
properties can be proved about the resulting framework.
These properties demonstrate that contracts are a convenient
paradigm to support incremental development and independent
implementability in system design. The meta-theory will serve
as a benchmark for our subsequent review of concrete contract
theories.

The meta-theory we develop here is novel. There are very
few attempts of that kind. In fact, the only ones we are aware
of are the recent works by Bauer et al. [22] and Chen et al. [59],
which follow a different (and complementary) approach. The
discussion of this work is deferred to the bibliographical
section V-H.

A. Components and their composition

To introduce our meta-theory, we start from a universe M
of possible components, each denoted by the symbol M or
E, and a universe of their abstractions, or contracts, each
denoted by the symbol C. Our meta-theory does not presume
any particular modeling style, neither for components nor for
contracts—we have seen in Section IV an example of a (very
simple) framework for static systems. More generally, some
frameworks may represent components and contracts with sets
of discrete time or even continuous time traces, other theories
use logics, or state-based models of various kinds, and so on.

We assume a composition M1 ×M2 acting on pairs of
components. Component composition × is partially, not to-

RR n° 8147

www.omgmarte.org

Contracts for System Design 25

Concept Definition and generic properties What depends on the particular
theory of contracts

Primitive

Component Components are denoted by M ; they can be open or closed How components are specified

Composability
of components A type property on pairs of components (M1,M2) How this type property is defined

Composition
of components

M1×M2 is well defined if and only if M1 and M2 are composable;
It is required that × is associative and commutative The definition of the composition

Environment An environment for component M is a component
E such that E×M is defined and closed

Derived

Contract A contract is a pair C = (EC ,MC), where MC is a subset
of components and EC a subset of legal environments

Which family C of contracts
can be expressed, and
how they are expressed;
unless otherwise specified,
quantifying is implicitly over C ∈ C

Consistency C is consistent iff it has at least one component: MC 6= ∅ How consistency is checked

Compatibility C is compatible iff it has at least one environment: EC 6= ∅ How compatibility is checked

Implementation M |=M C if and only if M ∈MC
E |=E C if and only if E ∈EC

How implementation is checked

Refinement C′ � C iff EC′ ⊇ EC and MC′ ⊆MC ; Property 1 holds How refinement is checked

GLB and
LUB
of contracts

C1∧C2 = Greatest Lower Bound (GLB) for � we assume GLB exist
C1∨C2 = Least Upper Bound (LUB) for � we assume LUB exist

Property 2 holds

Whether and how
GLB and LUB can be
expressed and computed

Composition
of contracts

C1⊗C2 is defined if M1 |=M C1
M2 |=M C2

}
⇒ (M1,M2) composable

C1⊗C2 =
∧C

∣∣∣∣∣∣
M1 |=M C1 and M2 |=M C2 and E |=E C

⇓
M1 ×M2 |=M C and E×M2 |=E C1 and E×M1 |=E C2

Assumption 1 is in force; Properties 3, 4, and 5 hold
Say that C1 and C2 are compatible if so is C1⊗C2

How composition is
expressed and computed

Quotient C1/C2 =
∨
{ C | C ⊗ C2 � C1}; Property 6 holds How quotient is

expressed and computed

Table IV
Summary of the meta-theory of contracts. We first list primitive concepts and then derived concepts introduced by the meta-theory.

tally, defined. Two components that can be composed are
called composable. Composability of components is meant
to be a typing property. In order to guarantee that different
composable components may be assembled together in any
order, it is required that component composition × is asso-
ciative and commutative. Components that exhibit no means
for interacting with the outside world are called closed; other
components are open. An environment for a component M
is another component E composable with M and such that
M × E is closed.

B. Contracts

In our primer of Section IV, we have highlighted the im-
portance of the legal environments associated with contracts,
for which an implementation will operate satisfactorily. At the
abstract level of the meta-theory, we make this explicit next:

Definition 1: A contract is a pair C = (EC ,MC), where:

• MC ⊆M is the set of implementations of C, and
• EC ⊆M is the set of environments of C.

For any pair (E,M) ∈ EC × MC , E is an environment
for M . Hence, M×E must be well defined and closed. A
contract possessing no implementation is called inconsistent.
A contract possessing no environment is called incompatible.
Write

M |=M C and E |=E C

to express that M ∈MC and E ∈ EC , respectively.
In concrete theories of contracts, both components and con-
tracts are described in some finite (preferably concise) way.
In turn, it is not true that every set M′ ⊆M of components
can be represented as M′ = MC for some contract C and
similarly for sets of environments. To highlight this,

we assume a family C of expressible contracts. (5)

Only contracts belonging to this family can be considered.
This is made explicit in Table IV.

C. Refinement and conjunction
To support independent implementability, the concept of

contract refinement must ensure the following: if contract C′

RR n° 8147

Contracts for System Design 26

refines contract C, then any implementation of C′ should 1)
implement C and 2) be able to operate in any environment for
C. Hence the following definition for refinement preorder �
between contracts: C′ refines C, written C′ � C, if and only
if MC′ ⊆ MC and EC′ ⊇ EC . As a direct consequence, the
following property holds, which justifies the use of the term
“refinement” for this relation:

Property 1 (refinement):
1) Any implementation of C′ is an implementation of C:

M |=M C′ ⇒M |=M C, and
2) Any environment of C is an environment of C′:

E |=E C ⇒ E |=E C′.
The conjunction of contracts C1 and C2, written C1 ∧ C2, is
the greatest lower bound (GLB) of these two contracts with
respect to refinement order—we assume such a GLB exists.
The intent is to define this conjunction as the intersection of
sets of implementations and the union of sets of environments.
However, due to (5), not every set of components is the
characteristic set of a contract. The best approximation consists
in taking the greatest lower bound for the refinement relation.
The following immediate properties hold:

Property 2 (shared refinement):
1) Any contract that refines C1 ∧ C2 also refines C1 and C2.

Any implementation of C1 ∧ C2 is a shared implementa-
tion of C1 and C2. Any environment of C1 or C2 is an
environment of C1 ∧ C2.

2) For C ⊆ C a subset of contracts,
∧
C is compatible if

and only if there exists a compatible C ∈ C.

The conjunction operation formalizes the intuitive notion of a
“set of contracts” or a “set of requirements”.

D. Contract composition

The objective of contract composition is to ensure that:
1) composing respective implementations of each contract

yields an implementation for the composition, and,
2) composing an environment for the resulting composition

with an implementation for C2 yields an environment for
C1 and vice-versa.

These two properties are essential in supporting top-down
design by successive decompositions and refinements of con-
tracts. Contract composition C1 ⊗ C2 is thus defined on top
of component composition as indicated in Table IV, with the
following assumption in force throughout this meta-theory:

Assumption 1: The following condition holds:

C1 ⊗ C2 ∈ CC1⊗C2

(Note that this assumption is non trivial since it is not true for
an arbitrary set C ⊆ C that

∧
C∈C C ∈ C.) The condition

for C1 ⊗ C2 to be defined is that every pair (M1,M2) of
respective implementations is composable, so that M1 ×M2

is well defined—recall that component composability is a
typing property. Consequently, if E is an environment for
M1×M2, E is composable with both M1 and M2 and E×M1

is an environment for M2 and vice-versa. Referring to the

formula defining C1 ⊗ C2, denote by CC1⊗C2 ⊆ C the set of
contracts specified in the brackets. The following lemma will
be instrumental:

Lemma 1: Let four contracts be such that C′1 � C1,
C′2 � C2, and C1 ⊗ C2 is well defined. Then, so is C′1 ⊗ C′2
and CC′1⊗C′2 ⊇ CC1⊗C2 .

Proof: Since C1⊗C2 is well defined, it follows that every pair
(M1,M2) of respective implementations of these contracts is a
composable pair of components. Hence, C′1⊗C′2 is well defined
according to the formula of Table IV. Next, since C′1 � C1 and
C′2 � C2 and using Assumption 1, M1 |=M C′1 and M2 |=M C′2
implies M1 |=M C1 and M2 |=M C2; similarly E ×M2 |=E C1
and E×M1 |=E C2 implies E×M2 |=E C′1 and E×M1 |=E C′2.
Therefore, replacing, in the big brackets defining the contract
composition, C1 by C′1 and C2 by C′2 can only increase the set
CC1⊗C2 . 2

To conform to the usage, we say that C1 and C2 are
compatible contracts if their composition C1 ⊗ C2 is defined
and compatible in the sense of Table IV. The following
properties are a direct corollary of Lemma 1:

Property 3 (independent implementability): For all con-
tracts C1, C2, C′1 and C′2, if

1) C1 is compatible with C2,
2) C′1 � C1 and C′2 � C2 hold,

then C′1 is compatible with C′2 and C′1 ⊗ C′2 � C1 ⊗ C2.

Thus, compatible contracts can be independently refined. This
property holds in particular if C′1 and C′2 are singletons:

Corollary 1: Compatible contracts can be independently
implemented.

Property 3 is fundamental, particularly in top-down design.
Top-down incremental design consists in iteratively decom-
posing a system-level contract C into sub-system contracts
Ci, i ∈ I for further independent development. To ensure that
independent development will not lead to integration problems,
it is enough to verify that

⊗
i∈I Ci � C. We insist that, since

contracts are purposely abstract and subsystems are not many,
the composition of contracts Ci will not typically result in state
explosion.33

The following property is essential as it states that contract
composition can be performed in any order and changes
in architecture (captured by changes in parenthesizing) are
allowed:

Property 4 (associativity and commutativity): For all con-
tracts C1, C2, C3 and C4, if C1 and C2 are compatible, C3 and
C4 are compatible and C1⊗C2 is compatible with C3⊗C4, then
C1 is compatible with C3, C2 is compatible with C4, C1 ⊗ C3
is compatible with C2 ⊗ C4, and

(C1 ⊗ C2)⊗ (C3 ⊗ C4) = (C1 ⊗ C3)⊗ (C2 ⊗ C4) (6)

33 This is unlike in compositional verification, where ×i∈IMi |=M P
is to be checked, where Mi are detailed implementations and P is a
property. In this case, the composition ×i∈IMi typically gives raise to state
explosion. Techniques have thus been proposed to verify such properties in
an incremental way [176], [62], [98], [1], [121].

RR n° 8147

Contracts for System Design 27

Proof: To shorten notations, write C12 instead of C1 ⊗C2 and
similarly for any subset of {1, 2, 3, 4}. By Assumption 1 and
the associativity and commutativity of component composi-
tion, C1234 is characterized by the following two properties,
where index i ranges over the set 1. . .4:

Mi |=M Ci ⇒ M1× . . .×M4 |=M C1234

E |=E C1234 ⇒ E× (×j 6=iMj) |=E Ci
(7)

Observe that (7) is fully symmetric, which proves (6). Next,
using the assumptions regarding compatibility, we derive the
existence of at least one environment E satisfying the premise
of the second implication of (7). Since (7) is fully symmetric,
this proves the conclusions of Property 4 regarding compati-
bility. 2

Property 5 (distributivity): If the following contract compo-
sitions are all well defined, then the following holds:

[(C11 ∧ C21)⊗ (C12 ∧ C22)] � [(C11 ⊗ C12) ∧ (C21 ⊗ C22)] (8)

Proof: By Lemma 1, C(C11∧C21)⊗(C12∧C22) ⊇ CC11⊗C12 .
Taking the GLB of these two sets thus yields
[(C11 ∧ C21)⊗ (C12 ∧ C22)] � (C11 ⊗ C12) and similarly
for (C21 ⊗ C22). Thus, (8) follows. 2

The use of distributivity is best illustrated in the following
context. Suppose the system under design decomposes into
two sub-systems labeled 1 and 2, and each subsystem has
two viewpoints associated with it, labeled by another index
with values 1 or 2. Contract (C11 ∧ C21) is then the contract
associated with sub-system 1 and similarly for sub-system 2.
Thus, the left hand side of (8) specifies the set of imple-
mentations obtained by, first, implementing each sub-system
independently, and then, composing these implementations.
Property 5 states that, by doing so, we obtain an implemen-
tation of the overall contract obtained by, first, getting the
two global viewpoints (C11 ⊗ C12) and (C21 ⊗ C22), and,
then, taking their conjunction. This property supports inde-
pendent implementation for specifications involving multiple
viewpoints. Observe that only refinement, not equality, holds
in (8).

E. Quotient

The quotient of two contracts is defined in Table IV. It is
the adjoint of the product operation ⊗ in that C1/C2 is the
most general context C in which C2 refines C1. It formalizes
the practice of “patching” a component to make it behaving
according to another specification. From its definition in
Table IV, we deduce the following property:

Property 6 (quotient): The following holds:

C � C1/C2 ⇔ C ⊗ C2 � C1

Proof: Immediate, from the definition. 2

F. Discussion

By inspecting Table IV, the different notions can be classi-
fied into the following two categories:

• Primitive notions that are assumed by the meta-theory.
This category comprises: components, component com-
posability and composition.

• Derived notions comprise: contract; refinement, conjunc-
tion, composition, and quotient; consistency and com-
patibility for contracts. The derived notions follow from
the primitive ones through set theoretic, non effective,
definitions.

The meta-theory offers by itself a number of fundamental
properties that underpin incremental development and inde-
pendent implementability. Concrete theories will offer defini-
tions for the primitive notions as well as effective means to
implement (or sometimes approximate) the derived notions.
Observers and then abstract interpretation we develop next
provide generic approaches to recover effectiveness.

G. Observers

Notion Observer

C = (EC ,MC)
(
bE
C , b

M
C
)

C = C1∧C2 bE
C = bE

C1 ∨ b
E
C2 , b

M
C = bM

C1 ∧ b
M
C2

C = C1∨C2 bE
C = bE

C1 ∧ b
E
C2 , b

M
C = bM

C1 ∨ b
M
C2

C = C1⊗C2
bE
C(E) =

bM
C1 (M1) ∧ bM

C2 (M2)

⇓
bE
C2 (E×M1) ∧ bE

C1 (E×M2)

bM
C(M1 ×M2) = bM

C1 (M1) ∧ bM
C2 (M2)

Table V
Mirroring the algebra of contracts with observers.

A typical obstacle in getting finite (or, more generally,
effective) representations of contracts is the occurrence of
infinite data types and functions having infinite domains. These
can be dealt with by using observers, which originate from the
basic notion of test for programs:

Definition 2: Let C be a contract. An observer for C
is a pair (bE

C , b
M
C) of non-deterministic boolean functions

M 7→ {F, T} called verdicts, such that:

bE
C(M) outputs F =⇒ M 6∈ EC
bM
C(M) outputs F =⇒ M 6∈ MC

(9)

The functions M 7→ bE
C(M) and M 7→ bM

C(M) being both
non-deterministic accounts for the fact that the outcome of a
test depends on the stimuli from the environment and possibly
results from internal non-determinism of the tested component
itself. Note the single-sided implication in (9), which reflects
that tests only provide semi-decisions.

Relations and operations of the meta-theory can be mirrored
by relations and operations on observers as explained in
Table V—we omit the formulas for the quotient as semi-
effectiveness of testing makes it useless. Despite GLB and
LUB can be mirrored using the formulas of the table, nothing
can be said about the relationship of observers for contracts
based on the fact that they are in a refinement ordering. Dually

RR n° 8147

Contracts for System Design 28

nothing can be inferred in terms of their refinement from
such a relationship between the observers. Still, the following
weaker result holds, which justifies how GLB and LUB are
represented using observers in Table V:

Lemma 2: Let (bE
C , b

M
C) be an observer for C and let C′ � C.

Then, any pair (bE, bM) satisfying bE ≥ bE
C and bM ≤ bM

C is an
observer for C′.
The following immediate results hold, regarding consistency
and compatibility:

Lemma 3:
1) If bE

C(E) outputs F for all tested environment E, then C
is incompatible;

2) If bM
C(M) outputs F for all tested component M , then C

is inconsistent.

To summarize, Definition 2 provides semi-decision procedures
to check whether a component or an environment are valid
for a contract. Lemma 3 provides semi-decision procedures
for checking consistency and compatibility. Finally, Table V
indicates how operations from the contract algebra can be
reflected into operations on observers.

Due to the need for exercising all components or environ-
ments, using observers for checking consistency or compat-
ibility is still non-effective. For concrete theories exhibiting
some notion of “strongest” environment or component for the
considered contract, a reinforcement of Lemma 3 will ensure
effectiveness.

In Section VI where concrete theories are reviewed, we
indicate, for each theory, how observers can be constructed
and how Lemma 3 specializes.

H. Bibliographical note

Abstract contract theories and features of our presen-
tation: Our presentation here is new. There is only a small
literature providing an abstract formalization of the notion of
contracts. The only attempts we are aware of are the recent
works by Bauer et al. [22] and Chen et al. [59], albeit with
deeply different and complementary approaches.

The publication [22] develops an axiomatization of the
notion of specification, from which contracts can be derived
in a second step. More precisely, specifications are abstract
entities that obey the following list of axioms: it possesses a
refinement relation that is a preorder, which induces a notion
of equivalence of specifications, and a parallel composition
that is associative, commutative (modulo equivalence), and
monotonic with respect to refinement. It is assumed that,
if two specifications possess a common lower bound, then
they possess a greatest lower bound. A quotient is also
assumed, which is the residuation of the parallel composi-
tion. From specifications, contracts are introduced as pairs of
specifications, very much like Assume/Guarantee contracts we
develop in Section VII are pairs of assertions. Sets of legal
environments and sets of implementations are associated to
contracts. Finally modal contracts are defined by borrowing
ideas from modal specifications we discuss in Section VIII.
This abstract theory nicely complements the one we develop

here in that it shows that both specifications and contracts can
be defined as primitive entities and be used to build more
concrete theories.

The work [59] develops the concept of declarative speci-
fication, which consists of a tuple P = (Σin,Σout, TΣ, FΣ),
where Σin and Σout are input and output alphabets of actions,
Σ = Σin] Σout, and TΣ, FΣ ⊆ Σ∗ such that FΣ ⊆ TΣ

are sets of permissible and inconsistent traces, respectively—
this approach find its origins in earlier work by Dill [81]
and Negulescu [143]. Outputs are under the control of the
component, whereas inputs are issued by the environment.
Thus, after any successful interaction between the component
and the environment, the environment can issue any input α,
even if it will be refused by the component. If α is refused
by the component after the trace t ∈ TΣ, t.α ∈ FΣ is an
inconsistent trace, capturing that a communication mismatch
has occurred. An environment is called safe if it can prevent
a component from performing an inconsistent trace. For Q
to be used in place of P it is required that Q must exist
safely in any environment that P can exist in safely; this is
the basis on which refinement is defined. Alphabet extension
is used, by which input actions outside the considered alphabet
are followed by an arbitrary behavior for the declarative
specification. A conjunction is proposed that is the GLB for
refinement order. A parallel composition is proposed, which
is monotonic with respect to refinement. A quotient is also
proposed, which is the residuation of parallel composition.

Observers: Observers, being related to the wide area
of software and system testing, have been widely studied.
A number of existing technologies support the design of
observers and we review some of them now.

Synchronous languages [28], [100], [30] are a formalism of
choice in dealing with observers. The family of Synchronous
Languages comprises mainly the imperative language Es-
terel [92], [84] and the dataflow languages Lustre [144] and
Signal [157]. The family has grown with several children
offering statecharts-like interfaces and blending dataflow and
statechart-based styles of programming, such as in Scade V634.
Synchronous languages support only systems governed by
discrete time, not systems with continuous time dynamics
(ODEs). They benefit from a solid mathematical semantics. As
a consequence, executing a given program always yields the
same results (results do not depend on the type of simulator).
The simulated or analysed program is identical to the code
for embedding. Thanks to these unique features, specifications
can easily be enhanced with timing and/or safety viewpoints.
The RT-Builder35 tool on top of Signal is an example of
framework supporting the combination of functional and tim-
ing viewpoints while analyzing an application deployed over
a virtual architecture (see Section IV-D4). The widely used
Simulink/Stateflow36 tool by The Mathworks offers similar
features. One slight drawback is that its mathematical seman-

34http://www.esterel-technologies.com/products/scade-suite/
35http://www.geensoft.com/en/article/rtbuilder
36http://www.mathworks.com/products/simulink/

RR n° 8147

http://www.esterel-technologies.com/products/scade-suite/
http://www.geensoft.com/en/article/rtbuilder
http://www.mathworks.com/products/simulink/

Contracts for System Design 29

tics is less firmly defined (indeed, results of executions may
differ depending on the code executed: simulation or generated
C code). On the other hand, Simulink supports continuous
time dynamics in the form of systems of interconnected
ODEs (Ordinary Differential Equations), thus supporting the
modeling of the physical part of the system. Using Simulink,
possibly enhanced with SimScape,37 allows for including
physical system models in observers, e.g., as part of the system
environment. The same comment holds regarding Modelica.38

Actually, observers have been proposed and advocated in the
context of Lustre and Scade [101], [102], [103], Esterel [45],
and Signal [137], [138]. More precisely, Scade advocates
expressing tests using Scade itself. Tests can then easily be
evaluated at run time while executing a Scade program. To
conclude, observe that synchronous languages and formalisms
discussed in this section are commercially available and widely
used.

Another good candidate for expressing observers is the
Property Specification Language (PSL). PSL is an industrial
standard [151], [86], [85] for expressing functional (or behav-
ioral) properties targeted mainly to digital hardware design.
We believe that PSL is indeed very close to several, less
established but more versatile formalisms based on restricted
English language that are used in industrial sectors other
than digital hardware, e.g., in aeronautics, automobile, or
automation. Consider the following property:

“ For every sequence that starts with an a imme-
diately followed by three occurrences of b and ends
with a single occurrence of c, d holds continuously
from the next step after the end of the sequence until
the subsequent occurrence of e. ”

This property is translated into its PSL version

{ [*];a;b[*3];c } |=> (d until! e)

PSL is a well-suited specification language for expressing
functional requirements involving sequential causality of ac-
tions and events. Although we are not aware of the usage
of PSL in the particular context of contract-based design, we
mention the tool FoCS [2] that translates PSL into checkers
that are attached to designs. The resulting checker takes the
form of an observer, if the PSL specification is properly
partitioned into assumption and guarantee properties. More re-
cently, PSL was also used for the generation of transactors that
may adapt high-level requirements expressed as transaction-
level modules to the corresponding register-transfer implemen-
tation [18], [17]. It follows that the existing tool support for
PSL makes this specification language suitable in the contract-
based design using observers. We note that the availability
of formal analysis tools allows the design to be checked
exhaustively—this is, of course, at the price of restrictions
on data types. Another benefit in using PSL as an observer-
based interface formalism is an existing methodology for user-
guided automated property exploration built around this lan-

37http://www.mathworks.com/products/simscape/
38https://www.modelica.org/

guage [158], [42], that is supported by the tool RATSY [43].
As previously stated, PSL is built on top of LTL and regular
expressions. One can thus express liveness properties in PSL,
which are not suitable for online monitoring. There are two
orthogonal ways to avoid this potential issue: (1) restricting
the PSL syntax to its safety fragment; or (2) adapting the PSL
semantics to be interpreted over finite traces [87]. A survey of
using PSL in runtime verification can be found in [85].

Another relevant formalism for building observers consists
of the Live Sequence Charts (LSC) [64], [107], [105]. LSC
are a graphical specification language based on scenarios that
is an extension of Message Sequence Charts (MSC)39. A
typical LSC consists of a prechart and a main chart. The
semantics is that whenever the prechart is satisfied in a run of
the system, eventually the main chart must also be satisfied.
Precharts should not be confused with assumptions, however,
they are rather sort of “prerequisites”. LSCs are multi-modal
in that any construct in the language can be either cold or
hot, with a semantics of “may happen” or “must happen”,
respectively. If a cold element is violated (say a condition
that is not true when reached), this is considered a legal
behavior and some appropriate action is taken. Violation of
a hot element, however, is considered a violation of the
specification and is not allowed to happen in an execution.
LSC are executable. The execution of a set of LSCs is called
play out by the authors [107]. Play out is useful for checking
an LSC specification against a property [66]. LSC can be
used as (expressive) tests to monitor the execution of a design
over non-terminating runs. While doing so, the same rules as
above are applied, except that the design controls the emission
of events and the LSC specification is used to react in case
of violation of the specification. This is manifested by the
absence of rules explaining the occurrence of some event at
run-time. This procedure is called play in by the authors. To
conclude, LSCs are well suited to express observers.

VI. PANORAMA OF CONCRETE THEORIES

For the coming series of sections where concrete contract
theories are reviewed, the reader is referred to Table IV of
Section V, where the meta-theory of contracts is developed.
We will illustrate how various concrete contract theories can
be developed by specializing the meta-theory.

VII. PANORAMA: ASSUME/GUARANTEE CONTRACTS

Our static example of Section IV provided an example
of contract specified using Assumptions and Guarantees. As-
sume/Guarantee contracts (A/G-contracts), Assumptions char-
acterize the valid environments for the considered compo-
nent, whereas the Guarantees specify the commitments of
the component itself, when put in interaction with a valid
environment. Various kinds of A/G-contract theories can be
obtained by specializing the meta-theory in different ways.
Variations concern how the composition of components is
defined. We will review some of these specialization and relate
them to the existing literature.

39http://www.sdl-forum.org/MSC/index.htm

RR n° 8147

http://www.mathworks.com/products/simscape/
https://www.modelica.org/
http://www.sdl-forum.org/MSC/index.htm

Contracts for System Design 30

In general, A/G contract theories build on top of component
models that are assertions, i.e., sets of behaviors or traces
assigning successive values to variables. As we shall see,
different kinds of frameworks for assertions can be consid-
ered, including asynchronous frameworks of Kahn Process
Networks (KPN) [117] and synchronous frameworks in which
behaviors are sequences of successive reactions assigning
values to the set of variables of the considered system. We first
develop the theory for the simplest case of a fixed alphabet.
Then, we develop the other cases.

A. Dataflow A/G contracts

For this simplest variant, all components and contracts
involve a same alphabet Σ of variables, possessing identical40

domain D.
With this simplification, a component M identifies with an

assertion

P ⊆ Σ 7→ D∗ ∪Dω (10)

i.e., a subset of the set of all finite or infinite behaviors over
alphabet Σ; such a behavior associates, to each symbol x ∈ Σ,
a finite or infinite flow of values. The flows are not mutually
synchronized and there is no global clock or logical step. We
discuss in Section VII-D variants of this framework with more
synchronous models of behaviors. For convenience, we feel
free to use both set theoretic and boolean notations for the
relations and operations on assertions.

Two components are always composable and we define
component composition by the intersection of their respective
assertions:

P1×P2 = P1∧P2 (11)

Formulas (10) and (11) define a framework of asynchronous
components, with no global clock and no notion of reac-
tion. Instead, a component specifies a relation between the
histories of its different flows. When input and output ports
are considered as in Section VII-B and components are in-
put/output functions, we obtain the model of Kahn Process
Networks [117] widely used for the mapping of synchronous
programs over distributed architectures [159], [160].

Definition 3: A contract is a pair C = (A,G) of assertions,
called the assumptions and the guarantees. The set EC of the
legal environments for C collects all components E such that
E ⊆ A. The set MC of all components implementing C is
defined by A×M ⊆ G.
Thus, any component M such that M ≤ G ∨ ¬A is an
implementation of C and MC = G ∨ ¬A is the maximal
implementation. Observe that two contracts C and C′ with
identical input and output alphabets, identical assumptions,
and such that G′ ∨ ¬A′ = G ∨ ¬A, possess identical sets of
implementations: MC =MC′ . According to our meta-theory,
such two contracts are equivalent. Any contract C = (A,G)
is equivalent to a contract in saturated form (A,G′) such that

40This is only an assumption intended to simplify the notations. It is by no
means essential.

G′ ⊇ ¬A, or, equivalently, G ∨ A = T, the true assertion;
to exhibit G′, just take G′ = G ∨ ¬A. A saturated contract
C = (A,G) is consistent if and only if G 6= ∅ and compatible
if and only if A 6= ∅.

Next, for C and C′ two saturated contracts with identical
input and output alphabets,

refinement C′ � C holds iff
{
A′≥A
G′≤G (12)

Conjunction follows from the refinement relation: for C1 and
C2 two saturated contracts with identical input and output
alphabets: C1 ∧ C2 = (A1∨A2, G1∧G2).

Focus now on contract composition C = C1 ⊗ C2, for two
saturated contracts—this is no loss of generality, as we have
seen. Contract composition instantiates through the following
formulas, cf. (1) in Section IV:

G = G1∧G2

A = max

A
∣∣∣∣∣∣
A∧G2⇒A1

and
A∧G1⇒A2

 (13)

which satisfies Assumption 1 of the meta-theory. If, further-
more, contracts are saturated, then (13) reformulates as the
formulas originally proposed in [29]:

G = G1 ∧G2

A = (A1 ∧A2) ∨ ¬(G1 ∧G2)
(14)

Observe that the so obtained contract (A,G) is saturated:
G ∨A = (G1 ∧G2) ∨ (A1 ∧A2) ∨ ¬(G1 ∧G2) = T.

No quotient operation is known for Assume/Guarantee
contracts.

We finish this section by observing that the two contracts
C1 and C′1 of Section IV-A1 satisfy C′1 � C1 according to the
theory of this section: guarantees are identical but assumptions
are relaxed.

B. Capturing exceptions

Referring to the primer of Section IV-A1 and its static
system example, dividing by zero may raise an exception. For
instance, a careless designer may consider, instead of M1, a
slight variation M ′1 of it where the behaviors are only partially
defined:

M ′1 : behaviors (y 6= 0→ z = x/y)

leaving what happens if a value 0 is submitted for y unspeci-
fied. In practice, y = 0 would raise an exception, leading to an
unpredictable outcome and possibly a crash unless exception
handling is offered as a rescue by the execution platform.

In this section, we show how a mild adjustment of our
theory of A/G contracts can capture exceptions and their
handling. To simplify, we develop this again for the case of
a fixed alphabet Σ. We only present the add-ons with respect
to the previous theories, the parts that remain unchanged are
not repeated.

Since exceptions are undesirable events caused by the com-
ponent itself and not by its inputs—for our simple example, the

RR n° 8147

Contracts for System Design 31

exception is the improper handling of the division by zero—we
need to include inputs and outputs as part of our framework
for components.

A component is thus a tuple M = (Σin,Σout, P), where
Σ = Σin ∪ Σout is the decomposition of alphabet Σ into
its inputs and outputs, and P ⊆ (Σ 7→ (D∗ ∪Dω)) is an
assertion. Whenever convenient, we shall denote by Σin

M , QM ,
PM , etc., the items defining component M . Components M1

and M2 are composable if Σout
1 ∩ Σout

2 = ∅. If so, then
M1×M2 = (Σin,Σout, P) is well defined, with Σout =
Σout

1 ∪ Σout
2 , Σin = Σ− Σout, and P = P1 ∩ P2.

Let us now focus on exceptions. To capture improper re-
sponse (leading to a “crash”), we distinguish a special element
fail ∈ D. We assume that crash is not revertible, i.e., in
any behavior of the component, any variable remains at fail
when it reaches that value. Referring to the static example of
Section IV, we would then set x/0 := fail for any x. We are
now ready to formalize what it means, for a component, to be
free of exception:

Definition 4: A component M is free of exception if:
1) It accepts all inputs:

prΣin
M

(PM) = Σin
M 7→ (D∗∪Dω)

2) It does not cause by itself the occurrence of fail in its
behaviors: for any behavior σ ∈ PM , if the projection
prΣin

M
(σ) of σ to the input alphabet Σin

M does not involve
fail , then neither does σ.

Exception freeness defined in this way is such that, if M1 and
M2 are both composable and free of exception, then M1×M2

is also free of exception. Hence, we are free to restrict our
universe of components to exception free components—thus,
Definition 4 defines our family of components. A/G contracts
are re-defined accordingly:

Definition 5: A contract is a tuple C = (Σin,Σout, A,G),
where Σin and Σout are the input and output alphabets and
A and G are assertions over Σ, called the assumptions and
the guarantees. The set EC of the legal environments for C are
all free of exception components E such that Σin

E = Σout
C ,

Σout
E = Σin

C , and PE ⊆ A. The set MC of all components
implementing C is defined by: M is free of exception, Σin

M =
Σin
C and Σout

M = Σout
C and PE×M ⊆ G for every environment

E of C.
Focus now on the issue of consistency and compatibility, for
contracts. The following holds:

Property 7: Let C = (Σin,Σout, A,G) be a contract satis-
fying the following conditions:

prΣin
C

(G) = Σin
M 7→ (D∗∪Dω) (15)

prΣout
C

(A) = Σout
M 7→ (D∗∪Dω) (16)

fail does not occur in G ∧A (17)

Then, C is consistent and compatible.
Proof: By condition (15), the component M = (Σin,Σout, G)
satisfies condition 4 of Definition 4. It may not satisfy condi-
tion 2, however. To achieve this we must modify, in M , the

behaviors not belonging to A to avoid fail to occur. Preserving
M on A will ensure that implementation of C is preserved.
To get M ′, replace any behavior σ ∈ G ∧ ¬A by a behavior
σ′ such that prΣin

C
(σ′) = prΣin

C
(σ) and prΣout

C
(σ′) 63 fail .

Component M ′ obtained in this way is free of exception and
implements C, showing that C is consistent. Consider next the
component E = (Σout,Σin, A). If E is free of exception, then
it is an environment for C. If this is not the case, then we can
modify E on A∧¬G as we did for obtaining M ′. This yields
an environment E′ for C, showing that C is compatible. 2

Conditions (15) and (16) express that assumptions and
guarantees are both input enabled. Condition (17) is the key
one. Observe that, now, contract C′1 of Section IV-A1 is
inconsistent since it has no implementation—implementations
must be free of exception. In turn, contract C1 is consistent.
This is in contrast to the theory of Section VII-A, where
both contracts were considered consistent (crashes were not
ruled out). Indeed, contract C1 of Section IV-A1 satisfies the
conditions of Property 7, whereas C′1 does not. Addressing
exceptions matters.

C. Dealing with variable alphabets

Since contracts aim at capturing incomplete designs, we
cannot restrict ourselves to a fixed alphabet—it is not known in
advance what the actual alphabet of the complete design will
be. Thus the simple variants of Sections VII-A and VII-B have
no practical relevance and we must extend them to dealing
with variable alphabets. In particular, components will now be
pairs M = (ΣM , PM), where ΣM is the alphabet of M and
PM is an assertion over ΣM . Similarly, contracts are triples
C = (ΣC , AC , GC), where assumptions AC and guarantees GC
are assertions over alphabet ΣC .

Key to dealing with variable alphabet this is the operation
of alphabet equalization that we introduce next. For P an as-
sertion over alphabet Σ and Σ′ ⊆ Σ, we consider its projection
prΣ′(P) over Σ′, which is simply the set of all restrictions,
to Σ′, of all behaviors belonging to P . We will also need the
inverse projection pr−1

Σ′′ (P), for Σ′′ ⊇ Σ, which is the set of
all behaviors over Σ′′ projecting, to Σ, as behaviors of P . For
(Σi, Pi), i = 1, 2, we call alphabet equalization of (Σ1, P1)
and (Σ2, P2) the two assertions (Σ,pr−1

Σ (Pi)), i = 1, 2 where
Σ = Σ1 ∪ Σ2.

We also need to define alphabet equalization when the
alphabet Σ decomposes as Σ = Σin] Σout. Equalizing the
above decomposition to a larger alphabet Σ′′ ⊇ Σ yields
Σ′′out = Σout, whence Σ′′in = Σ′′ \ Σ′′out follows.

Alphabet equalization serves as a preparation step to reuse
the framework of Section VII-A when alphabets are variable.

This being defined, all operations and relations introduced
in Section VII-A are extended to the case of variable alphabets
by 1) applying alphabet equalization to the involved assertions,
and, 2) reusing the operation or relation as introduced in
Section VII-A.

As pointed out in [29], this generalization yields a contract
theory that is a valid instantiation of the meta-theory (up to
the missing quotient). It is not satisfactory from the practical

RR n° 8147

Contracts for System Design 32

standpoint, however. The reason is that the conjunction of
two contracts with disjoint alphabets yields a trivial assump-
tion T, which is very demanding—any environment must be
accommodated—and does not reflect the intuition (more on
this will be discussed in Section VIII-D.

To summarize, Sections VII-A, VII-B, and VII-C, together
define a framework for asynchronous Assume/Guarantee con-
tracts where components are of Kahn Process Network type.

D. Synchronous A/G contracts

We obtain variants of this framework of Assume/Guarantee
contracts by changing the concrete definition of what an
assertion is, and possibly revisiting what the component com-
position is. We can redefine assertions as

P ⊆ (Σ 7→ D)∗ ∪ (Σ 7→ D)ω. (18)

Compare (18) with (10). In both cases, assertions are sets of
behaviors. With reference to (10), behaviors were tuples of
finite or infinite flows, one for each symbol of the alphabet.
In contrast, in (18), behaviors are finite or infinite sequences
of reactions, which are the assignment of a value to each
symbol of the alphabet. By having a distinguished symbol
⊥ ∈ D to model the absence of an actual data, we get
the multiple-clocked synchronous model used by synchronous
languages [30]. Definition (18) for assertions correspond to the
synchronous model of computation, whereas (10) corresponds
to the Kahn Process Network type of model [117], [142]. The
material of Sections VII-A, VII-B, and VII-C, can be adapted
to this new model of component composition, thus yielding a
framework of synchronous Assume/Guarantee contracts.

E. Observers

The construction of observers for this case is immediate. We
develop it for the most interesting case in which exceptions are
handled, see Sections VII-A and VII-B. Let P be an assertion
according to (10). P defines a verdict bP by setting

bP (σ) = T if and only if σ ∈ P (19)

Observers must return their verdict in some finite amount of
time. Hence, on-line interpretation based on Definition 3 is
appropriate. With this interpretation, for C = (Σin,Σout, A,G)
a contract, its associated observer is obtained as follows, with
reference to Definition 2:

• bE
C(E) is performed by drawing non-deterministically a

behavior σ of E and then evaluating bA(σ).
• bM
C(M) is performed by drawing non-deterministically a

behavior σ of M and then evaluating bA(σ)⇒ bM (σ).

Lemma 3 for generic observers specializes to the following,
effective, semi-decision procedure:

Lemma 4:

1) If bA outputs F, then C is incompatible;
2) If bA ⇒ bG outputs F, then C is inconsistent.

F. Discussion

Assume/Guarantee contracts are a family of instantiations
of our meta-theory. This family is flexible in that it can
accommodate different models of communication and different
models of exceptions. Assume/Guarantee contracts are an
adequate framework for use in requirements capture. Indeed,
requirements are naturally seen as assertions. When categoriz-
ing requirements into assumptions (specifying the context of
use of the system under development) and guarantees (that the
system offers), formalizing the resulting set of requirements as
an A/G contract seems very natural.

Regarding exceptions, the special value fail that we intro-
duced to capture exceptions is not something that is given in
practice. Value fail may subsume various run time errors. Al-
ternatively, for the synchronous Assume/Guarantee contracts,
fail can capture the failure of a component to be input enabled
(able, in each reaction, to accept any tuple of inputs).

In its present form, the framework of Assume/Guarantee
contracts (synchronous or asynchronous), suffers from the
need to manipulate negations of assertions, an operation that
is generally not effective, except if the framework is restricted
to finite state automata and finite alphabets of actions. For
general frameworks, using observers or abstract interpretation
can mitigate this in part.

G. Bibliographical note

By explicitly relying on the notions of Assumptions and
Guarantees, A/G-contracts are intuitive, which makes them
appealing for the engineer. In A/G-contracts, Assumptions and
Guarantees are just properties. The typical case is when these
properties are languages or sets of traces, which includes the
class of safety properties [122], [58], [136], [14], [61]. A/G-
contracts were advocated by the SPEEDS project [29]. They
were further experimented in the framework of the CESAR
project [63], with the additional consideration of weak and
strong assumptions. The theory developed in [29] turns out
to be closest to this presentation; still, exceptions were not
handled in [29]. The presentation developed in this paper
clarifies the design choices in A/G-contract theories.

Inspired by [126], another form for A/G-contract was pro-
posed by [97], [99] when designs are expressed using the
BIP programming language [41], [174]. To achieve separate
development of components, and to overcome the problems
that certain models have with the effective computation of
the operators, the authors avoid using parallel composition
⊗ of contracts. Instead, they replace it with the concept of
circular reasoning, which states as follows in its simplest
form: if design M satisfies property G under assumption
A and if design N satisfies assumption A, then M × N
satisfies G. When circular reasoning is sound, it is possible
to check relations between composite contracts based on
their components only, without taking expensive compositions.
In order for circular reasoning to hold, the authors devise
restricted notions of refinement under context and show how
to implement the relations in the contract theory for the BIP

RR n° 8147

Contracts for System Design 33

framework. Compatibility is not addressed and this proposal
does not consider conjunction.

Regarding extensions, a notion of contract for real-time
interfaces is proposed in [40]. Sets of tasks are associated to
components which are individually schedulable on a processor.
An interface for a component is an ω-language containing all
legal schedules. Schedulability of a set of components on a
single processor then corresponds to checking the emptiness
of their intersection. The interface language considered is
expressive enough to specify a variety of requirements like
periodicity, the absence or the presence of a jitter, etc. An as-
sume/guarantee contract theory for interfaces is then developed
where both assumptions and guarantees talk about bounds
on the frequency of task arrivals and time to completions.
Dependencies between tasks can also be captured. Refinement
and parallel product of contracts are then defined exactly as
in the SPEEDS generic approach.

In [145], a platform-based design methodology that uses
A/G analog contracts is proposed to develop reliable ab-
stractions and design-independent interfaces for analog and
mixed-signal integrated circuit design. Horizontal and verti-
cal contracts are formulated to produce implementations by
composition and refinement that are correct by construction.
The effectiveness of the methodology is demonstrated on the
design of an ultra-wide band receiver used in an intelligent
tire system, an on-vehicle wireless sensor network for active
safety applications.

A/G-contracts have been extended to a stochastic setting by
Delahaye et al. [75], [76], [77]. In this work, the implementa-
tion relation becomes quantitative. More precisely, implemen-
tation is measured in two ways: reliability and availability.
Availability is a measure of the time during which a system
satisfies a given property, for all possible runs of the system. In
contrast, reliability is a measure of the set of runs of a system
that satisfy a given property. Following the lines of the contract
theories presented earlier, satisfaction is assumption-dependent
in the sense that runs that do not satisfy the assumptions are
considered to be “correct”; the theory supports refinement,
structural composition and logical conjunction of contracts;
and compositional reasoning methods have been proposed,
where the stochastic or non-stochastic satisfaction levels can
be budgeted across the architecture: For instance, assume that
implementation Mi satisfies contract Ci with probability αi,
for i = 1, 2, then the composition of the two implementations
M1×M2 satisfies the composition of the two contracts C1⊗C2

with probability at least α1 + α2 − 1.
Features of our presentation: This presentation of A/G-

contracts is new in may respects. For the first time, it is
cast into the meta-theory of contracts, with the advantage of
clarifying the definition of refinement and parallel composition
of contracts—this involved some hand waving in the original
work [29]. Also, this allowed us to handle exceptions properly.

VIII. PANORAMA: INTERFACE THEORIES

Interface theories are an interesting alternative to As-
sume/Guarantee contracts. They aim at providing a merged

specification of the implementations and environments associ-
ated to a contract via the description of a single entity, called
an interface. We review some typical instances of interface
theories, with emphasis on interface automata and modal
interfaces. Interface theories generally use (a mild variation of)
Lynch Input/Output Automata [135], [134] as their framework
for components and environments. As a prerequisite, we thus
recall the background on Input/Output Automata, i/o-automata
for short.

A. Components as i/o-automata
An i/o-automaton is a tuple M = (Σin,Σout, Q, q0,→),

where
• Σin and Σout are disjoint finite input and output alpha-

bets; set Σ = Σin ∪ Σout;
• Q is a finite set of states and q0∈Q is the initial state;
• → ⊆ Q×Σ×Q is the transition relation; as usual, we

write q α−→ q′ to mean (q, α, q′) ∈ → and q
α−→ to

indicate the existence of a q′ such that q α−→ q′.
By concatenation, transition relation → extends to a relation
→∗ on Q × Σ∗ × Q, where Σ∗ is the set of all finite words
over Σ. Say that a state q′ is reachable from q if there exists
some word m such that q m−→∗ q′. To considerably simplify
the development of the theory, we restrict ourselves to

deterministic i/o-automata, i.e., such that:
q

α−→ q1 and q α−→ q2 implies q2 = q1.
(20)

Two i/o-automata M1 and M2 having identical alphabet Σ
are composable if the usual input/output matching condition
holds: Σout

1 ∩Σout
2 = ∅ and their composition M = M1×M2

is given by

Σin = Σin
1 ∩ Σin

2

Σout = Σout
1 ∪ Σout

2

Q = Q1 ×Q2 and q0 = (q1,0, q2,0),

and the transition relation → is given by

(q1, q2)
α−→ (q′1, q

′
2) iff qi

α−→i q′i, i = 1, 2

An i/o-automaton is said closed whenever Σin = ∅ and open
otherwise. For Mi, i = 1, 2 two i/o-automata and two states
qi ∈ Qi, say that q1 simulates q2, written q2≤q1 if

∀α, q′2 such that q2
α−→2 q′2 ⇒

{
q1

α−→1 q′1

and q′2≤q′1
(21)

Say that

M1 simulates M2, written M2≤M1, if q2,0≤q1,0. (22)

Observe that simulation relation (21,22) does not distinguish
inputs from outputs neither it distinguishes the component
from its environment. It is the classical simulation relation
meant for closed systems. Due to condition (20) of determin-
ism, simulation coincides with language inclusion.

Variable alphabet is again dealt with using the mechanism
of alphabet equalization. For M = (Σin,Σout, Q, q0,→) an
i/o-automaton and Σ′ ⊃ Σ, we define

M↑Σ
′

=
(
Σin ∪ (Σ′ \ Σ),Σout, Q, q0,→′

)
RR n° 8147

Contracts for System Design 34

where→′ is obtained by adding, to→, for each state and each
added action, a self-loop at this state labeled with this action.

Components—and consequently environments—for use in
interface theories will be receptive i/o-automata (also termed
input enabled), i.e., they should react by proper response to
any input stimulus in any state:41

M is receptive iff ∀q ∈ Q,∀α ∈ Σin : q
α−→ (23)

Receptiveness is stable under parallel composition.

B. Interface Automata with fixed alphabet

For reasons that will become clear later, we restrict the
presentation of interface automata to the case of a fixed
alphabet Σ. We begin with the definition of Interface Automata
which are possibly non-receptive i/o-automata. Moreover we
give their interpretation as contracts according to the meta-
theory.

Definition 6: An Interface Automaton is a tuple C =
(Σin,Σout, Q, q0,→) where Σin,Σout, Q,→ are as in
i/o-automata.

The initial state q0, however, may not satisfy q0∈Q. If q0∈Q
holds, Interface Automaton C defines a contract by fixing a
pair (EC ,MC) as follows:
• The set EC of the legal environments for C collects all

components E such that:
1) Σin

E = Σout and Σout
E = Σin. Thus, E and C, seen as

i/o-automata, are composable and E ×C is closed;
2) For any output action α ∈ Σin of environment E

such that qE
α−→E and any reachable state (qE , q)

of E × C, then (qE , q)
α−→E×C holds.

There exists a unique maximal environment EC ∈ EC , in
that EC ×C simulates E×C in the sense of (22) for any
E ∈ EC ; EC = (Σout,Σin, Q ∪ {>}, q0,→EC), where:
(a) the restriction, to Q× Σ×Q, of transition relation
→EC , coincides with → ;

(b) ∀q ∈ Q: q α−→EC > holds if and only if ¬[q
α−→]

and α ∈ Σout;
(c) > α−→EC > holds for any α ∈ Σ.

• The setMC of the implementations of C collects all com-
ponents M such that i/o-automaton C simulates EC×M
in the sense of (22).

Condition 2) means that environment E is only willing to
emit an output if it is accepted as an input by C in the
composition E × C. Regarding the existence and uniqueness
of EC , observe first that conditions (a) and (b) together imply
that EC is receptive. Also, by (a) and (b), EC × C is strictly
identical with (∅,Σ, Q, q0,→), i.e., it is obtained from C,
seen as an i/o-automaton, by simply turning inputs to outputs.
Consequently, Condition 2) holds and, thus, EC ∈ EC . By (b)
and (c), EC is maximal.

The above definition of Interface Automata is heterodox,
compare with the original references [72], [5]. Definition 6

41In fact, receptiveness is assumed in the original notion of i/o-automaton
by Nancy Lynch [135], [134]. We use here a relaxed version of i/o-automaton
for reasons that will become clear later.

introduces the two sets EC and MC , whereas no notion
of implementation or environment is formally associated to
an Interface Automaton in the original definition. Also, the
handling of the initial state is unusual. Failure of q0∈Q to
hold typically arises when the set of states Q is empty.
Our Definition 6 allows to cast Interface Automata in the
framework of the meta-theory of Table IV.

Corresponding relations and operations must be instantiated
and we do this next. As a first, immediate, result:

Lemma 5: q0 ∈ Q is the necessary and sufficient condition
for C to be both consistent and compatible in the sense of the
meta-theory, i.e., EC 6= ∅ and MC 6= ∅.

Refinement and conjunction: Contract refinement as de-
fined in Table IV is equivalent to alternate simulation [10],
defined as follows: for Ci, i = 1, 2 two contracts, say that two
respective states qi, i = 1, 2 are in alternate simulation, written
q2�q1, if

∀α ∈ Σout
2 , q′2 s.t. q2

α−→2 q′2 ⇒

α ∈ Σout

1

q1
α−→1 q′1

q′2�q′1

∀α ∈ Σin
1 , q

′
1 s.t. q1

α−→1 q′1 ⇒

α ∈ Σin

2

q2
α−→2 q′2

q′2�q′1

(24)

Say that C2 refines C1, written C2�C1, if q2,0�q1,0. The first
condition of (24) reflects the inclusionMC2

⊆MC1
, whereas

the second condition of (24) reflects the opposite inclusion
EC2
⊇ EC1

. Alternate simulation can be effectively checked,
see [70] for issues of computational complexity. Unfortunately,
no simple formula for the conjunction of contracts is known.
See [83] for the best results in this direction.

Parallel composition and quotient: Contract composition
C2⊗C1, as defined in the meta-theory, is effectively computed
as follows, for Ci two Interface Automata satisfying the con-
ditions of Lemma 5. Consider, as a first candidate for contract
composition, the composition C2×C1 where Ci, i = 1, 2 are
seen as i/o-automata. This first guess does not work because
of the condition involving environments in the contract compo-
sition of the meta-theory. More precisely, by the meta-theory
we should have

E |=E C ⇒ [E×M2 |=E C1 and E×M1 |=E C2]

which requires ∀α ∈ Σout
i : qi

α−→i ⇒ (q1, q2)
α−→C2×C1 .

Pairs (q1, q2) not satisfying this are called illegal. In words, a
pair of states (q1, q2) is illegal when one Interface Automaton
wants to submit an output whereas the other one refuses to
accept it—referring to Assume/Guarantee contracts, one could
interpret this as a mismatch of assumptions and guarantees
in this pair of interfaces. Illegal pairs must then be pruned
away. Pruning away illegal pairs from C2×C1 together with
corresponding incoming transitions may cause other illegal
pairs to occur. The latter must also be pruned away, until
fixpoint occurs. The result is the contract composition C2⊗C1.

RR n° 8147

Contracts for System Design 35

As a result of this pruning, it may be the case that the
resulting contract has empty set of states, which, by Lemma 5,
expresses that the resulting composition of the two interfaces
is inconsistent and incompatible—in the original literature on
Interface Automata [72], [5] it is said that the two interfaces
C1 and C2 are incompatible.

In [39], incremental design of deterministic Interface Au-
tomata is studied. Let C↓ be the interface C with input and
output actions interchanged. Given two Interface Automata C1
and C2, the greatest interface compatible with C2 such that their
composition refines C1 is given by (C2 ‖ C1↓)↓. Hence, the part
regarding quotient in the meta-theory is correctly addressed for
deterministic Interface Automata.

Dealing with variable alphabets: So far we have pre-
sented the framework of interface automata for the case of a
fixed alphabet. The clever reader may expect that dealing with
variable alphabets can be achieved by using the mechanism
of alphabet equalization via inverse projections.42 This is a
correct guess for contract composition. It is however not clear
if it is also adapted for conjunction for which no satisfactory
construction exists as previously indicated.

In contrast, alphabet equalization and conjunction are el-
egantly addressed by the alternative framework of Modal
Interfaces we develop now.

C. Modal Interfaces with fixed alphabet

Modal Interfaces inherit from both the Interface Au-
tomata and the originally unrelated notion of Modal Automa-
ton (or Modal Transition System), see the bibliographical
note VIII-G. As Interface Automata, Modal Interfaces use
receptive i/o-automata as their components and environments.
The presentation of Modal Interfaces we develop here is
aligned with our meta-theory and, thus, differs from classical
presentations. Again, we begin with the case of a fixed
alphabet Σ.

Definition 7: We call Modal Interface a tuple of the form
C = (Σin,Σout, Q, q0,→, 99K), where Σin,Σout, Q, q0 are as
in Interface Automata and →, 99K⊆ Q × Σ × Q are two
transition relations, called must and may, respectively.

A Modal Interface C such that q0∈Q induces two (possibly
non receptive) i/o-automata

and Cmust = (Σin,Σout, Q, q0,→)
and Cmay = (Σin,Σout, Q, q0, 99K).

A Modal Interface is deterministic if Cmay is deterministic in
the sense of 20. C defines a contract by fixing a pair (EC ,MC)
as follows:

The set EC of the legal environments for C collects all
components E such that:

1) Σin
E = Σout and Σout

E = Σin; consequently, E and
Cmust , seen as i/o-automata, are composable and E ×
Cmust is closed; the same holds with Cmay in lieu of
Cmust ;

42The inverse projection of an i/o-automaton is simply achieved by adding,
in each state, a self-loop for each missing symbol.

2) For any α ∈ Σin such that qE
α−→E and any reachable

state (qE , q) of E × Cmay : (qE , q)
α−→E×Cmust .

There exists a unique maximal environment EC ∈ EC , in that
EC × Cmay simulates E × Cmay in the sense of (22) for any
E ∈ EC ; EC = (Σout,Σin, Q ∪ {>}, q0,→EC), where:
(a) the restriction, to Q×Σin×Q, of transition relation→EC ,

coincides with → ; the restriction, to Q × Σout × Q, of
transition relation →EC , coincides with 99K ;

(b) for any q ∈ Q, q α−→EC > holds if and only if ¬[q
α
99K]

and α ∈ Σout;
(c) > α−→EC > holds for any α ∈ Σ.

The set MC of the implementations of C collects all compo-
nents M such that:

3) EC×Cmay simulates EC×M in the sense of (22);
[only may transitions are allowed for EC×M ;]

4) for any reachable state (qE , qM) of EC×M and (qE , q)
of EC×Cmay such that (qE , qM)≤(qE , q), and any ac-
tion α ∈ Σout

M such that q α→ , then (qE , qM)
α−→EC×M

[must transitions are mandatory in EC×M .]

The first paragraph is a verbatim of the original definition of
Modal Interfaces [166]. Definition 7 introduces the two sets
EC and MC , whereas the classical theory of Modal Interfaces
considers and develops a different notion of model (often
also called “implementation”, which is unfortunate). As for
Interface Automata in Section VIII-B, the handling of initial
state q0 is heterodox. Our Definition 7 allows to cast Modal
Interfaces in the framework of the meta-theory.

To justify the existence and uniqueness of EC , observe first
that conditions (a) and (b) together imply that EC is receptive.
Condition (2) follows from (a). Maximality in the sense of
(22) follows from (b) and (c).

Consistency and Compatibility: We begin with consis-
tency. Say that state q ∈ Q of C is consistent if q α→ implies
q

α
99K , otherwise we say that it is inconsistent. Assume that
C has some inconsistent state q ∈ Q, meaning that, for some
action α, q α→ holds but q

α
99K does not hold. By conditions 3)

and 4) of Definition 7, for any environment E and any
implementation M of C, no state (qE , qM) of E×M satisfies
(qE , qM)≤q. Hence, all may transitions leading to q can be
deleted from C without changing MC . Performing this makes
state q unreachable in Cmay , thus Condition 2 of Definition 7
is relaxed and the set of environments is possibly augmented.
Since we have removed may transitions, some more states
have possibly become inconsistent. So, we must repeat the
same procedure. Since the number of states is finite, this
procedure eventually reaches a fixpoint. At fixpoint, the set
Q of states partition as Q = Qcon]Qincon, where Qincon

collects all states that were or became inconsistent as a result
of this procedure, and Qcon only collects consistent states.
In addition, since the fixpoint has been reached, Qincon is
unreachable from Qcon. As a final step, we delete Qincon and
call [C] the so obtained contract. The following result holds:

Lemma 6:

RR n° 8147

Contracts for System Design 36

1) Modal Interface [C] satisfies

M
[C]

=MC and E
[C]
⊇ EC (25)

where the inclusion is strict unless C possesses no
inconsistent state.

2) [C] offers the smallest set of environments among the
Modal Interfaces satisfying (25).

3) C is consistent and compatible if and only if Qcon 3 q0.
In the sequel, unless otherwise specified, we will only consider
Modal Interfaces that are consistent and compatible.

Refinement and conjunction: Conjunction and refinement
are instantiated in a very elegant way in the theory of Modal
Interfaces. Contract refinement in the sense of the meta-theory
is instantiated by the effective notion of Modal refinement we
introduce now. Roughly speaking, modal refinement consists
in enlarging the must relation (thus enlarging the set of legal
environments) and restricting the may relation (thus restricting
the set of implementations). The formalization requires the use
of simulation relations.

For C a Modal Interface and q∈Q a state of it, introduce
the following may and must sets:

may(q) = {α ∈ Σ | q α
99K }

must(q) = {α ∈ Σ | q α→}

Definition 8 (modal refinement): Let Ci, i = 1, 2 be two
Modal Interfaces and let qi be a state of Ci, for i = 1, 2.
Say that q2 refines q1, written q2 � q1, if:{

may2(q2) ⊆ may1(q1)
must2(q2) ⊇ must1(q1)

and ∀α ∈ Σ :

{
q1

α
99K1 q′1

q2
α
99K2 q′2

=⇒ q′2 � q′1

Say that C2 � C1 if q2,0 � q1,0.

The following result relates modal refinement with contract
refinement as defined in the meta-theory. It justifies the con-
sideration of modal refinement. Its proof follows by direct use
of Definition 7 and Lemma 6:

Lemma 7: For C1 and C2 two Modal Interfaces, the follow-
ing two properties are equivalent:
(i) MC2

⊆ MC1
and EC2

⊇ EC1
, meaning that contract C2

refines contract C1 following the meta-theory;
(ii) [C2] � [C1], i.e., [C2] refines contract [C1] in the sense of

modal refinement.
The conjunction of two Modal Interfaces is thus the Greatest
Lower Bound (GLB) with respect to refinement order. Its
computation proceeds in two steps. In a first step, we wildly
enforce the GLB and compute a pre-conjunction by taking
union of must sets and intersection of may sets:

Definition 9: The pre-conjunction43 C1∧C2 of two Modal
Interfaces is only defined if Σin

1 = Σin
2 and Σout

1 = Σout
2

43Pre-conjunction was originally denoted by the symbol & in [164], [167],
[166].

and is given by Σin = Σin
1 , Σout = Σout

1 , Q = Q1×Q2,
q0 = (q1,0, q2,0), and its two transition relations are given by:

must(q1, q2) = must1(q1) ∪must2(q2)
may(q1, q2) = may1(q1) ∩may2(q2)

(26)

Due to (26), C1∧C2 may involve inconsistent states and, thus,
in a second step, the pruning introduced in Lemma 6 must be
applied:

C1 ∧ C2 = [C1∧C2] (27)

Say that the two Modal Interfaces C1 and C2 are consistent44

if C1 ∧ C2 is consistent in the sense of Lemma 6.
Parallel composition and quotient: For Modal Interfaces,

we are able to define both parallel composition and quotient in
the sense of the meta-theory. As it was the case for Interface
Automata, parallel composition for Modal Interfaces raises
compatibility issues and, thus, a two-step procedure is again
followed for its computation.

Definition 10: The pre-composition C1⊗C2 of two Modal
Interfaces is only defined if Σout

1 ∩Σout
2 = ∅ and is given by:

Σout = Σout
1 ∪ Σout

2 , Q = Q1×Q2, q0 = (q1,0, q2,0), and its
two transition relations are given by:

must(q1, q2) = must1(q1) ∩must2(q2)
may(q1, q2) = may1(q1) ∩may2(q2)

(28)

Say that a state (q1, q2) of C1⊗C2 is illegal if

may1(q1) ∩ Σin
2 6⊆ must2(q2)

or may2(q2) ∩ Σin
1 6⊆ must1(q1)

Illegal states are pruned away from C1⊗C2 as follows. Remove,
from Cmay

1 × Cmay
2 , all transitions leading to (q1, q2). As

performing this may create new illegal states, the same is
repeated until fixpoint is reached. As a final step we delete the
states that are not may-reachable. This finally yields C1⊗C2,
which no more possesses illegal states.

The above construction is justified by the following result:
Lemma 8: C1⊗C2 as defined in Definition 10 instantiates

the contract composition from the meta-theory.

Proof: (sketch) E is an environment for C iff for any reachable
state (qE , q1, q2) of E × Cmay

1 × Cmay
2 , we have

rs(qE) ⊆ must1(q1) ∩must2(q2), (29)

where rs(q), the ready set of state q, is the subset of actions
α such that q α−→ holds. Let M1 be any implementation of
C1 and consider E×M1. We need to prove that E×M1 is an
environment for C2, i.e., satisfies Condition 2 of Definition 7
(we must also prove the symmetric property). Let (qE , q1, q2)
be a reachable state of E×M1×Cmay

2 . We must prove

rs(qE) ∩ rsM1 (q1) ∩ Σ in
2 ⊆ must2(q2)

By (29) it suffices that the following property holds:

rsM1
(q1) ∩ Σ in

2 ⊆ must2(q2) (30)

44This is the usual wording in the literature.

RR n° 8147

Contracts for System Design 37

However, we only know that rsM1
(q1) ⊆ may1 (q1). Hence,

to guarantee (30) we must prune away illegal pairs of states.
To this end, we use the same procedure as before: we make
state (q1, q2) unreachable in Cmay

1 ×Cmay
2 by removing all may

transitions leading to that state. We complete the reasoning as
we did for the study of consistency. 2

Definition 11: The quotient C1/C2 of two modal interfaces
C1 and C2 is only defined if Σin

1 ∩ Σout
2 = ∅ and is defined

according to the following two steps procedure. First, define
C as follows: Σout = Σout

1 \ Σout
2 , Q = Q1 × Q2, q0 =

(q1,0, q2,0), and its two transition relations are given by:

must(q1, q2) = must1(q1)

may(q1, q2) = ¬ [may1(q1) ∩ ¬must1(q1)] ∪
¬ [must1(q1) ∩must2(q2)] ∪
¬ [may1(q1) ∪may2(q2)]

These formulas may give raise to inconsistent states, and, thus,
in a second step, we set C1/C2 = [C].
This definition is justified by the following result [166],
showing that Definition 11 instantiates the meta-theory:

Lemma 9: C1 ⊗ C2 � C if and only if C2 � C/C1.

Now, it may be that (C1/C2)⊗C2 possess illegal pairs of states
(Definition 10), whence the following improvement, where
Σout and Σin are as in Definition 11 and may/ and must/
refer to the quotient C1/C2:

Definition 12: Let C′ be the interface defined on the same
state structure as C1/C2, with however the following modali-
ties:

may ′(q1, q2) = may/(q1, q2) ∩
(
may2(q2) ∪ Σin

)
must ′(q1, q2) = must/(q1, q2) ∪ (Σout

1 ∩ Σout
2 ∩may2(q2))

define the compatible quotient, written C1//C2, to be the
reduction of C′: C1//C2 = [C′] .

This construction is justified by the following result:

Lemma 10: The compatible quotient C1//C2 solves the
following problem:

max

C
∣∣∣∣∣∣
C has no inconsistent state
C ⊗ C2 has no illegal pair of states
C ⊗ C2 � C1

Proof: Denote C = C1//C2 the compatible quotient defined
above. The proof is threefold: (i) C is proved to be a solution
of the inequality C⊗C2 � C1, (ii) C is proved to be compatible
with C2, and (iii) every C′ satisfying the two conditions above
is proved to be a refinement of C.

Remark that reachable states in (C1//C2)⊗C2 are of the form
(q1, q2, q2) and that for every reachable state pair (q1, q2) in
C1//C2, state (q1, q2, q2) is reachable in (C1//C2)⊗ C2.

(i) Remark that may ′ ⊆ may/ and must ′ ⊇ must/. Hence,
C1//C2 � C1/C2. Since the parallel composition is monotonic,
(C1//C2)⊗ C2 � (C1/C2)⊗ C2 � C1.

(ii) For every state (q1, q2, q2), reachable in (C1//C2)⊗ C2,
one among the following three cases occurs:

• Assume e ∈ Σin
1 , meaning that e is an input for both C2

and C1//C2. Hence state (q1, q2, q2) is not illegal because
of e.

• Assume e ∈ Σout
1 ∩ Σout

2 , Therefore e is an input of the
compatible quotient. Remark must ′(q1, q2) ⊆ may2(q2).
Hence, state (q1, q2, q2) is not illegal because of e

• Assume e ∈ Σout
1 ∩Σin

2 , meaning that e is an output of the
compatible quotient. Remark may ′(q1, q2) ⊆ must2(q2).
Therefore state (q1, q2, q2) is not illegal because of e.

(iii) Let C′′ be a modal interface such that C1//C2 � C′′ �
C1/C2. We shall prove that either C′′ � C1//C2 or that C′′ is not
compatible with C2. Remark that every reachable state (q1, q2)
of C1//C2 is related to exactly one state q′′ of C′′ by the two
modal refinement relations. Assume that C′′ is not a refinement
of C1//C2, meaning that there exists related states (q1, q2)
and q′′ such that may ′(q1, q2) ⊆ may ′′(q′′) ⊆ may/(q1, q2)
and must ′(q1, q2) ⊇ must ′′(q′′) ⊇ must/(q1, q2) and either
may ′(q1, q2) (may ′′(q′′) or must ′(q1, q2)) must ′′(q′′).
Remark e ∈ Σin

1 implies that e ∈ may ′(q1, q2) iff e ∈
may/(q1, q2) and that e ∈ must ′(q1, q2) iff e ∈ must/(q1, q2).
Therefore the case e ∈ Σin

1 does not have to be considered.

1) Assume there exists e such that e ∈ may ′′(q′′) \
may ′(q1, q2). Remark this implies e ∈ Σout

1 ∩ Σin
2 ,

meaning that e is an output of the compatible quo-
tient. Remark also that e 6∈ must2(q2). Therefore state
(q′′, q2) is illegal in C′′ ⊗ C2.

2) Assume there exists e such that e ∈ must ′(q1, q2) \
must ′′(q′′). Remark this implies e ∈ Σout

1 ∩ Σout
2 ,

meaning that e is an input of the compatible quotient.
Remark also that e ∈ may2(q2). Therefore state (q′′, q2)
is illegal in C′′ ⊗ C2.

2

D. Modal Interfaces with variable alphabet

As a general principle, every relation or operator introduced
in Section VIII-C (for Modal Interfaces with a fixed alphabet
Σ) is extended to the case of variable alphabets by 1) extending
and equalizing alphabets, and then 2) applying the relations or
operators of Section VIII-C to the resulting Modal Interfaces.
For all frameworks we studied so far, alphabet extension was
performed using inverse projections, see Section VII-C. For
instance, this is the procedure used in defining the composition
of i/o-automata: extending alphabets in i/o-automata is by
adding, at each state and for each added action, a self-
loop labeled with this action. The very reason for using this
mechanism is that it is neutral for the composition in the
following sense: it leaves the companion i/o-automaton free
to perform any wanted local action.

So, for Modal Interfaces, what would be a neutral procedure
for extending alphabets? Indeed, considering (26) or (28)

RR n° 8147

Contracts for System Design 38

yields two different answers, namely:

for (26) :

 α ∈ may1(q1) and α ∈ whatever2(q2)
⇓

α ∈ whatever(q1, q2)

for (28) :

 α ∈ must1(q1) and α ∈ whatever2(q2)
⇓

α ∈ whatever(q1, q2)

where “whatever” denotes either may or must. Consequently,
neutral alphabet extension is by adding

• may self-loops for the conjunction, and
• must self-loops for the composition.

The bottom line is that we need different extension procedures.
These observations explain why alphabet extension is properly
handled neither by Interface Automata (see the last paragraph
of Section VIII-B) nor by A/G-contracts (see the end of
Section VII-C). These theories do not offer enough flexibility
for ensuring neutral extension for all relations or operators.

We now list how alphabet extension must be performed for
each relation or operator, for two Modal Interfaces C1 and C2
(the reader is referred to [166] for justifications). Alphabets
are extended as follows, where Σ′ ⊇ Σ. Define the strong
extension of C to Σ′, written C↑Σ′

, as follows:

C↑Σ
′

:

(Σin)↑Σ
′

= Σin ∪ (Σ′ \ Σ)

(Σout)↑Σ
′

= Σout

Q↑Σ
′

= Q

q↑Σ
′

0 = q0

may↑Σ
′

= may ∪ (Σ′ \ Σ)

must↑Σ
′

= must ∪ (Σ′ \ Σ)

(31)

In (31), the added may and must transitions are all self-loops.
The weak extension of C, written C⇑Σ′

, is defined using the
same formulas, with the only following modification:

C⇑Σ′
:

{
. . . = . . .

must⇑Σ′
= must

(32)

Observe that the strong extension uses the classical inverse
projection everywhere. The weak extension, however, proceeds
differently with the must transitions in that it forbids the legal
environments to submit additional actions as its outputs.

Using weak and strong alphabet equalization, the relations
and operations introduced in Section VIII-C extend to variable
alphabets as indicated now. In the following formulas, (Σ,Σ′)
is a pair such that Σ ⊆ Σ′, and (Σ1,Σ2,Σ) denotes a triple
such that Σ = Σ1 ∪ Σ2 and satisfying the typing constraints

Σin
i = Σin ∩ Σi and Σout

i = Σout ∩ Σi for i = 1, 2.

It is understood that contract C has alphabet Σ, and so on.

Theorem 1: The following relations and operators

M ′ |=M C ::= M ′ |=M C⇑Σ′

E′ |=E C ::= E′ |=E C↑Σ′

C1 � C2 ::= C1 � C⇑Σ
2

C1 ∧ C2 ::= C⇑Σ
1 ∧ C⇑Σ

2

C1 ⊗ C2 ::= C↑Σ1 ⊗ C↑Σ2

C1/C2 ::= C⇑Σ
1 /C↑Σ2

(33)

instantiate the meta-theory.

Proof: The first two formulas just provide definitions, so no
proof is needed for them. Their purpose is to characterize
the weakly and strongly extended Modal Interfaces in terms
of their sets of environments and implementations. For both
extensions, allowed output actions of the implementations are
augmented whereas mandatory actions are not. For the weak
extension, legal environments are not modified in that no
additional output action is allowed for them. In contrast, for the
strong extension, legal environments are allowed to submit any
additional output action. These observations justify the other
formulas. 2

E. Projecting and Restricting

A difficult step in the management of contracts was illus-
trated in Figure 4 of Section IV-D. It consists in decomposing
a contract C into a composition of sub-contracts⊗

i∈I Ci � C (34)

where sub-contract Ci has alphabet Σi = Σin
i] Σout

i . As a
prerequisite to (34), the designer has to guess some topological
architecture by decomposing the alphabet of actions of C as

Σ =
⋃
i∈I Σi , Σi = Σin

i] Σout
i (35)

such that composability conditions regarding inputs and out-
puts hold. Guessing architectural decomposition (35) relies on
the designer’s understanding of the system and how it should
naturally decompose—this typically is the world of SysML.
Finding decomposition (34) is, however, technically difficult
in that it involves behaviors. It is particularly difficult if C
is itself a conjunction of viewpoints or requirements, which
typically occurs in requirements engineering, see Section XI:

C =
∧
k∈K Ck (36)

The algorithmic means we develop in the remaining part of
this section will be instrumental in solving (34). They will be
used in the Parking Garage example of Section XI.

Projecting over a subalphabet: Projecting a contract over
a sub-alphabet is the first natural tool for consideration. It
is the dual operation with respect to alphabet extension that
was developed in Section VIII-D. Two projections can be
defined, which can be seen as under- and over-approximations,
respectively, by referring to the refinement order.

RR n° 8147

Contracts for System Design 39

Let C be a Modal Interface with alphabet Σ = Σin ∪ Σout

and let Σ′ ⊂ Σ be a sub-alphabet. Define respectively the
abstracted projection and refined projection

C↓Σ′
= min {C′ | ΣC′ = Σ′ and C′ � C}

C⇓Σ′
= max {C′ | ΣC′ = Σ′ and C′ � C}

(37)

where “min” and “max” refer to refinement order for Modal
Interfaces with different alphabets, see (33). The projection
C⇓Σ′

(respectively C↓Σ′
) is computed via the following on-

the-fly algorithm: 1) Perform ε-closure on the set of states by
considering unobservable the actions not belonging to Σ′, and
then, 2) Perform determinization by giving priority to must
over may (respectively to may over must), see Table VI for
details. Step 2) of the procedure for computing C⇓Σ′

is a
possible source of inconsistencies.

The abstracted projection C↓Σ′
provides a projected view

of a system-level contract over a small subset of actions.
The abstracted projection is thus a useful tool for contract
exploration and debug. It is not a synthesis tool, however.

This is in contrast to the refined projection C⇓Σ′
, which

satisfies the following result. For any finite set {Ci | i ∈ I}
of Modal Interfaces with respective alphabets Σi, we have,
assuming that the left and right hand sides are properly
defined—a typing property on input and output alphabets:⊗

i∈I

[
Ci ∧

(∧
k∈K C

⇓Σi

k

)]
�

∧
k∈K Ck (38)

To show this, by symmetry, it is enough to show (38) with
the conjunction on the right hand side replaced by any single
Ck for k selected from finite set K. For any i ∈ I , we have
C⇓Σi

k � Ck, and thus

C′i =def

[
Ci ∧

(∧
k∈K C

⇓Σi

k

)]
� Ck (39)

holds for every i, from which (38) follows. Unfortunately, the
refined projection quite often gives raise to inconsistencies.
In addition, the contract composition arising in left hand side
of (38) is subject to incompatibilities. Informally said, this
technique works if the sub-systems are only “loosely coupled”
so that neither inconsistencies nor incompatibilities occur. To
mitigate this problem we propose an alternative technique for
turning a conjunction into a composition.

Restricting to a sub-alphabet: Let C be a Modal Interface
with alphabet Σ = Σin ∪ Σout and let (Σ′in,Σ′out) be two
input and output sub-alphabets such that Σ′out ⊆ Σout. Set
Σ′ = Σ′in]Σ′out and define the restriction of C to Σ′, denoted
by C↓Σ′ via the procedure shown in see Table VII, compare
with Table VI. Observe that the states of the restriction cor-
respond to sets of states of the original Modal Interface. The
restriction aims at avoiding incompatibilities when considering
the composition, as the following lemma shows:

Lemma 11: If C and C↓Σ′ are both consistent, then so is
their compatible quotient C//C↓Σ′ , see Definition 12.
Proof: Consider two alphabets Σ ⊇ Σ′, and a consistent C on
alphabet Σ, such that C↓Σ′ is also consistent. The only case
where quotient produces inconsistent states is whenever there

input: C,Σ,Σ′; output: C′

let proj(Op,X) =
if X has not been visited,
then

1. mark X visited
2. for every α ∈ Σ′ do

2.1 let Y = ε-closure(Σ− Σ′, next(α,X))
2.2 let m = Op{mC(q, α) | q ∈ X}
2.3 add to C′ a transition (X,α, Y) with modality m
2.4 proj(Op, Y)

done

let project(Op, C) =
1. let X0 = ε-closure(Σ− Σ′, q0)
2. set initial state of C′ to X0

3. proj(Op,X0)
4. reduce C′
5. return C′

let order ({cannot ,may,must},≤) =

{
must ≤ may

cannot ≤ may

in C↓Σ′
= project(∨, C)

C⇓Σ′
= project(∧, C)

Table VI
ALGORITHM FOR COMPUTING THE PROJECTIONS (37).

input: C,Σin,Σout,Σ′in,Σ′out; output: C′

let order({cannot ,may,must},≤in) = cannot ≤in may ≤in must

order({cannot ,may,must},≤out) =

{
must ≤ may

cannot ≤ may
in let rest(X) =

if X has not been visited,
then

1. mark X visited
2. for every α ∈ Σ′ do

2.1 let Y = ε-closure(Σ− Σ′, next(α,X))
2.2 let m = Op{mC(q, α) | q ∈ X}

where Op = if α ∈ Σ′in then ∨in else ∧out

2.3 add to C′ a transition (X,α, Y) with modality m
2.4 rest(Op, Y)

done

let restrict(C) =
1. let X0 = ε-closure(Σ− Σ′, q0)
2. set initial state of C′ to X0

3. rest(Op,X0)
4. reduce C′
5. return C′

Table VII
ALGORITHM FOR COMPUTING THE RESTRICTION C↓Σ′ .

exists an action e and a state pair (q,R) in C//C↓Σ′ , such that
e has modality must in q and does not have modality must
in R. We prove by contradiction that no such reachable state
pair (q,R) and action e exist. Remark that by definition of the
restriction, q ∈ R. The restriction is assumed to be in reduced
form, meaning that it does not contain inconsistent states. Two
cases have to be considered:

1) Action e has modality cannot in R. Several sub-cases
have to be considered, depending on the I/O status of
e and on the fact that the reduction of the restriction
has turned a may modality for e into a cannot. In all
cases, action e has modality cannot or may in q, which

RR n° 8147

Contracts for System Design 40

contradicts the assumption.
2) Action e has modality may in R. This implies that e also

has modality may in q, which contradicts the assumption.
This finishes the proof of the lemma. 2

The following holds by Lemma 10:

C↓Σ′ ⊗ (C//C↓Σ′) � C
C//C↓Σ′ has no inconsistent state

(C↓Σ′ , C//C↓Σ′) has no incompatible pair of states
(40)

By Lemma 11, the only property for checking is the consis-
tency of C↓Σ′ . This is a significant improvement compared
to the issues raised by the refined projection, as explained in
the paragraph following (39). Decomposition (40) can be used
while sub-contracting through the following algorithm:

Algorithm 1: We are given some system-level contract C.
The top-level designer guesses some topological architecture
according to (35). Then, she recursively decomposes:

C = C0 � C0↓Σ1
⊗ C1

� C0↓Σ1
⊗ C1↓Σ2

⊗ C2
...
� C0↓Σ1

⊗ . . . ⊗ Cn−1↓Σn

=def C(Σ1) ⊗ . . . ⊗ C(Σn)

(41)

which ultimately yields a refinement of C by a compatible
composition of local sub-contracts. 2

Discussion: The operations of projection and restriction
that we introduced here can probably be made be generic,
at the level of the meta-theory. Observe, however, that such
operations explicitly refer to the notion of sub-alphabet, which
does not exist at the level of the meta-theory. In addition,
Modal Interfaces are the only concrete theory in which variable
alphabets are properly supported. For these two reasons, we
preferred to develop these operations for Modal Interfaces
only.

F. Observers

Here we develop observers for a Modal Interface
C = (Σin,Σout, Q, q0,→, 99K) having no inconsistent state,
meaning that →⊆99K. With this consistency assumption in
force, observers are then obtained as follows, with reference
to Definition 2:
• Condition 2 of Definition 7 boils down to requiring that
E × Cmust simulates E. Simulation testing can thus be
used to check this; call bE

C(E) the corresponding verdict.
• To test for implementations, we first construct the max-

imal environment EC and apply testing to check sim-
ulation of EC × M by Cmay , call bM

C,1 the corre-
sponding verdict. Performing this requires maintaining
pairs of states ((qE , qM), (qE , q)) in simulation relation:
(qE , qM)≤(qE , q). For any such pair of states, let bM

C,2 de-
note the verdict answering whether (qE , qM)

α−→EC×M
holds each time q α−→ holds, for any α ∈ Σout. The
overall verdict for implementation testing is then

bM
C,1(EC ×M) ∧ bM

C,2(EC ×M)

Lemma 3 for generic observers specializes to the following,
effective, semi-decision procedure:

Lemma 12:
1) If bE

C outputs F, then C is incompatible;
2) If bM

C,1 ∧ bM
C,2 outputs F, then C is inconsistent.

G. Bibliographical note

As explained in [72], [56], [127], [83], [165], [166], Inter-
face Theories make no explicit distinction between assump-
tions and guarantees.

Interface Automata, variants and extensions: Interface
Automata were proposed by de Alfaro and Henzinger [72],
[70], [5], [54] as a candidate theory of interfaces. In these
references, Interface Automata focused primarily on parallel
composition and compatibility. Quoting [72]:

“Two interfaces can be composed and are compatible
if there is at least one environment where they can
work together”.

The idea is that the resulting composition exposes as an
interface the needed information to ensure that incompatible
pairs of states cannot be reached. This can be achieved by
using the possibility, for a component, to refuse selected
inputs from the environment at a given state [72], [56]. In
contrast to our development in Section VIII-B, no sets of
environments and implementations are formally associated to
an Interface Automaton in the original developments of the
concept. A refinement relation for Interface Automata was
defined in [72]—with the same definition as ours—it could
not, however, be expressed in terms of sets of implementations.
Properties of interfaces are described in game-based logics,
e.g., ATL [9], with a theoretical high-cost complexity. The
original semantics of an Interface Automaton was given by a
two-player game between: an input player that represents the
environment (the moves are the input actions), and an output
player that represents the component itself (the moves are the
output actions). Despite the availability of partial results [83],
the framework of Interface Automata lacks support for the
conjunction of interfaces in a general setting, and does not
offer the flexibility of modalities. Sociable Interfaces [71]
combine the approach presented in the previous paragraph
with interface automata [72], [73] by enabling communication
via shared variables and actions45. First, the same action
can appear as a label of both input and output transitions.
Secondly, global variables do not belong to any specific
interface and can thus be updated by multiple interfaces. Con-
sequently, communication and synchronization can be one-to-
one, one-to-many, many-to-one, and many-to-many. Symbolic
algorithms for checking the compatibility and refinement of
sociable interfaces have been implemented in TICC [3].
Software Interfaces were proposed in [55], as a pushdown
extension of interface automata (which are finite state). Push-
down interfaces are needed to model call-return stacks of
possibly recursive software components. This paper contains

45This formalism is thus not purely synchronous and is mentioned in this
section with a slight abuse.

RR n° 8147

Contracts for System Design 41

also a comprehensive interface description of Tiny OS,46 an
operating system for sensor networks. Moore machines and
related reactive synchronous formalisms are very well suited
to embedded systems modeling. Extending interface theories
to a reactive synchronous semantics is therefore meaningful.
Several contributions have been made in this direction, starting
with Moore and Bidirectional Interfaces [56]. In Moore Inter-
faces, each variable is either an input or an output, and this
status does not change in time. Bidirectional Interfaces offer
added flexibility by allowing variables to change I/O status,
depending on the local state of the interface. Communication
by shared variable is thus supported and, for instance, allows
distributed protocols or shared buses to be modeled. In both
formalisms, two interfaces are deemed compatible whenever
no variable is an output of both interfaces at the same time,
and every legal valuation of the output variables of one
interface satisfies the input predicate of the other. The main
result of the paper is that parallel composition of compatible
interfaces is monotonic with respect to refinement. Note that
Moore and Bidirectional Interfaces force a delay of at least
one transition between causally dependent input and output
variables, exactly like Moore machines. In [83], the frame-
work of Synchronous Interfaces is enriched with a notion of
conjunction (called shared refinement). This development was
further elaborated in [78]. In Moore interfaces, legal values of
the input variables and consequent legal values of the output
variables are not causally related. Synchronous Relational In-
terfaces [177], [178] have been proposed to capture functional
relations between the inputs and the outputs associated to
a component. More precisely, input/output relations between
variables are expressed as first-order logic formulas over the
input and output variables. Two types of composition are then
considered, connection and feedback. Given two relational
interfaces C1 and C2, the first one consists in connecting some
of the output variables of C1 to some of the input variables
of C2 whereas feedback composition allows one to connect
an output variable of an interface to one of its own inputs.
The developed theory supports refinement, compatibility and
also conjunction. The recent work [112] studies conditions that
need to be imposed on interface models in order to enforce
independent implementability with respect to conjunction.
Finally, [53] develops the concept of simulation distances
for interfaces, thereby taking robustness issues into account
by tolerating errors. Finally, Web services Interfaces were
proposed in [38].

The discussion of variants and extensions related to time,
resources, and probability, is deferred to corresponding sec-
tions.

Modal Interfaces, variants and extensions: Properties
expressed as sets of traces can only specify what is forbidden.
Unless time is explicitly invoked in such properties, it is
not possible to express mandatory behaviors for designs.
Modalities were proposed by Kim Larsen [130], [11], [46] as
a simple and elegant framework to express both allowed and

46http://www.tinyos.net/

mandatory properties. Modal Specifications basically consist in
assigning a modality may or must to each possible transition of
a system. They have been first studied in a process-algebraic
context [130], [125] in order to allow for loose specifications
of systems. Since then, they have been considered for automata
[128] and formal languages [163], [164] and applied to a wide
range of application domains (see [11] for a complete survey).
Informally, a must transition is available in every component
that realizes the modal specification, while a may transition
needs not be. A modal specification thus represents a set of
models—unfortunately, models of modal transition systems are
often call “implementations” in the literature, which is unfor-
tunate in our context. We prefer keeping the term “model”
and reserve the term “implementation” for the entities intro-
duced in Sections VIII-B and VIII-C. Modal Specifications
offer built-in conjunction of specifications [129], [167]. The
expressiveness of Modal Specifications has been characterized
as a strict fragment of the Hennessy-Milner logic in [46]
and also as a strict fragment of the mu-calculus in [89]. The
formalism is rich enough to specify safety properties as well as
restricted forms of liveness properties. Modal Interfaces with
the right notion of compatibility were introduced in [165],
[166] and the problem of alphabet equalization with weak
and strong alphabet extensions was first correctly addressed in
the same references. In [23], compatibility notions for Modal
Interfaces with the passing of internal actions are defined.
Contrary to the approach reviewed before, a pessimistic view
of compatibility is followed in [23], i.e., two Modal Interfaces
are only compatible if incompatibility between two interfaces
can occur in any environment. A verification tool called MIO
Workbench is available. The quotient of Modal Specifications
was studied in [124], [164]. Determinism plays a role in the
modal theory. Non-deterministic Modal Interfaces have pos-
sibly non-deterministic i/o-automata as class of components.
They are much more difficult to study than deterministic ones
and corresponding computational procedures are of higher
complexity. A Modal Interface is said to be deterministic if its
may-transition relation is deterministic. For nondeterministic
Modal Interfaces, modal refinement is incomplete [128]: there
are nondeterministic Modal Interfaces C1 and C2 for which
the set of implementations of C1 is included in that of C2
without C1 being a modal refinement of C2. Hence refinement
according to the meta-theory is not exactly instantiated but
only approximated in a sound way. A decision procedure for
implementation inclusion of nondeterministic Modal Interfaces
does exist but turns out to be EXPTIME-complete [12], [25]
whereas the problem is PTIME-complete if determinism is
assumed [167], [26]. The benefits of the determinism assump-
tion in terms of complexity for various decision problems
on modal specifications is underlined in [26]. The “merge”
of non-deterministic Modal Specifications regarded as partial
models has been considered in [179]. This operation consists
in looking for common refinements of initial specifications and
is thus similar to the conjunction operation presented here.
In [179], [90], algorithms to compute the maximal common
refinements (which are not unique when non-determinism is

RR n° 8147

http://www.tinyos.net/

Contracts for System Design 42

allowed) are proposed. They are implemented in the tool
MTSA [82]. Assume/guarantee contracts viewed as pairs of
Modal Specifications were proposed in [96]. It thus com-
bines the flexibility offered by the clean separation between
assumptions and guarantees and the benefits of a modal
framework. Several operations are then studied: refinement,
parallel composition, conjunction and priority of aspects. This
last operation composes aspects in a hierarchical order, such
that in case of inconsistency, an aspects of higher priority
overrides a lower-priority contract. The synthesis of Modal
Interfaces from higher-level specifications has been studied
for the case of scenarios. In [173], Existential Live Sequence
Charts are translated into Modal Specifications, hence provid-
ing a mean to specify modal contracts. Regarding extensions,
Acceptance Interfaces were proposed by J-B. Raclet [163],
[164]. Informally, an Acceptance Interface consists of a set of
states, with, for each state, a set of ready sets, where a ready
set is a set of possible outgoing transitions from that state.
In intuitive terms, an Acceptance Interface explicitly specifies
its set of possible models. Acceptance Interfaces are more
expressive than Modal Interfaces but at the price of a pro-
hibitive complexity for the various relations and operators of
the theory. Modal Interfaces have been enhanced with marked
states by Caillaud and Raclet [27]. Having marked states
significantly improves expressiveness. It is possible to specify
that some state must be reachable in any implementation while
leaving the particular path for reaching it unspecified. As an
example of use, Modal Interfaces with marked states have been
applied in [4] to the separate compilation of multiple clocked
synchronous programs.

The discussion of variants and extensions related to time,
resources, and probability, is deferred to corresponding sec-
tions.

Features of our presentation: The presentation of in-
terface theories in this paper is new in many aspects. For
the first time, all interface theories are clearly cast in the
abstract framework of contracts following our meta-theory. In
particular, the association, to an interface C, of the two sets EC
andMC is new. It clarifies a number of concepts. In particular,
the interface theories inherit from the properties of the meta-
theory without the need for specific proofs. The projection
and restriction operators for Modal Interfaces are new. Casting
interface theories into the meta-theory was developed for the
basic interface theories only. It would be useful to extend this
to the different variants and see what the benefit would be.
Benoît Caillaud has developed the MICA tool [49], which
implements Modal Interfaces with all the operations and
services discussed in this section.

IX. PANORAMA: TIMED INTERFACE THEORIES

In this section we develop an instance of an interface theory
for timed systems. This section is meant to be illustrative of
our approach to concrete instances of contract theories. It does
not claim to expose the good instance. Our presentation builds
on top of [35]. To simplify the exposure, we restrict ourselves

to the case of a fixed alphabet Σ. As usual now, we begin with
the component model.

A. Components as Event-Clock Automata

Timed Automata [6] constitute the basic model for systems
dealing with time and built on top of automata. In words,
timed automata are automata enhanced with clocks. Predicates
on clocks guard both the states (also called “locations”) and
the transitions. Actions are attached to transitions that result
in the resetting of some of the clocks.

Event-Clock Automata [7], [8], [35] form a subclass of
timed automata where clock resets are not arbitrary: each
action α comes with a clock hα which is reset exactly
when action α occurs. The interest of this subclass is that
event-clock automata are determinizable, which facilitates the
development of a (modal) theory of contracts. The definition
of event-clock automata requires some prerequisites.

We are given an underlying finite set H of clocks. A clock
valuation is a map ν : H 7→ R+, where R+ denotes the set of
nonnegative reals. The set of all clock valuations is denoted
by V . We denote by 0 the clock valuation assigning 0 to all
clocks and by ν + t the clock obtained by augmenting ν with
the constant t. For ν a valuation, the valuation ν[0/hα] assigns
0 to hα and keeps the valuation of other clocks unchanged.

Clocks can be used to define guards. The class of guards
considered by [35] consists of finite conjunctions of expres-
sions of the form h ∼ n where h is a clock, n is an integer,
and ∼ is one of the following relations: <,≤,=,≥, >. For
g a guard, write ν |= g to mean that valuation ν satisfies
guard g. For N an integer, G(H, N) denotes the set of all
guards over H involving only integers n < N + 1 and we
write G(H) = G(H,∞).

Definition 13: An event-clock automaton over alphabet Σ
is a tuple M = (Σin,Σout, Q, q0, N,→), where:
• Σin,Σout, Q, q0 are as for i/o-automata; elements of Q

are called locations;
• HΣ = {hα | α ∈ Σ} is the set of clocks;
• N is a finite integer and →⊆ Q × G(HΣ, N) × Σ × Q

is the transition relation; write q
g,α−→ q′ to mean that

(q, g, α, q′) ∈→.

The semantics of M is a timed transition system with infinite
state space Q×V , defined as follows: transition q

g,α−→ q′ can
fire from state (q, ν) ∈ Q × V iff ν |= g; as a result of this
firing, the clock hα is reset to zero, thus resulting in the new
state (q′, ν[0/hα]) ∈ Q × V . In our Timed Interface theory,
components are event-clock automata that are:

1) deterministic in the following sense:

∀(q, α, ν) ∈ Q× Σ× V , there is at most
one transition q

g,α−→ q′ such that ν |= g.
(42)

2) receptive, meaning that

∀q ∈ Q,∀α ∈ Σin : q
T,α−→

holds, where T denotes the trivial guard “true”.

RR n° 8147

Contracts for System Design 43

Instead of further developing our theory we will show how to
take advantage of previously developed theories by showing
that event-clock automata are finitely encoded by means of re-
gion automata that we introduce next. Fix bound N . A region
is an equivalence class ϑ of clock valuations ν satisfying the
same set of guards from G(H, N). Denote by Θ the set of all
such regions (bound N is understood). For ϑ ∈ Θ, consider

τ(ϑ) = {ϑ′′ | ∃ν′′ ∈ ϑ′′,∃ν ∈ ϑ,∃t ≥ 0 s.t. ν′′ = ν + t}

which is the set of all regions that can be obtained from ϑ by
letting time elapse. Finally, for ϑ a region and α an action,
ϑ↓α is the region obtained from ϑ by resetting clock hα. Using
these notations, we associate, to each event-clock automaton
M = (Σin,Σout, Q, q0, N,→), a Region Automaton, which is
the following finite state automaton:

R [M] =
(
Σin ×Θ,Σout ×Θ, Q×Θ, (q0,0),⇒

)
(43)

where the transition relation ⇒ is given by:

(q, ϑ)
ϑ”,α

===⇒ (q′, ϑ′) iff

 q g,α→ q′, with
ϑ” ⊆ τ(ϑ) ∩ g and
ϑ′ = ϑ”↓α

(44)

Vice-versa, any Region Automaton R defines a unique
event-clock automaton M [R] by deducing, from (44), the
minimal guards associated to its transitions. Starting from an
event-clock automaton M , M [R [M]] is related to M by a
strengthening of its guards. However, it holds that47

R [M [R [M]]] = R [M] (45)

Under the above correspondence, components in the
event-clock automaton domain are mapped to components in
the i/o-automaton domain.

B. Modal Event-Clock Specifications

In this section we develop the framework of con-
tracts on top of our component model of deterministic
event-clock automata. To simplify, we only develop the case
of a fixed alphabet Σ.

Definition 14: A Modal Event-Clock Specification (MECS)
is a tuple C = (Σin,Σout, Q, q0,→, 99K), where Σin,Σout,
Q, q0 are as in Interface Automata and

→ ⊆ 99K ⊆ Q× G(HΣ)× Σ×Q

Using the same construction as above, MECS C induces a
Region Modal Event-Clock Specification (RMECS) denoted by
R [C], which is a Modal Interface according to Definition 7.
Accordingly, R [C] defines a pair (ER[C]

,MR[C]
) of sets of

i/o-automata and we finally define

(EC ,MC) =def

(
M
[
ER[C]

]
,M
[
MR[C]

])
The map C 7→ R [C] satisfies:48

R [M [R [C]]] = R [C] (46)

47It is shown in [35] that M 7→ R [M] forms a Galois connection.
48Again, it is a Galois connection [35].

This allows us to lift the contract theory of RMECS (which
are Modal Interfaces) to a contract theory of MECS. While
this is conceptually elegant, it is not efficient since moving
from MECS to RMECS (from timed models to region models)
is ExpTime, which is costly. To cope with this difficulty, the
authors of [35] have provided direct cheap formulas, expressed
in the MECS domain. These formulas provide a partial answer
to the issue of complexity. In particular, the following lemma
holds that was stated and proved in [35]:

Lemma 13: For C1 and C2 two MECS having identical input
and output alphabets, define C1∧C2 symbolically with rules of
the following form:

Glbmay :
q1

g1,α
99K q′1 and q2

g2,α
99K q′2

(q1, q2)
g1∧g2.α
99K (q′1, q

′
2)

Glbmust,left :
q1

g1,α→ q′1 and q2
g2,α q′2

(q1, q2)
g1∧g2.α→ (q′1, q

′
2)

where denotes ad libitum→ or 99K and with Glbmust,right

defined symmetrically (see [35] for the complete set of rules).
Then, we have

R [C1∧C2] = R [C1]∧R [C2] (47)

Inconsistent states for both sides of (47) correspond. A similar
lemma holds for contract quotient C1/C2. Unfortunately, the
pruning of inconsistent states cannot be performed directly
in the MECS domain and mapping to regions is mandatory.
Nevertheless, dedicated rules to handle directly inconsistent
states exist in the symbolic versions of the different relations
and operations on MECS. As a result, the computation of
the regions is only mandatory when the designer aims at
cleaning its contract by pruning the inconsistencies. A similar
lemma holds for contract composition C1⊗C2. Again, pruning
incompatible pairs of states cannot be performed directly in
the MECS domain and mapping to regions is mandatory.49

C. Bibliographical note

This note focuses on interface types of framework. The
reader is referrect to the bibliographical note of Section VII-G
for extensions of A/G-contracts addressing time.

A first interface theory able to capture the timing aspects
of components is Timed Interfaces [74]. Timed Interfaces
allows specifying both the timing of the inputs a component
expects from its environment and the timing of the outputs
it can produce. Compatibility of two timed interfaces is then
defined and refers to the existence of an environment such that
timing expectations can be met. The Timed Interface theory
proposed in [68] fills a gap in the work introduced in [74]
by defining a refinement operation. In particular, it is shown
that compatibility is preserved by refinement. This theory
also proposes a conjunction and a quotient operation and is

49Authors of [35] do not mention this fact for the following reason. They
do not consider the issue of receptiveness for components and therefore the
issue of compatibility does not arise.

RR n° 8147

Contracts for System Design 44

implemented in the tool ECDAR [69]. Timed Specification
Theories are revisited from a linear-time perspective in [60].

The first timed extension of modal transition systems was
published in [52]. It is essentially a timed (and modal) version
of the Calculus of Communicating Systems (by Milner). Based
on regions tool support for refinement checking were imple-
mented and made available in the tool EPSILON [95]. Another
timed extension of Modal Specifications was proposed in [36].
In this formalism, transitions are equipped with a modality and
a guard on the component clocks, very much like in timed
automata. For the subclass of modal event-clock automata,
an entire algebra with refinement, conjunction, product, and
quotient has been developed in [33], [34].

Resources other than time were also considered—with
energy as the main target. Resource Interfaces [57] can be
used to enrich a variety of interface formalisms (Interface
Automata [72], Assume/Guarantee Interfaces [73], etc.) with
a resource consumption aspect. Based on a two player game-
theoretic presentation of interfaces, Resource Interfaces allow
for the quantitative specification of resource consumption.
With this formalism, it is possible to decide whether compo-
sitions of interfaces exceed a given resource usage threshold,
while providing a service expressed either with Büchi condi-
tions or thanks to quantitative rewards. Because resource usage
and rewards are explicit rather then being defined implicitly
as solutions of numerical constraints, this formalism does
not allow one to reason about the variability of resource
consumption across a set of logically correct models.

X. PANORAMA: PROBABILISTIC INTERFACE THEORIES

Probabilistic systems are non-deterministic systems in
which choice is controlled by random trial. Such systems are
useful for many purposes, ranging from physical or biological
systems, to security protocols, intrusion detection, and up to
safety and reliability analyses in system design. In this section,
as another illustration of our meta-theory, we develop a simple
instance of a probabilistic interface theory. Again, to simplify
the exposure, we restrict ourselves to the case of a fixed
alphabet Σ.

A. Components as Probabilistic Automata

We first introduce Probabilistic Automata with inputs and
outputs, also called Input/Output Markov Decision Processes,
and then we motivate their use in safety analysis.

Definition 15: A Probabilistic Automaton with inputs and
outputs (i/o-PA) is a tuple M = (Σin,Σout, Q, q0,Π,→),
where
• Σin and Σout are disjoint finite input and output alpha-

bets such that Σin ∪ Σout = Σ;
• Q is a finite set of states and q0∈Q is the initial state;

we denote by Π(Q) the finite set of all probabilities over
Q, also called the probabilistic states;

• → ⊆ Q× Σ×Π(Q) is the transition relation; we write
q

α−→ π to mean (q, α, π) ∈→, and q α−→ if q α−→ π
holds for some π;

• In addition, we require M to be deterministic in the
following sense: for any pair (q, α) ∈ Q × Σ, q α−→ π
and q α−→ π′ implies π = π′.

A run σ of M starts from initial state q0 and then progresses
by a sequence of steps of the form q

α−→ π 7→ q′, where
supplementary transitions π 7→ q′ are drawn at random by
selecting a successor state q′ ∈ Q according to probability
π. A strategy consists in fixing a function ϕ : Q → Σ
and using it to select the next action. Once a strategy has
been fixed, jumping from a probabilistic state to the next one
gives raise to a time-invariant Markov Chain, whose invariant
probability can be computed or statistically estimated. When
all probabilistic states are Dirac measures δq′ selecting q′ as
a next state with probability one, i/o-PA M boils down to an
i/o-automaton. Thus, i/o-PA subsume i/o-automata.

Two i/o-PA M1 and M2 are composable if Σout
1 ∩Σout

2 = ∅.
Two composable i/o-PA M1 and M2 compose into M = M1×
M2 as follows:

(q1, q2)
α−→M π1 ⊗ π2 iff

{
q1

α−→M1
π1 and

q2
α−→M2

π2
(48)

where ⊗ denotes the product of two probabilities, thus making
the two components independent. Parallel composition defined
in this way has all the desired properties.

Similarly, the concept of simulation relation is easily de-
rived from that of i/o-automata by preserving probabilities:
for Mi, i = 1, 2 two i/o-PA and two states qi ∈ Qi, say that q1

simulates q2, written q2≤ q1 if there exists a surjective map
f : Q1 7→ Q2 such that:

∀α s.t. q2
α−→2 π2, ∃π1 ∈ Π(Q1)

⇓ (49) q1
α−→1 π1

π2(q′2) =
∑
f(q′1)=q′2

π1(q′1)

π1(q′1) > 0⇒ f(q′1) ≤ q′1

Observe that, since we consider only deterministic i/o-PA,
there exists at most one π2 such that q2

α−→2 π2, hence there
is no need to quantify over π2 in the precondition of (49). In
probability theory, relation π2(q′2) =

∑
f(q′1)=q′2

π1(q′1) writes
π2 = f(π1). Say that M1 simulates M2, written M2≤M1, if
q2,0≤q1,0. Simulation relation is preserved by composition. If
M2≤M1, then every strategy ϕ2 : Q2 7→ Σ2 defined over M2

has its counterpart into a matching strategy ϕ1 : Q1 7→ Σ1

over M1 by setting ϕ1(q1) = ϕ2(f(q1)). For i = 1, 2, let
Ωi = QN

i be the set of all sequences of states of Qi, and let
(Ωi,Pi), i = 1, 2 be the two resulting probability spaces when
matching strategies are used for M1 and M2. Then, the map
f induces a measurable map ψ = (f, f, . . .) : Ω1 7→ Ω2 such
that

∫
Z(ω2)dP2(ω2) =

∫
Z(ψ(ω1))dP1(ω1). In particular,

the probability distributions with respect to P1 and P2, of any
measurable function depending only on the successive actions
performed, are identical.

The natural use of i/o-PAs for safety/reliability analysis is
to capture faulty situations through states. Component states

RR n° 8147

Contracts for System Design 45

are partitioned into safe states and faulty states that can be
equipped with different fault labels (names of states can do
this, no semantic adaptation is needed). The probabilistic part
of i/o-PAs naturally captures the spontaneous occurrence of
faults. When in a faulty state, a component outputs actions
that can either be used to model fault propagation, or may
be alarms for use in system supervision. Input actions in a
faulty state can be used to either model denial of service
from other components (thus resulting in a risk of moving
to a faulty state), or may be reconfiguration actions. Thus,
spontaneous occurrence of failures with fault propagation is
captured by this framework. To summarize, i/o-PAs offer a
natural framework in which to combine functional and safety
viewpoints.

B. Simple Modal Probabilistic Interfaces

By following the same steps as for Modal Interfaces,
see Definition 7, we can define Simple Modal Probabilistic
Interfaces as pairs C = (Cmay , Cmust) of i/o-PAs. There is no
new difficulty in doing this. Expressiveness of this framework,
however, is modest; whence the attribute “simple”. When used
in the context of safety/reliability analysis, Simple Modal
Probabilistic Interfaces support the specification of fault ac-
commodation in systems. For example, one can specify about
a component:
• that it does not accommodate denial of service: inputs

representing fault propagation are disallowed (“must not
occur”);

• that it must be prepared to possible denial of service:
inputs representing fault propagation are allowed (“must
be accepted”);

• that it never generates spontaneous failures: actions lead-
ing to a probabilistic state from which a faulty state can be
immediately reached are disallowed (“must not occur”);

• that spontaneous failures are unavoidable: actions leading
to a probabilistic state from which a faulty state can be
immediately reached are allowed (“must be accepted”).

One could argue that i/o-PA by themselves offer a similar
expressiveness by playing with probabilities. Simple Modal
Probabilistic Interfaces, however, offer the full algebra of
contracts, which i/o-PA don’t.

C. Bibliographical note

This note focuses on interface types of framework. The
reader is referred to the bibliographical note of Section VII-G
for extensions of A/G-contracts addressing probability.

Exactly like the Interval Markov Chain (IMC) for-
malism [116] they generalize, Constraint Markov Chains
(CMC) [50] are abstractions of a (possibly infinite) sets of
Discrete Time Markov Chains. Instead of assigning a fixed
probability to each transition, transition probabilities are kept
symbolic and defined as solutions of a set of first order
formulas. Variability across implementations is made possible
not only with symbolic transition probabilities, but also thanks
to the labelling of each state by a set of valuations or sets
of atomic propositions. This allows CMCs to be composed

thanks to a conjunction and a product operators. While the
existence of a residuation operator remains an open problem,
CMCs form an interface theory in which satisfaction and
refinement are decidable, and compositions can be computed
using quantifier elimination algorithms. In particular, CMCs
with polynomial constraints form the least class of CMCs
closed under all composition operators. Abstract Probabilistic
Automata (APA) [79] is another specification algebra with
satisfaction and refinement relations, product and conjunction
composition operators. Despite the fact that APAs generalize
CMCs by introducing a labeled modal transition relation,
deterministic APAs and CMCs coincide, under the mild as-
sumption that states are labeled by a single valuation. For
both formalisms, parallel composition is restricted to non-
interacting components, since alphabets of actions must be
disjoint.

Our formalism of Simple Modal Probabilistic Interfaces ex-
hibits the whole contract algebra. Regarding limitations, unlike
IMC, CMC, and APA, this model does not allow for specifying
families of transition probabilities and, hence, it cannot help
for quantitative reasoning about reliability analysis.

XI. THE PARKING GARAGE, AN EXAMPLE IN
REQUIREMENTS ENGINEERING

In this section we develop the parking garage example
introduced in Section IV-C. Some of the material is repeated
for better readability. Despite being simple and small, this ex-
ample quickly becomes complex for reasons that are intrinsic
to the formal management of requirements. The MICA tool
developed by Benoît Caillaud was used to develop it [49].

Requirements are written in constrained English language
and then translated into Modal Interfaces—while the pre-
sented translation is manual, automatic translation can be
envisioned.50 Once this is completed, contracts are formally
defined and the apparatus of contracts can be used. In par-
ticular, important properties regarding certification can be
formally defined and checked, e.g., consistency, compatibility,
correctness, and completeness. In addition, support is provided
for turning top-level requirements into an architecture of sub-
systems, each one equipped with its own requirements. The
latter can then be submitted to independent suppliers for
further development.

A. The contract framework

We shall use Modal Interfaces (with variable alphabet) as
developed in Sections VIII-C and subsequent ones. There are
three main reasons for this choice:

1) By offering the may and must modalities, Modal Inter-
faces are well suited to express mandatory and optional
behaviors in the specification, which we consider impor-
tant for requirements engineering.

50In fact, the contract specification languages proposed in the projects
SPEEDS [29] and CESAR (http://www.cesarproject.eu/) are examples of
translations from a constrained English language to a formal models of
contracts similar to Modal Interfaces.

RR n° 8147

http://www.cesarproject.eu/

Contracts for System Design 46

2) Being large sets of requirements structured into chapters,
requirements documents are a very fragmented style of
specification. Only Modal Interfaces offer the needed
support for an accurate translation of concepts such as
“set of requirements”, “set of chapters”, together with a
qualification of who is responsible for each requirement
(the considered component or sub-system versus its
environment).

3) As we shall see, at the top-level, conjunction prevails.
However, as soon as the designer refines the top-level
requirements into an architecture of sub-systems, com-
position enters the game. Turning a conjunction of top-
level requirements into a composition of sub-systems
specifications thus becomes a central task. Only Modal
Interfaces provide significant assistance for this.

Overall, the problem considered in claim 3) can be stated as
follows. The designer begins with some system-level contract
C, which is typically specified as a conjunction of viewpoints
and/or requirements. The designer guesses some topological
architecture by decomposing the alphabet of actions of C as

Σ =
⋃
i∈I Σi , Σi = Σin

i] Σout
i (50)

such that composability conditions regarding inputs and out-
puts hold. Once this is done, we expect our contract framework
to provide help in generating a decomposition of C as⊗

i∈I Ci � C (51)

where sub-contract Ci has alphabet Σi = Σin
i] Σout

i . Guess-
ing architectural decomposition (50) relies on the designer’s
understanding of the system and how it should naturally
decompose—this typically is the world of SysML. Finding
decomposition (51) is, however, technically difficult in that it
involves behaviors. The algorithmic means that were presented
in Section VIII-E provide the due answer. In this Parking
Garage example, we will use both the abstracted projection
and the restriction that were developed in that section.

B. Top level requirements

In this section, we begin with the top-level requirements.
The system under specification is a parking garage subject
to payment by the user. At its most abstract level, the re-
quirements document comprises the different chapters gate,
payment, and supervisor, see Table VIII. The gate chapter
will collect the generic requirements regarding entry and exit
gates. These generic requirements will then be specialized for
entry and exit gates, respectively.

0

!gate_close

1!gate_open
!gate_close

?vehicle_pass
!gate_open

Figure 7. Requirement Rg.1 specified as an i/o-automaton. Prefix “?”
indicates an input and prefix “!” indicates an output.

gate
Rg.1:“vehicles shall not pass when gate is closed”, see Fig. 7
Rg.2: after ?vehicle_pass ?vehicle_pass is forbidden
Rg.3: after !gate_open !gate_open is forbidden and

after !gate_close !gate_close is forbidden
payment
supervisor

Table VIII
THE TOP-LEVEL SPECIFICATION, WITH CHAPTER gate EXPANDED;

REQUIREMENTS WRITTEN IN italics ARE ASSUMPTIONS UNDER WHICH
gate SHOULD OPERATE.

Focus on the “gate” chapter. It consists of the three re-
quirements shown on Table VIII. Requirement Rg.1 is best
described by means of an i/o-automaton, shown in Figure 7—
we provide an informal textual explanation for it, between
quotes.51 The other two requirements are written using con-
strained natural language, which can be seen as a boilerplate
style of specification. Prefix “?” indicates an input and prefix
“!” indicates an output.

The first two requirements are not under the responsibility
of the system, since they rather concern the car driver. Thus it
does not make sense to include them as part of the guarantees
offered by the system. Should we remove them? This would
be problematic. If drivers behave the wrong way unexpected
things can occur for sure. The conclusion is that 1) we should
keep requirements Rg.1 and Rg.2, and 2) we should handle
them differently than Rg.3, which is a guarantee offered by the
system. Indeed, Rg.1 and Rg.2 are assumptions under which
the gate operates as guaranteed. In the sequel, assumptions are
written in italics.

So far we have specified gate as a list of requirements.
Requirement Rg.1 specified as an i/o-automaton can be con-
sidered formal. Requirements Rg.2 and Rg.3 are formulated
in constrained natural language and are ready for subsequent
formalization, e.g., as i/o-automata. Are we done? Not yet!
We need to give a formal meaning to what it means to have
a collection of requirements, and what it means to distinguish
assumptions from guarantees. The contract framework we
develop next will provide support for this.

C. Formalizing requirements as contracts

We shall use Modal Interfaces (with variable alphabet) as
developed in Sections VIII-C and subsequent ones. Thus,
we first need to explain how the specification of “gate” in
Table VIII translates into Modal Interfaces.

We first observe that each requirement Rg.j of Table VIII
is a sentence that can be formalized as an i/o-automaton, see

51 We take the convention that the variables of the resulting i/o-automaton
are those mentioned in the text of the requirement. Some adjustment is needed
to this convention, however, as exemplified by Figure 7. Suppose that some
requirement says: “?gate_open never occurs”. This is translated by having
no mention of ?gate_open in the corresponding i/o-automaton. To express
this “negative” fact we must keep track of the fact that ?gate_open belongs
to the alphabet of actions of the i/o-automaton. Thus, when performing the
translation, the explicit list of inputs and outputs should be explicitly given.
To avoid such additional notational burden, we have cheated by omitting this
unless necessary.

RR n° 8147

Contracts for System Design 47

Figure 7 for such a formalization of requirement Rg.1. Ac-
cordingly, each chapter D = gate/payment/supervisor
of Table VIII is structured as a pair

D = ((A1, . . . , Am), (G1, . . . , Gn)) (52)

where the Ais (the assumptions) and the Gjs (the guarantees)
are i/o-automata in which all involved actions possess the
same status (input or output) throughout all Ais and Gjs. The
translation of a specification of the form (52) into a Modal
Interface is performed by applying the following two series of
rules:

Rules 1: We adopt the following rules for the translation of
guarantees (in the form of i/o-automata) into Modal Interfaces:
RG

1 : Unless otherwise explicitly stated, transitions labeled
by an output action of the considered system are given
a may modality; the rationale for doing this is that the
default semantics for guarantees is “best effort”. A must
modality is assigned if the requirement specifies it—e.g.,
by having a “must” in the sentence.

RG
2 : Transitions labeled by an input action of the considered

system are given a must modality; the rationale for doing
this is that, as part of its guarantees, the component must
not refuse an input that is “legally” submitted by the
environment.

RG
3 : Guarantees in a same requirements chapter D combine

by conjunction.
Applying Rules 1 to the set of guarantees of D yields the
contract encoding these guarantees, denoted by GD . 2

Performing this for the single guarantee Rg.3 of gate yields
the Modal Interface shown in Figure 8.

0 1!gate_open
!gate_close

0 1!gate_open
!gate_close

Figure 8. Translating the guarantee Rg.3 of gate as an i/o-automaton (top)
and then as a Modal Interface Ggate (bottom) using Rules 1.

Rules 2: We adopt the following rules for the translation
of assumptions (in the form of i/o-automata) into Modal
Interfaces:
RA

1 : We exchange the status input/output in every assump-
tion, thus taking the point of view of the environment.

RA
2 : Having done this, we apply Rules 1 to the assumptions.

So far this yields a draft Modal Interface Â that must be
satisfied by every environment.

RA
3 : This is not enough, however, as we really want envi-

ronments that submit all legal stimuli. To ensure this, we
simply turn, in Â, all may transitions to must transitions,
which yields A.

Applying Rules 2 to the set of assumptions of D yields the
Modal Interface AD encoding these assumptions. 2

Performing this for the assumptions Rg.1 and Rg.2 of gate
yields the Modal Interface shown in Figure 9.

1: 0

!gate_close

1!gate_open
!gate_close

!gate_open
?vehicle_pass

2: 0

!gate_open

1?vehicle_pass
!gate_open

3: (1,1)

!gate_close

(1,0)

!gate_open
!gate_close
?vehicle_pass

!gate_open

4: 0

!gate_close

1
!gate_open
?vehicle_pass
!gate_close

!gate_open

Figure 9. Translating the assumptions of gate as a Modal Interface Agate

using Rules 2. 1: translation of Rg.1; 2: translation of Rg.2; 3: the resulting
conjunction; 4: the final result after applying rule RA

3 and renaming the states.

So far we have represented any chapter D of the require-
ments document as a pair of Modal Interfaces (AD , GD) with
mirroring input/output statuses for their actions—every input
of AD is an output of GD and vice-versa. It is the merit of
Modal Interfaces to allow for a direct representation of this
pair of assumption and guarantee in the form of a single Modal
Interface, by using the following formula, for A and G two
Modal Interfaces with mirroring input/output statuses for their
actions:

(A,G) is represented by the quotient (A⊗G)/A , (53)

which is the contract characterizing the components that
implement G in the context of A, see Section V-E. Performing
this for the whole chapter gate yields the Modal Interface
shown in Figure 10. Some comments are in order regarding
this Modal Interface:
• Regarding the guarantees offered by the component:

Allowed outputs possess a may modality, which reflects
that Guarantees specify what the component may deliver.
Other actions are forbidden.

• Regarding the context of operation: Legal inputs to the
gate (e.g., vehicle_through when exiting state “1”) have
a must modality. This complies with the intuition that

RR n° 8147

Contracts for System Design 48

gate(x) where x ∈{entry, exit}
Rg.1(x): “vehicles shall not pass when x_gate is closed”, see Fig. 7
Rg.2(x): after ?vehicle_pass ?vehicle_pass is forbidden
Rg.3: after !x_gate_open !x_gate_open is forbidden and after !x_gate_close !x_gate_close is forbidden

payment
Rp.1: “user inserts a coin every time a ticket is inserted and only then”, Fig. omitted
Rp.2: “user may insert a ticket only initially or after an exit ticket has been issued”, Fig. omitted
Rp.3: “exit ticket is issued after ticket is inserted and payment is made and only then”, Fig. omitted

supervisor
Rg.1(entry)
Rg.1(exit)
Rg.2(entry)
Rg.2(exit)
Rs.1: initially and after !entry_gate close !entry_gate open is forbidden
Rs.2: after !ticket_issued !entry_gate open must be enabled
Rs.3: “at most one ticket is issued per vehicle entering the parking and tickets can be issued only if requested

and ticket is issued only if the parking is not full”, see Fig 12
Rs.4: “when the entry gate is closed, the entry gate may not open unless a ticket has been issued”, Fig. omitted
Rs.5: “the entry gate must open when a ticket is issued”, Fig. omitted
Rs.6: “exit gate must open after an exit ticket is inserted and only then”, Fig. omitted
Rs.7: “exit gate closes only after vehicle has exited parking”, Fig. omitted

Table IX
REQUIREMENTS FOR THE TOP-LEVEL

0

1
?vehicle_pass

2!gate_open

?vehicle_pass
!gate_close
!gate_open

!gate_close
3?vehicle_pass

!gate_close

?vehicle_pass

Figure 10. Chapter gate of the top-level requirements document translated
into a Modal Interface Cgate.

the component should not refuse legal stimuli from its
environment. Violation of the contract by its environment
occurs when an illegal input is submitted by the environ-
ment (vehicle_through when exiting state 0 or state 3). As
a consequence, the whole contract gets relaxed, which is
reflected by the move to the special state “2”, from which
any action is allowed—such a state is often called a “top”
state. Note that this top state resulted from computing the
quotient.

The same procedure applies to all chapters gate, payment,
and supervisor, of the top-level textual specification, shown
in Table IX (it is an expansion of Table VIII). In particu-
lar, the Modal Interfaces encoding chapters payment and
supervisor of the top-level are displayed in Figures 11 to 13.
Figure 13 showing the contract associated to the supervisor is
unreadable and the reader may wonder why we decided to put
it here. We indeed wanted to show that, when contract design
is performed formally and carefully, top-level contracts rapidly
become complex, even for modest sets of requirements. So the
formal management of requirements and their translation into
formal contracts must be tool-assisted.

Finally, the whole top-level contract C is the conjunction
of the contracts representing chapters gate, payment, and

supervisor, of the top-level requirements document:

C = Cgate ∧ Cpayment ∧ Csupervisor (54)

Owing to the complexity of Csupervisor shown in Figure 13,
we do not show the Modal Interface C formalizing the full
document. Nevertheless, the latter was generated and can then
be exploited as we develop next. The above specification
only covers the functional viewpoint of the system. Other
viewpoints might be of interest as well, e.g., regarding timing
behavior and energy consumption. They would be developed
with the same method and combined to the above contract C
using conjunction.

D. Sub-contracting to suppliers

In this section, we apply the technique developed in Sec-
tion VIII-E for generating an architecture of sub-systems with
their associated sets of requirements. Each sub-system can
then be submitted for independent development to a different
supplier.

The duty of the designer is to specify an architecture “à
la SysML”, as shown on Figure 14. Some comments are
in order regarding this architecture. The considered instance
of a parking garage consists of one entry gate, one exit
gate, and one payment machine. Compare with the top-level
specification of Table IX. The latter comprises a generic gate,
a payment machine, and a supervisor, each one with its set
of requirements. In contrast, the architecture of Figure 14
involves no supervisor. The supervisor is meant to be dis-
tributed among the two gates. The architecture of Figure 14
seems to be very loosely coupled. First, the PaymentMachine
seems to be totally independent. In fact, the ticket that is
inserted in the exit gate must coincide with the one issued by
the PaymentMachine. It turns out that this reflects a missing
assumption regarding the environment of the system (namely
the user of the parking). Then, the two gates seem to have the

RR n° 8147

Contracts for System Design 49

0 1?ticket_insert_payment 2

?coin_insert_payment
?ticket_insert_payment

3

?coin_insert_payment

?ticket_insert_payment
?coin_insert_payment
!exit_ticket_issue

!exit_ticket_issue
?ticket_insert_payment
?coin_insert_payment

Figure 11. Chapter payment of the top-level requirements document
translated into a Modal Interface Cpayment.

(a,0)

?vehicle_exit (b,0)?request_enter

(a,1)?vehicle_enter

?request_enter
?vehicle_exit

!ticket_issue

?vehicle_enter

?vehicle_exit
(b,1)

?request_enter

(a,2)

?vehicle_enter

?vehicle_exit
!ticket_issue
?request_enter

?vehicle_enter

?vehicle_exit

?vehicle_enter

(b,2)?request_enter

?vehicle_exit

?vehicle_enter

?request_enter

Figure 12. Modal Interface for Rs.3

0

!entry_gate_close

1

?exit_ticket_insert

7

?vehicle_enter
?vehicle_exit

44

?request_enter

!entry_gate_close
?exit_ticket_insert

2

!exit_gate_open

?vehicle_enter
?vehicle_exit

43

?request_enter

?exit_ticket_insert

!entry_gate_close
!exit_gate_open

3

?request_enter

?vehicle_enter

75

?vehicle_exit

?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

4

!ticket_issue

?vehicle_enter

72

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

?vehicle_enter

5

?vehicle_exit

11

!entry_gate_open

!exit_gate_open,?exit_ticket_insert
!exit_gate_close,!entry_gate_close
?vehicle_enter,!entry_gate_open
?vehicle_exit,?request_enter

!ticket_issue

?vehicle_enter
?vehicle_exit

?exit_ticket_insert
?request_enter

6

!exit_gate_open

8

!exit_gate_close

59

!entry_gate_open

?vehicle_enter

?vehicle_exit ?exit_ticket_insert
?request_enter

!exit_gate_open

!exit_gate_close

58

!entry_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

9

?exit_ticket_insert

45

!entry_gate_open

!exit_gate_open

?vehicle_enter
?vehicle_exit?exit_ticket_insert

?request_enter

10

!entry_gate_open

?vehicle_exit

!entry_gate_open
?exit_ticket_insert
?request_enter

!exit_gate_open

!entry_gate_close

47

!ticket_issue

68

?vehicle_enter

!entry_gate_close

!entry_gate_open
!exit_gate_open
?exit_ticket_insert
?request_enter

12

!ticket_issue

69

?vehicle_enter

?vehicle_exit

!entry_gate_open

!exit_gate_open
?exit_ticket_insert
?request_enter

49

?vehicle_enter

13

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
!exit_gate_open

19

?request_enter

77

!entry_gate_open

50

?vehicle_exit

?vehicle_enter

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

20

!entry_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

21

!ticket_issue

34

?vehicle_enter

71

!entry_gate_close

?vehicle_exit

!entry_gate_open

?exit_ticket_insert
?request_enter

!exit_gate_open

22

?vehicle_enter

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
!exit_gate_open

23
?request_enter

84

!entry_gate_open

127

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
?request_enter

!exit_gate_open

24

?vehicle_exit

33

!entry_gate_open

?vehicle_enter
?vehicle_exit

?exit_ticket_insert
?request_enter

16

!exit_gate_open

17

!exit_gate_close

25

!entry_gate_open

?vehicle_enter

?vehicle_exit

!exit_gate_open
?exit_ticket_insert
?request_enter

!exit_gate_close

26

!entry_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

18

?exit_ticket_insert

114

!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_open

?exit_ticket_insert
?request_enter

80

!entry_gate_open

?vehicle_exit

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_open

81
!ticket_issue

79

!entry_gate_close

99

?vehicle_enter

?vehicle_exit

!exit_gate_open

!entry_gate_open

?exit_ticket_insert
?request_enter

82?vehicle_enter

?vehicle_enter
?vehicle_exit!exit_gate_open

?exit_ticket_insert

31

?request_enter

83

!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_open

?exit_ticket_insert
?request_enter

32

!entry_gate_open

?vehicle_exit
?exit_ticket_insert
?request_enter

!entry_gate_open

!exit_gate_open

?vehicle_enter

91

!entry_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

?vehicle_enter

92

!entry_gate_close

?vehicle_exit

?vehicle_enter

?exit_ticket_insert
!exit_gate_open

35

?request_enter

101

!entry_gate_close

!entry_gate_open

60

?vehicle_exit

?vehicle_enter

!entry_gate_open

?exit_ticket_insert
?request_enter

!exit_gate_open

36

?vehicle_exit

!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert
?request_enter

37

!exit_gate_open

125

!exit_gate_close

93

!entry_gate_close

!entry_gate_open

?vehicle_enter

!ticket_issue

?exit_ticket_insert
?request_enter

!exit_gate_open

38

?vehicle_exit

!exit_gate_close

94

!entry_gate_close

!entry_gate_open

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert
?request_enter

39

!exit_gate_open

40

!exit_gate_close

!entry_gate_close

!entry_gate_open

?vehicle_enter

!ticket_issue

?vehicle_exit
?exit_ticket_insert
?request_enter

!exit_gate_open

!exit_gate_close

!entry_gate_open

73
!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

?request_enter

41

?exit_ticket_insert

!entry_gate_close

!entry_gate_open

?vehicle_enter
?vehicle_exit

!ticket_issue

!entry_gate_open

?exit_ticket_insert
?request_enter

42

!exit_gate_open

!entry_gate_close

!entry_gate_close

!ticket_issue

?vehicle_enter

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

!exit_gate_open ?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_exit

?exit_ticket_insert

!entry_gate_close

?request_enter
!entry_gate_open

46

!ticket_issue

124

?vehicle_enter

?vehicle_exit

!entry_gate_open

?request_enter

?exit_ticket_insert

126

?vehicle_enter

?vehicle_exit

!entry_gate_open

!exit_gate_open

?exit_ticket_insert
?request_enter

48

?vehicle_enter

?vehicle_enter
?vehicle_exit

!exit_gate_open

?request_enter?exit_ticket_insert

113

!entry_gate_open

?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_open

!exit_gate_open

105

!entry_gate_close

?vehicle_enter

?request_enter

?vehicle_enter

?exit_ticket_insert

!entry_gate_open
!exit_gate_open

56

?vehicle_exit

74!entry_gate_close

?vehicle_exit

?exit_ticket_insert
!entry_gate_open

57

!exit_gate_open

!entry_gate_close

123

!exit_gate_close

?vehicle_enter

?request_enter

?vehicle_exit

?exit_ticket_insert

!entry_gate_open
!exit_gate_open

?request_enter

76

!entry_gate_close

!exit_gate_close

61

?vehicle_enter

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

14

!ticket_issue

!entry_gate_close

?vehicle_enter

?vehicle_exit

!exit_gate_close!entry_gate_open

!exit_gate_open
?exit_ticket_insert
?request_enter

15

?vehicle_enter

?vehicle_exit

?vehicle_enter

?request_enter

!exit_gate_open
?exit_ticket_insert

?vehicle_exit

86

!entry_gate_open

!exit_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

!entry_gate_open
?exit_ticket_insert

51

!exit_gate_open

52

!exit_gate_close

?vehicle_enter

?request_enter

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
!exit_gate_open !exit_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

53

?exit_ticket_insert

!entry_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert

54

!exit_gate_open

67
!entry_gate_open

?request_enter

?vehicle_enter

?vehicle_exit

?exit_ticket_insert
!exit_gate_open

55

!entry_gate_open

!entry_gate_close

?request_enter

?vehicle_exit

?exit_ticket_insert

!entry_gate_open
!exit_gate_open

?vehicle_enter

?vehicle_enter

!entry_gate_open

?exit_ticket_insert
!exit_gate_open

70

?request_enter

62

?vehicle_exit

!entry_gate_close

?vehicle_enter

!ticket_issue

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
?request_enter

!exit_gate_open

!entry_gate_close

?vehicle_enter

!ticket_issue

?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

?vehicle_exit

?vehicle_enter
?vehicle_exit

!ticket_issue

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_close

!exit_gate_open

?vehicle_enter

!ticket_issue

!exit_gate_close

?vehicle_exit ?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

!entry_gate_open

?exit_ticket_insert

63

!exit_gate_open

64
!exit_gate_close

!entry_gate_close

?vehicle_enter

?request_enter

!entry_gate_open

?vehicle_exit ?exit_ticket_insert
!exit_gate_open

!exit_gate_close

!entry_gate_close

!entry_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

65

?exit_ticket_insert

!entry_gate_open

!entry_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert

66!exit_gate_open

!entry_gate_open

!entry_gate_close

?vehicle_enter

?request_enter

!entry_gate_open

?vehicle_exit

?exit_ticket_insert
!exit_gate_open

!entry_gate_close

?vehicle_exit

?request_enter

!exit_gate_open

?exit_ticket_insert
!entry_gate_open

?vehicle_enter

?vehicle_enter
?vehicle_exit

!entry_gate_open

!exit_gate_open

?exit_ticket_insert

78

?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

!entry_gate_open

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!ticket_issue

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

!exit_gate_open

?vehicle_enter

?request_enter

?exit_ticket_insert

!entry_gate_close
!exit_gate_open

?vehicle_exit

!exit_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

!exit_gate_open

!exit_gate_close

?vehicle_enter

?request_enter

?vehicle_exit

!entry_gate_close
!exit_gate_open
?exit_ticket_insert

!entry_gate_close

?vehicle_exit

?request_enter

?exit_ticket_insert

!entry_gate_open

?vehicle_enter

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

?request_enter

104
!entry_gate_close

112
!entry_gate_open

?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert

?request_enter

95!entry_gate_close

!entry_gate_open
?vehicle_enter
?vehicle_exit

!ticket_issue

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_exit

?exit_ticket_insert

!entry_gate_close

?request_enter
!entry_gate_open

115

!ticket_issue

98

?vehicle_enter

?vehicle_exit

?exit_ticket_insert

!entry_gate_open

?request_enter

116

?vehicle_enter

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

30

?request_enter

107

!entry_gate_open

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

?request_enter
97

!entry_gate_open

?vehicle_exit

?exit_ticket_insert

?request_enter
!entry_gate_open

?vehicle_enter

96!entry_gate_close

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

89

?request_enter

106

!entry_gate_close!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_open

?exit_ticket_insert

90

?request_enter

100

!entry_gate_close

!entry_gate_open

?vehicle_enter
?vehicle_exit

!entry_gate_open

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!entry_gate_close
?exit_ticket_insert
?request_enter

!exit_gate_open

?vehicle_enter

!entry_gate_close
!exit_gate_open
?exit_ticket_insert
?request_enter

?vehicle_exit

?vehicle_enter
?vehicle_exit

!ticket_issue

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_close

!exit_gate_open

?vehicle_enter

!ticket_issue

?vehicle_exit

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

!exit_gate_open

?vehicle_enter

?request_enter

?exit_ticket_insert

!entry_gate_close
!exit_gate_open

102

?vehicle_exit

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert
!entry_gate_close

103

!exit_gate_open

!exit_gate_close

?vehicle_enter

?vehicle_exit

?request_enter?exit_ticket_insert

!entry_gate_close
!exit_gate_open

!exit_gate_close

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_exit

?request_enter?vehicle_enter

!entry_gate_close
?exit_ticket_insert
!entry_gate_open

!exit_gate_open

?request_enter

?vehicle_enter

!entry_gate_close

!entry_gate_open
!exit_gate_open
?exit_ticket_insert

85

?vehicle_exit

?vehicle_exit

!entry_gate_close

!entry_gate_open
?exit_ticket_insert

!exit_gate_open

?request_enter

117

?vehicle_enter

!exit_gate_close

?vehicle_exit

!entry_gate_close

!entry_gate_open
!exit_gate_open
?exit_ticket_insert

?request_enter

87

?vehicle_enter

!exit_gate_close

!exit_gate_close

!entry_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

27

!ticket_issue

?vehicle_enter

?vehicle_exit

!exit_gate_close

!entry_gate_open

?exit_ticket_insert
?request_enter

!exit_gate_open

28

?vehicle_enter

?vehicle_exit

?vehicle_enter

!exit_gate_close

?exit_ticket_insert
!exit_gate_open

29
?request_enter

111

!entry_gate_open

?vehicle_exit

?vehicle_enter

?vehicle_exit

!exit_gate_close

?exit_ticket_insert
?request_enter

!exit_gate_open

109

!entry_gate_open

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_open
!exit_gate_open

?vehicle_enter

108

!entry_gate_close

?vehicle_exit

?vehicle_enter

!exit_gate_close

!exit_gate_open
?exit_ticket_insert

88

?request_enter

?vehicle_exit

110

!entry_gate_close

!entry_gate_open

?vehicle_enter

?vehicle_exit

!entry_gate_open

!exit_gate_open
?exit_ticket_insert
?request_enter

!exit_gate_close

!entry_gate_close

?vehicle_enter
?vehicle_exit

!entry_gate_open

?exit_ticket_insert

?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

?request_enter
!entry_gate_close

?vehicle_enter

?vehicle_exit

!exit_gate_close

?exit_ticket_insert
?request_enter

!entry_gate_close
!exit_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

!exit_gate_close

!entry_gate_close

!entry_gate_open

?exit_ticket_insert

!exit_gate_open

?vehicle_enter

?request_enter

?vehicle_exit

!exit_gate_close

!entry_gate_close

!entry_gate_open

?exit_ticket_insert
!exit_gate_open

?vehicle_enter

?vehicle_exit

?request_enter

?exit_ticket_insert

!entry_gate_close
!exit_gate_open

!exit_gate_close

?vehicle_enter
?vehicle_exit

?exit_ticket_insert

?request_enter

!entry_gate_close

?vehicle_exit

?request_enter

?vehicle_enter
!entry_gate_close

?exit_ticket_insert

!entry_gate_open
!exit_gate_open

!exit_gate_close

?vehicle_exit

?request_enter

?vehicle_enter

?exit_ticket_insert

!entry_gate_close

!entry_gate_open

?vehicle_exit

!exit_gate_close

!entry_gate_close

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_open

128!ticket_issue

?vehicle_enter

?vehicle_exit

!exit_gate_close

!exit_gate_open

!entry_gate_open

?exit_ticket_insert
?request_enter

129?vehicle_enter

?vehicle_enter
?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert

130

?request_enter

122!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert
?request_enter

120

!entry_gate_open

?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_open

?vehicle_enter

119
!entry_gate_close

?vehicle_enter
?vehicle_exit

!exit_gate_close

!exit_gate_open

?exit_ticket_insert

118

?request_enter

121

!entry_gate_close

!entry_gate_open

?vehicle_enter
?vehicle_exit

!exit_gate_open

!exit_gate_close

!entry_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!exit_gate_close
!exit_gate_open

?exit_ticket_insert
?request_enter

!entry_gate_close

?vehicle_enter
?vehicle_exit

!exit_gate_open

!exit_gate_close

?request_enter

?exit_ticket_insert
!entry_gate_close

?vehicle_exit

!exit_gate_open

!exit_gate_close

?request_enter

?vehicle_enter

!entry_gate_close

?exit_ticket_insert
!entry_gate_open

?vehicle_enter
?vehicle_exit

?request_enter

!exit_gate_open

!entry_gate_open

?exit_ticket_insert

!exit_gate_close

?vehicle_enter
?vehicle_exit

?request_enter

?exit_ticket_insert

!entry_gate_open

?vehicle_exit

?exit_ticket_insert

?request_enter

?vehicle_enter

!entry_gate_close
!entry_gate_open

?vehicle_exit

!exit_gate_close

!exit_gate_open

?vehicle_enter

?exit_ticket_insert
?request_enter

!entry_gate_open

?vehicle_exit

!exit_gate_close

!exit_gate_open

!entry_gate_close

?vehicle_enter

!ticket_issue

?exit_ticket_insert
?request_enter

!entry_gate_open

Figure 13. Chapter supervisor of the top-level requirements document
translated into a Modal Interface Csupervisor, for a capacity of two for the
parking garage.

shared input “?vehicle exit” as their only interaction. But this
shared input is involved in requirement Rs.3, which forbids
the entry if the parking is full.

In Figure 15 we show the result of applying, to the ar-
chitecture of Figure 14, the Algorithm 1 developed in Sec-
tion VIII-E, which yields by construction a refinement of the
top-level contract C by a decomposition into local contracts:

C �
C(ΣEntryGate)⊗ C(ΣExitGate)⊗ C(ΣPaymentMachine)

(55)

Local contract C(ΣEntryGate) is the more complex one because
it involves counting—we have assumed a capacity of two to
keep it simple. Remarkably enough, the decomposition (55)
involves small sub-systems compared to Csupervisor (Fig. 13)
and the global contract C; the restriction operation is to be
acknowledged for this strong reduction in size.

E. The four “C”

Requirements capture and management are important mat-
ters for discussion with certification bodies. These bodies
would typically assess a number of quality criteria from, e.g.,
the following list elaborated by INCOSE [114]: Accuracy,
Affordability, Boundedness, Class, Complexity, Completeness,

?request enter

!ticket issue

!entry gate open

!entry gate close
EntryGate

?vehicle enter

?vehicle exit

?exit ticket insert ExitGate
!exit gate open

!exit gate close

?ticket insert payment

?coin insert payment
PaymentMachine !exit ticket issue

Figure 14. System architecture as specified by the designer.

0

?vehicle_exit

1

?request_enter

3

?vehicle_enter

?request_enter
?vehicle_exit

2!ticket_issue

?vehicle_enter

?request_enter
?vehicle_exit

?vehicle_enter

4

!entry_gate_open

!entry_gate_close
!entry_gate_open

!ticket_issue,?vehicle_enter
?request_enter
?vehicle_exit

!entry_gate_close

?request_enter
?vehicle_exit

5
?vehicle_enter

?vehicle_enter

6

?request_enter

15

!entry_gate_close

16

?vehicle_exit ?vehicle_enter

?request_enter

7

?vehicle_exit

8

!entry_gate_close

!entry_gate_close
?vehicle_enter

?request_enter
?vehicle_exit

?vehicle_exit

?vehicle_enter

?request_enter

9!ticket_issue

?vehicle_exit

?vehicle_enter

?request_enter

10

!entry_gate_open

?vehicle_exit

!entry_gate_close
?request_enter

11

?vehicle_enter

?vehicle_enter

?vehicle_exit
12

?request_enter

14!entry_gate_close

?vehicle_enter

?vehicle_exit

?request_enter

13
!entry_gate_close

?vehicle_enter

?vehicle_exit ?request_enter

?vehicle_enter

?request_enter

?vehicle_exit

?vehicle_exit

?vehicle_enter

?request_enter

!entry_gate_close

?vehicle_enter

?request_enter?vehicle_exit

0 1?exit_ticket_insert

4

?vehicle_exit

?exit_ticket_insert

2

!exit_gate_open

?vehicle_exit

?exit_ticket_insert

3?vehicle_exit
!exit_gate_close

?exit_ticket_insert
?vehicle_exit

?exit_ticket_insert
!exit_gate_close

?vehicle_exit,!exit_gate_open

0 1?ticket_insert_payment 2

?coin_insert_payment
?ticket_insert_payment

3

?coin_insert_payment

?ticket_insert_payment
?coin_insert_payment
!exit_ticket_issue

!exit_ticket_issue
?ticket_insert_payment
?coin_insert_payment

Figure 15. The three restrictions of the global contract C for the three sub-
systems EntryGate (top), ExitGate (mid), and PaymentMachine (bottom).

Conciseness, Conformance, Consistency, Correctness, Criti-
cality, Level, Orthogonality, Priority, Risk, Unambiguousness,
and Verifiability. In this section we focus on four quality crite-
ria that are considered central by certification authorities and
are relevant to contracts, namely: Completeness, Correctness,
Consistency, and Compatibility.

1) Consistency & Compatibility: Consistency and compat-
ibility have been formally defined in the meta-theory, see
Section V and Table IV therein. In particular, those formal
definitions can be formally checked. Thus, the question arises
whether these formal definitions suitably reflect the common
sense meaning of these terms.

According to the common meaning, a set of requirements
is consistent if it is not self-contradicting. The intent is that
there is no point in trying to implement an inconsistent set of
requirements, as no such implementation is going to exist.

RR n° 8147

Contracts for System Design 50

It turns out that the existence of implementations is the
formal definition of consistency according to the meta-theory.
Clearly, the formal definition of consistency meets its common
sense interpretation. We illustrate consistency on the top-level
specification of Table IX. Referring to this table, we have
strengthened Rs.6 and Rs.7 in some way. Lack of consistency
is revealed by checking the mutual consistency of these two
requirements with the requirement Rg.3 applied to the exit
gate. After the following scenario:

exit_ticket_insert
exit_gate_open
exit_ticket_insert

event exit_gate_open has modality must in left-hand interface
and modality cannot in right-hand interface.

According to the common meaning, an architecture of sub-
systems, as characterized by their respective specifications, is
compatible if these sub-systems “match together”, in that they
can be composed and the resulting system can interact with
the environment as expected—use cases can be operated as
wished. As explained in Table IV of Section V, this is the
formal definition of compatibility in the meta-theory. Again,
the formal definition of compatibility meets its common sense
interpretation.

2) Correctness: Correctness can only be defined with
reference to another specification. We propose to translate
“correctness” by one of the following properties, depending
on the case (see Table IV for the notations):
• “is a correct implementation of”, written |=M;
• “is a correct environment of”, written |=E;
• “refines”, written �.

3) Completeness: Completeness raises a difficulty. Al-
though the term “completeness” speaks for itself, it cannot
be formally defined what it means to be complete, for a top-
level specification in the form of a set of requirements. The
reason is that we lack a reference against which completeness
could be checked. Hence, the only way to inspect a top-
level specification for completeness is to explore it manually.
The best help for doing this is to execute the specification.
Thus, specifications must be executable. Fortunately, Modal
Interfaces are executable and, this way, undesirable behaviors
can be revealed. We illustrate this on the top-level specification
of Table IX, where Rs.6 is changed into “exit gate must open
after an exit ticket is inserted” (by omitting “and only then”).
Lack of completeness is revealed by simulation. The following
scenario can occur:

exit_ticket_insert
exit_gate_open
vehicle_exit
exit_gate_close
exit_gate_open

which allows vehicles to exit without having inserted an exit
ticket, an unwanted behavior. This reveals that the specification
was not tight enough, i.e., incomplete. So far for completeness
of the top-level specification.

In contrast, completeness can be formally defined when
a reference C is available. We propose to say that C′ is
incomplete with reference to C, if

1) C′ does not refine C, but
2) there exists C′′ � C′ such that C′′ is consistent and

compatible, and refines C.
The rationale for this definition is that C′ is not precise enough
but can be made so by adding some more requirements.
Note that C′ is incomplete with reference to C if and only
if C′ ∧ C is consistent and compatible. This criterion is of
particular relevance when C′ =

⊗
i∈I Ci is an architecture of

sub-contracts, where Ci is to be submitted to supplier i for
independent development.

F. Discussion

Requirements engineering is considered very difficult. Re-
quirements are typically numerous and very difficult to struc-
ture. Requirements concern all aspects of the system: func-
tion, performance, energy, reliability/safety. Hence, systems
engineers generally use several frameworks when expressing
requirements. The framework of contracts expressed as Modal
Interfaces that we have proposed here improves the situation
in a number of aspects:
• It encompasses a large part of the requirements.52

• It can accommodate different concrete formalisms. In
our example, we have blend textual requirements with
requirements specified as state machines. Richer for-
malisms such as Stateflow diagrams can be accom-
modated in combination with abstract interpretation
techniques—this is not developed here.

• We have shown how to offer formal support to important
properties such as the four C’s during the process of
certification.

• We have proposed a correct-by-construction approach to
the difficult step of moving from the top-level specifi-
cation in the form of a requirements document, to an
architecture of sub-contracts for the suppliers.53

XII. CONTRACTS IN THE CONTEXT OF AUTOSAR

In this section, we use AUTOSAR as an industrial example
of how to leverage contracts within an existing standard to
extend it.

A. The AUTOSAR context

AUTOSAR54 is a world-wide development partnership in-
cluding almost all players in the automotive domain electronics

52 According to figures that were given to us by industrials, 70-80% of the
requirements can be expressed using the style we have developed here. Other
requirements typically involve physical characteristics of the system or define
the range for some parameters.

53 The framework of Assume/Guarantee contracts that is used in Section XII
does not offer this, for two reasons. First, it lacks the quotient and, second,
local alphabets are not properly handled. In contrast, Assume/Guarantee con-
tracts are very permissive in how they can be expressed. In particular, dataflow
diagrams (Simulink) can be used to express assumptions and guarantees.

54http://www.autosar.org/

RR n° 8147

http://www.autosar.org/

Contracts for System Design 51

supply chain. It has been created with the purpose of de-
veloping an open industry standard for automotive software
architectures. To achieve the technical goals of modularity,
scalability, transferability and reusability of functions, AU-
TOSAR provides a common software infrastructure based on
standardized interfaces for the different layers. The AUTOSAR
project has focused on the objectives of location indepen-
dence, standardization of interfaces and portability of code.
While these goals are undoubtedly of paramount importance,
their achievement may not be sufficient for improving the
quality of software systems. As for most other embedded
system, car electronics is characterized by functional as well as
non functional properties, assumptions and constraints [111].
Therefore, an AUTOSAR based development process benefits
from adding contracts, as the this section will demonstrate.

B. The contract framework

Extensive use of Simulink/Stateflow modeling is performed
for system design in the automobile sector. It is thus natural
to try reusing this modeling style for defining contracts.
Since A/G contracts of Section VII simply rely on specify-
ing assertions regardless of how they are actually described,
we use A/G contracts for this AUTOSAR case study. Since
Simulink/Stateflow diagrams are very flexible, contracts can
be expressed for all viewpoints (function, timing, safety). In
turn, reasoning on such contracts is beyond the capability of
automatic tools. Consequently, checking for implementation
and refinement relations will be performed manually on small
models. In contrast, the powerful contract algebra developed
in the meta-theory is fully generic and does not depend on
the nature and complexity of the considered models. The
modularity it offers will thus be the main help offered by
contract based design in this case study. As another feature
of this this study, the distinction between “horizontal” and
“vertical” contracts is used, see Section IV-D4. Finally, the
following variation of A/G contracts is used.

Assertions consist of a timed extension of the "weakly
synchronous" model (18), namely:

P ⊆ ((Σ 7→ D) ∪ R+)
∗ ∪ ((Σ 7→ D) ∪ R+)

ω (56)

meaning that the assertion proceeds by a succession of steps
consisting of either assignment of values to variables (includ-
ing the special status "absent" for multiple-clocked assertions),
or time progress. Composition is by intersection: P1×P2 =def

P1 ∧ P2, with alphabet equalization by inverse projection as
in see Section VII-C. Following Section VII-B, components
are tuples M = (Σin,Σout, P), where Σ = Σin ∪ Σout is the
decomposition of alphabet Σ into its inputs and outputs, and
P is an assertion following (56). Components must be free of
exception in the sense of Definition 4.

A contract is a tuple C = (Σin,Σout;As, Aw;G), where
Σ = Σin ∪ Σout is the decomposition of alphabet Σ into
its inputs and outputs. As and Aw, the strong and weak
assumptions, and G, the guarantees, are assertions over Σ.
The set EC of the legal environments for C collects all com-
ponents E such that E ⊆ A. The set MC of all components

implementing C is defined by (As ∧Aw)×M ⊆ G, meaning
that implementations guarantee G under the condition that the
environment satisfies the stronger condition As∧Aw. In other
words, in this framework, legal environments are constrained
by strong assumptions only, whereas the conjunction of strong
and weak assumptions is required to guarantee G. Weak
assumptions are useful for design iterations in case strict
obligations for the context of use may not be realizable.

To conclude on this framework, its difference is only
methodological since any contract with strong and weak
assumptions, C = (Σin,Σout;As, Aw;G), is equivalent to an
ordinary A/G contract (Σin,Σout;As;G ∨ ¬Aw). Thus, the
reader is referred to Section VII. Adding time to the paradigm
does not change anything to the relations or operators defined
in that section.

However, adding time results in decidability and complexity
issues. The latter problem can be fixed in part by using
observers, see Sections V-G and VII. Other proofs can be car-
ried on manually—this is feasible for undecidable properties
when the needed reasoning only involves a small part of the
analyzed system involving few locally interacting components.
The added value of our contract framework is to support
the combination of proofs into a validation for the overall
system taking into account detailed design decisions captured
in system and ECU configurations.

C. Exterior Light Management System

To illustrate the benefits of contract-based systems engineer-
ing in AUTOSAR, we consider as an example an excerpt of an
Exterior Light Management for an automobile.55 We focus on
the parts responsible for sensing driver inputs and actuating
the rear direction indicator lights and brake lights. With this
example we show how requirements can be refined to contracts
and discuss the added value of contracts for negotiations
between OEM and suppliers. We will also illustrate the use
of vertical contracts, e.g., to specify the expected latency of
the communication solution and computations from the timing
viewpoint, and a failure hypothesis in terms of reliability.

1) Function and timing: We begin our study by showing
how AUTOSAR models can be enhanced with contracts.

System

ext_pedal

ext_lamp

ext_tssext_wls

ext_rlaext_rra

Figure 16. Virtual Functional Bus model

The Virtual Functional Bus model: Figure 16 shows the Vir-
tual Functional Bus (VFB) model encompassing the exterior
lights management. This software composition specifies the

55A case-study from the German SPES2020 project

RR n° 8147

Contracts for System Design 52

interfaces exposed by the component to the sensors delivering
driver inputs (brake pedal, warn light button, turn signal
lever) and to the actuators controlling the lights. Ports with
arrowheads denote an asynchronous data flow interface, which
is a SenderReceiverInterface. Here it is a special kind called
ServiceInterface, which means the data is provided by some
local service located in the BasicSoftware stack of an ECU
(Electronic Computing Unit). The requirements document of
the system contains one timing-related requirement:
• R1: If the driver presses the brake pedal, the brake lights

must light not later than 25ms.
We formalize in Table X this requirement as a contract by

using a pattern-based contract specification language (terms in
bold-face are keywords).

CR1
:

As whenever ext_pedal occurs
ext_pedal does not occur during
[ext_pedal,ext_lamp].
ext_pedal occurs sporadic
with minperiod 25ms.

Aw true
G delay between ext_pedal and

ext_lamp within [0ms,25ms].

Table X
HORIZONTAL CONTRACT OF VFB MODEL

Indicator

BrakePedalSensor PedalToLamp

TurnSwitchSensor

WarnLightsSensor

SwitchLightActuator

RearLeftActuator

RearRightActuator

BrakeLampActuator

ext_pedal

pos_pedal_out lamp_intensity ext_lamp

ext_tss

ext_wls

tss

wls

ext_rla

ext_rra

rla_signal
rra_signal

emcyBrake

pos_pedal_in

Figure 17. Decomposed Virtual Functional Bus model

Decomposed VFB Software composition: Figure 17 shows
the decomposed VFB model. AssemblySwConnectors link the
ports of parts of the composition and are subject to commu-
nication refinement. The components used in the composition
and their functions are as follows:
• BrakePedalSensor receives the position of the brake pedal

(ext_pedal) and distributes it to other components.

• PedalToLamp reads the brake pedal position (pos_pedal)
and calculates requested brightness of the brake indicator
lights (lamp_intensity).

• BrakeLampActuator reads the requested brightness of the
brake indicator lights (lamp_intensity) and actuates the
brake lamps accordingly (ext_lamp).

• TurnSwitchSensor reads the position of the lever and for-
wards it (tss).

• WarnLightsSensor reads status of the warn blink button and
forwards it (wls).

• Indicator reads the status of the warn blink button, the lever
position and cyclically toggles the left and right signals
(rla_signal, rra_signal).

• Rear(Left|Right)Actuator reads its input signal ((rla|rra)_signal)
and actuates the bulb (ext_(rla|rra)).

• SwitchLightActuator reads left and right signals
((rla|rra)_signal) and provides feedback on the dashboard.

Horizontal (functional) contracts associated to the VFB
model: For the decomposed VFB model we derive horizontal
contracts specifying the desired I/O behavior of the parts. As
an example, for the component BrakePedalSensor, we state the
contracts shown in Table XI. Contract CfIOBPS

specifies that,

CfIOBPS
:

Af
s whenever ext_pedal occurs

ext_pedal does not occur during
[ext_pedal,pos_pedal_out].

Af
w true

Gf whenever ext_pedal occurs
pos_pedal_out occurs.

CfSIGNALBPS
:

Af
s whenever pos_pedal_out occurs

pos_pedal_out does not occur during
[pos_pedal_out,pos_pedal_in].

Af
w true

Gf whenever pos_pedal_out occurs
pos_pedal_in occurs.

Table XI
A SAMPLE OF THE HORIZONTAL CONTRACTS OF THE DECOMPOSED VFB

MODEL; SUPERSCRIPT f REFERS TO “FUNCTION”.

provided that the pedal is not “multiply pressed”, then the
pos_pedal message traverses the BrakePedalSensor, and then the
wire following it, with some unspecified delay. In particular, no
message is lost due to a miss by this block. Similar contracts
are stated for all blocks of the VFB model, thus resulting
in a set Cf

IO of contracts. For all AssemblySwConnectors of
the composition, horizontal contracts are specified that are
similar to that of CfSIGNALBPS

, resulting in a set Cf
SIGNAL

of contracts. This contract scheme guarantees a reliable data
transport by each wire of the VFB model, no matter how the
communication is refined.

So far we have stated contracts for each block and each
wire of the VFB model. Compose the above contracts using
contract composition (14), i.e., compute

CfVFB =
⊗(⊗

{C | C ∈ Cf
IO}
)

⊗(⊗
{C | C ∈ Cf

SIGNAL}
) (57)

RR n° 8147

Contracts for System Design 53

The guarantee offered by overall contract CfVFB is the con-
junction of the guarantees of the constitutive contracts. Hence,
contract CfVFB guarantees that messages reliably traverse the
VFB model with, however, an unspecified delay. On the other
hand, contract composition (14) assumes the conjunction of
all assumptions stated for each block—the guarantee offered
by CfVFB and the strong assumption of CR1

discharge all of
these assumptions.

At this point, we observe that contract CfVFB involves no
timing characteristics and, thus, functional contract CfVFB does
not refine the initial contract CR1 . To overcome this, timing
contracts are added in the next step, that will complement this
functional contract with timing viewpoint based on expected
performance characteristics of the computing platform.

Budgeting time using contracts: We now state additional
contracts such as the ones shown in Table XII. Observe
that, for those contracts weak assumptions are used, see Sec-
tion XII-B regarding the motivations for doing this. Observe
also that we repeated the functional strong assumption.56

Again, stating similar contracts for each block and wire of the

CtIOBPS
:

At
s whenever ext_pedal occurs

ext_pedal does not occur during
[ext_pedal,pos_pedal_out].

At
w ext_pedal occurs sporadic

with minperiod 15ms.
Gt delay between ext_pedal and

pos_pedal_out within [0ms,15ms].

CtSIGNALBPS
:

At
s whenever pos_pedal_out occurs

pos_pedal_out does not occur during
[pos_pedal_out,pos_pedal_in].

At
w pos_pedal_out occurs sporadic

with minperiod 2ms.
Gt delay between pos_pedal_out and

pos_pedal_in within [0ms,2ms].

Table XII
TIMING CONTRACT OF DECOMPOSED VFB MODEL; SUPERSCRIPT t

INDICATES THAT THESE CONTRACTS DEAL WITH TIMING.

VFB model yields two sets Ct
IO and Ct

SIGNAL of contracts
and we consider

CtVFB =
⊗

(
⊗
{C | C ∈ Ct

IO})⊗
(
⊗
{C | C ∈ Ct

SIGNAL})
(58)

The next step is to combine, for each component (block
or wire) of the VFB model, the two functional and timing
viewpoints using conjunction, i.e., to compute

CVFB =
⊗(⊗{[

Cf ∧ Ct
]
| (Cf , Ct) ∈ CIO

})⊗(⊗{[
Cf ∧ Ct

]
| (Cf , Ct) ∈ CSIGNAL

}) (59)

where CIO collects, for each block, the pair of functional and
timing contracts associated with it, and similarly for CSIGNAL.

56 If we do not do this, then, when taking the conjunction of functional
and timing contracts, the functional strong assumption gets absorbed by the
strong assumption of the timing contract, since the latter is equal to T. See
the discussion regarding Assume/Guarantee contracts with variable alphabets
at the end of Section VII-C.

At this point, we observe that the architecture of the VFB
model is a directed acyclic graph.

Consider the conjunction C = Cf ∧ Ct = (A,G) for each
block or wire. As an example, focus on block IOBPS , which
is the first block of VFB, seen as a directed acyclic graph.
Regarding the combination of strong and weak assumptions,
we have A = Afs ∧ Atw, which is weaker than As, the
assumption of CR1

in Table X. Regarding guarantees, we have
G = Gf ∧ Gt, which ensures that messages traverse the
component without duplication or loss and with a delay less
than the “minperiod” of the input signal (15ms). Also, guar-
antee G offered by this block is strong enough to discharge
the assumption of the next wire when performing contract
composition. Reproducing the same reasoning, inductively,
along all blocks and wires of the VFB model seen as an acyclic
graph, shows that

CVFB � CR1
(60)

Consequently, submitting the pairs of contracts (Cf , Ct) asso-
ciated to each component for separate development, possibly
by different suppliers, will ensure correct integration (provided
implementations by the suppliers are correct with respect to
their contracts). In particular, the component BrakePedalSensor
belongs to the chassis domain and is implemented by a
different supplier than the other components.

Discussion: The above step of our contract based design
methodology leads to the following important notices:

1) So far our proof steps were all manual. Our contract
based reasoning, however, was instrumental in ensuring that
elementary proof steps were combined correctly. Reasoning
based on intuition when component composition and view-
point combination both occur is very likely to lead to wrong
conclusions. There is a strong added value in contract based
reasoning even if elementary proof steps are manual.

2) Manual reasoning can be complemented by the use of
observers. Again, it is important that the use of observers
when component composition and viewpoint combination both
occur is performed correctly. Our development in Section V-G
provides the formal support for this. For the pattern based
language used here, a framework for checking refinement of
contracts using an observer based strategy is described in [94].

3) The responsibility of establishing the sub-contracts sub-
mitted to the different suppliers is assigned to the OEM, in
accordance with his role as integrator. Components belonging
to different domains of a car (engine, chassis, etc.) are likely to
originate from different vendors/suppliers. By using our above
reasoning, the OEM can decompose its contract specifications,
passing them to supplier(s). For example, the component
BrakePedalSensor is the only one in the VFB model that belongs
to the chassis domain and other components are developed by
one or more different suppliers. Thus, in decomposition (59),
the two sets of contracts CIO and CSIGNAL are partitioned,

RR n° 8147

Contracts for System Design 54

e.g., for subcontracting to two different suppliers:

Csupplier1
VFB =

⊗(⊗{[
Cf ∧ Ct

]
| (Cf , Ct) ∈ C1

IO

})⊗(⊗{[
Cf ∧ Ct

]
| (Cf , Ct) ∈ C1

SIGNAL

})
Csupplier2
VFB =

⊗(⊗{[
Cf ∧ Ct

]
| (Cf , Ct) ∈ C2

IO

})⊗(⊗{[
Cf ∧ Ct

]
| (Cf , Ct) ∈ C2

SIGNAL

})
Each supplier can then safely develop its own sub-system,
independently. We develop this in the next sub-section.

Implementation of software components and vertical as-
sumptions: Each of the software components being part of
the software system composition (cf. Figure 17) is a Compo-
sitionSoftwareComponents, as this allows the supplier to reuse
already designed components. We thus consider one such
component with its contract C = Cf ∧ Ct consisting of the
functional contract Cf , in conjunction with the timing contract
Ct. The supplier can then follow two different approaches for
developing this component.

In a first approach, the supplier reuses a composition

Ĉ =
⊗

i∈I Ci (61)

of off-the-shelf components available from a library. Two
situations can then occur:
• The easy case is when refinement holds: Ĉ � C. This

means that, for Ĉ = (Âs, Âw, Ĝ), guarantees are strong
enough and assumptions are weak enough to imply
refinement with respect to the contract C specified by
the OEM.

• A more realistic (but also more delicate) case is when the
following weaker relations are satisfied:

Ĉ � Cf (62)
Ĝ ⊆ G (63)

Âs ∧ Âw ⊇ Afs ∧Afw (64)

but the conditions requested on timing assumptions for
refinement Ĉ � C to hold are not satisfied:

Âs ∧ Âw 6⊇ Ats ∧Atw (65)

Under (65), composition from library Ĉ cannot be used
as such. It can, however, still be used as a valid imple-
mentation provided that some additional missing vertical
assumption regarding timing is stated, such that:

Âs ∧ Âw ⊇ Ats ∧Atw ∧ Ãtw︸ ︷︷ ︸
for negotiation

(66)

(66) requires a negotiation in which additional vertical
assumption Ãtw is returned back to the OEM as an ad-
ditional performance requirement for the ECU platform.
If this is accepted by the OEM, then development by the
supplier using off-the-shelf components from the library
(61) can proceed.

The alternative approach is to implement the component.
Eventually, this results in a composition of AtomicSoftwareCom-
ponents. This component type has an internal behavior specifi-
cation comprising so called Runnables, which are the smallest

executable entities known to AUTOSAR. For each runnable,
activation conditions are defined by means of RTEEvents con-
trolled by the RuntimeEnvironment on the corresponding ECU,
and data accesses referring ports of the owning component. An
RTEEvent can be configured to occur either cyclically (time-
triggered) or by the data arrival on some input port of the
owning component (event-triggered).

Figure 18 depicts the internal behavior of component
BrakePedalSensor. This component consists of a single

BrakePedalSensor

BPSRunnable

pos_pedal_out

P=10ms

ext_pedal

Figure 18. Internal behavior of BrakePedalSensor-component

ĈfIBBPS
:

Âf
s whenever ext_pedal occurs

ext_pedal does not occur during
[ext_pedal,pos_pedal_out].

Âf
w true

Ĝf whenever ext_pedal occurs
pos_pedal_out occurs.

ĈtIBBPS
:

Ât
s whenever ext_pedal occurs

ext_pedal does not occur during
[ext_pedal,pos_pedal_out].

Ât
w ext_pedal occurs sporadic

with minperiod 10ms.
BPSRunnable#act occurs each 10ms.
delay between BPSRunnable#act and
pos_pedal_out within [0ms,10ms].

Ĝt delay between ext_pedal and
pos_pedal_out within [0ms,10ms + 10ms].

Ĉ′tIBBPS
:

Â′ts whenever ext_pedal occurs
ext_pedal does not occur during
[ext_pedal,pos_pedal_out].

Â′tw ext_pedal occurs sporadic
with minperiod 10ms.
BPSRunnable#act occurs each 10ms.
delay between BPSRunnable#act and
pos_pedal_out within [0ms,5ms].

Ĝ′t delay between ext_pedal and
pos_pedal_out within [0ms,10ms + 5ms].

Table XIII
CONTRACTS FOR INTERNAL BEHAVIOR OF

BRAKEPEDALSENSOR-COMPONENT

runnable BPSRunnable, which is activated cyclically with a
period of 10ms. Upon its activation it reads the sensor
values from the ECU abstraction component and writes the

RR n° 8147

Contracts for System Design 55

position of the brake pedal on its provided Sender/Receiver
port. The timing behavior of the component owning a time-
triggered runnable can be characterized by the contract shown
in Table XIII, top.

We now focus on the second situation in which the supplier
wants to reuse components from a library to implement
contract C = CfIOBPS

∧ CtIOBPS
. We consider the case where

a component BrakePedalSensor has already been implemented
and characterized by Ĉ = ĈfIBBPS

∧ ĈtIBBPS
Now, observe that

relation (62) holds. However, Ĝ 6⊆ G. Taking a closer look
at Âtw, we see it assumes a worst case response time for
BPSRunnable. Thus, the guarantee Ĝt can be strengthened if
weak assumption Âtw is replaced by Â′tw ensuring a shorter
response time. The supplier would then consider the con-
tract Ĉ′ = ĈfIBBPS

∧ Ĉ′tIBBPS
, where the re-adjusted contract

Ĉ′tIBBPS
corresponds to assuming Â′tw and guaranteeing Ĝ′t.

For that modified contract, relations (62–65) hold. However,
strengthening an assumption is not a refinement. Therefore,
applying this modification cannot be performed by the supplier
on its own but rather requires negotiation with the OEM. If
the OEM is willing to accept the stronger assumption Â′tw,
the component from the libary can be used and the modified
contract of the supplier is refined: Ĉ′ � C′supplier1

VFB .
The next process steps in the AUTOSAR methodology, called

System configuration and ECU configuration define the target
architecture (ECUs and communication network) as well as
the deployment of the application software components on
that distributed architecture. Thus, satisfaction of the contracts
specified for the application needs to be verified for the given
architecture and deployment (cf. IV-D4). We develop this in
the next two sub-sections.

ECU configuration and vertical contracts: During the
following discussion we assume that for each component
implementation a contract similar to Ĉ′ has been specified
and possibly an associated Â′tw has been negotiated. Observe,
that Â′tw may invalidate refinement of system requirements by
the VFB contract. Consider the example above. Â′tw assumes
an activation of BPSRunnable each 10ms and a worst case
response time less than 5ms. This additional weak assumption
is now part of C′supplier1

VFB . However, it is neither discharged
by any guarantee of C′VFB , nor by the strong assumption of
CR1 . Thus, we need to verify that 1/ all vertical assumptions
collected during previous steps are discharged during system-
and ECU configuration and 2/ all guarantees are met by
software components and connectors. For both tasks state-of-
the-art verification techniques can be used.

As an example, focus on the vertical assumption Â′tw of
the BrakePedalSensor-component and consider the ECU con-
figuration depicted in Figure 19. The ECU hosts the two
components BrakePedalSensor and PedalToLamp of the VFB
model57. These components are integrated with a layered basic
software stack on an ECU. That stack consists of multiple
BasicSoftwareModules (BSWM). Each of these modules has a
set of standardized interfaces and is implemented by a set

57To simplify, we omit port emcyBrake

RTE

BrakePedal

Sensor
PedalToLamp

BSW

COMOS
t1 t2

Complex

Device

Driver

ext_pedal

pos_pedal_out

pos_pedal_in

lamp_intensity

isr

Figure 19. Extracting platform contracts from ECU configuration

of BswModuleEntities. These are analogous to the Runnables of
application software components and are either executed by a
dedicated OS task or interrupt service routine. Therefore, we
expect BasicSoftwareModules to be characterized by contracts
in a way similar to the internal behavior of application
components (cf. contracts in Table XIII). In case a BSWM has
a BswModuleEntity that is not mapped to some task or interrupt
service routine, that entity is an “ordinary” function called
within the context of another BswModuleEntity or Runnable. In
the example ECU configuration two BSWMs are shown:

• A ComplexDeviceDriver, which has direct access to the
sensor of the ECU that detects position of the brake pedal.

• An AUTOSAR COM module and a CAN interface (not
shown here).

The components and BSWMs own a single runnable each,
bsw entity respectively. The ECU configuration maps BP-
SRunnable to task t1 of the operating system (OS) and PTL-
Runnable to task t2. The BswModuleEntity of the ComplexDe-
viceDriver is mapped to an interrupt service routine, while the
entity of the COM module is simply a function for sending
a signal. That function is used by the AUTOSAR runtime
environment (RTE) to realize the communication specified on
VFB-level by means of the connectors. For each task of the
OS the ECU configuration specifies at least its priority and
wether it is preemptable. The activation of a task is specified
by linking an alarm of the OS to that task. Those alarms
can also be configured to occur cyclically. For each cyclic
alarm we generate a contract PALARMi

, with trivial strong
and weak assumptions and as guarantee the cycle time of
the alarm. The example ECU configuration contains a single
alarm, whose contract is listed in Table XIV, top. Furthermore,

PALARM1
:

As true.
Aw true.
G Alarmi occurs each 10ms.

PBPSRunnable:

As true.
Aw true.
G delay between BPSRunnable#act and

pos_pedal_out within [1ms,4ms].

Table XIV
PLATFORM CONTRACTS OBAINED BY ANALYSIS OF ECU CONFIGURATION

RR n° 8147

Contracts for System Design 56

we can extract from the AUTOSAR model of the component
implementation a set of execution time specifications for each
Runnable owned by the component. Again, the same applies
to BswModuleEntities. With this information we can create a
task network and obtain response times for each Runnable
and BswModuleEntity (if executed by some task or interrupt
service routine) using tools like SymTA/S58 or chronVAL59.
Afterwards, we generate for each Runnable and BswModuleEntity
(if executed by task or ISR) a contract PRunnablei

, with stong
and weak assumption T and as guarantee the reponse time
interval determined by analysis. For the ECU configuration
sketched in Figure 19, BPSRunnable has a response time that
lies in the interval [1ms, 4ms], resulting in the contract shown
in Table XIV, bottom. Similar contracts are stated for all tasks
and alarms extracted from the ECU configurations. We then
compose these contracts and the contracts of the BSWMs,
which yields the contract P characterizing the execution
platform. Following the approach outlined in Section IV-D4
we compose the VFB contract with the platform contract and
check for refinement, i.e.

C′VFB ⊗ P � C′VFB (67)

The vertical assumption Â′tw is discharged in the composition
of the VFB and platform contracts and refinement holds.
Furthermore, with Â′tw being discharged refinement of the
system requirement holds again:

C′VFB ⊗ P � CR1
(68)

The approach outlined here to analyze the mapping of applica-
tion software components and their associated contracts on an
ECU network by creating contracts from ECU configurations
and results of response time analysis, has been implemented in
a framework. That framework includes a meta-model support-
ing contract-based design and enables to 1/ specify contracts
for components in foreign models and 2/ check for refinement
between contracts belonging to different models [24].

Inter-ECU communication: During system configuration
the leaves of the hierarchical software composition called
AtomicSoftwareComponents are mapped to ECUs of the target
architecture. Thus, we know for each connector of the VFB
model, whether it must be implemented by the communication
network interconnecting the ECUs.

For both, intra- and inter-ECU communication the design
must be verified against the corresponding contracts of the
VFB model, i.e. the set of contracts{[

Cf ∧ Ct
] ∣∣ (Cf , Ct) ∈ CSIGNAL

}
(69)

Again, available analysis techniques can be used. Suppose, a
signal from the VFB model is mapped to a frame transmitted
on a CAN bus. The OEM can then for each such contract
use the combination of strong and weak assumptions A =
Afs ∧ Atw as specification of the minimal inter-arrival times
of subsequent occurrences of the signal. Taking into account

58http://www.symtavision.com/symtas.html
59http://www.inchron.com/chronval.html

the priority of each CAN frame given by its identifier, the
response time of each signal can be computed and compared
against the guarantee G = Gf ∧Gt.

If the communication network, whose configuration is part
of the AUTOSAR system configuration, is successfully verified
against the contracts defined in (69), deployment of the VFB
model on the target architecture is correct with regard to
the VFB contract and the design fulfills the initial system
requirement CR1 .

Discussion: The above development highlights the
methodological value of contracts for system design in AU-
TOSAR context at later design stages. First, both contract
conjunction and composition are used. Then, modifications
that are not refinements are pinpointed, which forces the
supplier to engage on a negotiation with the OEM regarding
system specifications. Without the solid support of contracts
and its rules, such kind of reasoning would be error prone.

2) Safety: The virtual function bus (VFB) concept was
intended to enable a distributed development of software com-
ponents independently from the underlying hardware architec-
ture. The specification of the interfaces in the 3.x releases did
not support the kind of non functional property necessary to
develop safety aspects of critical systems. This fact lead to the
development of the previously mentioned Timing Extension
and Safety Extension to Methodology and Templates. The
safety extension directly addresses the use of contracts for
the specification of safety relevant properties driven by the
need for compliance to the upcoming ISO26262 standard.
The ISO26262 not only requires comprehensive checking of
requirements but also states explicitly the need for using
assumptions on the environment to develop a safety relevant
element on the supplier side (“safety element out of context”).
In particular the standard distinguishes between:
• A functional safety concept comprising the functional

safety requirements, their allocation to architectural el-
ements, and their interaction necessary to achieve the
safety goals. This is used to demonstrate that the risks
related to an item of a vehicle are addressed by an
adequate functional architecture.

• A technical safety concept used to demonstrate that the
functional safety concept is addressed by an adequate
technical solution.

As a simple example for this approach we take the functional
architecture of Figure 20 showing the decomposition of the
SafeBrakeIndication function into the “normal” BrakeIndication
function and the SignalingFailureDetection safety function in case
the BrakeIndication fails. The corresponding safety goal requires
that a loss of the braking indication function shall be detected.
This is formalized as contract CS0 , shown in Table XV. This
contract states that under a given failure hypothesis (“no
double failure”) either the brake lamp is activated or the driver
is warned by the SignalingFailureDetection function. This contract
is attached to the function SafeBrakeIndication.

For the subfunction BrakeIndication we show in Table XVI
a contract CS1 stating the correct behavior in the absence

RR n° 8147

http://www.symtavision.com/symtas.html
http://www.inchron.com/chronval.html

Contracts for System Design 57

CS0
:

As true
Aw Only one of Fail(BrakeIndication)

and Fail(SignalFailureDetection) occurs
G Whenever BreakRequest occurs then

BreakIndication or SignalFailureDetection is performed.

Table XV
HORIZONTAL CONTRACT REPRESENTING FUNCTIONAL SAFETY

REQUIREMENT

<<Function>>
SafeBrakeIndication

<<Function>>
BrakeIndication

<<SafetyFunction>>
SignalingFailureDetection

<<FunctionalExchange>>
BrakeRequest

<<FunctionalExchange>>
Detect(BrakeIndicationFail)

Figure 20. Functional architecture including safety function

of a failure of this function: For the SignalingFailureDetection

CS1 :

As true
Aw Absence of Fail(BrakeIndication)
G Whenever BrakeRequest occurs then

BrakeIndication is performed.

Table XVI
HORIZONTAL CONTRACT FOR FUNCTION OF BRAKING LAMP

the associated contract states that a detected failure of the
sub-function BrakeIndication is correctly indicated under the
assumption that the provided function itself is not impacted by
a failure, see Table XVII. An easy manual inspection shows

CS2
:

As true
Aw Absence of fail(SignalingFailureDetection)
G Whenever detect(fail(BrakeIndication))

SignalingFailureDetection is performed.

Table XVII
HORIZONTAL CONTRACT FOR SAFETY FUNCTION FOR BRAKING LAMP

that the composition of CS1 ⊗ CS2 refines CS0 , i.e., we have
formally validated the functional safety concept.

The next step consists in allocating these functions to
software components on the VFB and developing a simple
technical safety concept. The corresponding technical architec-
ture is shown in Figure 21. For the sake of simplicity we only
consider corrupted data while transmitting under failure mode.
The affected communication links are marked in blue in Fig-
ure 21. Thus, fail(BrakeIndication) is mapped to fail(pos_pedal) and
fail(lamp_intensity). In the same way fail(SignalingFailureDetection)
is mapped to fail(mal_indication). This mapping is not further
elaborated in this paper.

For defining the technical safety concept, so-called prop-
agation contracts are used. Propagation contracts express
how failures (from the environment of the component) are

BrakePedal
Sensor

PedalTo
Lamp

BrakeLamp
Actuator

Malfunction
Indication

lamp_intensity pos_pedal

ext_pedal mal_indication

ext_lamp

ext_indication

Figure 21. Extract of Indicator System

processed by the component. According to the ISO 26262 (see
Figure 22) Faults, Errors and Failures are distinguished by the
patterns used for the contracts.

Figure 22. The role of Faults, Errors, and failures

For instance, the contract CS4 of Table XVIII states that the
error state of the PedalToLamp component is caused by a failure
in the communication.

CS4
:

As true
Aw true
G Mode PedalToLampError is caused by

fail(pos_pedal).

Table XVIII
HORIZONTAL CONTRACT FOR SAFETY FUNCTION FOR BRAKING LAMP

The nominal behavior is again given by the contract with an
assumption about the absence of the communication failure,
see Table XIX.

Similarly, the error state of the BreakLampActuator is
caused by a failure on the second communication link
(fail(lamp_intensity)) or by a failure propagated from the PedalTo-
Lamp component, see Table XX. The nominal behavior of the

RR n° 8147

Contracts for System Design 58

CS5
:

As true
Aw Absence of fail(pos_pedal)
G Whenever pos_pedal occurs then

lamp_intensity occurs.

Table XIX
EXEMPLARY CONTRACT FOR NOMINAL BEHAVIOR SPECIFICATION

BrakePedalSensor and the MalfunctionIndicator is formed similarly
to CS5

.

CS6
:

As true
Aw true
G Mode BreakLampActuatorError is caused by

fail(lamp_intensity) or mode PedalToLampError.

Table XX
HORIZONTAL CONTRACT FOR SAFETY FUNCTION FOR BRAKING LAMP

The composition of contracts CS4
. . . CS7

together with the
not stated simple nominal contracts entails the contract CS8

shown on Table XXI stating the functional safety requirement.

CS8
:

As true
Aw only one of faila failb failc
G Whenever ext_pedal occurs then

ext_lamp or ext_indication occurs.

Table XXI
CONTRACT STATING THE TECHNICAL SAFETY REQUIREMENT

Contract CS8
is directly related to the functional safety goal

and includes the allocation to a technical safety concept. This
way a consistency between the functional and the technical
safety concept has been established. Furthermore, thanks to
the formal pattern-based specification language, the refinement
relations ensure that the concepts themselves are correct.

To conclude, let us mention other safety related use-cases
which benefit from contract based specification such as the
automatic generation of fault-trees or FMEA tables as well as
the safe-state management.

D. Integrating Contracts in AUTOSAR

An important challenge is to smoothly integrate the use of
contracts as part of AUTOSAR methodology. We advocate a
migration in two steps.

Today—Offering a Smooth Integration of Contract-Based
System Engineering with AUTOSAR: The metamodel under-
lying the CESAR reference technology platform has been
carefully designed to support a seamless design flow from
the derivation of high-level requirements of new automotive
functions to the level of detailed application design defined as
the entry point in the AUTOSAR design methodology. The key
for this smooth integration has been laid by AUTOSAR itself,
by enforcing a clean separation between application develop-
ment on the one side, and deployment to distributed target

architectures on the other side. Regarding layered design, the
joint scope of CESAR and AUTOSAR ranges from systems-
of-systems levels for Car2X applications, to the introduction
of new automotive functions, and down to the detailed design
level. As illustrated in the previous section, such phases would
build on established design processes and currently used de-
sign tools, where contracts and viewpoints are conservatively
added as additional flavor to existing design methodologies.
Full hand-over to AUTOSAR takes place at the detailed design
stage, where component contracts get implemented using the
AUTOSAR component model, thus providing the entry point
for the AUTOSAR design methodology.

Following the AUTOSAR flow, system configurations and
ECU configurations describe the detailed target hardware. We
can then automatically extract from system and ECU con-
figurations all information for performing real-time analysis.
Vertical assumptions on the component level can be derived
by back-annotation from the underlying target hardware. Alter-
natively, vertical assumptions can be seen as constraining the
target architecture (regarding its timing characteristics) and can
thus be used to constrain the design space for possible target
architectures. Finally, when deploying components to ECUs,
communications of the virtual functional bus are mapped to the
inter-component communications on the physical architecture.

The Future—Integrating Contracts in AUTOSAR: The cur-
rent AUTOSAR release is expressive enough to represent real-
time contracts. Using the concept of timing chains, both end-
to-end deadlines as well as assumed response times for compo-
nent execution and communication can be expressed. However,
the current release was not designed for extensibility: there
is no established notion of viewpoints and, hence, no anchor
to easily migrate from the current setting to one supporting
multiple viewpoints. As pointed out before, the decision as
to which viewpoints should or should not be anchored is a
business decision. However, given that ISO 26262 has become
binding, we see the need for a systematic integration of the
safety viewpoint.

In fact, a safety extension has already been proposed for
inclusion in AUTOSAR. It allows to use contracts for the
encapsulation of Basic SoftWare (BSW) modules, application
software components, entities of the hardware architecture
(like ECUs and buses) and the characterization of commu-
nication services. Such encapsulation would, for instance,
distinguish between BSW modules that (1) contribute to safety
("safety mechanisms") and (2) those that could potentially
impact system’s safety (by providing their failure propagation
behavior). A typical example for (1) would be the func-
tion inhibition manager that maintains function inhibitions
whenever, for instance, implausible outputs are generated. A
typical example for (2) would be an error that occurs in
the communication services or an error that is generated in
communication H/W that impacts communication services.

The objective of the extension is to provide an ISO 26262
compliant traceability. This allows, for instance, to deal with
compliance between functional safety (where functions, haz-
ards and safety functions are collected in the functional

RR n° 8147

Contracts for System Design 59

model) and technical safety of the AUTOSAR architecture
instance (guaranteeing that the AUTOSAR implementation—
using given safety functions of the AUTOSAR architecture—
indeed implements the identified functional safety concept).

Since timing and safety viewpoints will be supported in
AUTOSAR it is at least worthwhile to consider introducing
the concepts of viewpoints systematically. Doing so will ease
their activation at times when other market factors such as
power-management mandate their introduction.

E. Summary and discussion

We have proposed a smooth path for integrating contracts
in the context of AUTOSAR at the level of detailed design.
We believe that the main aspects for consideration while
introducing contracts are the handling of time budgets and
the specification of failure modes and failure propagation, in
combination with the functional aspect itself. Vertical contracts
were instrumental in handling time budgets. Such contracts
relate two different layers of the AUTOSAR framework.

XIII. CONCLUSION

This paper presented past and recent results as well as
novel advances in the area of contracts and their theory. By
encompassing (functional and non-functional) behaviors, the
notion of contract we considered here represents a significant
step beyond the one originally developed in the software
engineering community.

A. What contracts can do for the designer

This paper demonstrates that contracts offer a number of
advantages:

Contracts offer a technical support to legal customer-
supplier documents: Concurrent development—both within
and across companies—calls for smooth coordination and
integration of the different design activities. Properly defining
and specifying the different concurrent design tasks is and
remains a central difficulty. Obligations must therefore be
agreed upon, together with suspensive conditions, seen as
legal documents. By clearly establishing responsibilities, our
formalization of contracts constitutes the technical counterpart
of such legal documents. Contracts are an enabling technology
for concurrent development.

Contracts offer support to certification: By providing for-
mal arguments that can assess and guarantee the quality
of a design throughout all design phases (including early
requirements capture), contracts offer support for certification.
By providing sophisticated tools in support of modularity,
reuse in certification is made easier.

Contracts comply with formal and semi-formal approaches:
The need for being “completely formal” has hampered for a
long time formal verification in many industrial sectors, in
which flexibility and intuitive expression in documentation,
simulation and testing, were and remain preferred. As the
AUTOSAR use case of Section XII demonstrated, using con-
tracts makes semi-formal design safer. Small analysis steps
are within the reach of human reasoning. A valid, system

wide, analysis for both component-based and refinement-based
designs is typically beyond the reach of human reasoning.
Contract based design enables it.

Contracts improve requirement engineering: As illustrated
in the Parking Garage example of Section XI, contracts are
instrumental in decoupling top-level system architecture from
the architecture used for sub-contracting to suppliers. Formal
support is critical in choosing alternative solutions and migrat-
ing between different architectures with relatively small effort.
Of course, contracts are not the only important technology
for requirements engineering—traceability is essential and
developing domain specific ontologies is also important.

Contracts can be used in any design process: Contracts
offer a "orthogonal" support for all methodologies and can be
used in any flow as a supporting technology in composing and
refining designs.

B. Status of research

The area of contracts benefits from many advances in
research that were not targeted to it. Interface theories were
developed by the community of game theory—component and
environment are seen as two players in a game. Modalities
aimed to offer more expressive logics were born at the
boundary between logics and formal verification. Contracts
as a philosophy originated both from software engineering
and formal verification communities, with the paradigms of
Pre-condition/Post-condition or Assume/Guarantee. It is not
until the 2000’s that the concept of contracts presented here
as a tool to support system design emerged. In this evolution,
various formalisms and theories were borrowed to develop
a rigorous framework. This paper was intended to show the
power of a unified theoretical background for contracts, the use
of contracts in present methodologies and the challenges for its
effective applications in future applications. The mathematical
elegance of the concepts underpinning this area provides
confidence in a sustained continuation of the research effort.

C. Status of practice

The use of contract-based techniques in system design is
in its infancy in industry. Further maturation is needed for
its paradigm and concepts to become, on one side, clear
and simple to be widely accepted by engineers in their day-
to-day work and, on the other side, developed enough to
allow for the development of tools for automatic verification
and synthesis. While powerful contract-based proof-of-concept
tools are being experimented—some of them were presented
in this paper—the robustness of the tools and the underlying
techniques is still weak, and contract-based design flows and
methodologies are not yet fully developed nor mature.

D. The way forward

The ability of contracts to accommodate semi-formal and
formal methodologies should enable a smooth and rapid mi-
gration from theory and proof-of-concepts to robust flows and
methodologies. The need for jointly developing new systems
while considering issues of intellectual property will make

RR n° 8147

Contracts for System Design 60

it attractive to rely on contracts in supplier chains. In our
opinion, contracts are primarily helpful for early stages of
system design and particularly requirement engineering, where
formal methods are desperately needed to support distributed
and concurrent development by independent actors.

We have illustrated in this paper how suppliers can be given
sub-contracts that are correct by construction and can be auto-
matically generated from top-level specification. We believe,
however, that the semi-assisted/semi-manual use of contracts
such as exemplified by our AUTOSAR case study is already
a significant help, useful for requirements engineering too.
Altogether, a contract engine (such as the MICA tool presented
in Section XI) can be used in combination with both manual
reasoning and dedicated formal verification engines (e.g., for
targeting the timing viewpoint or the safety viewpoint) as the
basis for future development that will make contracts main
stream.

REFERENCES

[1] Martín Abadi and Leslie Lamport. Conjoining specifications. ACM
Trans. Program. Lang. Syst., 17(3):507–534, 1995.

[2] Yael Abarbanel, Ilan Beer, Leonid Gluhovsky, Sharon Keidar, and
Yaron Wolfsthal. FoCs - Automatic Generation of Simulation Checkers
from Formal Specifications. In E. Emerson and A. Sistla, editors, Com-
puter Aided Verification, volume 1855 of Lecture Notes in Computer
Science, pages 538–542. Springer Berlin / Heidelberg, 2000.

[3] B. Thomas Adler, Luca de Alfaro, Leandro Dias da Silva, Marco
Faella, Axel Legay, Vishwanath Raman, and Pritam Roy. Ticc: A Tool
for Interface Compatibility and Composition. In Proc. of the 18th
International Conference on Computer Aided Verification (CAV’06),
volume 4144 of Lecture Notes in Computer Science, pages 59–62.
Springer, 2006.

[4] Albert Benveniste and Benoît Caillaud and Jean-Baptiste Raclet.
Application of Interface Theories to the Separate Compilation of
Synchronous Programs. In IEEE Conf. on Decision and Control, dec
2012.

[5] Luca De Alfaro and Thomas A. Henzinger. Interface-based design. In
In Engineering Theories of Software Intensive Systems, proceedings of
the Marktoberdorf Summer School. Kluwer, 2004.

[6] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[7] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. A determinizable
class of timed automata. In David L. Dill, editor, CAV, volume 818 of
Lecture Notes in Computer Science, pages 1–13. Springer, 1994.

[8] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock
automata: A determinizable class of timed automata. Theor. Comput.
Sci., 211(1-2):253–273, 1999.

[9] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-
time temporal logic. J. ACM, 49(5):672–713, 2002.

[10] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.
Vardi. Alternating refinement relations. In Proc. of the 9th International
Conference on Concurrency Theory (CONCUR’98), volume 1466 of
Lecture Notes in Computer Science, pages 163–178. Springer, 1998.

[11] Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and
Andrzej Wasowski. 20 Years of Modal and Mixed Specifications.
Bulletin of European Association of Theoretical Computer Science,
1(94), 2008.

[12] Adam Antonik, Michael Huth, Kim Guldstrand Larsen, Ulrik Nyman,
and Andrzej Wasowski. Complexity of Decision Problems for Mixed
and Modal Specifications. In FoSSaCS, pages 112–126, 2008.

[13] Road vehicles – functional safety. Standard ISO 26262.
[14] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.

MIT Press, Cambridge, 2008.
[15] Felice Balarin, Jerry R. Burch, Luciano Lavagno, Yosinori Watanabe,

Roberto Passerone, and Alberto L. Sangiovanni-Vincentelli. Con-
straints specification at higher levels of abstraction. In Proceedings
of the Sixth IEEE International High-Level Design Validation and Test

Workshop (HLDVT01), pages 129–133, Monterey, CA, November 7–9,
2001. IEEE Computer Society, Los Alamitos, CA, USA.

[16] Felice Balarin, Abhijit Davare, Massimiliano D’Angelo, Douglas Dens-
more, Trevor Meyerowitz, Roberto Passerone, Alessandro Pinto, Al-
berto Sangiovanni-Vincentelli, Alena Simalatsar, Yoshinori Watanabe,
Guang Yang, and Qi Zhu. Platform-based design and frameworks:
METROPOLIS and METRO II. In Gabriela Nicolescu and Pieter J.
Mosterman, editors, Model-Based Design for Embedded Systems, chap-
ter 10, page 259. CRC Press, Taylor and Francis Group, Boca Raton,
London, New York, November 2009.

[17] Felice Balarin and Roberto Passerone. Functional verification method-
ology based on formal interface specification and transactor generation.
In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE06), pages 1013–1018, Munich, Germany, March 6–10,
2006. European Design and Automation Association, 3001 Leuven,
Belgium.

[18] Felice Balarin and Roberto Passerone. Specification, synthesis and
simulation of transactor processes. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 26(10):1749–1762,
October 2007.

[19] Felice Balarin, Roberto Passerone, Alessandro Pinto, and Alberto L.
Sangiovanni-Vincentelli. A formal approach to system level design:
Metamodels and unified design environments. In Proceedings of the
Third ACM and IEEE International Conference on Formal Methods
and Models for Co-Design (MEMOCODE05), pages 155–163, Verona,
Italy, July 11–14, 2005. IEEE Computer Society, Los Alamitos, CA,
USA.

[20] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno,
Claudio Passerone, and Alberto L. Sangiovanni-Vincentelli. Metropo-
lis: An Integrated Electronic System Design Environment. IEEE
Computer, 36(4):45–52, 2003.

[21] Krishnakumar Balasubramanian, Aniruddha Gokhale, Gabor Karsai,
Janos Sztipanovits, and Sandeep Neema. Developing applications
using model-driven design environments. IEEE Computer, 39(2):33–
40, 2006.

[22] Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand
Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Moving
from specifications to contracts in component-based design. In Juan
de Lara and Andrea Zisman, editors, FASE, volume 7212 of Lecture
Notes in Computer Science, pages 43–58. Springer, 2012.

[23] Sebastian S. Bauer, Philip Mayer, Andreas Schroeder, and Rolf Hen-
nicker. On Weak Modal Compatibility, Refinement, and the MIO
Workbench. In Proc. of 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’10),
volume 6015 of Lecture Notes in Computer Science, pages 175–189.
Springer, 2010.

[24] Andreas Baumgart, Eckard Böde, Matthias Büker, Werner Damm, Gün-
ter Ehmen, Tayfun Gezgin, Stefan Henkler, Hardi Hungar, Bernhard
Josko, Markus Oertel, Thomas Peikenkamp, Philipp Reinkemeier, Ingo
Stierand, and Raphael Weber. Architecture Modeling. Technical report,
OFFIS, March 2011.

[25] Nikola Benes, Jan Kretínský, Kim Guldstrand Larsen, and Jirí Srba.
Checking Thorough Refinement on Modal Transition Systems Is
EXPTIME-Complete. In Martin Leucker and Carroll Morgan, editors,
ICTAC, volume 5684 of Lecture Notes in Computer Science, pages
112–126. Springer, 2009.

[26] Nikola Benes, Jan Kretínský, Kim Guldstrand Larsen, and Jirí Srba.
On determinism in modal transition systems. Theoretical Computer
Science, 410(41):4026–4043, 2009.

[27] Benoît Caillaud and Jean-Baptiste Raclet. Ensuring Reachability by
Design. In Int. Colloquium on Theoretical Aspects of Computing, sept
2012.

[28] Albert Benveniste and Gérard Berry. The synchronous approach to
reactive and real-time systems. Proceedings of the IEEE, 79(9):1270–
1282, 1991.

[29] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo
Mangeruca, Roberto Passerone, and Christos Sofronis. Multiple view-
point contract-based specification and design. In Proceedings of the
Software Technology Concertation on Formal Methods for Components
and Objects, FMCO’07, volume 5382 of Lecture Notes in Computer
Science, pages 200–225. Springer, October 2008.

[30] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halb-
wachs, Paul Le Guernic, and Robert de Simone. The Synchronous
Languages 12 years later. Proceedings of the IEEE, 91(1):64–83, 2003.

RR n° 8147

Contracts for System Design 61

[31] Luca Benvenuti, Alberto Ferrari, Leonardo Mangeruca, Emanuele
Mazzi, Roberto Passerone, and Christos Sofronis. A contract-based
formalism for the specification of heterogeneous systems. In Proceed-
ings of the Forum on Specification, Verification and Design Languages
(FDL08), pages 142–147, Stuttgart, Germany, September 23–25, 2008.

[32] Gerard Berry. The effectiveness of synchronous languages for the
development of safety-critical systems. White paper, Esterel Technolo-
gies, 2003.

[33] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste
Raclet. A compositional approach on modal specifications for timed
systems. In Proc. of the 11th International Conference on Formal
Engineering Methods (ICFEM’09), volume 5885 of Lecture Notes in
Computer Science, pages 679–697. Springer, 2009.

[34] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste
Raclet. Modal event-clock specifications for timed component-based
design. Science of Computer Programming, 2011. To appear.

[35] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste
Raclet. Modal event-clock specifications for timed component-based
design. Science of Computer Programming, 2012. to appear.

[36] Nathalie Bertrand, Sophie Pinchinat, and Jean-Baptiste Raclet. Refine-
ment and consistency of timed modal specifications. In Proc. of the
3rd International Conference on Language and Automata Theory and
Applications (LATA’09), volume 5457 of Lecture Notes in Computer
Science, pages 152–163. Springer, 2009.

[37] Antoine Beugnard, Jean-Marc Jézéquel, and Noël Plouzeau. Making
components contract aware. IEEE Computer, 32(7):38–45, 1999.

[38] Dirk Beyer, Arindam Chakrabarti, and Thomas A. Henzinger. Web
service interfaces. In Allan Ellis and Tatsuya Hagino, editors, WWW,
pages 148–159. ACM, 2005.

[39] Purandar Bhaduri and S. Ramesh. Interface synthesis and protocol
conversion. Formal Aspects of Computing, 20(2):205–224, 2008.

[40] Purandar Bhaduri and Ingo Stierand. A proposal for real-time interfaces
in speeds. In Design, Automation and Test in Europe (DATE’10), pages
441–446. IEEE, 2010.

[41] Simon Bliudze and Joseph Sifakis. The Algebra of Connectors -
Structuring Interaction in BIP. IEEE Trans. Computers, 57(10):1315–
1330, 2008.

[42] R. Bloem and B. Jobstmann. Manual for property-based synthesis tool.
Technical Report Prosyd D2.2/3, 2006.

[43] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek,
Robert Könighofer, Marco Roveri, Viktor Schuppan, and Richard
Seeber. RATSY - A New Requirements Analysis Tool with Synthesis.
In Tayssir Touili, Byron Cook, and Paul Jackson, editors, CAV, volume
6174 of Lecture Notes in Computer Science, pages 425–429. Springer,
2010.

[44] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling
Language User Guide, The (2nd Edition) (Addison-Wesley Object
Technology Series). Addison-Wesley Professional, 2005.

[45] Amar Bouali. XEVE, an Esterel Verification Environment. In Alan J.
Hu and Moshe Y. Vardi, editors, CAV, volume 1427 of Lecture Notes
in Computer Science, pages 500–504. Springer, 1998.

[46] Gérard Boudol and Kim Guldstrand Larsen. Graphical versus logical
specifications. Theor. Comput. Sci., 106(1):3–20, 1992.

[47] Jerry R. Burch. Trace Algebra for Automatic Verification of Real-
Time Concurrent Systems. PhD thesis, School of Computer Science,
Carnegie Mellon University, August 1992.

[48] Jerry R. Burch, Roberto Passerone, and Alberto L. Sangiovanni-
Vincentelli. Overcoming heterophobia: Modeling concurrency in het-
erogeneous systems. In Proceedings of the 2nd International Confer-
ence on Application of Concurrency to System Design (ACSD01), pages
13–32, Newcastle upon Tyne, UK, June 25–29, 2001. IEEE Computer
Society, Los Alamitos, CA, USA.

[49] Benoît Caillaud. Mica: A Modal Interface Compositional Analysis
Library, October 2011. http://www.irisa.fr/s4/tools/mica.

[50] Benoît Caillaud, Benoît Delahaye, Kim G. Larsen, Axel Legay,
Mikkel Larsen Pedersen, and Andrzej Wasowski. Compositional design
methodology with constraint Markov chains. In Proceedings of the
7th International Conference on Quantitative Evaluation of SysTems
(QEST) 2010. IEEE Computer Society, 2010.

[51] Daniela Cancila, Roberto Passerone, Tullio Vardanega, and Marco
Panunzio. Toward correctness in the specification and handling of
non-functional attributes of high-integrity real-time embedded systems.
IEEE Transactions on Industrial Informatics, 6(2):181–194, May 2010.

[52] Karlis Cerans, Jens Chr. Godskesen, and Kim Guldstrand Larsen.
Timed Modal Specification - Theory and Tools. In Costas Courcou-
betis, editor, CAV, volume 697 of Lecture Notes in Computer Science,
pages 253–267. Springer, 1993.

[53] Pavol Cerný, Martin Chmelik, Thomas A. Henzinger, and Arjun
Radhakrishna. Interface simulation distances. In Marco Faella and
Aniello Murano, editors, GandALF, volume 96 of EPTCS, pages 29–
42, 2012.

[54] Arindam Chakrabarti. A Framework for Compositional Design and
Analysis of Systems. PhD thesis, EECS Department, University of
California, Berkeley, Dec 2007.

[55] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, Marcin
Jurdzinski, and Freddy Y. C. Mang. Interface compatibility checking
for software modules. In Ed Brinksma and Kim Guldstrand Larsen,
editors, CAV, volume 2404 of Lecture Notes in Computer Science,
pages 428–441. Springer, 2002.

[56] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and
Freddy Y. C. Mang. Synchronous and Bidirectional Component Inter-
faces. In Proc. of the 14th International Conference on Computer Aided
Verification (CAV’02), volume 2404 of Lecture Notes in Computer
Science, pages 414–427. Springer, 2002.

[57] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and
Mariëlle Stoelinga. Resource Interfaces. In Rajeev Alur and Insup
Lee, editors, EMSOFT, volume 2855 of Lecture Notes in Computer
Science, pages 117–133. Springer, 2003.

[58] Edward Y. Chang, Zohar Manna, and Amir Pnueli. Characterization
of temporal property classes. In Werner Kuich, editor, ICALP, volume
623 of Lecture Notes in Computer Science, pages 474–486. Springer,
1992.

[59] Taolue Chen, Chris Chilton, Bengt Jonsson, and Marta Z.
Kwiatkowska. A compositional specification theory for component
behaviours. In Helmut Seidl, editor, ESOP, volume 7211 of Lecture
Notes in Computer Science, pages 148–168. Springer, 2012.

[60] Chris Chilton, Marta Z. Kwiatkowska, and Xu Wang. Revisiting timed
specification theories: A linear-time perspective. In Marcin Jurdzinski
and Dejan Nickovic, editors, FORMATS, volume 7595 of Lecture Notes
in Computer Science, pages 75–90. Springer, 2012.

[61] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[62] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan.
Compositional model checking. In LICS, pages 353–362, 1989.

[63] W. Damm, E. Thaden, I. Stierand, T. Peikenkamp, and H. Hungar.
Using Contract-Based Component Specifications for Virtual Integra-
tion and Architecture Design. In Proceedings of the 2011 Design,
Automation and Test in Europe (DATE’11), March 2011. To appear.

[64] Werner Damm and David Harel. LSCs: Breathing life into message
sequence charts. Formal Methods in System Design, 19(1):45–80, 2001.

[65] Werner Damm, Angelika Votintseva, Alexander Metzner, Bernhard
Josko, Thomas Peikenkamp, and Eckard Böde. Boosting reuse of
embedded automotive applications through rich components. In Pro-
ceedings of FIT 2005 - Foundations of Interface Technologies, 2005.

[66] Werner Damm and Bernd Westphal. Live and let die: LSC based
verification of UML models. Sci. Comput. Program., 55(1-3):117–159,
2005.

[67] Abhijit Davare, Douglas Densmore, Trevor Meyerowitz, Alessandro
Pinto, Alberto Sangiovanni-Vincentelli, Guang Yang, and Qi Zhu. A
next-generation design framework for platform-based design. In Design
Verification Conference (DVCon), San Jose’, California, 2007.

[68] Alexandre David, Kim. G. Larsen, Axel Legay, Ulrik Nyman, and
Andrzej Wasowski. Timed I/O automata : A complete specification
theory for real-time systems. In Proc. of the 13th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC’10),
pages 91–100. ACM, 2010.

[69] Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman,
and Andrzej Wasowski. ECDAR: An Environment for Compositional
Design and Analysis of Real Time Systems. In Proc. of the 8th
International Symposium on Automated Technology for Verification
and Analysis (ATVA’10), volume 6252 of Lecture Notes in Computer
Science, pages 365–370, 2010.

[70] Luca de Alfaro. Game Models for Open Systems. In Verification:
Theory and Practice, volume 2772 of Lecture Notes in Computer
Science, pages 269–289. Springer, 2003.

[71] Luca de Alfaro, Leandro Dias da Silva, Marco Faella, Axel Legay,
Pritam Roy, and Maria Sorea. Sociable Interfaces. In Proc. of

RR n° 8147

http://www.irisa.fr/s4/tools/mica

Contracts for System Design 62

the 5th International Workshop on Frontiers of Combining Systems
(FroCos’05), volume 3717 of Lecture Notes in Computer Science,
pages 81–105. Springer, 2005.

[72] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proc.
of the 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE’01), pages 109–120. ACM Press, 2001.

[73] Luca de Alfaro and Thomas A. Henzinger. Interface theories for
component-based design. In Thomas A. Henzinger and Christoph M.
Kirsch, editors, EMSOFT, volume 2211 of Lecture Notes in Computer
Science, pages 148–165. Springer, 2001.

[74] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed
Interfaces. In Proc. of the 2nd International Workshop on Embedded
Software (EMSOFT’02), volume 2491 of Lecture Notes in Computer
Science, pages 108–122. Springer, 2002.

[75] Benoît Delahaye. Modular Specification and Compositional Analysis
of Stochastic Systems. PhD thesis, Université de Rennes 1, 2010.

[76] Benoît Delahaye, Benoît Caillaud, and Axel Legay. Probabilistic
Contracts : A Compositional Reasoning Methodology for the Design
of Stochastic Systems. In Proc. 10th International Conference on
Application of Concurrency to System Design (ACSD), Braga, Portugal.
IEEE, 2010.

[77] Benoît Delahaye, Benoît Caillaud, and Axel Legay. Probabilistic
contracts : A compositional reasoning methodology for the design
of systems with stochastic and/or non-deterministic aspects. Formal
Methods in System Design, 2011. To appear.

[78] Benoît Delahaye, Uli Fahrenberg, Thomas A. Henzinger, Axel Legay,
and Dejan Nickovic. Synchronous interface theories and time trig-
gered scheduling. In Holger Giese and Grigore Rosu, editors,
FMOODS/FORTE, volume 7273 of Lecture Notes in Computer Sci-
ence, pages 203–218. Springer, 2012.

[79] Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay,
Mikkel L. Pedersen, Falak Sher, and Andrzej Wasowski. Abstract
Probabilistic Automata. In Ranjit Jhala and David A. Schmidt, editors,
VMCAI, volume 6538 of Lecture Notes in Computer Science, pages
324–339. Springer, 2011.

[80] Douglas Densmore, Sanjay Rekhi, and Alberto L. Sangiovanni-
Vincentelli. Microarchitecture Development via Metropolis Successive
Platform Refinement. In DATE, pages 346–351. IEEE Computer
Society, 2004.

[81] David L. Dill. Trace Theory for Automatic Hierarchical Verification
of Speed-Independent Circuits. ACM Distinguished Dissertations. MIT
Press, 1989.

[82] Nicolás D’Ippolito, Dario Fischbein, Marsha Chechik, and Sebastián
Uchitel. MTSA: The Modal Transition System Analyser. In Proc. of
the 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE’08), pages 475–476. IEEE, 2008.

[83] Laurent Doyen, Thomas A. Henzinger, Barbara Jobstmann, and Tatjana
Petrov. Interface theories with component reuse. In Proceedings of the
8th ACM & IEEE International conference on Embedded software,
EMSOFT’08, pages 79–88, 2008.

[84] Dumitru Potop-Butucaru and Stephen Edwards and Gérard Berry.
Compiling Esterel. Springer V., 2007. ISBN: 0387706267.

[85] Cindy Eisner. PSL for Runtime Verification: Theory and Practice. In
Oleg Sokolsky and Serdar Tasiran, editors, RV, volume 4839 of Lecture
Notes in Computer Science, pages 1–8. Springer, 2007.

[86] Cindy Eisner, Dana Fisman, John Havlicek, Michael J.C. Gordon,
Anthony McIsaac, and David Van Campenhout. Formal Syntax and
Semantics of PSL - Appendix B of Accellera LRM January 2003.
Technical report, IBM, 2003.

[87] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony
McIsaac, and David Van Campenhout. Reasoning with temporal logic
on truncated paths. In Warren A. Hunt Jr. and Fabio Somenzi, editors,
CAV, volume 2725 of Lecture Notes in Computer Science, pages 27–39.
Springer, 2003.

[88] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu,
J. Ludvig, Stephen Neuendorffer, S. Sachs, and Yuhong Xiong. Taming
heterogeneity - the ptolemy approach. Proc. of the IEEE, 91(1):127–
144, 2003.

[89] G. Feuillade. Modal specifications are a syntactic fragment of the Mu-
calculus. Research Report RR-5612, INRIA, June 2005.

[90] Dario Fischbein and Sebastián Uchitel. On correct and complete
strong merging of partial behaviour models. In Proc. of the 16th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT FSE’08), pages 297–307. ACM, 2008.

[91] F. Fleurey, P. A. Muller, and J. M. Jzquel. Weaving executability
into object-oriented meta-languages. In Proceedgins of the 8th In-
ternational Conference on Model Driven Engineering Languages and
Systems (MODELS05), October 2005.

[92] Frédéric Boussinot and Robert de Simone. The Esterel language.
Proceedings of the IEEE, 79(9):1293–1304, 1991.

[93] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. Wiley, 2003.

[94] Tayfun Gezgin, Raphael Weber, and Maurice Girod. A Refinement
Checking Technique for Contract-Based Architecture Designs. In
Fourth International Workshop on Model Based Architecting and
Construction of Embedded Systems, ACES-MB’11, volume 7167 of
Lecture Notes in Computer Science. Springer, October 2011.

[95] Jens Chr. Godskesen, Kim Guldstrand Larsen, and Arne Skou. Auto-
matic verification of real-time systems using Epsilon. In Son T. Vuong
and Samuel T. Chanson, editors, PSTV, volume 1 of IFIP Conference
Proceedings, pages 323–330. Chapman & Hall, 1994.

[96] G. Gössler and J.-B. Raclet. Modal Contracts for Component-based
Design. In Proc. of the 7th IEEE International Conference on Software
Engineering and Formal Methods (SEFM’09). IEEE Computer Society
Press, November 2009.

[97] Susanne Graf and Sophie Quinton. Contracts for BIP: Hierarchical
Interaction Models for Compositional Verification. In John Derrick and
Jüri Vain, editors, FORTE, volume 4574 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2007.

[98] Orna Grumberg and David E. Long. Model checking and modular
verification. ACM Trans. Program. Lang. Syst., 16(3):843–871, 1994.

[99] Imene Ben Hafaiedh, Susanne Graf, and Sophie Quinton. Reasoning
about Safety and Progress Using Contracts. In Proc. of ICFEM’10,
volume 6447 of LNCS, pages 436–451. Springer, 2010.

[100] Nicolas Halbwachs. Synchronous programming of reactive systems.
Kluwer Academic Pub., 1993.

[101] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Program-
ming and Verifying Real-Time Systems by Means of the Synchronous
Data-Flow Language Lustre. IEEE Trans. Software Eng., 18(9):785–
793, 1992.

[102] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Syn-
chronous observers and the verification of reactive systems. In Maurice
Nivat, Charles Rattray, Teodor Rus, and Giuseppe Scollo, editors,
AMAST, Workshops in Computing, pages 83–96. Springer, 1993.

[103] Nicolas Halbwachs and Pascal Raymond. Validation of synchronous
reactive systems: From formal verification to automatic testing. In P. S.
Thiagarajan and Roland H. C. Yap, editors, ASIAN, volume 1742 of
Lecture Notes in Computer Science, pages 1–12. Springer, 1999.

[104] David Harel. Statecharts: A visual formalism for complex systems.
Sci. Comput. Program., 8(3):231–274, 1987.

[105] David Harel, Hillel Kugler, Shahar Maoz, and Itai Segall. Accelerating
smart play-out. In Jan van Leeuwen, Anca Muscholl, David Peleg,
Jaroslav Pokorný, and Bernhard Rumpe, editors, SOFSEM, volume
5901 of Lecture Notes in Computer Science, pages 477–488. Springer,
2010.

[106] David Harel, Robby Lampert, Assaf Marron, and Gera Weiss. Model-
checking behavioral programs. In Samarjit Chakraborty, Ahmed Jer-
raya, Sanjoy K. Baruah, and Sebastian Fischmeister, editors, EMSOFT,
pages 279–288. ACM, 2011.

[107] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer-Verlag, 2003.
http://www.wisdom.weizmann.ac.il/~harel/ComeLetsPlay.pdf.

[108] David Harel, Assaf Marron, and Gera Weiss. Behavioral programming.
Commun. ACM, 55(7):90–100, 2012.

[109] David Harel, Assaf Marron, Guy Wiener, and Gera Weiss. Behavioral
programming, decentralized control, and multiple time scales. In
Cristina Videira Lopes, editor, SPLASH Workshops, pages 171–182.
ACM, 2011.

[110] David Harel and Amir Pnueli. On the development of reactive systems.
In K. R. Apt, editor, Logic and Models for Verification and Specification
of Concurrent Systems, volume F13 of NATO ASI Series, pages 477–
498. Springer-Verlag, 1985.

[111] H. Heinecke, W. Damm, B. Josko, A. Metzner, H. Kopetz,
A. Sangiovanni-Vincentelli, and M. Di Natale. Software Components
for Reliable Automotive Systems. In Design, Automation and Test in
Europe, 2008. DATE ’08, pages 549–554, march 2008.

[112] Thomas A. Henzinger and Dejan Nickovic. Independent imple-
mentability of viewpoints. In Radu Calinescu and David Garlan, edi-

RR n° 8147

http://www.wisdom.weizmann.ac.il/~harel/ComeLetsPlay.pdf

Contracts for System Design 63

tors, Monterey Workshop, volume 7539 of Lecture Notes in Computer
Science, pages 380–395. Springer, 2012.

[113] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[114] INCOSE. Incose systems engineering handbook, 2010. http://www.
incose.org/ProductsPubs/products/sehandbook.aspx.

[115] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP
Congress, pages 321–332, 1983.

[116] B. Jonsson and K. G. Larsen. Specification and refinement of
probabilistic processes. In Logic in Computer Science (LICS), pages
266–277. IEEE Computer, 1991.

[117] Gilles Kahn. The Semantics of Simple Language for Parallel Program-
ming. In IFIP Congress, pages 471–475, 1974.

[118] S. Karris. Introduction to Simulink with Engineering Applications.
Orchard Publications, 2006.

[119] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. Proceedings of the
IEEE, 91(1):145–164, January 2003.

[120] Gabor Karsai, Janos Sztipanovitz, Akos Ledczi, and Ted Bapty. Model-
integrated development of embedded software. Proceedings of the
IEEE, 91(1), January 2003.

[121] Orna Kupferman and Moshe Y. Vardi. Modular model checking. In
Willem P. de Roever, Hans Langmaack, and Amir Pnueli, editors,
COMPOS, volume 1536 of Lecture Notes in Computer Science, pages
381–401. Springer, 1997.

[122] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Trans. Software Eng., 3(2):125–143, 1977.

[123] C. Larman and V.R. Basili. Iterative and incremental developments: a
brief history. Computer, 36(6):47–56, June 2003.

[124] Kim G. Larsen and L. Xinxin. Equation solving using modal transition
systems. In Proceedings of the 5th Annual IEEE Symp. on Logic in
Computer Science, LICS’90, pages 108–117. IEEE Computer Society
Press, 1990.

[125] Kim Guldstrand Larsen. Modal specifications. In Automatic Verifica-
tion Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 232–246. Springer, 1989.

[126] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. In-
terface Input/Output Automata. In Jayadev Misra, Tobias Nipkow,
and Emil Sekerinski, editors, FM, volume 4085 of Lecture Notes in
Computer Science, pages 82–97. Springer, 2006.

[127] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal
I/O Automata for Interface and Product Line Theories. In Programming
Languages and Systems, 16th European Symposium on Programming,
ESOP’07, volume 4421 of Lecture Notes in Computer Science, pages
64–79. Springer, 2007.

[128] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. On
Modal Refinement and Consistency. In Proc. of the 18th International
Conference on Concurrency Theory (CONCUR’07), pages 105–119.
Springer, 2007.

[129] Kim Guldstrand Larsen, Bernhard Steffen, and Carsten Weise. A con-
straint oriented proof methodology based on modal transition systems.
In Proc. of the 1st International Workshop on Tools and Algorithms
for Construction and Analysis of Systems (TACAS’95), volume 1019
of Lecture Notes in Computer Science, pages 17–40. Springer, 1995.

[130] Kim Guldstrand Larsen and Bent Thomsen. A Modal Process Logic.
In Proceedings of the Third Annual Symposium on Logic in Computer
Science (LICS’88), pages 203–210. IEEE, 1988.

[131] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprin-
kle, and G. Karsai. Composing domain-specific design environments.
IEEE Computer, 34(11):44 –51, November 2001.

[132] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason
Garrett, Charles Thomason, Greg Nordstrom, Jonathan Sprinkle, and
Peter Volgyesi. The generic modeling environment. In Proceedings
of the IEEE International Workshop on Intelligent Signal Processing
(WISP2001), Budapest, Hungary, May 24–25 2001.

[133] Edward A. Lee. Cyber physical systems: Design challenges. Technical
Report UCB/EECS-2008-8, EECS Department, University of Califor-
nia, Berkeley, Jan 2008.

[134] Nancy A. Lynch. Input/output automata: Basic, timed, hybrid, proba-
bilistic, dynamic, .. In Roberto M. Amadio and Denis Lugiez, editors,
CONCUR, volume 2761 of Lecture Notes in Computer Science, pages
187–188. Springer, 2003.

[135] Nancy A. Lynch and Eugene W. Stark. A proof of the kahn principle
for input/output automata. Inf. Comput., 82(1):81–92, 1989.

[136] Zohar Manna and Amir Pnueli. Temporal verification of reactive
systems: Safety. Springer, 1995.

[137] Hervé Marchand, Patricia Bournai, Michel Le Borgne, and Paul Le
Guernic. Synthesis of Discrete-Event Controllers Based on the Signal
Environment. Discrete Event Dynamic Systems, 10(4):325–346, 2000.

[138] Hervé Marchand and Mazen Samaan. Incremental Design of a
Power Transformer Station Controller Using a Controller Synthesis
Methodology. IEEE Trans. Software Eng., 26(8):729–741, 2000.

[139] B. Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–
51, October 1992.

[140] Bertrand Meyer. Touch of Class: Learning to Program Well Using
Object Technology and Design by Contract. Springer, Software
Engineering, 2009.

[141] M.W. Maier. Architecting Principles for Systems of Systems. Systems
Engineering, 1(4):267–284, 1998.

[142] Walid A. Najjar, Edward A. Lee, and Guang R. Gao. Advances in the
dataflow computational model. Parallel Computing, 25(13-14):1907–
1929, 1999.

[143] Radu Negulescu. Process Spaces and the Formal Verification of
Asynchronous Circuits. PhD thesis, University of Waterloo, Canada,
1998.

[144] Nicolas Halbwachs and Paul Caspi and Pascal Raymond and Daniel
Pilaud. The synchronous data flow programming language Lustre.
Proceedings of the IEEE, 79(9):1305–1320, 1991.

[145] P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, and A. Puggelli.
Methodology for the design of analog integrated interfaces using
contracts. IEEE Sensors Journal, 12(12):3329–3345, Dec. 2012.

[146] Object Management Group (OMG). Model driven architecture (MDA)
FAQ. [online], http://www.omg.org/mda/.

[147] Object Management Group (OMG). Unified Modeling Language
(UML) specification. [online], http://www.omg.org/spec/UML/.

[148] Object Management Group (OMG), . A UML profile for MARTE, beta
1. OMG Adopted Specification ptc/07-08-04, OMG, August 2007.

[149] Object Management Group (OMG), . System modeling language
specification v1.1. Technical report, OMG, 2008.

[150] Object constraint language, version 2.0. OMG Available Specification
formal/06-05-01, Object Management Group, May 2006.

[151] The Design Automation Standards Committee of the IEEE Com-
puter Society, editor. 1850-2010 - IEEE Standard for Property
Specification Language (PSL). IEEE Computer Society, 2010.

[152] J. Hudak P. Feiler, D. Gluch. The Architecture Analysis and Design
Language (AADL): An Introduction. Software Engineering Institute
(SEI) Technical Note, CMU/SEI-2006-TN-011, February 2006.

[153] Roberto Passerone. Semantic Foundations for Heterogeneous Systems.
PhD thesis, Department of Electrical Engineering and Computer Sci-
ences, University of California, Berkeley, Berkeley, CA 94720, May
2004.

[154] Roberto Passerone, Jerry R. Burch, and Alberto L. Sangiovanni-
Vincentelli. Refinement preserving approximations for the design and
verification of heterogeneous systems. Formal Methods in System
Design, 31(1):1–33, August 2007.

[155] Roberto Passerone, Luca de Alfaro, Thomas A. Henzinger, and Alberto
Sangiovanni-Vincentelli. Convertibility verification and converter syn-
thesis: Two faces of the same coin. In Proceedings of International
Conference on Computer Aided Design, San Jose, CA., 2002.

[156] Roberto Passerone, Imene Ben Hafaiedh, Susanne Graf, Albert Ben-
veniste, Daniela Cancila, Arnaud Cuccuru, Sébastien Gérard, Francois
Terrier, Werner Damm, Alberto Ferrari, Leonardo Mangeruca, Bern-
hard Josko, Thomas Peikenkamp, and Alberto Sangiovanni-Vincentelli.
Metamodels in Europe: Languages, tools, and applications. IEEE
Design and Test of Computers, 26(3):38–53, May/June 2009.

[157] Paul Le Guernic and Thiserry Gautier and Michel Le Borgne and
Claude Le Maire. Programming real-time applications with Signal.
Proceedings of the IEEE, 79(9):1321–1336, 1991.

[158] I. Pill, B. Jobstmann, R. Bloem, R. Frank, M. Moulin, B. Sterin,
M. Roveri, and S. Semprini. Property simulation. Technical Report
Prosyd D1.2/1, 2005.

[159] Dumitru Potop-Butucaru, Benoît Caillaud, and Albert Benveniste.
Concurrency in synchronous systems. Formal Methods in System
Design, 28(2):111–130, 2006.

[160] Dumitru Potop-Butucaru, Robert de Simone, and Yves Sorel. Neces-
sary and sufficient conditions for deterministic desynchronization. In
Christoph M. Kirsch and Reinhard Wilhelm, editors, EMSOFT, pages
124–133. ACM, 2007.

RR n° 8147

http://www.incose.org/ProductsPubs/products/sehandbook.aspx
http://www.incose.org/ProductsPubs/products/sehandbook.aspx

Contracts for System Design 64

[161] Terry Quatrani. Visual modeling with Rational Rose 2000 and UML
(2nd ed.). Addison-Wesley Longman Ltd., Essex, UK, UK, 2000.

[162] R. Sudarsan and S.J. Fenves and R.D. Sriram and F. Wang. A product
information modeling framework for product lifecycle management.
Computer-Aided Design, 37:1399–1411, 2005.

[163] Jean-Baptiste Raclet. Quotient de spécifications pour la réutilisation
de composants. PhD thesis, Ecole doctorale Matisse, université de
Rennes 1, November 2007.

[164] Jean-Baptiste Raclet. Residual for Component Specifications. In Proc.
of the 4th International Workshop on Formal Aspects of Component
Software (FACS’07), 2007.

[165] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Caillaud,
Axel Legay, and Roberto Passerone. Modal interfaces: Unifying
interface automata and modal specifications. In Proceedings of the
Ninth International Conference on Embedded Software (EMSOFT09),
pages 87–96, Grenoble, France, October 12–16, 2009.

[166] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Caillaud,
Axel Legay, and Roberto Passerone. A modal interface theory for
component-based design. Fundamenta Informaticae, 108(1-2):119–
149, 2011.

[167] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Caillaud,
and Roberto Passerone. Why are modalities good for interface
theories? In Proc. of the 9th International Conference on Application
of Concurrency to System Design (ACSD’09). IEEE Computer Society
Press, 2009.

[168] Richard Payne and John Fitzgerald. Evaluation of Architectural
Frameworks Supporting Contract-Based Specification. Technical Re-
port CS-TR-1233, Computing Science, Newcastle University, UK, Dec
2010. available from http://www.cs.ncl.ac.uk/publications/trs/papers/
1233.pdf.

[169] Robert W. Floyd. Assigning meaning to programs. In J.T. Schwartz,
editor, Proceedings of Symposium on Applied Mathematics, volume 19,
pages 19–32, 1967.

[170] A. Sangiovanni-Vincentelli, S. Shukla, J. Sztipanovits, G. Yang, and
D. Mathaikutty. Metamodeling: An emerging representation paradigm
for system-level design". Special Section on Meta-Modeling, IEEE
Design and Test,, 26(3):54–69, 2009.

[171] Alberto Sangiovanni-Vincentelli. Quo vadis, sld?: Reasoning about
the trends and challenges of system level design. Proc. of the IEEE,
95(3):467–506, 2007.

[172] D. Schmidt. Model-driven engineering. IEEE Computer, pages 25–31,
February 2006.

[173] German Sibay, Sebastian Uchitel, and Víctor Braberman. Existential
Live Sequence Charts Revisited,. In ICSE 2008: 30th International
Conference on Software Engineering. ACM, May 2008.

[174] Joseph Sifakis. Component-Based Construction of Heterogeneous
Real-Time Systems in Bip. In Giuliana Franceschinis and Karsten
Wolf, editors, Petri Nets, volume 5606 of Lecture Notes in Computer
Science, page 1. Springer, 2009.

[175] Functional safety of electrical/electronic/programmable electronic
safety-related systems. Standard IEC 61508.

[176] Eugene W. Stark. A proof technique for rely/guarantee properties. In
S. N. Maheshwari, editor, FSTTCS, volume 206 of Lecture Notes in
Computer Science, pages 369–391. Springer, 1985.

[177] Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, and Edward A.
Lee. On relational interfaces. In Proc. of the 9th ACM & IEEE
International conference on Embedded software (EMSOFT’09), pages
67–76. ACM, 2009.

[178] Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, and Edward A.
Lee. A theory of synchronous relational interfaces. ACM Trans.
Program. Lang. Syst., 33(4):14, 2011.

[179] Sebastián Uchitel and Marsha Chechik. Merging partial behavioural
models. In Proc. of the 12th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (SIGSOFT FSE’10), pages
43–52. ACM, 2004.

[180] Jos Warmer and Anneke Kleppe. The Object Constraint Language:
Getting Your Models Ready for MDA. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2003.

RR n° 8147

http://www.cs.ncl.ac.uk/publications/trs/papers/1233.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1233.pdf

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	The Present: System Design
	The Future: CPS and SoS
	The Need for a Methodological Effort
	Contract based design
	Reader's guide

	System Design Challenges
	Complexity of Systems
	Complexity of OEM-Supplier Chains
	Managing Requirements
	Managing Risks
	System-wide Optimization

	How Challenges have been addressed so far
	Complexity of Systems and System-wide Optimization
	Layered design
	Component-based design
	The V-model process
	Model-Based Design
	Virtual Integration
	Platform Based Design

	Complexity of OEM-Supplier Chains: Standardization and Harmonization
	Standardization of design entities
	Harmonization of processes and certification

	Managing Requirements: Traceability and Multiple Viewpoints
	Cross-company Shared Risk Management
	The Need for Contracts

	Contracts: what? why? where? and how?
	Contracts
	Components and their Environment, Contracts

	Contract Operators
	Contract Composition and System Integration
	Contract Refinement and Independent Development
	Contract Conjunction and Viewpoint Fusion

	Contracts in requirement engineering
	Contract Support for Design Methodologies
	Supporting open systems
	Managing Requirements and Fusing Viewpoints
	Design Chain Management, Re-using, and Independent Development
	Deployment and Mapping

	Bibliographical note

	A Mathematical Meta-theory of Contracts
	Components and their composition
	Contracts
	Refinement and conjunction
	Contract composition
	Quotient
	Discussion
	Observers
	Bibliographical note

	Panorama of concrete theories
	Panorama: Assume/Guarantee contracts
	Dataflow A/G contracts
	Capturing exceptions
	Dealing with variable alphabets
	Synchronous A/G contracts
	Observers
	Discussion
	Bibliographical note

	Panorama: Interface theories
	Components as i/o-automata
	Interface Automata with fixed alphabet
	Modal Interfaces with fixed alphabet
	Modal Interfaces with variable alphabet
	Projecting and Restricting
	Observers
	Bibliographical note

	Panorama: Timed Interface Theories
	Components as Event-Clock Automata
	Modal Event-Clock Specifications
	Bibliographical note

	Panorama: Probabilistic Interface Theories
	Components as Probabilistic Automata
	Simple Modal Probabilistic Interfaces
	Bibliographical note

	The Parking Garage, an example in Requirements Engineering
	The contract framework
	Top level requirements
	Formalizing requirements as contracts
	Sub-contracting to suppliers
	The four ``C''
	Consistency & Compatibility
	Correctness
	Completeness

	Discussion

	Contracts in the context of Autosar
	The Autosar context
	The contract framework
	Exterior Light Management System
	Function and timing
	Safety

	Integrating Contracts in Autosar
	Summary and discussion

	Conclusion
	What contracts can do for the designer
	Status of research
	Status of practice
	The way forward

	References

