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Abstract

Mini-batch stochastic gradient methods (SGD) are state of the art for distributed
training of deep neural networks. Drastic increases in the mini-batch sizes have lead
to key efficiency and scalability gains in recent years. However, progress faces a
major roadblock, as models trained with large batches often do not generalize well.
Local SGD can offer the same communication vs. computation pattern as mini-
batch SGD—thus is as efficient as mini-batch SGD from a systems perspective—but
instead of performing a single large-batch update in each round, it performs several
local parameter updates sequentially. We extensively study the communication
efficiency vs. performance trade-offs associated with local SGD and provide a
new variant, called post-local SGD. We show that it significantly improves the
generalization performance compared to large-batch training and converges to
flatter minima.

1 Introduction

Fast and efficient training of large scale deep-learning models crucially relies on distributed hardware
and, as a consequence, on distributed optimization algorithms. To provide efficient usage of system
resources, these algorithms crucially must (i) enable parallelization while being communication
efficient, and (ii) exhibit good generalization behaviour.

Mini-batch SGD. Most machine learning applications currently rely on stochastic gradient descent
(SGD) [4, 43] and in particular its mini-batch variant [8]. Formally, for a sum-structured optimization
problem of the form minwPRd

1
N

řN
i“1 fipwq where w P Rd denotes the parameters of the model

and fi : Rd Ñ R the loss function of the i-th training example, the mini-batch SGD update for K ě 1
workers is given as

wpt`1q :“ wptq ´ γptq

”

1
K

řK
k“1

1
B

ř

iPIk
ptq
∇fi

`

wptq
˘

ı

, (1)

where γptq ą 0 denotes the learning rate and Ik
ptq Ď rN s the subset (mini-batch) of training datapoints

selected by worker k (typically selected uniformly at random from the locally available datapoints on
worker k). For convenience, we will assume the same batch size B per worker.

Local SGD. Motivated by more efficient usage of available systems resources, local SGD (a.k.a.
parallel SGD) has recently attracted increased research interest [35, 36, 61, 62, 65]. In local SGD,
each worker k evolves a local model by performing H sequential SGD updates (1) with mini-batch

Preprint. Under review.

ar
X

iv
:1

80
8.

07
21

7v
5 

 [
cs

.L
G

] 
 5

 J
un

 2
01

9



0 50 100 150 200 250 300
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Tr
ai

ni
ng

 lo
ss

mini-batch SGD (K = 1, B = Bloc)
mini-batch SGD (K = 16, B = Bloc)
mini-batch SGD (K = 16, B = 4Bloc)
local SGD (K = 16, H = 4)
post-local SGD (K = 16, H = 16)

(a) Training loss.
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(b) Training top-1 accuracy.
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(c) Test top-1 accuracy.

Figure 1: Illustration of the generalization gap. Large-batch SGD (blue) matches the training curves of small
mini-batch SGD (green), i.e. has no optimization difficulty (left & middle). However, it does not reach the
same test accuracy (right) while the proposed post-local SGD (red) does. Post-local SGD (red) is defined by
starting local SGD from the model obtained by mini-batch SGD (blue) at epoch 150. Mini-batch SGD with
larger mini-batch size (yellow) even shows optimization issues in the limited number of epochs. Experiments are
for ResNet-20 on CIFAR-10 (Bloc “ 128), with fined-tuned learning rate for mini-batch SGD with the warmup
scheme in [12].

size Bloc, before communication (synchronization by averaging) among the workers. Formally,

wk
ptq`h`1 :“ wk

ptq`h ´ γptq

”

1
Bloc

ř

iPIk
ptq`h
∇fi

`

wk
ptq`h

˘

ı

, wk
pt`1q :“

1
K

řK
k“1w

k
ptq`H , (2)

where wk
ptq`h denotes the local model on machine k after t global synchronization rounds and

subsequent h local steps (the definition of Ik
ptq`h follows the same scheme). As the updates (eq. (2))

are different from the mini-batch updates (eq. (1)) for any H ą 1, the generalization behavior (test
error) of both algorithms is expected to be different.

Large batch SGD. Recent schemes for scaling training to large number of workers rely on standard
mini-batch SGD (1) with very large overall batch sizes [12, 46, 57], i.e. increasing the global batch
size linearly with the number of workers K. However, the batch size interacts differently with the
overall system efficiency on one hand, and with generalization performance on the other hand. In
either case, it is tempting but misleading to always fix the mini-batch size (B for mini-batch and Bloc
for local SGD respectively) to the device maximum capacity (e.g. GPU memory) which we denote
by Bdev. More precisely, the two main scenarios of interest can be decoupled as follows:

• Scenario 1. The communication restricted setting, where the synchronization time is higher
than the gradient computation time. In this case the batch size of best efficiency will be higher
than Bdev, and is achieved by using partial computation (gradient accumulation) while waiting
for communication. We in particular study the interesting case when the mini-batch sizes of both
algorithms satisfy the relation B “ HBloc, as in this case both algorithms evaluate the same
number of stochastic gradients between synchronization steps.

• Scenario 2. The regime of poor generalization of large-batch SGD, that is the use of very
large overall batches (often a significant fraction of the training set size), which is known to cause
drastically decreased generalization performance [6, 7, 18, 26, 46]. If sticking to standard mini
batch SGD and maintaining the level of parallelisation, the batch size B would have to be reduced
below Bdev in order to alleviate this generalization issue, which however impacts training time1.

Main Results. Key aspects of the empirical performance of local SGD compared to mini-batch
baselines are illustrated in Figure 1. In scenario 1), comparing local SGD with H“4 (black) with
mini-batch SGD of same effective batch size B “ 4Bloc (yellow) reveals a stark difference, both
in terms of train and test error. This motivates the use of local SGD as an alternative to large-batch
training. Further, in scenario 2), mini-batch SGD with smaller batch size B “ Bloc (blue) still suffers
from poor generalization, although the training curve matches the single-machine baseline (green).
The generalization gap can thus not be explained as an optimization issue alone. Our proposed
post-local SGD (red) closes this generalization gap with the single-machine baseline (green) and
is also more communication efficient than both mini-batch competitors.

Contributions. Our main contributions can thus be summarized as follows:
1Note that in terms of efficiency on current GPUs, the computation time on device for smaller batch sizes

B ă Bdev is not constant but scales non-linearly with B, as shown in Table 3 in Appendix A.
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• Trade-offs in Local SGD: We provide the first comprehensive empirically study of the trade-offs
in local SGD for deep learning—when varying the number of workers K, number of local steps H
and mini-batch sizes—for both scenarios 1) on communication efficiency and 2) on generalization.

• Post-local SGD: We propose post-local SGD, a simple but very efficient training scheme to
address the current generalization issue of large-batch training. It allows us to scale the training to
much higher number of parallel devices. Large batches trained by post-local SGD enjoy optimal
communication efficiency, while strongly outperforming most competing methods, for both small
and large batch baselines. Extensive empirical experiments verify that post-local SGD generalizes
to flatter minima than mini-batch SGD.

2 Related Work

The generalization gap in large-batch training. State-of-the-art distributed deep learning frame-
works [1, 40, 45] resort to synchronized large-batch SGD training, allowing scaling by adding more
computational units and performing data-parallel synchronous SGD with mini-batches divided be-
tween devices (Section 1). It has been shown that training with large batch size (e.g. batch size
> 103 on ImageNet) typically degrades the performance both in terms of training and test error
(generalization gap) [6, 7, 26, 29, 30, 46]. A variety of methods have been proposed that aim at
decreasing this gap. Goyal et al. [12] argue that this gap arises due to optimization issues. They
propose to use a "learning rate warm-up" phase with linear scaling of the step-size and are able to
successfully train ImageNet with a ResNet-50 network and batch size 8K. Hoffer et al. [18] argue
that this generalization gap can be closed when increasing the number of iterations along with the
batch size. However, this diminishes the efficiency gains of parallel training.

Keskar et al. [26] empirically show that larger batch sizes correlate with sharper minima and that flat
minima are preferred for better generalization. This interpretation—despite being debated in [10]—
was futher developed in [17, 23, 26, 56]. Neelakantan et al. [39] propose to add isotropic white
noise to the gradients to escape poor local minima and avoid over-fitting. This approach was further
extended in [55, 64] to study "structured" noise. Further efforts to explain the generalization behavior
leverage the connection of SGD to stoachstic differential equations [19, 25, 31, 33]. The importance
of the scale of noise for non-convex optimization has also been studied in [5, 49].

Local SGD and convergence theory. While mini-batch SGD is very well studied [8, 51, 65], the
theoretical foundations of local SGD variants are still developing. Jain et al. [24] study one-shot
averaging on quadratic functions and Bijral et al. [3] study local SGD in the setting of a general
graph of workers. A main research question is whether local SGD provides a linear speedup with
respect to the number of workers K, similar to mini-batch SGD. Recent work gives a partially
positive answer to this question under the assumption that the communication delay H is not too
large compared to the total iterations T . Stich [50] shows convergence at rate O

`

pKTHBlocq
´1

˘

on
strongly convex and smooth objective functions when H “ OpT 1{2q. Patel et al. [41] have also given
similar results for quadratic functions and strongly convex functions, comparing local SGD with
mini-batch SGD and one-shot averaging. For smooth non-convex objective functions, Zhou et al.[63]
show a rate of O

`

pKTBlocq
´1{2

˘

(for the decrement of the stochastic gradient) which only coincides
in the extreme case H“1 with the rate of mini-batch SGD. Yu et al. [59] give an improved result
O
`

pHKTBlocq
´1{2

˘

when H “ OpT 1{4q. Alistarh et al. [2] study convergence under adversarial
delays. Zhang et al. [61] empirically study the effect of the averaging frequency on the quality of
the solution for some problem cases and observe that more frequent averaging at the beginning of the
optimization can help. Similarly, Bijral et al. [3] argue to average more frequently at the beginning.

3 Local SGD Variants

In this section we present two novel variants of local SGD (eq. (2)). First, we propose post-local SGD
as an efficient version to reach high generalization accuracy, and second, hierarchical SGD designed
from a systems perspective aiming at optimal resource adaptivity and efficiency.

Post-local SGD: Large-batch Training Alternative for Better Generalization. We propose post-
local SGD, a variant where local SGD is only started in the second phase of training, after t1 initial
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steps2 with standard mini-batch SGD. Formally, the update in (2) is performed with a iteration
dependent Hptq given as

Hptq “

"

1, if t ď t1 ,

H, if t ą t1
(warm-up by mini-batch SGD)
(local SGD) (post-local SGD)

As the proposed scheme is identical to mini-batch SGD in the first phase (with local batch size
B “ Bloc), we can leverage previously tuned learning rate warm-up strategies and schedules for
large-batch training [12] without additional tuning. Note that we only use ‘small’ local mini-batches
of size B “ Bloc to warm-up the optimization, and switch to the communication efficient steps (larger
effective batches HBloc) in the the second phase, while also achieving better generalization.

A detailed discussion of results and interpretation of post-local SGD is presented in Section 5.

Hierarchical Local SGD: Optimal Use of Systems Resources in Heterogeneous Systems. Real
world systems come with different communication bandwidths on several levels, e.g. with GPUs or
other accelerators grouped hierarchically within a chip, machine, rack or even at the level of entire
data-centers. In this scenario, we propose to employ local SGD as an inner loop on each level of the
hierarchy, adapted to the corresponding computation vs communication trade-off of that particular
level. The resulting scheme, hierarchical local SGD, can offer significant benefits in terms of system
adaptivity and performance, as we show with experiments and a discussion in Appendix D.

4 Experimental Results

In this section we detail our experiments for deep learning tasks, with local SGD variants given in the
previous section. We outline the general experimental setup, and refer to Appendix A for full details.
Datasets. We evaluate all methods on the following standard tasks:
• Image classification for CIFAR-10/100 [27]. Each consists of a training set of 50K and a test set

of 10K color images of 32ˆ 32 pixels, as well as 10 and 100 target classes respectively. We adopt
the standard data augmentation and preprocessing scheme [15, 22].

• Image classification for ImageNet [44]. The ILSVRC 2012 classification dataset consists of 1.28
million images for training, and 50K for validation, with 1K target classes. We use ImageNet-1k [9]
and adopt the same data preprocessing and augmentation scheme as in [15, 16, 47].

• Language Modeling for WikiText-2 [38]. Its vocabulary size is 33K. The train and validation set
have 2 million tokens and 217K tokens respectively.

Models. We use ResNet-20 [15] with CIFAR-10 as a base configuration to understand different
properties of (post-)local SGD. We then empirical evaluate the large-batch training performance
of post-local SGD, for ResNet-20, DensetNet-40-12 [21] and WideResNet-28-10 [60] on CIFAR-
10/100, and for LSTM on WikiText-2. Finally, we train ResNet-50 [15] on ImageNet to investigate
the accuracy and scalability of (post-)local SGD training.
Implementation and platform. Our algorithm is implemented3 in PyTorch [40], with a flexible
configuration of the machine topology supported by Kubernetes. The cluster consists of Intel Xeon
E5-2680 v3 servers and each server has 2 NVIDIA TITAN Xp GPUs. In the rest of the paper, we use
the notion aˆ b-GPU to denote the topology of the cluster, i.e., a nodes and each with b GPUs.
Specific learning schemes for large-batch SGD. We rely on the recently proposed schemes for
efficient large batch training [12], which are formalized by (1) linearly scaling the learning rate
w.r.t. the global mini-batch size; (2) gradual warm-up of the learning rate from a small value. See
Appendix A.3 for more details.
Distributed training procedure on CIFAR-10/100. The experiments follow the common mini-
batch SGD training scheme for CIFAR [15, 16, 21] and all competing methods access the same
total number of data samples (i.e. gradients) regardless of the number of local steps. Training ends
when the distributed algorithms have accessed the same number of samples as the single-worker

2 The switching time t1 between the two phases in our experiments is determined by the first learning rate
decay. However it could be tuned more generally aiming at capturing the time when trajectory starts to get into
the influence basin of a local minimum [20, 32, 43, 48]. Results in Appendix B.4.2 and C.2 empirically evaluate
the impact of different t1 on optimization and generalization.

3 Our code for (post-)local SGD training and visualization is included in the submission for reproducibility.
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baseline. The data is disjointly partitioned and reshuffled globally every epoch. The learning rate
scheme follows [15, 21], where we drop the initial learning rate by a factor of 10 when the model has
accessed 50% and 75% of the total number of training samples. Unless mentioned specifically, the
used learning rate is scaled by the global mini-batch size (BK for mini-batch SGD and BlocK for
local SGD) with large-batch learning schemes (Section 4), where the initial learning rate is fine-tuned
for each model and each task for the single worker. See Appendix A.4 for more details.

4.1 Experiments with Local SGD

We empirically study local SGD training for the setup described above. The main findings and
guidelines for using the algorithm are summarized below, and support that local SGD serves as a
plug-in alternative for mini-batch SGD, with gains in communication efficiency as well as good
generalization performance for several datasets.

Significantly better scalability when increasing the number of workers on CIFAR, in terms of
time-to-accuracy. Figure 2 demonstrates the speedup in time-to-accuracy for training ResNet-20
for CIFAR-10, with varying number of GPUs K from 1 to 16 and the number of local steps H from
1 to 16. The test accuracy is evaluated each time when the distributed algorithm has accessed the
complete training dataset.
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Figure 2: Scaling behavior of local SGD in clock-time
for increasing number of workers K, for different num-
ber of local steps H , for training ResNet-20 on CIFAR-
10 with Bloc “ 128. The reported speedup (averaged
over three runs) is over single GPU training time for
reaching the baseline top-1 test accuracy (91.2% as
in [15]). We use a 8 ˆ 2-GPU cluster with 10 Gbps
network. H“1 recovers common mini-batch SGD.

We demonstrate in Figure 2 that local SGD
scales 2ˆ better than its mini-batch SGD coun-
terpart, in terms of time-to-accuracy as we in-
crease the number of workers K on a commod-
ity cluster. The local update steps (H) result in
a strong advantage over the standard large-batch
training. Mini batch SGD fixes the batch size to
B “ Bloc, and while increasing the number of
workers K gets impacted by the communication
bottleneck (section 1), even as parallelism per
device remains unchanged. In this experiment,
local SGD on 8 GPUs even achieves a 2ˆ lower
time-to-accuracy than mini-batch SGD with 16
GPUs. Moreover, the (near) linear scaling per-
formance for H“8 in Figure 2, shows that the
main hyper-parameter H of local SGD is robust
and consistently different from its mini-batch
counterpart, when scaling the number of work-
ers.

Effectiveness and scalability of local SGD to even larger datasets (e.g., ImageNet) and larger
clusters. Local SGD presents a competitive alternative to the current large-batch ImageNet training
methods. Figure 9 in the Appendix B.3.2 shows that we can efficiently train state-of-the-art ResNet-
50 (at least 1.5ˆ speedup to reach 75% top-1 accuracy) for ImageNet [12, 58] via local SGD on a
16ˆ 2-GPU Kubernetes cluster.

Local SGD significantly outperforms mini-batch SGD at the same effective batch size and
communication ratio. Figure 3(a) and Figure 3(b) compare local SGD with mini-batch SGD of
the same effective batch size, that is same number of gradient computations per communication round
as higlighted in Scenario 1 above (Section 1).

4.1.1 Guidelines for Using Local SGD

Even though local SGD has demonstrated effective communication efficiency with guaranteed test
performance, it is challenging to scale CIFAR-size datasets for a large-scale system. For example,
Figure 3(a) on CIFAR training presents some scenarios where local SGD shows a small quality drop
when the setting attains extreme values in terms of overall batch size.

Our work aims to offer guidelines for practitioners w.r.t. the trade-off between communication
efficiency and the best possible test accuracy. Section B.2 in the Appendix experimentally illustrates
the convergence properties of local SGD on convex problems, for different combinations of H , K

5
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(a) Top-1 test accuracy of local
SGD. H “ 1 is mini-batch SGD
with optimal hyper-parameters.
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Algorithm Top-1 acc. Effect. batch size Algorithm Top-1 acc. Effect. batch size

Mini-batch SGD (K“4) 91.4% KB“2048 Mini-batch SGD (K“16) 63.0% KB“16384

Local SGD (H“4, K“4) 92.6% KHBloc“2048 Local SGD (H“8, K“16) 91.9% KHBloc“16384

Figure 3: Training ResNet-20 on CIFAR-10 under different K and H , with fixed Bloc “ 128. The points with
the same color and shape in Figure 3(a) and Figure 3(b) for a given K have the same communication cost. All
results are averaged over three runs and all settings access to the same total number of training samples. We
fine-tune the learning rate of mini-batch SGD for each setting. Meanwhile the inline table highlights two pairs of
datapoints from the figure, illustrating fact that mini-batch SGD fails to scale to larger H and K, facing severe
issues in generalization, or even optimization due to insufficient number of training iterations [46].

and Bloc. The results of this section (e.g., Figure 2, Figure 3 and Figure 9) further support the
effectiveness of local SGD training for the fundamental deep learning applications.

Local SGD can always serve as a communication-efficient mini-batch SGD alternative for different
practical purposes. For example in Figure 3(a) (with fixed Bloc and K), in terms of 92.26% test accu-
racy achieved by our mini-batch SGD implementation for K“16, practitioners can either choose to
achieve reasonable good training quality (91.2% as shown in [15]) with a 2.59ˆ speedup4 in training
time (H “ 8), or achieve better test performance (92.57%) with slightly reduced communication
efficiency (1.76ˆ speedup for H“2).

Recently, [53] proposed to decrease the number of local update steps H during training. However,
their evaluation (ResNet-50 on K“4 with Bloc“128) does not cover the difficult large batch training
scenario (e.g., H“16,K“16, Bloc“128). For the same CIFAR-10 task and K=4 as in [53], our
smaller ResNet-20 can reach a better accuracy with less communication5.

4.2 Experiments with Post-local SGD

We already observed in Section 4.1 that local SGD offers a communication efficient training algorithm
for different experimental setups. In this section we show that post-local SGD serves as another plug-
in solution to address the generalization issue of large batch training6 with significant communication
benefits.

Post-local SGD generalizes better and faster than mini-batch SGD. Table 1 summarizes the
generalization performance of post-local SGD on large batch size (K “ 16, Bloc “ 128) across
different architectures on CIFAR tasks for H“16 and H“32. Under the same setup, Table 5 in the
Appendix C.3 evaluates the speedup of training, while Figure 1 demonstrates the learning curves of
mini-batch SGD and post-local SGD, highlighting the generalization difficulty of large-batch SGD.
We can witness that post-local SGD achieves at least 1.3ˆ speedup over the whole training procedure
compared to the mini-batch SGD counterpart (K “ 16, B “ 128), while enjoying the significantly
improved generalization performance.

4 The speedup evaluated here is over the time-to-accuracy of mini-batch SGD.
5 We directly compare to the reported values of [53], as some missing descriptions and hyperparameters

prevented us from reproducing the results ourselves. H in their paper forms a decreasing sequence starting
with 10 while our local SGD uses constant H“16 during training.

6 We consider the scenario of mini-batch SGD with the generalization gap (Section 1), e.g., mini-batch size
2048 or 4096 for the CIFAR dataset [18, 26, 56]. When comparing post-local SGD with mini-batch SGD, we
always assume the same number of workers K.
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Table 1: Top-1 test accuracy of training different CNN models via post-local SGD on K “ 16 GPUs with
a large global batch size (KBloc “ 2048). The reported results are the average of three runs and all settings
access to the same total number of training samples. We compare to small and large mini-batch baselines. The ‹
indicates the fine-tuned learning rate, where the tuning procedure refers to Appendix A.4.

CIFAR-10 CIFAR-100

Small batch
baseline ‹

Large batch
baseline ‹

Post-local SGD
(H=16)

Post-local SGD
(H=32)

Small batch
baseline ‹

Large batch
baseline ‹

Post-local SGD
(H=16)

Post-local SGD
(H=32)

K“2, B“128 K“16, B“128 K“16, Bloc“128 K“16, Bloc“128 K“2, B“128 K“16, B“128 K“16, Bloc“128 K“16, Bloc“128

ResNet-20 92.63 ˘0.26 92.48 ˘0.17 92.80 ˘0.16 93.02 ˘0.24 68.84 ˘0.06 68.17 ˘0.18 69.24 ˘0.26 69.38 ˘0.20

DenseNet-40-12 94.41 ˘0.14 94.36 ˘0.20 94.43 ˘0.12 94.58 ˘0.11 74.85 ˘0.14 74.08 ˘0.46 74.45 ˘0.30 75.03 ˘0.05

WideResNet-28-10 95.89 ˘0.10 95.43 ˘0.37 95.94 ˘0.06 95.76 ˘0.25 79.78 ˘0.16 79.31 ˘0.23 80.28 ˘0.13 80.65 ˘0.16

We further demonstrate the generalization, scalability of post-local SGD, for diverse tasks (e.g.,
Language Modeling), and for even larger global batch sizes (KBloc “ 4096 for CIFAR-100 and
4096 and 8192 respectively for ImageNet), in Appendix C.5 . For example, Table 7 presents the
severe generalization issue (2% drop) of the fine-tuned large-batch SGD training (KB “ 4096) for
above three CNNs on CIFAR-100, and cannot be addressed by increasing the training steps (Table 8).
Post-local SGD (KBloc“4096) with default hyper-parameters can perfectly close this generalization
gap or even better than the fine-tuned small mini-batch baselines. For ImageNet training in Figure 17,
the post-local SGD outperforms mini-batch SGD baseline for both of KB“4096 (76.18 and 75.87
respectively) and KB“8192 (75.65 and 75.64 respectively) with 1.35ˆ speedup for the post-local
SGD training phase. The benefits of post-local SGD training on ImageNet are even more pronounced
for larger batches (e.g. KBlocą8192) [7, 12, 46].
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(a) Performance of post-local SGD for different
numbers of local steps H on 16 GPUs. H“1 is
mini-batch SGD and KBloc“2048.
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both for local and mini-batch SGD).

Figure 4: Top-1 test accuracy of training ResNet-20 on CIFAR-10. Box-plot figures are derived from 3 runs.

The effectiveness of post-local SGD training for different H and K. As seen in Figure 4(a),
applying any number of local steps over the case of large-batch training (when KBloc “ 2048)
improves the generalization performance compared to mini-batch SGD. Figure 4(b) illustrates that
post-local SGD is better than mini-batch SGD in general for different number of workers K (as well
as different KBloc). Thus, post-local SGD presents consistently excellent generalization performance.

5 Discussion and Interpretation

In this section we argue that local SGD can be seen as a way to inject and control stochastic noise to
the whole training procedure.

Connecting Local Updates with Stochastic Noise Injection. The update eq. (1) can alternatively
be written as

wt`1 “ wt ´ γĝt “ wt ´ γgt ` γ
`

gt ´ ĝt
˘

“ wt ´ γgt ` γε , (3)

where ĝt :“
1
B

ř

i∇fipwtq, gt :“ E ĝt “ ∇fpwtq and ε :“ gt ´ ĝt. For most data-sets the noise
ε is approximately zero-mean Gaussian with variance Σpwq. The variance matrix Σpwq, following
recent works [18, 19], for uniform sampling of mini-batch indices can be approximated as

Σpwq «
`

1
B ´

1
N

˘

Kpwq “
`

1
B ´

1
N

˘

´

1
N

řN
i“1∇fipwq∇fipwqJ

¯

. (4)
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Some recent works [25, 33, 64] interpret eq. (3) as an Euler-Maruyama approximation to the

continuous-time Stochastic Differential Equation (SDE): dwt “ ´gtdt `
b

γN´BBN Rpwqdθptq

where RpwqRpwqJ “ Kpwq and θptq „ N p0, Iq. In this SDE and with the condition B ! N
(in eq. (4)), the learning rate and the batch size only appear in the ratio ρ :“ γB´1, controlling the
stochastic noise and training dynamics. Jastrzkebski et al. [25] theoretically and experimentally
support this claim, that the constant ratio ρ controls the magnitude of stochastic noise which ensures
wider minima and better generalization. It is also empirically verified by the success of ImageNet
training [12].

However, the generalization difficulty of large-batch training remains, as clearly illustrated e.g. in
Figure 1, Table 1 and Figure 4(b), as well as in [7, 46]. We argue that the main reason behind this
is the reduced magnitude of stochastic noise, which comes from the break down of ρ scaling, i.e.,
γB´1 ff γpN ´Bq{BN , for large batch size and small dataset size when B ­! N [25].

The local update step of local SGD is a natural and computation free way of injecting well-structured
stochastic noise to the SGD training dynamics. By using the same ratio γ

B as mini-batch SGD,
the dominant difference of local SGD training dynamics (K times smaller local mini-batch with
H local update steps) comes from the stochastic noise ε during the local update phase. The ε will
be approximately sampled with the variance matrix KΣpwq instead of Σpwq (in mini-bath SGD),
causing the stochastic noise determined by K and H to increase. Given the positive effect of adding
well-structured stochastic noise to SGD dynamics for non-convex problems [5, 49, 54, 55, 64], the
communication efficient post-local SGD can generalize as good as mini-batch SGD (small mini-batch
size) and can lead to flatter minima than large-batch SGD.

5.1 Post-local SGD converges to flatter minima

Figure 5(a) evaluates the spectrum of the Hessian for different local minima. In fact, large-batch SGD
tends to get stuck at points with high Hessian spectrum while post-local SGD could easily generalize
to a low curvature solution with better generalization error. Moreover, Figure 5(b) linearly interpolates
two minima obtained by mini-batch SGD and post-local SGD, and Figure 14 (in the Appendix)
visualizes the sharpness of the model trained by different methods. These results underscore the
goodness of post-local SGD.
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(b) 1-d linear interpolation between models
wpost-local SGD (λ “ 0) and wmini-batch SGD (λ “ 1), i.e.,
ŵ “ λwmini-batch SGD ` p1 ´ λqwpost-local SGD. The
solid lines correspond to evaluate ŵ on the whole
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Figure 5: Understanding the generalization ability of post-local SGD for large-batch training (ResNet-20 on
CIFAR-10 with BK “ BlocK “ 2048). We use fixed B “ Bloc “ 128 with K “ 16 GPUs. The detailed
experimental setup as well as more visualization of results are available in Appendix C.4.

6 Conclusion

In this work, we leverage the idea of local SGD for training in distributed and heterogeneous
environments. We demonstrate its promise to alleviate the major roadblock of generalization in
large-batch SGD training with optimal communication efficiency. Ours the first work to extensively
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study the trade-off between communication efficiency and generalization performance of local SGD.
Our local SGD variant, called post-local SGD, not only outperforms large-batch SGD’s generalization
performance but also matches that of small-batch SGD. We show that post-local SGD converges
to flatter minima compared to traditional large-batch SGD, which partially explains its improved
generalization performance. We also provide extensive experiments with another variant hierarchical
local SGD, showing its adaptivity to available system resources. Overall, local SGD comes off as a
simpler and more efficient algorithm, replacing complex ad-hoc tricks used for current large-batch
SGD training.
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A Detailed Deep Learning Experimental Setup

A.1 Dataset

We use the following tasks.

• Image classification for CIFAR-10/100 [27]. Each consists of a training set of 50K and a test set
of 10K color images of 32ˆ 32 pixels, as well as 10 and 100 target classes respectively. We adopt
the standard data augmentation scheme and preprocessing scheme [15, 22]. For preprocessing, we
normalize the data using the channel means and standard deviations.

• Image classification for ImageNet [44]. The ILSVRC 2012 classification dataset consists of 1.28
million images for training, and 50K for validation, with 1K target classes. We use ImageNet-
1k [9] and adopt the same data preprocessing and augmentation scheme as in [15, 16, 47]. The
network input image is a 224ˆ 224 pixel random crop from augmented images, with per-pixel
mean subtracted.

• Language Modeling for WikiText-2 [38]. WikiText-2 is sourced from curated Wikipedia articles.
It is frequently used for machine translation and language modelling, and features a vocabulary of
over 30, 000 words. Compared to the preprocessed version of Penn Treebank (PTB), WikiText-2
is over 2 times larger.

A.2 Models and Model Initialization

We use ResNet-20 [15] with CIFAR-10 as a base configuration to understand different properties of
(post-)local SGD. We then empirically evaluate the large-batch training performance of post-local
SGD, for ResNet-20, DensetNet-40-12 [21] and WideResNet-28-10 [60] on CIFAR-10/100, and for
LSTM on WikiText-2 [38]. Finally, we train ResNet-50 [15] on ImageNet to investigate the accuracy
and scalability of (post-)local SGD training.

For the weight initialization we follow [12], where we adopt the initialization introduced by [14] for
convolutional layers and initialize fully-connected layers by a zero-mean Gaussian distribution with
the standard deviation of 0.01.

Table 2 demonstrates the scaling ratio of our mainly used Neural Network architectures. The scaling
ratio [57] identifies the ratio between computation and communication, wherein DNN models, the
computation is proportional to the number of floating point operations required for processing an
input while the communication is proportional to model size (or the number of parameters). Our
local SGD training scheme will show more advantages over models with small “computation and
communication scaling ratio”.
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Table 2: Scaling ratio for different models.

Model
Communication

# parameters

Computation

# flops per image

Computation/Communication

scaling ratio

ResNet-20 (CIFAR-10) 0.27 million 0.041 billion 151.85

ResNet-20 (CIFAR-100) 0.27 million 0.041 billion 151.85

ResNet-50 (ImageNet-1k) 25.00 million 7.7 billion 308.00

DenseNet-40-12 (CIFAR-10) 1.06 million 0.28 billion 264.15

DenseNet-40-12 (CIFAR-100) 1.10 million 0.28 billion 254.55

WideResNet-28-10 (CIFAR-10) 36.48 million 5.24 billion 143.64

WideResNet-28-10 (CIFAR-100) 36.54 million 5.24 billion 143.40

A.3 Large Batch Learning Schemes

The work of Goyal et al.[12] proposes common configurations to tackle large-batch training for the
ImageNet dataset. We specifically refer to their crucial techniques w.r.t. learning rate as “large batch
learning schemes” in our main text. For a precise definition, this is formalized by the following two
configurations:

• Scaling the learning rate: When the mini-batch size is multiplied by k, multiply the
learning rate by k.

• Learning rate gradual warm-up: We gradually ramp up the learning rate from a small
to a large value. In (our) experiments, with a large mini-batch of size kn, we start from
a learning rate of η and increment it by a constant amount at each iteration such that it
reaches η̂ “ kη after 5 epochs. More precisely, the incremental step size for each iteration is
calculated from η̂´η

5N{pknq , where N is the number of total training samples, k is the number
of computing units and n is the local mini-batch size.

A.4 Hyperparameter Choices and Training Procedure, over Different Models/Datasets

A.4.1 CIFAR-10/CIFAR-100

The experiments follow the common mini-batch SGD training scheme for CIFAR [15, 16, 21] and all
competing methods access the same total amount of data samples regardless of the number of local
steps. The training procedure is terminated when the distributed algorithms have accessed the same
number of samples as a standalone worker would access. For example, ResNet-20, DensetNet-40-12
and WideResNet-28-10 would access 300, 300 and 250 epochs respectively. The data is partitioned
among the GPUs and reshuffled globally every epoch. The local mini-batches are then sampled
among the local data available on each GPU, and its size is fixed to Bloc “ 128.

The learning rate scheme follows works [15, 21], where we drop the initial learning rate by 10
when the model has accessed 50% and 75% of the total number of training samples. The initial
learning rates of ResNet-20, DensetNet-40-12 and WideResNet-28-10 are fine-tuned on single GPU
(which are 0.2, 0.2 and 0.1 respectively), and can be scaled by the global mini-batch size when using
large-batch learning schemes.

In addition to this, we use a Nesterov momentum of 0.9 without dampening, which is applied
independently to each local model. For all architectures, following He at al. [15], we do not apply
weight decay on the learnable Batch Normalization (BN) coefficients. The weight decay of ResNet-
20, DensetNet-40-12 and WideResNet-28-10 are 1e-4, 1e-4 and 5e-4 respectively. For the BN for
distributed training we again follow Giyal et al. [12] and compute the BN statistics independently for
each worker.

Unless mentioned specifically, local SGD uses the exact same optimization scheme as mini-batch
SGD.
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The procedure of fine-tuning. There is no optimal learning rate scaling rule for large-batch SGD
across different mini-batch sizes, tasks and architectures, as revealed in the Figure 8 of Shallue et
al. [46]. Our tuning procedure is built on the insight of their Figure 8, where we grid-search the optimal
learning rate for each mini-batch size, starting from the linearly scaled learning rate. For example,
compared to mini-batch size 128, mini-batch size 2048 with default large-batch learning schemes
need to linearly scale the learning rate by the factor of 16. In order to find out its optimal learning
rate, we will evaluate a linear-spaced grid of five different factors (i.e., t15, 15.5, 16, 16.5, 17u). If
the best performance was ever at one of the extremes of the grid, we would try new grid points so
that the best performance was contained in the middle of the parameters.

Note that in our experiments of large-batch SGD, either with the default large-batch learning schemes,
or tuning/using the optimal learning rate, we always warm-up the learning rate for the first 5 epochs.

A.4.2 ImageNet

ResNet-50 training is limited to 90 passes over the data in total, and the data is disjointly partitioned
and is re-shuffled globally every epoch. We adopt the large-batch learning schemes as in Goyal et
al. [12] below. We linearly scale the learning rate based on

`

Number of GPUsˆ 0.1
256 ˆBglob

˘

where
0.1 and 256 is the base learning rate and mini-batch size respectively for standard single GPU training.
The local mini-batch size is set to 128. For learning rate scaling, we perform gradual warmup for the
first 5 epochs, and decay the scaled learning rate by the factor of 10 when local models have access
30, 60, 80 epochs of training samples respectively.

A.5 System Performance Evaluation

Figure 6 investigates the increased latency of transmitting data among CPU cores.

2 4 8 16 32 64 128 256 512 1024
# of cores

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e 
of

 a
ll-

re
du

ce
 p

er
 1

00
 M

B 
(s

)

Figure 6: The data transmission cost (in seconds) of an all-reduce operation for 100 MB, over the different
number of cores, using PyTorch’s built-in MPI all-reduce operation. Each evaluation is the average result of
100 data transmissions on a Kubernetes cluster. The network bandwidth is 10 Gbps, and we use 48 cores per
physical machine.

Table 3 evaluates the time of running forward and backward with different mini-batch size, for
training ResNet20 on CIFAR-10. We can witness that a larger mini-batch size we use, the better
parallelism can a GPU have.

16



Table 3: The system performance of running forward and backward pass on a single GPU, for training ResNet20
on CIFAR-10. The “Ratio” indicates the Time of evaluating 4096 samples with specified mini-batch size

Time of evaluating 4096 samples with mini-batch size 4096 . The “Time” is in seconds.

Titan XP Tesla V100

Mini-Batch Size Time per iteration (over 100 iterations) Ratio Time per iteration (over 100 iterations) Ratio

32 0.058 1.490 0.028 9.028

64 0.100 1.284 0.030 4.836

128 0.175 1.124 0.034 2.741

256 0.323 1.037 0.043 1.733

512 0.737 1.183 0.073 1.471

1024 1.469 1.179 0.124 1.249

2048 2.698 1.083 0.212 1.068

4096 4.983 1 0.397 1

B Local SGD

B.1 Formal Definition of the Local SGD Algorithm

Algorithm 1 Local SGD

input: the initial model wp0q;
input: training data with labels I;
input: mini-batch of size Bloc per local model;
input: step size η, and momentum m (optional);
input: number of synchronization steps T ;
input: number of local steps H;
input: number of nodes K.
1: synchronize to have the same initial models wk

p0q :“ wp0q.
2: for all k :“ 1, . . . ,K do in parallel
3: for t :“ 1, . . . , T do
4: for h :“ 1, . . . , H do
5: sample a mini-batch from Ikptq`h´1.
6: compute the gradient

gkptq`h´1 :“ 1
Bloc

ř

iPIk
ptq`h´1

∇fi
`

wk
ptq`h´1

˘

.

7: update the local model to

wk
ptq`h :“ wptq`h´1 ´ γptqg

k
ptq`h´1 .

8: end for
9: all-reduce aggregation of the gradients

∆k
ptq :“ wk

ptq ´wk
ptq`H .

10: get new global (synchronized) model wk
pt`1q for all K nodes:

wk
pt`1q :“ wk

ptq ´ γptq
1
K

řK
i“1 ∆k

ptq

11: end for
12: end for

B.2 Numerical Illustration of Local SGD on a Convex Problem

In addition to our deep learning experiments, we first illustrate the convergence properties of local
SGD on a small scale convex problem. For this, we consider logistic regression on the w8a dataset7

7www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
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(d “ 300, n “ 49749). We measure the number of iterations to reach the target accuracy ε “ 0.005.
For each combination of H,Bloc and K we determine the best learning rate by extensive grid search
(cf. paragraph below for the detailed experimental setup). In order to mitigate extraneous effects on
the measured results, we here measure time in discrete units, that is we count the number of stochastic
gradient computations and communication rounds, and assume that communication of the weights is
25ˆ more expensive than a gradient computation, for ease of illustration.

Figure 7(a) shows that different combinations of the parameters pBloc, Hq can impact the convergence
time for K “ 16. Here, local SGD with p16, 16q converges more than 2ˆ faster than for p64, 1q and
3ˆ faster than for p256, 1q.

Figure 7(b) depicts the speedup when increasing the number of workers K. Local SGD shows the
best speedup for H “ 16 on a small number of workers, while the advantage gradually diminishes
for very large K.
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(a) Time (relative to best method) to solve a reg-
ularized logistic regression problem to target ac-
curacy ε “ 0.005 for K “ 16 workers for H P

1, 2, 4, 8, 16 and local mini-batch size Bloc. We sim-
ulate the network traffic under the assumption that
communication is 25ˆ slower than a stochastic gra-
dient computation.
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(b) Speedup over the number of workers K to
solve a regularized logistic regression problem to
target accuracy ε “ 0.005, for Bloc “ 16 and H P

1, 2, 4, 8, 16. We simulate the network traffic under
the assumption that communication is 25ˆ slower
than a stochastic gradient computation.

Figure 7: Numerical illustration of local SGD on a convex problem.

Experimental Setup for Convex Experiments For the illustrative experiments here we study
the convergence of local SGD on the logistic regression problem, fpwq “ 1

n

řn
i“1 logp1 `

expp´bia
J
i wqq`

λ
2 }w}

2, where ai P Rd and bi P t´1,`1u are the data samples, and regularization
parameter λ “ 1{n. For each run, we initialize w0 “ 0d and measure the number of stochastic
gradient evaluations (and communication rounds) until be best of last iterate and weighted average of
the iterates reaches the target accuracy fpwtq ´ f

‹ ď ε :“ 0.005, with f‹ :“ 0.126433176216545.
For each configuration pK,H,Blocq, we report the best result found with any of the following two
stepsizes: γt :“ minp32, cnt`1 q and γt “ 32c. Here c is a parameter that can take the values c “ 2i for
i P Z. For each stepsize we determine the best parameter c by a grid search, and consider parameter
c optimal, if parameters t2´2c, 2´1c, 2c, 22cu yield worse results (i.e. more iterations to reach the
target accuracy).

B.3 More Results on Local SGD Training

B.3.1 Training CIFAR-10 via local SGD

Better communication efficiency, with guaranteed test accuracy. Figure 8 shows that local SGD
is significantly more communication efficient while guaranteeing the same accuracy and enjoys faster
convergence speed. In Figure 8, the local models use a fixed local mini-batch size Bloc “ 128
for all updates. All methods run for the same number of total gradient computations. Mini-batch
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(a) Training accuracy vs. number of
global synchronization rounds.
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(b) Training accuracy vs. training
time.
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Figure 8: Training CIFAR-10 with ResNet-20 via local SGD (2ˆ 1-GPU). The local batch size Bloc is fixed
to 128, and the number of local steps H is varied from 1 to 16. All the experiments are under the same training
configurations.

SGD—the baseline method for comparison—is a special case of local SGD with H “ 1, with
full global model synchronization for each local update. We see that local SGD with H ą 1, as
illustrated in Figure 8(a), by design does H times less global model synchronizations, alleviating the
communication bottleneck while accessing the same number of samples (see section 1). The impact
of local SGD training upon the total training time is more significant for larger number of local steps
H (i.e., Figure 8(b)), resulting in an at least 3ˆ speed-up when comparing mini-batch H “ 1 to local
SGD with H “ 16. The final training accuracy remains stable across different H values, and there is
no difference or negligible difference in test accuracy (Figure 8(c)).

B.3.2 Training ImageNet via Local SGD

Figure 9 shows the effectiveness of scaling local SGD to the challenging ImageNet dataset. We limit
ResNet-50 training to 90 passes over the data in total, and use the standard training configurations as
mentioned in Appendix A.4.2.
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Figure 9: The performance of local SGD trained on ImageNet-1k with ResNet-50.We evaluate the model
performance on test dataset after each complete accessing of the whole training samples. We apply the large-
batch learning schemes [12] to the ImageNet for these two methods. For local SGD, the number of local steps is
set to H “ 8.

Moreover, in our ImageNet experiment, the initial phase of local SGD training follows the theoretical
assumption mentioned in Subsection 2, and thus we gradually warm up the number of local steps
from 1 to the desired value H during the first few epochs of the training. We found that exponentially
increasing the number of local steps from 1 by the factor of 2 (until reaching the expected number of
local steps) performs well. For example, our ImageNet training uses H “ 8, so the number of local
steps for the first three epochs is 1, 2, 4 respectively.
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B.3.3 Local SGD Scales to Larger Batch Sizes than Mini-batch SGD

The empirical studies [7, 46] reveal the regime of maximal data parallelism across different tasks and
models, where the large-batch training would reach the limit and additional parallelism provides no
benefit whatsoever.
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Steps to reach 91.2% top-1 test accuracy

H = 1 H = 2 ideal

Figure 10: The relationship between steps to top-1 test accuracy and batch size, of training ResNet-20 on
CIFAR-10. The “step” is equivalent to the number of applying gradients. The global mini-batch size is increased
by adding more workers K with fixed Bloc “ 128. Results are averaged over three runs, each with fine-tuned
learning rate.

On contrary to standard large-batch training, local SGD scales to larger batch size and provides
additional parallelism upon the limitation of current large batch training. Figure 10 shows the
example of training ResNet-20 on CIFAR-10 with H “ 2, which trains and generalizes better in
terms of update steps while with reduced communication cost.

B.4 Practical Improvement Possibilities for Standard Local SGD Training

We investigate different aspects of the training to address the quality when scaling local SGD to the
extreme case, e.g., hybrid momentum scheme, warming up the local SGD or fine-tuning the learning
rate. In this section, we briefly present how these strategies are, and how they work in practice where
we train ResNet-20 on CIFAR-10 on 16 GPUs.

B.4.1 Local SGD with Momentum

Momentum mini-batch SGD is widely used in place of vanilla SGD. The distributed mini-batch SGD
with vanilla momentum on K training nodes follows

uptq “ mupt´1q `
1

K

K
ÿ

k“1

∇k
ptq , wpt`1q “ wptq ´ γuptq

where ∇k
ptq “

1
|Ik
ptq
|

ř

iPIk
ptq
∇fipwptqq.

After H updates of mini-batch SGD, we have the following updated wpt`Hq:

wpt`Hq “ wptq ´ γ

˜

H
ÿ

τ“1

mτupt´1q `

H´1
ÿ

τ“0

mτ

K

K
ÿ

k“1

∇k
ptq ` . . .`

0
ÿ

τ“0

mτ

K

K
ÿ

k“1

∇k
pt`H´1q

¸

Coming back to the setting of local SGD, we can apply momentum acceleration on each local model,
or on a global level [6]. In the remaining part of this section, we analyze the case of applying local
momentum and global momentum. For ease of understanding, we assume the learning rate γ is the
same throughout the H update steps.

Local SGD with Local Momentum. When applying local momentum on the local SGD, i.e., using
independent identical momentum acceleration for each local model and only globally aggregating the
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gradients at the time ptq `H , we have the following local update scheme

ukptq “ mukpt´1q `∇k
ptq, wk

ptq`1 “ w
k
ptq ´ γu

k
ptq,

where ∇k
ptq “

1
|Ik
ptq
|

ř

iPIk
ptq
∇fipwptqq. Consequently, after H local steps,

wk
ptq`H “ w

k
ptq ´ γ

˜

H
ÿ

τ“1

mτukpt´1q `

H´1
ÿ

τ“0

mτ∇k
ptq ` . . .`

0
ÿ

τ“0

mτ∇k
ptq`H´1

¸

.

Substituting the above equation into eq. (2), we have the update

wpt`1q “ wptq ´
1

K

K
ÿ

k“1

γ

˜

H
ÿ

τ“1

mτukpt´1q

H´1
ÿ

τ“0

mτ∇k
ptq ` . . .`

0
ÿ

τ“0

mτ∇k
ptq`H´1

¸

“ wptq ´ γ

˜

H
ÿ

τ“1

mτ

K

K
ÿ

k“1

ukpt´1q `

H´1
ÿ

τ“0

mτ p
1

K

K
ÿ

k“1

∇k
ptqq ` . . .`

0
ÿ

τ“0

mτ

K

K
ÿ

k“1

∇k
ptq`H´1

¸

Comparing the mini-batch SGD with local momentum local SGD after H update steps (H global
update steps v.s. H local update steps and 1 global update step), we witness that the main difference
of these two update schemes is the difference between

řH
τ“1m

τupt´1q and
řH
τ“1

mτ

K

řK
k“1 u

k
pt´1q,

where mini-batch SGD holds a global upt´1q while each local model of the local SGD has their own
uk
pt´1q. We will soon see the difference between the global momentum of mini-batch SGD and the

local momentum of local SGD.

Local SGD with Global Momentum For global momentum local SGD, i.e., a more general
variant of block momentum [6], we would like to apply the momentum factor only to the accumu-
lated/synchronized gradients:

uptq “ mupt´1q `
1

γ

K
ÿ

k“1

1

K
pwk

ptq ´w
k
ptq`Hq “ mupt´1q `

1

γ

K
ÿ

k“1

1

K

H´1
ÿ

l“0

γ∇k
ptq`l,

wpt`1q “ wptq ´ γuptq “ wptq ´ γ
`

mupt´1q `

H´1
ÿ

l“0

K
ÿ

k“1

1

K
∇k
ptq`l

˘

where wk
ptq`H “ w

k
ptq ´ η

řH´1
l“0 ∇k

ptq`l “ wptq ´ η
řH´1
l“0 ∇k

ptq`l. Note that for local SGD, we
consider summing up the gradients from each local update, i.e., the model difference before and after
one global synchronization, and then apply the global momentum to the gradients over workers over
previous local update steps.

Obviously, there exists a significant difference between mini-batch momentum SGD and global
momentum local SGD, at least the term

řH
τ“0m

τ is cancelled.

Local SGD with Hybrid Momentum. The following equation tries to combine local momentum
with global momentum, showing a naive implementation.

First of all, based on the local momentum scheme, after H local update steps,

wk
ptq`H “ w

k
ptq ´ γ

`

H
ÿ

τ“1

mτukpt´1q `

H´1
ÿ

τ“0

mτ∇k
ptq ` . . .`

0
ÿ

τ“0

mτ∇k
ptq`H´1

˘

Together with the result from local momentum with the global momentum, we have

uptq “ mupt´1q `
1

γ

K
ÿ

k“1

1

K
pwk

ptq ´w
k
ptq`Hq

wpt`1q “ wptq ´ γuptq “ wptq ´ γ

«

mupt´1q `
1

γ

K
ÿ

k“1

1

K
pwk

ptq ´w
k
ptq`Hq

ff

“ wptq ´ γ

«

mupt´1q `

H
ÿ

τ“1

mτ

K

K
ÿ

k“1

ukpt´1q `

H´1
ÿ

τ“0

mτ

K

K
ÿ

k“1

∇k
ptq ` . . .`

0
ÿ

τ“0

mτ

K

K
ÿ

k“1

∇k
ptq`H´1

ff
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where upt´1q is the global momentum memory and upt´1q is the local momentum memory for each
node k.

Table 4: Evaluate local momentum and global momentum for ResNet-20 on CIFAR-10 data via local SGD
training (H “ 1 case) on 5ˆ 2-GPU Kubernetes cluster. The local mini-batch size is 128 and base batch size
is 64 (used for learning rate linear scale). Each local model will access to a disjoint data partition, using the
standard learning rate scheme as [15].

local momentum global momentum test top-1

0.0 0.0 90.57

0.9 0.0 92.41

0.9 0.1 92.22

0.9 0.2 92.09

0.9 0.3 92.54

0.9 0.4 92.45

0.9 0.5 92.19

0.9 0.6 91.32

0.9 0.7 18.76

0.9 0.8 14.35

0.9 0.9 12.21

0.9 0.95 10.11

Local SGD with Momentum in Practice. In practice, it is possible to combine the local momen-
tum with global momentum to further improve the model performance. For example, a toy example in
Table 4 investigates the impact of different momentum schemes on CIFAR-10 trained with ResNet-20
on a 5ˆ 2-GPU cluster, where some factors of global momentum could further slightly improve the
final test accuracy.

However, the theoretical understanding of how local momentum and global momentum contribute to
the optimization still remains unclear, which further increase the difficulty of tuning local SGD over
H , K. An efficient way of using local and global momentum remains a future work and in this work,
we only consider the local momentum.

B.4.2 Warm-up of the Number of Local SGD Steps

We use the term “local step warm-up strategy”, to refer to a specific variant of post-local SGD. More
precisely, instead of the two-phase regime which we presented here the used number of local steps H
will be gradually increased from 1 to the expected number of local steps H . The warm-up strategies
investigated here are “linear”, “exponential” and “constant”.

Please note that the implemented post-local SGD over the whole text only refers to the training
scheme that uses frequent communication (i.e., H “ 1) before the first learning rate decay and then
reduces the communication frequency (i.e., H ą 1) after the decay.

This section then investigates the trade-off between stochastic noise and the training stability. Also
note that the Figure 3(a) in the main text has already presented one aspect of the trade-off. So the
exploration below mainly focuses on the other aspects and tries to understand how will the scale of
the added stochastic noise impact the training stability. Infact, even the model has been stabilized to a
region with good quality.

Figure 11 and Figure 12 investigate the potential improvement through using the local step warm-up
strategy for the case of training ResNet-20 on CIFAR-10. Figure 11 evaluates the warm-up strategies
of “linear” and “constant” for different H , while the evaluation of “exponential” warm-up strategy is
omitted due to its showing similar performance as “linear” warm-up.

However, none of the investigated strategies show convincing performance. Figure 12 further studies
how the period of warm-up impacts the training performance. We can witness that even if we increase
the warm-up phase to 50 epochs where the training curve of mini-batch SGD becomes stabilized, the
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large noise introduced by the local SGD will soon degrade the status of training and lead to potential
quality loss, as in Figure 12(a).

0 50 100 150 200 250 300
epochs

0.0

0.5

1.0

1.5

2.0

2.5
tr 

lo
ss

n_workers=16, local_step=8, local_step_warmup=True, local_step_warmup_type=linear
n_workers=16, local_step=8, local_step_warmup=False
n_workers=16, local_step=8, local_step_warmup=True, local_step_warmup_type=constant
n_workers=16, local_step=1, local_step_warmup=False

0 50 100 150 200 250 300
epochs

20

30

40

50

60

70

80

90

te
st

 to
p1

 a
cc

ur
ac

y

n_workers=16, local_step=8, local_step_warmup=True, local_step_warmup_type=linear
n_workers=16, local_step=8, local_step_warmup=False
n_workers=16, local_step=8, local_step_warmup=True, local_step_warmup_type=constant
n_workers=16, local_step=1, local_step_warmup=False

(a) Applying local step warm-up strategy to H “ 8.
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(b) Applying local step warm-up strategy to H “ 16.

Figure 11: Investigate how local step warm-up strategy impacts the performance of training CIFAR-10 with
ResNet-20 via local SGD (8ˆ 2-GPU). The local batch size Bloc is fixed to 128. The warmup strategies are
“linear” and “constant”, and the warm-up period used here is equivalent to the number of local steps H .
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(a) Evaluate the impact of “constant” local step warm-up for different period of warm-up phase.
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(b) Evaluate the impact of “linear” local step warm-up for different period of warm-up phase.
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(c) Evaluate the impact of “exponential” local step warm-up for different period of warm-up phase.

Figure 12: Investigate how different warm-up period of the local step warm-up impacts the performance of
training CIFAR-10 with ResNet-20 via local SGD (8ˆ 2-GPU). The local batch size Bloc is fixed to 128, and
the strategies to warm-up the number of local steps H are “linear”, “exponential” and “constant”.
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C Post-local SGD Training

C.1 The Algorithm of Post-local SGD

Algorithm 2 Post-local SGD

input: the initial model wp0q;
input: training data with labels I;
input: mini-batch of size Bloc per local model;
input: step size η, and momentum m (optional);
input: number of synchronization steps T , and the first learning rate decay is performed at T 1;
input: number of eventual local steps H 1;
input: number of nodes K.
1: synchronize to have the same initial models wk

p0q :“ wp0q.
2: for all k :“ 1, . . . ,K do in parallel
3: for t :“ 1, . . . , T do
4: if t ă T 1 then
5: Hptq “ 1
6: else
7: Hptq “ H 1

8: end if
9: for h :“ 1, . . . , Hptq do

10: sample a mini-batch from Ikptq`h´1.
11: compute the gradient

gkptq`h´1 :“ 1
Bloc

ř

iPIk
ptq`h´1

∇fi
`

wk
ptq`h´1

˘

.

12: update the local model to

wk
ptq`h :“ wptq`h´1 ´ γptqg

k
ptq`h´1 .

13: end for
14: all-reduce aggregation of the gradients

∆k
ptq :“ wk

ptq ´wk
ptq`H .

15: get new global (synchronized) model wk
pt`1q for all K nodes:

wk
pt`1q :“ wk

ptq ´ γptq
1
K

řK
i“1 ∆k

ptq

16: end for
17: end for
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C.2 The Effectiveness of Turning on Post-local SGD after the First Learning Rate Decay

In Figure 13, we study the sufficiency as well as the necessity of “injecting” more stochastic noise
(i.e., using post-local SGD) into the optimization procedure after performing the first learning rate
decay. Otherwise, the delayed noise injection (i.e., starting the post-local SGD only from the second
learning rate decay) not only introduces more communication cost but also meets the increased risk
of converging to sharper minima.
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Figure 13: The effectiveness and necessary of turning on the post-local SGD after the first learning rate decay.
The example here trains ResNet-20 on CIFAR-10 on K“16 GPUs with BlocK“2048.

C.3 The Speedup of Post-local SGD Training on CIFAR

Table 1 and Table 6 evaluate the speedup of mini-batch SGD and post-local SGD, over different CNN
models, datasets, and training phases.

Table 5: The Speedup of mini-batch SGD and post-local SGD, over different CNN models and datasets. The
speedup is evaluated by Ta

TKa
, where Ta is the training time of the algorithm a on 1 GPU and TKa corresponds to

the training on K GPUs. We use 16 GPUs in total (with Bloc“128) on an 8 ˆ 2-GPU cluster with 10 Gbps
network bandwidth. The experimental setup is the same as Table 1.

CIFAR-10 CIFAR-100

H=1 H=16 H=32 H=1 H=16 H=32

ResNet-20 9.45 12.24 13.00 8.75 11.05 11.67

DenseNet-40-12 8.31 10.80 11.37 8.04 10.59 10.85

WideResNet-28-12 5.33 7.94 8.19 5.29 7.83 8.14

Table 6: The Speedup of mini-batch SGD and post-local SGD (only consider the phase of performing post-local
SGD) over different CNN models and datasets. The speedup is evaluated by Ta

TKa
, where Ta is the training time

of the algorithm a (corresponding to the second phase) on 1 GPU and TKa corresponds to the training on K
GPUs. We use 16 GPUs in total (with Bloc“128) on an 8ˆ 2-GPU cluster with 10 Gbps network bandwidth.
The experimental setup is the same as Table 1.

CIFAR-10 CIFAR-100

H=1 H=16 H=32 H=1 H=16 H=32

ResNet-20 9.45 17.33 20.80 8.75 15.00 17.50

DenseNet-40-12 8.31 15.43 18.00 8.04 15.50 16.69

WideResNet-28-12 5.33 15.52 17.66 5.29 15.09 17.69
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C.4 Understanding the Generalization of Post-local SGD

The Sharpness Visualization Figure 14 visualizes the sharpness of the minima for training ResNet-
20 on CIFAR-10. 10 different random direction vectors are used for the filter normalization [28], to
ensure the correctness and consistence of the sharp visualization.
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(a) Training dataset.
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(b) Test dataset.

Figure 14: Sharpness visualization of the minima for ResNet-20 trained on CIFAR-10. The training is on top
of K “ 16 GPUs and the local batch size is fixed to Bloc “ 128. The dashed lines are standard mini-batch SGD
and the solid lines are post-local SGD with H “ 16. The sharpness visualization of minima is performed via
filter normalization [28]. The model is perturbed as w ` λd by a shared random direction d, and is evaluated
by the whole dataset (training or test respectively). The top-1 test accuracy of mini-batch SGD is 92.25, while
that of post-local SGD is 92.61. The sharpness of these two minima is consistent over 10 different random
directions.

The spectrum of the Hessian for mini-batch SGD and post-local SGD Figure 15 evaluates the
spectrum of the Hessian for the model trained from mini-batch SGD and post-local SGD with
different H , which again demonstrates the fact that large-batch SGD tends to stop at points with high
Hessian spectrum while post-local SGD could easily generalize to a low curvature solution and with
better generalization.
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noticeably larger dominant eigenvalue.
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Figure 15: The spectrum of the Hessian for ResNet-20 trained on CIFAR-10. The training is on top of K “ 16
GPUs with KBloc “ 2048. The spectrum is computed using power iteration [34, 56] with the relative error
of 1e-4. The top-1 test accuracy of mini-batch SGD is 92.57, while that of post-local SGD ranges from 92.33
to 93.07. Current large-batch SGD tends to stop at points with considerably “larger” Hessian spectrum, while
large-batch trained with post-local SGD generalizes to solution with low curvature and with better generalization.

1-d linear interpolation between models The 1-d linear interpolation was first used by goodfellow
et al. [11] and then widely used to study the “sharpness” and “flatness” of different minima in several
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(a) wpost-local SGD is trained with H “ 16, where the
training resumes from the checkpoint of wmini-batch SGD
which is one-epoch ahead of the first learning rate de-
cay.
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(b) wpost-local SGD is trained with H “ 32, where the
training resumes from the checkpoint of wmini-batch SGD
which is one-epoch ahead of the first learning rate de-
cay.
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(c) wpost-local SGD is trained from scratch with H “ 16.
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(d) wpost-local SGD is trained from scratch with H “ 32.

Figure 16: 1-d linear interpolation between models wpost-local SGD and wmini-batch SGD, i.e., ŵ “ λwmini-batch SGD `

p1 ´ λqwpost-local SGD, for different minima of ResNet-20 trained on CIFAR-10. The training is on top of
K “ 16 GPUs and the local batch size is fixed to Bloc “ 128. The solid lines correspond to evaluate ŵ on
the whole training dataset while the dashed lines are on the test dataset. The post-local SGD in Figure 16(a)
and Figure 16(d) is trained from the checkpoint of wmini-batch SGD before performing the first learning rate decay,
while that of Figure 16(c) and Figure 16(d) is trained from scratch. The top-1 test accuracy of mini-batch SGD
is 92.25, while that of post-local SGD in Figure 16(a), Figure 16(b), Figure 16(c) and Figure 16(d), are 92.61,
92.35, 93.13 and 93.04 respectively.

works [10, 26, 28]. In Figure 16, the model trained by post-local SGD (wpost-local SGDq can generalize
to flatter minima than that of mini-batch SGD (wmini-batch SGD), either wpost-local SGD is trained from
scratch, or resumed from the checkpoint of wmini-batch SGD (i.e., the checkpoint is one-epoch ahead of
the first learning rate decay so as to share the common weight structure with wmini-batch SGD).

C.5 Post-local SGD Training on Diverse Tasks

C.5.1 Post-local SGD Training on CIFAR-100 for Global Mini-batch Size KBloc“4096

Table 7 presents the severe quality loss (at around 2%) of the fine-tuned large-batch SGD for training
three CNNs on CIFAR-100. Our post-local SGD with default hyper-parameters (i.e., the hyper-
parameters from small mini-batch size and via large-batch training schemes) can perfectly close the
generalization gap or even better the fine-tuned small mini-batch baselines.

We further justify the argument of works [18, 46] in Table 8, where we increase the number of training
epochs and train it longer (from 300 to 400 and 500) for ResNet-20 on CIFAR-100. The results
below illustrate that increasing the number of training epochs alleviates the optimization difficulty of
large-batch training

C.5.2 Post-local SGD Training on Language Modeling

We evaluate the effectiveness of post-local SGD for training the language modeling task on WikiText-
2 through LSTM. We borrowed and adapted the general experimental setup of [37], where we use a
three-layer LSTM with hidden dimension of size 650. The loss will be averaged over all examples
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Table 7: Top-1 test accuracy of training different CNN models via post-local SGD on K “ 32 GPUs with
a large batch size (BlocK “ 4096). The reported results are the average of three runs. We include the small
and large batch baseline, where the models are trained by mini-batch SGD with mini-batch size 256 and 4096
respectively. The ‹ indicates the fine-tuned learning rate.

CIFAR-100

small batch baseline ‹ large batch baseline ‹ post-local SGD (H=8) post-local SGD (H=16)

ResNet-20 68.84 ˘0.06 67.34 ˘0.34 68.38 ˘0.48 68.30 ˘0.30

DenseNet-40-12 74.85 ˘0.14 73.00 ˘0.04 74.50 ˘0.34 74.96 ˘0.30

WideResNet-28-10 79.78 ˘0.16 77.82 ˘0.65 79.53 ˘0.45 79.80 ˘0.39

Table 8: Top-1 test accuracy of large-batch SGD and post-local SGD, for training ResNet-20 on CIFAR-100
with BlocK “ 4096. The reported results are the average of three runs. We include the small and large batch
baseline, where the models are trained by mini-batch SGD with 256 and 4096 respectively. The ‹ indicates the
fine-tuned learning rate. The learning rate will be decayed by 10 when the distributed algorithm has accesses
50% and 75% of the total number of training samples.

# of epochs small batch baseline ‹ large batch baseline ‹ post-local SGD (H=8) post-local SGD (H=16)

300 68.84 ˘0.06 67.34 ˘0.34 68.38 ˘0.48 68.30 ˘0.30

400 69.07 ˘0.27 67.55 ˘0.21 69.06 ˘0.15 69.05 ˘0.26

500 69.03 ˘0.10 67.42 ˘0.63 69.02 ˘0.38 68.87 ˘0.27

and timesteps. The BPTT length is set to 30. We fine-tune the value of gradient clipping (0.4) and
the dropout (0.4) is only applied on the output of LSTM. The local mini-batch size Bloc is 64 and we
train the model for 120 epochs. The learning rate is again decayed at the phase when the training
algorithm has accessed 50% and 75% of the total training samples.

Table 9 below demonstrates the effectiveness of post-local SGD for large-batch training on language
modeling task. Note that most of the existing work focuses on improving the large-batch training
issue for computer vision tasks; it is non-trivial to scale the training of LSTM for language modeling
task due to presence of different hyper-parameters.

Table 9: The perplexity (lower is better) of language modeling task on WikiText-2. We use K “ 16 and
KB“KBloc“1024. The reported results are evaluated on the validation dataset (average of three runs). We
fine-tune the learning rate for mini-batch SGD baselines.

small batch baseline ‹ large batch baseline ‹ large-batch (H=8) large-batch (H=16)
86.50 ˘0.35 86.90 ˘0.49 86.61 ˘0.30 86.85 ˘0.13

C.5.3 Post-local SGD Training on ImageNet

We evaluate the performance of post-local SGD on the challenging ImageNet training. Again we limit
ResNet-50 training to 90 passes over the data in total, and use the standard training configurations as
mentioned in Appendix A.4.2. The post-local SGD begins when performing the first learning rate
decay.

We can witness that post-local SGD outperforms mini-batch SGD baseline for both of mini-batch
size 4096 (76.18 and 75.87 respectively) and 8192 (75.65 and 75.64 respectively).
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(a) The performance of post-local SGD training
for ImageNet-1k with KBloc “ 4096, in terms
of epoch-to-accuracy.
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(b) The performance of post-local SGD training
for ImageNet-1k with KBloc “ 8192, in terms
of epoch-to-accuracy.
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(c) The performance of post-local SGD training
for ImageNet-1k with KBloc “ 4096, in terms
of time-to-accuracy.
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(d) The performance of post-local SGD training
for ImageNet-1k with KBloc “ 8192, in terms
of time-to-accuracy.

Figure 17: The performance of post-local SGD training for ImageNet-1k. We evaluate the model performance
on test dataset after each complete accessing of the whole training samples. Note that due to the resource
limitation of the main experimental platform in the paper, these experiments are on top of a 8ˆ 4-GPU (V100)
Kubernetes cluster with 10 Gbps network bandwidth.
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D Hierarchical Local SGD

The idea of local SGD can be leveraged to the more general setting of training on decentralized and
heterogeneous systems, which is an increasingly important application area. Such systems have
become common in the industry, e.g. with GPUs or other accelerators grouped hierarchically within
machines, racks or even at the level of several data-centers. Hierarchical system architectures such as
in Figure 18 motivate our hierarchical extension of local SGD. Moreover, end-user devices such as
mobile phones form huge heterogeneous networks, where the benefits of efficient distributed and
data-local training of machine learning models promises strong benefits in terms of data privacy.
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Figure 18: Illustration of a hierarchical network architecture of a cluster in the data center. While GPUs within
each node are linked with fast connections (e.g. NVLink), connections between the servers within and between
different racks have much lower bandwidth and latency (via top-of-the-rack switches and cluster switches). The
hierarchy can be extended several layers further and further. Finally, edge switches face the external network at
even lower bandwidth.

D.1 The Illustration of Hierarchical Local SGD

Real world systems come with different communication bandwidths on several levels. In this scenario,
we propose to employ local SGD on each level of the hierarchy, adapted to each corresponding
computation vs communication trade-off. The resulting scheme, hierarchical local SGD, can offer
significant benefits in system adaptivity and performance.
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Figure 19: An illustration of hierarchical local SGD, for Bloc “ 2, using H “ 3 inner local steps and Hb
“ 2

outer ‘block’ steps. Local parameter updates are depicted in red, whereas block and global synchronization is
depicted in purple and black respectively.

As the guiding example, we consider compute clusters which typically allocate a large number of
GPUs grouped over several machines, and refer to each group as a GPU-block. Hierarchical local
SGD continuously updates the local models on each GPU for a number ofH local update steps before
a (fast) synchronization within a GPU-block. On the outer level, after Hb such block update steps, a
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(slower) global synchronization over all GPU-blocks is performed. Figure 19 and Algorithm 3 depict
how the hierarchical local SGD works, and the complete procedure is formalized below:

wk
rptq`ls`H : “ wk

rptq`ls ´

H
ÿ

h“1

γrptqs
Bloc

¨
ÿ

iPIk
rptq`ls`h´1

∇fi
`

wk
rptq`ls`h´1

˘

wk
rptq`l`1s : “ wk

rptq`ls ´
1
Ki

Ki
ÿ

k“1

`

wk
rptq`ls ´wk

rptq`ls`H

˘

wk
rpt`1qs : “ wk

rptqs ´
1
K

K
ÿ

k“1

`

wk
rptqs ´wk

rptq`Hbs

˘

(5)

where wk
rptq`ls`H indicates the model after l block update steps and H local update steps, and Ki is

the number of GPUs on the GPU-block i. The definition of γrptqs and Ik
rptq`ls`h´1 follows a similar

scheme.

As the number of devices grows to the thousands [12, 57], the difference between ‘within’ and
‘between’ block communication efficiency becomes more drastic. Thus, the performance benefits of
our adaptive scheme compared to flat & large mini-batch SGD will be even more pronounced.

D.2 The Algorithm of Hierarchical Local SGD

Algorithm 3 Hierarchical Local SGD

input: the initial model wrp0qs;
input: training data with labels I;
input: mini-batch of size Bloc per local model;
input: step size η, and momentum m (optional);
input: number of synchronization steps T over nodes;
input: number of local update steps H , and block update steps Hb;
input: number of nodes K in total; and nodes K 1 per GPU-block.
1: synchronize to have the same initial models wk

rp0qs :“ wrp0qs.
2: for all k :“ 1, . . . ,K do in parallel
3: for t :“ 1, . . . , T do
4: for l :“ 1, . . . , Hb do
5: for h :“ 1, . . . , H do
6: sample a mini-batch from Ikrptq`ls`h´1.
7: compute the gradient

gkrptq`ls`h´1 :“
1

Bloc

ÿ

iPIk
rptq`ls`h´1

∇fi
`

wk
rptq`ls`h´1

˘

.

8: update the local model

wk
rptq`ls`h :“ wk

rptq`ls`h´1 ´ γrptqsg
k
rptq`ls`h´1 .

9: end for
10: inner all-reduce aggregation of the gradients

∆k
rptq`ls :“ wk

rptq`ls ´wk
rptq`ls`H .

11: get new block (synchronized) model wk
rptq`l`1s for K 1 block nodes:

wk
rptq`l`1s :“ wk

rptq`ls ´ γrptqs
1
K1

řK1

k“1 ∆k
rptq`ls ,

12: end for
13: outer all-reduce aggregation of the gradients

∆k
rptqs :“ wkrptqs ´ w

k
rptq`Hbs .

14: get new global (synchronized) model wk
rpt`1qs for all K nodes:

wk
rpt`1qs :“ wk

rptqs ´ γrptqs
1
K

řK
i“1 ∆k

rptqs .

15: end for
16: end for
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D.3 Hierarchical Local SGD Training

Now we move to our proposed training scheme for distributed heterogeneous systems. In our
experimental setup, we try to mimic the real world setting where several compute devices such
as GPUs are grouped over different servers, and where network bandwidth (e.g. Ethernet) limits
the communication of updates of large models. The investigation of hierarchical local SGD again
trains ResNet-20 on CIFAR-10 and follows the same training procedure as local SGD where we
re-formulate below.

The experiments follow the common mini-batch SGD training scheme for CIFAR [15, 16] and
all competing methods access the same total amount of data samples regardless of the number of
local steps or block steps. More precisely, the training procedure is terminated when the distributed
algorithms have accessed the same number of samples as a standalone worker would access in 300
epochs. The data is partitioned among the GPUs and reshuffled globally every epoch. The local
mini-batches are then sampled among the local data available on each GPU. The learning rate scheme
is the same as in [15], where the initial learning rate starts from 0.1 and is divided by 10 when the
model has accessed 50% and 75% of the total number of training samples. In addition to this, the
momentum parameter is set to 0.9 without dampening and applied independently to each local model.

D.3.1 The Performance of Hierarchical Local SGD.

Table 10: Training CIFAR-10 with ResNet-20 via local SGD on a 8ˆ 2-GPU cluster. The local batch size Bloc
is fixed to 128 with Hb

“ 1, and we scale the number of local steps H from 1 to 1024. The reported training
times are the average of three runs and all the experiments are under the same training configurations for the
equivalent of 300 epochs, without specific tuning.

H “ 1 2 4 8 16 32 64 128 256 512 1024
Training Time (minutes) 20.07 13.95 10.48 9.20 8.57 8.32 9.22 9.23 9.50 10.30 10.65

Training time vs. local number of steps. Table 10 shows the performance of local SGD in
terms of training time. The communication traffic comes from the global synchronization over
8 nodes, each having 2 GPUs. We can witness that increasing the number of local steps over the
“datacenter” scenario cannot infinitely improve the communication performance, or would even reduce
the communication benefits brought by a large number of local steps. Hierarchical local SGD with
inner node synchronization reduces the difficulty of synchronizing over the complex heterogeneous
environment, and hence enhances the overall system performance of the synchronization. The benefits
are further pronounced when scaling up the cluster size.
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(a) Training accuracy vs. time. The
number of local steps is H “ 2.
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(b) Training accuracy vs. time. The
number of local steps is H “ 2,
with 1 second delay for each global
synchronization.

0 25000 50000 75000 100000 125000 150000 175000 200000

Time (s)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

To
p-

1 
Tr

ai
n 

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

H=2, Hb=1
H=2, Hb=2
H=2, Hb=4

H=2, Hb=8
H=2, Hb=16
H=2, Hb=32

(c) Training accuracy vs. time. The
number of local steps is H “ 2,
with 50 seconds delay for each
global synchronization.

Figure 20: The performance of hierarchical local SGD trained on CIFAR-10 with ResNet-20 (2ˆ 2-GPU).
Each GPU block of the hierarchical local SGD has 2 GPUs, and we have 2 blocks in total. Each figure fixes the
number of local steps but varies the number of block steps from 1 to 32. All the experiments are under the same
training configurations without specific tuning.
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Hierarchical local SGD shows high tolerance to network delays. Even in our small-scale exper-
iment of two servers and each with two GPUs, hierarchical local SGD shows its ability to significantly
reduce the communication cost by increasing the number of block step Hb (for a fixed H), with
trivial performance degradation. Moreover, hierarchical local SGD with a sufficient number of block
steps offers strong robustness to network delays. For example, for fixed H “ 2, by increasing the
number of Hb, i.e. reducing the number of global synchronizations over all models, we obtain a
significant gain in training time as in Figure 20(a). The impact of a network of slower communication
is further studied in Figure 20(b), where the training is simulated in a realistic scenario and each global
communication round comes with an additional delay of 1 second. Surprisingly, even for the global
synchronization with straggling workers and severe 50 seconds delay per global communication
round, Figure 20(c) demonstrates that a large number of block steps (e.g. Hb “ 16) still manages to
fully overcome the communication bottleneck with no/trivial performance damage.

Table 11: The performance of training CIFAR-10 with ResNet-20 via hierarchical local SGD on a 16-GPU
Kubernetes cluster. We simulate three different types of cluster topology, namely 8 nodes with 2 GPUs/node, 4
nodes with 4 GPUs/node, and 2 nodes with 8 GPUs/node. The configuration of hierarchical local SGD satisfies
H ¨Hb

“ 16. All variants either synchronize within each node or over all GPUs, and the communication cost is
estimated by only considering H ¨Hb

“ 16 model updates during the training (the update could come from a
different level of the synchronizations). The reported results are the average of three runs and all the experiments
are under the same training configurations, training for the equivalent of 300 epochs, without specific tuning.

H “ 1,
Hb

“ 16
H “ 2,
Hb

“ 8
H “ 4,
Hb

“ 4
H “ 8,
Hb

“ 2
H “ 16,
Hb

“ 1

# of sync. over nodes 1 1 1 1 1
# of sync. within node 15 7 3 1 0

Test acc. on 8ˆ 2-GPU 90.02
˘0.28

90.25
˘0.08

89.95
˘0.19

91.41
˘0.23 91.18 ˘0.02

Test acc. on 4ˆ 4-GPU 91.65
˘0.06

91.26
˘0.17

91.46
˘0.24

91.91
˘0.16

Test acc. on 2ˆ 8-GPU 92.14
˘0.10

92.05
˘0.14

91.94
˘0.09

91.56
˘0.18

Hierarchical local SGD offers improved scaling and better test accuracy. Table 11 compares
the mini-batch SGD with hierarchical local SGD for fixed productH¨Hb “ 16 under different network
topologies, with the same training procedure. We can observe that for a heterogeneous system with
a sufficient block size, hierarchical local SGD with a sufficient number of block update steps can
further improve the generalization performance of local SGD training. More precisely, when H¨Hb is
fixed, hierarchical local SGD with more frequent inner-node synchronizations (Hb ą 1) outperforms
local SGD (Hb “ 1), while still maintaining the benefits of significantly reduced communication by
the inner synchronizations within each node. In summary, as witnessed by Table 11, hierarchical
local SGD outperforms both local SGD and mini-batch SGD in terms of training speed as well as
model performance, especially for the training across nodes where inter-node connection is slow but
intra-node communication is more efficient.

E Communication Schemes

This section evaluates the communication cost in terms of the number of local steps and block steps,
and formalizes the whole communication problem below.

Assume K computing devices uniformly distributed over K 1 servers, where each server has K
K1

devices. The hierarchical local SGD training procedure will access N total samples with local
mini-batch size B, with H local steps and Hb block steps.

The MPI communication scheme [13] is introduced for communication cost evaluation. More
precisely, we use general all-reduce, e.g., recursive halving and doubling algorithm [42, 52], for
gradient aggregation amongK computation devices. For each all-reduce communication, it introduces
C ¨ log2K communication cost, where C is the message transmission time plus network latency.

The communication cost under our hierarchical local SGD setting is mainly determined by the number
of local steps and block steps. The K

T models within each server synchronize the gradients for every

34



H local mini-batch, and it only performs global gradients aggregation of K local models after Hb

block updates. Thus, the total number of synchronizations among compute devices is reduced to
r N
KB¨HHb

s, and we can formulate the overall communication cost C̃ as:

C̃ «
`

r N
KB¨H s´ r N

KB¨HHb
s
˘

¨ C1 ¨K
1 log2

K
K1 ` r N

KB¨HHb
s ¨ C2 log2K (6)

where C1 is the single message passing cost for compute devices within the same server, C2 is the
cost of that across servers, and obviously C1 ! C2. We can easily witness that the number of block
steps Hb is more deterministic in terms of communication reduction than local step H . Empirical
evaluations can be found in Section D.3.

Also, note that our hierarchical local SGD is orthogonal to the implementation of gradient aggrega-
tion [12] optimized for the hardware, but focusing on overcoming the aggregation cost of more general
distributed scenarios, and can easily be integrated with any optimized all-reduce implementation.

F Discussion and Future Work

Data distribution patterns. In our experiments, the dataset is globally shuffled once per epoch and
each local worker only accesses a disjoint part of the training data. Removing shuffling altogether,
and instead keeping the disjoint data parts completely local during training might be envisioned for
extremely large datasets which can not be shared, or also in a federated scenario where data locality
is a must for privacy reasons. This scenario is not covered by the current theoretical understanding of
local SGD, but will be interesting to investigate theoretically and practically.

Better learning rate scheduler. We have shown in our experiments that local SGD delivers con-
sistent and significant improvements over the state-of-the-art performance of mini-batch SGD. For
ImageNet, we simply applied the same configuration of “large-batch learning schemes” by [12].
However, this set of schemes was specifically developed and tuned for mini-batch SGD only, not
for local SGD. For example, scaling the learning rate w.r.t. the global mini-batch size ignores the
frequent local updates where each local model only accesses local mini-batches for most of the time.
Therefore, it is expected that specifically deriving and tuning a learning rate scheduler for local SGD
would lead to even more drastic improvements over mini-batch SGD, especially on larger tasks such
as ImageNet.

Adaptive local SGD. As local SGD achieves better generalization than current mini-batch SGD
approaches, an interesting question is if the number of local steps H could be chosen adaptively,
i.e. change during the training phase. This could potentially eliminate or at least simplify complex
learning rate schedules. Furthermore, recent works [20, 32] leverage cyclic learning rate schedules
either improving the general performance of deep neural network training, or using an ensemble
multiple neural networks at no additional training cost. Adaptive local SGD could potentially achieve
similar goals with reduced training cost.

Hierarchical local SGD design. Hierarchical local SGD provides a simple but efficient training
solution for devices over the complex heterogeneous system. However, its performance might be
impacted by the cluster topology. For example, the topology of 8 ˆ 2-GPU in Table 11 fails to
further improve the performance of local SGD by using more frequent inner node synchronizations.
On contrary, sufficiently large size of the GPU block could easily benefit from the block update of
hierarchical local SGD, for both communication efficiency and training quality. The design space
of hierarchical local SGD for different cluster topologies should be further investigated, e.g., to
investigate the two levels of model averaging frequency (within and between blocks) in terms of
convergence, and the interplay of different local minima in the case of very large number of local
steps. Another interesting line of work, explores heterogenous systems by allowing for different
number of local steps on different clusters, thus making up for slower machines.
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