
Chapter 10

Plumes and Thermals

SUMMARY: This chapter describes several distinct structures that fluids develop
in reaction to localized inputs of buoyancy. A punctual and sustained source of
buoyancy usually creates a continuous rise of lighter fluid through the ambient
denser fluid, with mixing occurring along the way. Such structure is called a plume.
Should the process be intermittent, the rising buoyant fluid parcels are called ther-

mals. Buoyant jets are plumes with the added propulsion of momentum, and buoy-

ant puffs are fluid parcels that rise under the combined action of buoyancy and
momentum.

10.1 Plumes

Plumes are common features in environmental fluids, which occur whenever a per-
sistent source of buoyancy creates a rising motion of the buoyant fluid upward and
away from the source. The clearest example is that of hydrothermal vents at the
bottom of the ocean (Figure 10.1). Another occurrence is the rising of freshwater
from the bottom of the sea at submarine springs in karstic regions such as along
the Dalmatian Coast of Croatia, where such features are called vrulje. The com-
mon urban smokestack plume is, however, somewhat different because the warm gas
rises not only under its own buoyancy but also under the propulsion of momentum
(inertia). Such plume is more properly categorized as a buoyant jet or forced plume.

What drives a plume is its heat flux, defined as the amount of heat (expressed
in joules) being discharged through the exit hole per unit time. Because it is more
practical in later mathematical developments, this quantity is divided by ρ0Cp (the
fluid’s reference density and heat capacity at constant pressure) and then multiplied
by αg (the fluid’s thermal expansion coefficient and the gravitational acceleration),
giving rise to the buoyancy flux F :
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164 CHAPTER 10. PLUMES

Figure 10.1: A hydrothermal vent at the bottom of the Pacific Ocean, discharging
hot water (up to 400◦C) and forming a vertical plume. The dark color, giving rise to
the nickname black smoker, is due the presence of sulfides in the water. [Photograph
taken by Dudley Foster, courtesy of the Woods Hole Oceanographic Institution]

F =
αg

ρ0Cp

heat

time
. (10.1)

Note that because heat per time is expressed in J/s, the buoyancy flux is measured
in units of m4/s3.

Let us consider a three-dimensional radially symmetric plume progressing verti-
cally from the bottom through a homogeneous and resting fluid, as shown in Figure
10.2. If we denote by T0 the temperature of the ambient fluid, then the tempera-
ture inside the plume has the value T0 + T ′, in which T ′ denotes the temperature
anomaly (positive in a rising plume, negative in a sinking plume). To this temper-
ature anomaly corresponds a density anomaly ρ′ = −αρ0T

′. From the latter, it is
convenient to define the local buoyancy, or reduced gravity, g′ as:

g′ = − g
ρ′

ρ0
= + αgT ′. (10.2)

Naturally, because of the heterogeneous structure of the plume, with entrainment
and dilution taking place along its sides, the buoyancy g′ and vertical velocity w
within the plume depend on both distance z above the source and radial distance r
from the centerline. Like for turbulent jets (previous chapter), observations reveal
that the Gaussian profile (bell curve) provides a realistic description of the statistical
averages of g′ and w over the turbulent fluctuations. Before using such expressions,
however, we shall initially limit ourselves to considering only cross-plume averages
w̄ and ḡ′, each a function of z, the height within the plume.

The buoyancy flux F can be expressed as the integral across the section of the
plume of the product of the vertical velocity w with the buoyancy g′. In terms of
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Figure 10.2: A smokestack
plume rising in still air. (Photo
by the author)

Figure 10.3: Mean isotherms
(left) and streamlines (right)
in and around a plume main-
tained from a punctual source
at the bottom. The numbers on
the isotherms are relative val-
ues g′/g and those along the
streamlines are relative values
of the Stokes streamfunction.
(From Rouse et al., 1952 as
shown in Turner, 1973)
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the mean values across the plume, a reasonably good approximation is

F = πR2 w̄ḡ′ = πR2 αgT̄ ′w̄, (10.3)

where R(z) is the radius of the plume at level z.
As the plume rises, it entrains ambient fluid, but this does not change the heat

flux carried by the plume since that ambient fluid carries no heat anomaly. Thus,
by virtue of conservation of heat, the buoyancy flux remains unchanged with height
and is the same at level z as it was at the start of the plume. In other words, the
quantity F is constant. It is what drives the plume, like momentum drives a jet.

Figure 10.4: A thin slide of
the plume on which to perform
mass and momentum budgets.

Perfoming a mass conservation budget over a thin slice of the plume extending
from level z to level z + dz (Figure 10.4), we can write:

Mass exiting from the top = Mass entering through the bottom

+ Mass entrained through the side.

[πR2 ρ0w̄]z+dz = [πR2 ρ0w̄]z + 2πRdz ρ0u,

in which u is the lateral entrainment velocity and 2πRdz the lateral area of the slice
(Figure 10.4). In differential form, this equation becomes

d

dz
(R2w̄) = 2Ru. (10.4)

Likewise, the vertical momentum budget over the same slice requires

Momentum exiting from the top = Momentum entering through the bottom

+ Momentum entrained through the side

+ Upward buoyancy force.

There is no vertical momentum acquired by lateral entrainment since the ambient
fluid is at rest. By virtue of Archimedes’ principle, the upward buoyancy force is
equal to the weight of the displaced fluid (at density ρ0) minus the actual weight of
the plume segment (at lower density ρ0 + ρ̄′), for a total of
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Upward buoyancy force = πR2 ρ0 g dz − πR2 (ρ0 + ρ̄′) g dz

= −πR2 ρ̄′ g dz

= +πR2 ρ0 ḡ′ dz,

by virtue of (10.2). Thus, the vertical momentum budget takes the form:

[πR2 ρ0w̄
2]z+dz = [πR2 ρ0w̄

2]z + πR2 ρ0ḡ
′ dz,

or, in differential form,

d

dz
(R2 w̄2) = R2 ḡ′. (10.5)

Let us stop for a moment and take stock of the equations we have. There are
three equations: (10.3) from the heat budget, (10.4) from the mass budget, and
(10.5) from the momentum budget. And, there are four unknowns: the radius R,
the average velocity w̄, the entrainment velocity u, and the averaged buoyancy ḡ′,
each a function of the elevation z. There is thus one more unknown than available
equations. To close the problem without solving for the details of the turbulent
flow, we state in analogy with the turbulent jet, that the entrainment velocity is
proportional to the shear flow induced by the plume. In other words, we assume
proportionality between u and w̄:

u = a w̄, (10.6)

with constant dimensionless coefficient a.
The solution of the problem ought to be expressed solely in terms of the quan-

tities F (in m4/s3) and z (in m), because those are the only dimensional variables
entering the equations. Thus, dimensional considerations lead us to anticipate the
form of the solution:

R = tan θ z

w̄ = b
F 1/3

z1/3

ḡ′ = c
F 2/3

z5/3
,

where θ is the angle of the cone made by the plume (Figure 10.3). Observations
(Turner, 1973) indicate that this angle is about 8.9◦, for which tan θ = 0.157.

Substitution in the equations at our disposal yields:

Eq. (10.3) −→ πbc tan θ = 1

Eq. (10.4) −→
5

3
tan θ = 2a

Eq. (10.5) −→
4

3
b2 = c.
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The values of the dimensionless coefficients are found to be

a =
5

6
tan θ = 0.1305

b =

(

3

4π tan2 θ

)1/3

= 2.14

c =

(

4

3π2 tan4 θ

)1/3

= 6.08

and the assembled solution is

R = 0.157 z (10.7)

w̄ = 2.14
F 1/3

z1/3
(10.8)

u = 0.130 w̄ = 0.279
F 1/3

z1/3
(10.9)

ḡ′ = 6.08
F 2/3

z5/3
. (10.10)

Let us now pass from w̄ and ḡ′ averaged across the plume to functions w and g′

with Gaussian profile across the plume. For this, we write:

w = wmax(z) exp

(

−
r2

2σ2

)

(10.11)

g′ = g′max(z) exp

(

−
r2

2σ2

)

, (10.12)

with the standard deviation σ(z) being such that 2σ(z) represents the radius R(z)
of the plume at height z. (See theory for the turbulent jet in the previous chapter.)
Thus, σ = R/2. The peak values along the plume’s centerline can then be related
to their respective averages by

w̄ =
1

πR2

∫

∞

0

w 2πrdr (10.13)

ḡ′ =
1

πR2

∫

∞

0

g′ 2πrdr, (10.14)

and we obtain:

w = 4.27
F 1/3

z1/3
exp

(

−
81.6r2

z2

)

(10.15)

g′ = 12.2
F 2/3

z5/3
exp

(

−
81.6r2

z2

)

. (10.16)
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Figure 10.5: A plume rising in an early morning when the lower atmosphere is
stratified. A clue of this stratification is the thin horizontal band of cloud on the
left of the plume (marked in picture). Note the inertial overshoot of the plume
cloud before settling at the level of neutral buoyancy. [Photograph by the author]

Laboratory experiments (Turner, 1973), indicate that the following adjusted
expressions

w = 4.7
F 1/3

z1/3
exp

(

−
96r2

z2

)

(10.17)

g′ = 11
F 2/3

z5/3
exp

(

−
71r2

z2

)

(10.18)

better match the observations. Note that with these last expressions, the width of
the velocity profile is slightly narrower than that of the buoyancy.

10.2 Plumes in a Stratified Environment

When a plume rises (or sinks) in a stratified environment, it encounters a tempera-
ture becoming closer to its own and progressively loses buoyancy. At some level, it
will have lost all buoyancy and will begin to spread horizontally. Such is the case
of a smokestack plume in a calm (no wind) and stratified atmosphere typical of
the early morning (Figure 10.5). The obvious question to ask is how high does the
plume reach?

The stratified ambient fluid is characterized by its stratification frequency N
defined from

N2 = αg
dT

dz
(10.19)
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where T (z) is the temperature profile of the ambient fluid.
To describe a plume in this type of environment, the same quantities are needed

as before, namely the plume’s radius R, averaged vertical velocity w̄, and averaged
buoyancy ḡ′, each function of the elevation z. The difference with the previous
section is that now the buoyancy flux F , defined in (10.3), is no longer a constant
along the axis of the plume. Three equations are at our disposal: The mass budget

d

dz
(w̄R2) = 2uR = 2aw̄R, (10.20)

the momentum budget

d

dz
(w̄2R2) = ḡ′ R2, (10.21)

which remain unchanged, and the heat budget, which is

d

dz
(w̄T̄plume πR2) = uT (z) 2πR. (10.22)

Using the buoyancy locally experienced by the plume, ḡ′ = αg[T̄plume − T (z)], the
last equation can be recast as

d

dz
(ḡ′w̄R2) +

d

dz
[αgT (z) w̄R2] = 2uR αgT (z).

With Equation (10.20) and definition αg dT (z)/dz = N2, it can be reduced to

d

dz
(ḡ′w̄R2) = −N2 w̄ R2. (10.23)

The solution to this set of equations does not exhibit similarity, but the equations
can easily be integrated numerically. Starting with initial conditions (at level z = 0)
such that the momentum and volumetric flow are nil but buoyancy flux finite, one
finds the results shown in Figure 10.6. On that figure, the variables are made
dimensionless by scaling as follows: z and R by (F/N3)1/4, w̄ by (F/N)1/4, and ḡ′

by (F/N5)1/4, where F is the starting buoyancy flux (at z = 0). The entrainment
parameter a was taken as 0.125. (For a similar numerical integration, see Morton,
Taylor and Turner, 1956).

We note on Figure 10.6 that the buoyancy crosses zero at z = 2.98(F/N3)1/4,
but the residual vertical velocity at that level makes the plume overshoot, up to
z = 3.92 (F/N3)1/4, by which level the vertical velocity vanishes and the radius
becomes infinite.

Laboratory experiments and field observations confirm and tweak this theoreti-
cal prediction (Figure 10.7). Briggs (1969) gives

zmax = 5.0

(

F

πN3

)1/4

= 3.76

(

F

N3

)1/4

. (10.24)
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Figure 10.6: Numerical inte-
gration of Equations (10.20),
(10.21) and (10.23), with a =
0.125, tracing the vertical struc-
ture of a buoyant plume as
it rises in a stratified environ-
ment. The buoyancy crosses
zero at z = 2.98, above which
the plume becomes negatively
buoyant. The vertical veloc-
ity vanishes at z = 3.92 and
the radius becomes infinite. See
text for details of the non-
dimensionalization employed in
making the graph.

10.3 Thermals

A thermal is a finite parcel of fluid consisting of the same fluid as its surroundings
but at a different temperature. Because of its buoyancy, a cold thermal sinks (neg-
ative buoyancy), while a warm thermal rises (positive buoyancy). The name was
given by glider pilots to what they perceived as regions of warm air rising above a
heated ground in which they could soar. Convection in the atmosphere does indeed
proceed by means of rising thermals (Priestley, 1959). The situation, however, can
be quite chaotic, with a collection of thermals rising here and there at various times,
some of them smaller and slower, and others larger and faster. Here, for the sake
of understanding the basic mechanism, we shall be concerned with a single thermal
immersed in an infinite homogeneous fluid at rest.

Experiments have been conducted in the laboratory (Figure 10.8), and it has
been found that all thermals roughly behave in similar ways: as they rise (or sink),
they entrain surrounding fluid and become more dilute, thereby slowing down in
their ascent (or descent). The actual shape of a thermal, however, can vary consid-
erably from one set of observations to another. Here, basic dynamics supplemented
by a few dimensionless numbers gleaned from experiments will be used to establish
a simple theory for the prediction of a thermal’s behavior over time.

The key property of a thermal is its total buoyancy, defined as

B = αgT ′V = g′V (10.25)

in which V is the volume of the thermal, T ′ its temperature anomaly, and g′ = αgT ′

the reduced gravity it experiences. This total buoyancy is a conserved quantity as
the thermal rises (or sinks) because, while it entrains surrounding fluid, its tem-
perature anomaly decreases by dilution in proportion to its volume increase, thus
keeping the product T ′V constant during the thermal’s life.
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Figure 10.7: Measurements of
plume rise in calm stratified
surroundings, revealing that the
ultimate height reached by a
plume follows Equation (10.24).
(Adapted from Briggs, 1969)

The volume of a thermal can be expressed as

V = mR3, (10.26)

where R is the radius of the thermal seen from above, and m is a coefficient less
that 4π/3 = 4.2 (value for a spherical volume) because a thermal has a slightly
flattened shape. The value ofm is notoriously difficult to measure, and some indirect
measurement is in order, as we shall see later.

Mass conservation over time can be expressed as

dV

dt
= Au,

in which A is the enclosing surface area of the thermal and u the average entrainment
velocity across that surface (Figure 10.9). Taking the area A as proportional to R2,
the square of the thermal’s radius, and the entrainment velocity u as proportional
to the thermal’s vertical velocity w, we can express the preceding equation as

dV

dt
= aR2w, (10.27)

in which the coefficient a ought to be a dimensionless constant, to be determined
from experiments or observations. Using (10.26), this equation can be reduced to:

dR

dt
=

a

3m
w. (10.28)

The momentum budget over time takes the form

d

dt

(

3

2
ρthermalV w

)

= Upward buoyancy force − Downward weight
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Figure 10.8: Descending thermals in a laboratory experiment. These thermals in
water are made visible by barium sulfate. The stem left behind by each thermal is
due to the manner a spherical cap was rotated to provoke the release. The second
thermal (bottom row) has a larger negative buoyancy than the first (top row). [From
Scorer, 1997]

= ρambient V g − ρthermal V g

= ρthermal αT
′ V g

= ρthermal g
′V,

in which the factor 3/2 on the left is due to the added-mass effect. Physically, the
thermal is subject to its own acceleration (time derivative of one time ρthermalV w),
but its changing pace also causes acceleration of the surrounding fluid diverted by
its passage, effectively accelerating 50% more fluid mass, hence the factor 3/2 = 1.5.
Division by ρthermal, which at all times remains close to the reference density of the
fluid, yields

d

dt
(V w) =

2

3
g′V. (10.29)

Elimination of the product g′V by virtue of Equation (10.25) indicates that the
right-hand side of the preceding equation is a constant, leading to an immediate
integration:

V w =
2

3
B t, (10.30)

for which t = 0 marks the time when the thermal had zero momentum. Next,
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Figure 10.9: The anatomy of
a rising thermal according to
Scorer (1997). Fluid within a
cone of about 12◦ is entrained
by the top of the thermal, while
fluid oustide of this and within a
wider cone of 15◦ is entrained in
the rear. The rest of the ambi-
ent fluid is merely deflected by
the passage of the thermal. The
oblique red line traces the outer
edge of the thermal over time,
forming an angle of about 14◦

from the vertical. (From Scorer,
1997)

solving for w (w = 2Bt/3V = 2Bt/3mR3) and replacing in Equation (10.28), we
obtain a single equation for the radius R of the thermal:

dR

dt
=

2a

9m2

B t

R3
.

The solution of this equation is:

R =

(

4a

9m2

)1/4

B1/4 t1/2. (10.31)

Now knowing the radius as a function of time, we can readily solve for the other
quantities, namely volume V , vertical velocity w and reduced gravity g′:

V =

(

64a3

729m2

)1/4

B3/4 t3/2 (10.32)

w =

(

9m2

4a3

)1/4
B1/4

t1/2
(10.33)

g′ =

(

729m2

64a3

)1/4
B1/4

t3/2
. (10.34)
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In these expressions, it is clear that the time origin actually refers to a virtual stage
in which the thermal had zero volume, infinite velocity and infinite temperature
anomaly. Obviously, the actual life of the thermal started some finite time after
this, with a finite volume, finite velocity and finite temperature anomaly.

Note that the complete solution depends on two dimensionless parameters, a
and m. Since neither is easy to determine directly, it is wise to seek their value
indirectly by matching thermal’s properties that are more readily observed. One
such property is the manner in which the thermal’s radius grows with distance. For
this, we integrate dz/dt = w to obtain the thermal’s elevation as a function of time.
The result is:

z =

(

36m2

a3

)1/4

B1/4 t1/2. (10.35)

It appears that both elevation z and radius R grow at similar rates, yielding a
constant ratio:

R

z
=

a

3m
. (10.36)

Laboratory observations (Figure 10.9) reveal that this is indeed the case that ther-
mals behave in a self-similar way, and that the ratio ofR to z is about tan 14◦ = 0.25.
Thus,

R = 0.25 z, (10.37)

and a = 0.75m.

The other reliable observation is that the ratio z2/t (a time constant as predicted
by the theory) varies from experiment to experiment in proportion to

√
B (Figure

10.10). The theoretical coefficient of proportionality is
√

36m2/a3, and experiments

give it a value of 5.80. Solving a = 0.75m together with
√

36m2/a3 = 5.80 yields:
a = 1.90 and m = 2.54. From this follow all other coefficients:

R = 0.60 B1/4 t1/2 (10.38)

V = 0.55 B3/4 t3/2 (10.39)

w = 1.20
B1/4

t1/2
(10.40)

z = 2.41 B1/4 t1/2 (10.41)

g′ = 1.81
B1/4

t3/2
. (10.42)
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Figure 10.10: Plot of the quan-
tity z2/t (a time constant dur-
ing the life of thermal) versus
the square root of the thermal’s
buoyancy. Each numbered dot
refers to a different laboratory
experiment, and the solid line
shows the best linear fit. (From
Scorer, 1997)

10.4 Thermals in a Stratified Environment

When a thermal rises (or sinks) in a stratified environment, it progressively encoun-
ters a temperature closer to its own and therefore loses its buoyancy. Ultimately, it
will reach a level of no buoyancy and begin to spread laterally (Figure 10.11). With
no thermal contrast left, the thermal loses its identity. What is this ultimate level is
not an obvious question. Indeed, it can be easily established that the thermal will
never reach the level of its initial temperature. The reason is its partial dilution by
entrainment of surrounding fluid (which changes as the thermal crosses isotherms)
and its consequent dilution.

A practical application of this situation is the dumping of waste in a stratified
body of water: The dumped waste sinks from the surface, gradually mixes with
surrounding water during its fall, and eventually settles down at some intermediate
depth. The determination of that depth is crucial in water quality studies and
permitting

The stratified environment is characterized by its stratification frequency N
defined from

N2 = αg
dT

dz
, (10.43)
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Figure 10.11: A laboratory experiment of a thermal sinking in a stratified envi-
ronment. Note the ultimate arrest and spreading of the thermal once it loses its
buoyancy. (From Scorer, 1997)

where T (z) is the temperature profile of the ambient fluid.

To track a thermal in this environment, the same quantities are needed as before,
namely the thermal’s radius R, volume V = mR3, vertical position z, vertical
velocity w = dz/dt, reduced gravity g′, and total buoyancy B = g′V . The difference
with the previous section is that now the total buoyancy B is no longer a constant
of the motion. Three equations are at our disposal: The mass budget

dV

dt
= Au = aR2w, (10.44)

the momentum budget

d

dt
(V w) =

2

3
g′V, (10.45)

which remain unchanged, and the heat budget, which is

d

dt
(V Tthermal) = AuT (z) = aR2wT (z). (10.46)

Using the reduced gravity locally experienced by the thermal, g′ = αg[Tthermal −
T (z)], the last equation can be recast as

d

dt
(V g′) +

d

dt
[V αgT (z)] = aR2w αgT (z).

Using (10.44) and the fact that dT (z)/dt = (dT/dz) × (dz/dt) = w (dT/dz), it
reduces to

d

dt
(V g′) = −N2V w. (10.47)

Eliminating V from Equations (10.44), (10.45) and (10.47) by using V = mR3

yields a set of three equations for the three unknowns R, w and g′:
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dR

dt
=

a

3m
w (10.48)

d

dt
(R3w) =

2

3
R3g′ (10.49)

d

dt
(R3g′) = −N2R3w. (10.50)

Viewing these three quantities no longer as functions of time t but rather of
elevation z and calling upon w = dz/dt, we can transform them into:

dR

dz
=

a

3m
(10.51)

d

dz
(R3w) =

2R3g′

3w
(10.52)

d

dz
(R3g′) = −N2R3. (10.53)

The first of these equations yields

R = R0 +
a

3m
z, (10.54)

in which R0 is the initial radius at the departure level z = 0. As long as N2 is a
constant (linear stratification), the last equation of the set can, too, be integrated
to yield:

R3g′ = R3
0g

′

0 −
3m

4a
N2 (R4 −R4

0) (10.55)

in which g′0 are is the initial value of g′.
The thermal loses all its buoyancy when its g′ drops to zero, which occurs when

its radius has grown to the value Rend such that

3m

4a
N2 (R4

end −R4
0) = R3

0g
′

0, (10.56)

that is

Rend =

(

R4
0 +

4a

3m

R3
0g

′

0

N2

)1/4

. (10.57)

Assuming that the thermal started with an insignificant radius and has vastly
expanded during its travel, we can approximate the preceding expression to

Rend ≈

(

4a

3m

R3
0g

′

0

N2

)1/4

≈

(

4a

3m2

B0

N2

)1/4

, (10.58)
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where B0 = V0g
′

0 = mR3
0g

′

0 is the thermal’s initial buoyancy. Translating this radius
into the corresponding elevation gives the terminal level where the thermal loses its
identity:

zend =
3m

a
(Rend −R0) ≈

3m

a
Rend

≈

(

108m2

a3

)1/4 (

B0

N2

)1/4

. (10.59)

With the parameter values a = 1.90 and m = 2.54 determined at the end of the
previous section, we have

zend ≈ 3.17

(

B0

N2

)1/4

. (10.60)

Note that at the level where g′ = 0, the thermal has some residual vertical velocity
and will overshoot slightly its level of neutral buoyancy. This explains the bulge on
the front side of the thermal seen in Figure 10.11.

10.5 Plumes in a Cross-Flow

The line thermal model.

Problems

10-1. By using a blower and some preheating, one can adjust both the upward
velocity and buoyancy of fumes exiting from the top of a smokestack. Specifi-
cally, two scenarios are being considered, one with more velocity and one with
more buoyancy, as follows:
Scenario 1: Average exit vertical velocity = 12 m/s

Average exit buoyancy = 0.01 m/s2

Scenario 2: Average exit vertical velocity = 1 m/s
Average exit buoyancy = 0.12 m/s2.

In each case, the exit diameter is 1.5 m and the entrainment coefficient a is
taken as 0.115.
Which of the two scenarios gives the highest vertical velocity at the center of
the plume 20 m above the smokestack?

10-2. You notice a buzzard soaring in a circling fashion and guess that it is tak-
ing advantage of the upward motion of a thermal. As you happen to have
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meteorological gear with you, including a radar profiler, you determine that
the buzzard is flying at an altitude of 80 m and that the temperature at the
center of the bird’s circle is 0.30◦C higher than outside the thermal, where
the temperature is 25◦C.
What is the radius of the thermal and its center vertical velocity? Also, how
old is this thermal?

10-3.

10-4.

10-5. Show that, for a thermal rising in a homogeneous ambient fluid, w2 is equal
to g′z/2. Does this relation have any particular significance?

10-6. Establish the form of the total energy of a thermal (kinetic plus potential) for
a thermal rising in a uniform environment and determine its variation along
the path of the thermal. Resolve any paradox.

10-7. It was mentioned at the end of the section on thermals in a stratified en-
vironment that, once it reaches its level of neutral buoyancy, a thermal still
possesses a residual vertical velocity. What is that velocity? And, at what
ultimate level z does the vertical velocity finally vanish? Assume that the
initial radius of the thermal was negligible compared to its radius at the level
of neutral buoyancy.

10-8.

10-9.


