
ME 163
Using DSolve in Mathematica 
to Solve First Order Equations

‡ Introduction

The purpose  of this  notebook  is  to show how  to use the Mathematica  function DSolve  to find  analytical
solutions  of  first  order  ordinary  differential  equations.   As  a  prerequisite,  it  is  assumed  that  you  have  worked
through  the  section  of  the  tutorial  on  Replacement  Rules.   Although  there  are  a  variety  of  ways  to  accomplish
some of the tasks presented here, for simplicity we consider only one  straightforward method in each case.

The general form of the DSolve command is

DSolve[equation, dependent variable, independent variable]   .

We will  first  learn  how to  specify  an equation  for  DSolve.   Then  we will  try  it  out,  thereby  learning something
about the form of the output provided by DSolve (a replacement rule).  After showing how to get a function rather
than a replacement rule as an output from DSolve, we carry out a number of examples.  We conclude with exam-
ples of how to automate the production of tables or a graph sequence from solutions of the equation. 

‡ Specifying an Equation for DSolve

The syntax  required  by  DSolve  for  a  differential  equation  is  very  similar  to standard  mathematical  nota-
tion.  Derivatives are denoted by a prime, which in fact is typed as the apostrophe character.  Multiple derivatives
are denoted by repeated apostrophes.   Dependent variables always exhibit explicitly the independent variable as a
functional  argument.   Equality  in the  equation  is  denoted  by  the double  equals  sign.   Here  is an  example,  typed
first in standard mathematical notation,

dy
ÅÅÅÅÅÅÅÅÅÅ
dx

+ y = sin(3x)  ,

and now in a form suitable for DSolve,

y'[x] +  y[x] == Sin[3x]  .

The second  argument of  DSolve,  the dependent  variable,  is written  with the functional  argument as y[x],
and the independent variable as x.  Let's try all of this.

DSolve@y'@xD + y@xD ã Sin@3 xD, y@xD, xD99y@xD Ø ‰-x C@1D +
1

ÅÅÅÅÅÅÅ
10

H-3 Cos@3 xD + Sin@3 xDL==



It appears to work, although we might not have expected the replacement rule form of the answer.  Notice that we
have an arbitrary constant, which we would need to satisfy an initial condition.  We will see shortly how to impose
initial conditions and how to check our solutions.

‡ Working With the Output of DSolve

Although  the  replacement  rule  form  of  the  solution  is  very  flexible,  we  often  want  a  function  for  our
output -- a function that we can easily evaluate or plot.  Let's repeat the above calculation, only now we will give a
name to the replacement rule answer.  We call it ans.

ans = DSolve@y'@xD + y@xD ã Sin@3 xD, y@xD, xD99y@xD Ø ‰-x C@1D +
1

ÅÅÅÅÅÅÅ
10

H-3 Cos@3 xD + Sin@3 xDL==
Note  that  there  are  two  pairs  of  curly  brackets  enclosing  the  replacement  rule  (there  is  a  logical  reason  for  this,
having to do with the solution of systems of equations).  A proper replacement rule has only a single pair of curly
brackets, so we eliminate one by the command Flatten

ans = Flatten@ansD9y@xD Ø ‰-x C@1D +
1

ÅÅÅÅÅÅÅ
10

H-3 Cos@3 xD + Sin@3 xDL=
Now we are going to use the replacement rule to construct a function which is the solution.  We call the function
sol[x].

sol@x_D = y@xD ê. ans

‰-x C@1D +
1

ÅÅÅÅÅÅÅ
10

H-3 Cos@3 xD + Sin@3 xDL
As our first exercise with this solution, we check it by substituting it back into the equation.

D@sol@xD, xD + sol@xD - Sin@3 xD
-Sin@3 xD +

1
ÅÅÅÅÅÅÅ
10

H-3 Cos@3 xD + Sin@3 xDL +
1

ÅÅÅÅÅÅÅ
10

H3 Cos@3 xD + 9 Sin@3 xDL
We should have gotten zero.  Before we give up, we try simplifying the above expression:

Simplify@%D
0

We do indeed get zero, verifying that our solution is correct.

Let's impose an initial condition and thereby determine the constant C[1].  We ask that sol[0]=2.

2 dsolve.nb



answerC = Solve@sol@0D ã 2, C@1DD99C@1D Ø
23
ÅÅÅÅÅÅÅ
10

==
We  get  our  final  answer  by  substituting  this  expression  back  into  the  expression  for  sol[x].   We  call  this  final
answer sol2[x].

sol2@x_D = sol@xD ê. Flatten@answerCD
23 ‰-x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
10

+
1

ÅÅÅÅÅÅÅ
10

H-3 Cos@3 xD + Sin@3 xDL
This solution may be evaluated at any point 

sol2@0.5D
1.47355

or plotted

Plot@sol2@xD, 8x, 0, 3<D;

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

‡ Incorporating Initial Conditions in the Equation

Even though  Mathematica  did  all  of the  labor in  imposing the  initial  condition,  the  calculation  was a bit
involved.   There  is  a  much  easier  way  to  do  this.   We  can  simply  include  the  initial  condition  in  the  original
specification of the equation.  We do this for the problem just solved.

DSolve@8y'@xD + y@xD ã Sin@3 xD, y@0D ã 2<, y@xD, xD99y@xD Ø -
1

ÅÅÅÅÅÅÅ
10

‰-x H-23 + 3 ‰x Cos@3 xD - ‰x Sin@3 xDL==

dsolve.nb 3



And there we have it all in one step.  Note that the equation argument is now a list, with the first element of the list
being the equation, the second element being the initial condition.  

Now  we combine  all  of  the  steps  above  into  a  single  command,  which  produces  a  solution  of  the  initial
value problem named ivsol[x]:

ivsol@x_D =
y@xD ê. Flatten@DSolve@8y'@xD + y@xD ã Sin@3 xD, y@0D ã 2<, y@xD, xDD

-
1

ÅÅÅÅÅÅÅ
10

‰-x H-23 + 3 ‰x Cos@3 xD - ‰x Sin@3 xDL
We plot this.

Plot@ivsol@xD, 8x, 0, 3<, AxesLabel Ø 8"x", "y"<,
PlotLabel Ø "y'' + y = sinH3xL, yH0L = 2"D;

0.5 1 1.5 2 2.5 3
x

0.5

1

1.5

2

y y’’ + y = sinH3xL, yH0L = 2

‡ More Examples

ü A Separable Equation

The example we have used above is a linear equation, and as we have seen DSolve handles it quite well.
Let's try  a nonlinear but separable  equation.  We look at homework problem A in assignment  #2, which was the
motion of a projectile fired upward, including the effects of a quadratic drag.  The problem was 

 dVÅÅÅÅÅÅÅÅÅÅÅÅ
dt

= -g - kÅÅÅÅÅÅÅm V2  ,  with V(0) = V0  .

We first define the equation and initial condition for use in DSolve.

eqn = 8V'@tD ã -g - Hk ê mL V@tD^2, V@0D ã V0<;
Now we see if DSolve can handle this with the parameters remaining as symbols.

4 dsolve.nb



ans = DSolve@eqn, V@tD, tD
99V@tD Ø -

è!!!
g

è!!!!
m TanA è!!!!

g
è!!!!
k tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
m

- ArcTanA è!!!!
k V0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
g

è!!!!
m

EE
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!

k
==

Pretty impressive!  Exactly right. Notice that DSolve handled an initial condition which was a literal rather than a
numerical constant.   Let's use the solution to find the time at which the projectile reaches maximum height -- i.e.,
the time at which V = 0.  We first use the replacement rule to construct a function.   

proj@t_D = V@tD ê. Flatten@ansD
-

è!!!
g

è!!!!
m TanA è!!!!

g
è!!!!
k tÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
m

- ArcTanA è!!!!
k V0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
g

è!!!!
m

EE
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!

k

Now we find the time at which V vanishes.

Solve@proj@tD ã 0, tD
— Solve::ifun :  

Inverse functions are being used by Solve,
so some solutions may not be found.

99t Ø

è!!!!
m ArcTanA è!!!!

k V0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!
g

è!!!!
m

E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!

g
è!!!
k

==
We get a warning but also the answer we sought.  The answer agrees with the one we obtained "by hand" in the
homework assignment.  

ü A Linear Equation with Variable Coefficients

Now we try a somewhat harder linear equation.  The problem is

dy
ÅÅÅÅÅÅÅÅÅÅ
dt

 - 3ÅÅÅÅÅÅt y = t4 ‰t   with y(1) = 1.

ans = DSolve@8y'@tD - H3 ê tL y@tD ã t4  ‰t, y@1D ã 1<, y@tD, tD88y@tD Ø t3 H1 - ‰t + ‰t tL<<
We convert this to a function form of solution and then check it.

lin@t_D = y@tD ê. Flatten@ansD
t3 H1 - ‰t + ‰t tL
D@lin@tD, tD - H3 ê tL lin@tD - t4  ‰t

0

dsolve.nb 5



It checks the equation.  Now we check the initial condition.

lin@1D
1

ü An Exact Equation

We  now  try  an  equation  which  is  neither  separable  nor  linear,  but  can  be  solved  by  hand  as  an  exact
equation.  The equation is

dy
ÅÅÅÅÅÅÅÅÅÅdx  = - 

2 xy2+ 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 x2  y  .

We may put this into the differential form

(2xy2+1 ) dx + (2x2  y)dy =  0  ,

which is easily shown to be exact.  The integral is the implicit solution

x + x2 y2  =  C  .

Let's see what DSolve does with this.

DSolve@y'@xD ã -H2 x y@xD^2 + 1L ê H2 x^2 y@xDL, y@xD, xD99y@xD Ø -
è!!!!!!!!!!!!!!!!!!!!!

-x + C@1D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x
=, 9y@xD Ø

è!!!!!!!!!!!!!!!!!!!!!
-x + C@1D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x

==
This is fully equivalent with our implicit solution found above.  

This is perhaps as good at time as any to warn you that it is essential that in all appearances of the depen-
dent  variable,  it  must  be  written  as  y[x]  rather  than  just  y.   If  you  forget,  you  will  get  wrong  answers  and  no
warnings.  For example, we redo the above problem, this time carelessly omitting the arguments of the y's in the
slope. 

DSolve@y'@xD ã -H2 x y^2 + 1L ê H2 x^2 yL, y@xD, xD99y@xD Ø
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 x y

+ C@1D - y Log@xD==
This  is  completely  wrong.   What  has  happened  is  that  Mathematica  has  interpreted  y  as  a  constant  completely
unrelated to y[x].  It is a treacherous error because there are no error messages -- it is not an error as far as Mathe-
matica is concerned.

ü Bernoulli Equation

DSolve even knows how to solve Bernoulli equations.  In class we solved the Bernoulli equation 

dy
ÅÅÅÅÅÅÅÅÅÅÅÅ
dx

+ 2 y  = xÅÅÅÅÅÅÅÅÅÅ
y2  , y[1] = 2 ,

 and found the solution to be

6 dsolve.nb



y(x) = { 6 x - 1 + 91 ‰6 H1 - xL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ12 <1ê3  .

Now we ask DSolve for the solution.

DSolve@8y'@xD + 2 y@xD ã x ê Hy@xDL^2, y@1D ã 2<, y@xD, xD99y@xD Ø -
H-1L2ê3 ‰-2 x H-91 ‰6 + ‰6 x - 6 ‰6 x xL1ê3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

22ê3 31ê3 ==
Although the form is a little less convenient it is essentially the same answer.

‡ Making Tables and Plot Sequences from Solutions

We go back to our first example, and show how to make tables of values of the solution and sequences of
graphs.  The equation solved was

dy
ÅÅÅÅÅÅÅÅÅÅdx + y = sin(3x)  ,  y(0) = y0.

We define a function which returns the solution for a specified initial value y0.  The solution will be returned as an
expression in x rather than a function of x.

Clear@solD
sol@y0_D :=
y@xD ê. Flatten@DSolve@8y'@xD + y@xD ã Sin@3 xD, y@0D ã y0<, y@xD, xDD

To compare with a case done earlier, we choose y0 = 2, and we assign the answer to the variable solA.

solA = sol@2D
-

1
ÅÅÅÅÅÅÅ
10

‰-x H-23 + 3 ‰x Cos@3 xD - ‰x Sin@3 xDL
We make a table of values of this solution for x running from 0 to 1 in increments of 0.1.  

dsolve.nb 7



TableForm@Table@8i * 0.1, solA ê. x Ø i * 0.1<, 8i, 0, 10<D,
TableHeadings Ø 8None, 8"x", "yHxL"<<D

x yHxL
0 2

0.1 1.82408

0.2 1.69194

0.3 1.59573

0.4 1.52623

0.5 1.47355

0.6 1.42781

0.7 1.37992

0.8 1.32222

0.9 1.24907

1. 1.15723

Let's look at this a little more closely.  The heart of the command is Table, which actually produces the list.  We
execute that separately to see how it works.

Table@8i * 0.1, solA ê. x Ø 0.1* i<, 8i, 0, 10<D880, 2<, 80.1, 1.82408<, 80.2, 1.69194<, 80.3, 1.59573<,80.4, 1.52623<, 80.5, 1.47355<, 80.6, 1.42781<,80.7, 1.37992<, 80.8, 1.32222<, 80.9, 1.24907<, 81., 1.15723<<
There is an implied Do loop using the index i, called an iterator in Mathematica.  The last argument, {i,0,10}, tells
Mathematica to perform the operation 11 times, starting at i = 0 and ending at i = 10.  The first argument, {i*0.1,
solA /.  x->0.1*i},  tells  Mathematica  what  to compute  for  each  i  value.   In  this  case  a pair  of  numbers  are com-
puter.  The first is i*0.1, which is the x value in the table, and the second is solA /. x -> 0.1*i, which is the solution
solA evaluated at that x-value.  The output from Table is the linear list that you see above.  TableForm rearranges
it into a more useful array, and also allows us to add headings. 

As our final task, we will construct a sequence of graphs for various initial conditions, and display them on
a single graph.  We continue with the example we are already using.  We already know that sol[y0] will produce
the solution for the initial value y0.  Now we construct a function which will produce a graph of this solution.  We
call the function graph[y0].

sol@2D
-

1
ÅÅÅÅÅÅÅ
10

‰-x H-23 + 3 ‰x Cos@3 xD - ‰x Sin@3 xDL
graph@y0_D := Module@8expr<, expr = sol@y0D; Plot@expr, 8x, 0, 3<DD

We try this out.

8 dsolve.nb



graph@2D

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

Ü Graphics Ü

Now we add some labels to the axes, and a label for the plot, and we fix the y-range of the plot to be {-1,2}.

graph@y0_D := Module@8expr<, expr = sol@y0D; Plot@expr,8x, 0, 3<, PlotRange Ø 8-1, 2<, AxesLabel Ø 8"x", "y@xD"<,
PlotLabel Ø "y'@xD + y@xD = Sin@3xD, y@0D = y0"DD

We try it for y0 = 2.

graph@2D

0.5 1 1.5 2 2.5 3
x

-1

-0.5

0.5

1

1.5

2
y@xD y’@xD + y@xD = Sin@3xD, y@0D = y0

Ü Graphics Ü

We make one more change.   We want  to display a sequence  of curves for  different y0 on a single graph, but we
don't want to display each one separately.  So we add an option to the Plot command that causes the graph not to
be displayed.  The option is DisplayFunction -> Identity.

dsolve.nb 9



graph@y0_D := Module@8expr<, expr = sol@y0D; Plot@expr,8x, 0, 3<, PlotRange Ø 8-1, 2<, AxesLabel Ø 8"x", "y@xD"<,
PlotLabel Ø "y'@xD + y@xD = Sin@3xD, y@0D = y0",
DisplayFunction Ø IdentityDD

Now the graph can be constructed without being displayed.

testgraph = graph@2D
Ü Graphics Ü

To see this  graph which has  already been constructed,  we use the Show command  with the option DisplayFunc-
tion -> $DisplayFunction.

Show@testgraph, DisplayFunction Ø $DisplayFunctionD

0.5 1 1.5 2 2.5 3
x

-1

-0.5

0.5

1

1.5

2
y@xD y’@xD + y@xD = Sin@3xD, y@0D = y0

Ü Graphics Ü

Now we construct the solutions  for 10 different  initial  conditions,  ranging  from 0 to 2 in increments of 0.2.  We
show them all on the same graph.

10 dsolve.nb



Hcompgraph = 8<; Do@y0 = i * 0.2;
compgraph = Append@compgraph, graph@y0DD, 8i, 0, 10<D;

Show@compgraph, DisplayFunction Ø $DisplayFunctionDL

0.5 1 1.5 2 2.5 3
x

-1

-0.5

0.5

1

1.5

2
y@xD y’@xD + y@xD = Sin@3xD, y@0D = y0

Ü Graphics Ü

A few comments on the code.  The set of graphs is accumulated in the list named compgraph, which is initially set
equal to the empty list.   The Do loop constructs the graphs for  the different initial  conditions,  and uses  the com-
mand  Append  to  add  them  to  compgraph.   The  final  Show  command  displays  all  of  the  graphs  in  the  list
compgraph.

All of the solutions seem to be converging onto the same curve.  Let's see if we can understand that.  We
construct the solution for an initial condition y0 = a, with a unspecified numerically.

sol@aD
-

1
ÅÅÅÅÅÅÅ
10

‰-x J-10 J 3
ÅÅÅÅÅÅÅ
10

+ aN + 3 ‰x Cos@3 xD - ‰x Sin@3 xDN
We force Mathematica to carry out the multiplication commands by using Expand.

Expand@%D
3 ‰-x

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
10

+ a ‰-x -
3

ÅÅÅÅÅÅÅ
10

Cos@3 xD +
1

ÅÅÅÅÅÅÅ
10

Sin@3 xD
Now we see that as x gets large, the solution reduces to the Cos and Sin part, which is independent of a.  Thus all
initial conditions produce solutions which look the same for x sufficiently large.  

dsolve.nb 11


