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Abstract: In this chapter one studies, within the DSmT framework, the case when

the sources of information provide imprecise belief functions/masses, and we gener-

alize the DSm rules of combination (classic or hybrid rules) from scalar fusion to

sub-unitary interval fusion and, more generally, to any set of sub-unitary interval

fusion. This work generalizes previous works available in literature which appear

limited to IBS (Interval-valued Belief Structures) in the Transferable Belief Model

framework. Numerical didactic examples of these new DSm fusion rules for dealing

with imprecise information are also presented.

6.1 Introduction

I
n the previous chapters, we had focused our efforts on the fusion of precise uncertain and conflicting/-

paradoxical generalized basic belief assignments (gbba). We mean here by precise gbba, basic belief

functions/masses m(.) defined precisely on the hyper-power set DΘ where each mass m(X), where X

belongs to DΘ, is represented by only one real number belonging to [0, 1] such that
∑

X∈DΘ m(X) = 1.

In this chapter, we extend the DSm fusion rules for dealing with admissible imprecise generalized basic

belief assignments mI(.) defined as real subunitary intervals of [0, 1], or even more general as real sub-

unitary sets [i.e. sets, not necessarily intervals]. An imprecise belief assignment mI(.) over DΘ is said

admissible if and only if there exists for every X ∈ DΘ at least one real number m(X) ∈ mI(X) such that
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124 CHAPTER 6. FUSION OF IMPRECISE BELIEFS

∑

X∈DΘ m(X) = 1. The idea to work with imprecise belief structures represented by real subset intervals

of [0, 1] is not new and we strongly encourage the reader to examine the previous works of Lamata &

Moral and also Denœux for instance on this topic in [5, 1, 2] and references therein. The proposed works

available in the literature, upon our knowledge were limited only to sub-unitary interval combination in

the framework of Transferable Belief Model (TBM) developed by Smets [12, 13]. We extend the approach

of Lamata & Moral and Denœux based on subunitary interval-valued masses to subunitary set-valued

masses; therefore the closed intervals used by Denœux to denote imprecise masses are generalized to any

sets included in [0,1], i.e. in our case these sets can be unions of (closed, open, or half-open/half-closed)

intervals and/or scalars all in [0, 1]. In this work, the proposed extension is done in the context of the

DSmT framework, although it can also apply directly to fusion of IBS within TBM as well if the user

prefers to adopt TBM rather than DSmT.

In many fusion problems, it seems very difficult (if not impossible) to have precise sources of evidence

generating precise basic belief assignments (especially when belief functions are provided by human ex-

perts), and a more flexible plausible and paradoxical theory supporting imprecise information becomes

necessary. This chapter proposes a new way to deal with the fusion of imprecise, uncertain and con-

flicting source of information. The section 6.2 presents briefly the DSm rule of combination for precise

belief functions. In section 6.3, we present the operations on sets for the chapter to be self-contained and

necessary to deal with imprecise nature of information in our framework. In section 6.4, we propose a

method to combine simple imprecise belief assignment corresponding only to sub-unitary intervals also

known as IBS (Interval-valued belief structures) in [1]. In section 6.5, we present the generalization of

our new fusion rules to combine any type of imprecise belief assignment which may be represented by the

union of several sub-unitary (half-) open intervals, (half-)closed intervals and/or sets of points belonging

to [0,1]. Several numerical examples are also given. In the sequel, one uses the notation (a, b) for an open

interval, [a, b] for a closed interval, and (a, b] or [a, b) for a half open and half closed interval.

6.2 Combination of precise beliefs

6.2.1 General DSm rule of combination

Let’s consider a frame of discernment of a fusion problem Θ = {θ1, θ2, . . . , θn}, its hyper-power set DΘ

(i.e. the set of all propositions built from elements θi of Θ with ∩ and ∪ operators (see chapter 2), and k

independent (precise) sources of information B1, B2, . . ., Bk with their associated generalized basic belief

assignments (gbba) m1(.), m2(.), . . ., mk(.) defined over DΘ. Let M be the mass matrix
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M =











m11 m12 . . . m1d

m21 m22 . . . m2d

. . . . . . . . . . . .

mk1 mk2 . . . mkd











where d = | DΘ | is the dimension of the hyper-power set, and mij ∈ [0, 1] for all 1 ≤ i ≤ k and

1 ≤ j ≤ d, is the mass assigned by source Bi to the element Aj ∈ DΘ. We use the DSm ordering

procedure presented in chapter 3 for enumerating the elements A1, A2, . . . , Ad of the hyper-power set

DΘ. The matrix M characterizes all information available which has to be combined to solve the fusion

problem under consideration. Since m1(.), m2(.), . . ., mk(.) are gbba, the summation on each row of

the matrix must be one. For any (possibly hybrid) model M(Θ), we apply the DSm general rule of

combination (also called hybrid DSm rule) for k ≥ 2 sources to fuse the masses (see chapter 4) defined

for all A ∈ DΘ as:

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(6.1)

φ(A) is the characteristic non emptiness function of the set A, i.e. φ(A) = 1 if A /∈ ∅ and φ(A) = 0

otherwise. ∅ , {∅,∅M} represents the set absolutely empty and of all relatively empty elements belonging

to DΘ (elements/propositions which have been forced to empty set in the chosen hybrid model M(Θ)).

If no constraint is introduced in the model, ∅ reduces to {∅} and this corresponds to the free DSm model

(see chapter 4). If all constraints of exclusivity between elements θi ∈ Θ are introduced, the hybrid model

M(Θ) corresponds to Shafer’s model on which is based Dempster-Shafer Theory (DST) [9]. S1(A), S2(A)

and S3(A) are defined by

S1(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi) (6.2)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

mi(Xi) (6.3)

S3(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

k∏

i=1

mi(Xi) (6.4)

where It , θ1 ∪ θ2 ∪ . . .∪ θn and U , u(X1)∪ u(X2)∪ . . .∪ u(Xk). u(X) is the union of all singletons

θi that compose X . For example, if X is a singleton then u(X) = X ; if X = θ1 ∩ θ2 or X = θ1 ∪ θ2 then

u(X) = θ1 ∪ θ2; if X = (θ1 ∩ θ2) ∪ θ3 then u(X) = θ1 ∪ θ2 ∪ θ3, etc; by convention u(∅) , ∅.
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6.2.2 Examples

Let’s consider at time t the frame of discernment Θ = {θ1, θ2, θ3} and two independent bodies of evidence

B1 and B2 with the generalized basic belief assignments m1(.) and m2(.) given by:

A ∈ DΘ m1(A) m2(A)

θ1 0.1 0.5

θ2 0.2 0.3

θ3 0.3 0.1

θ1 ∩ θ2 0.4 0.1

Table 6.1: Inputs of the fusion with precise bba

Based on the free DSm model and the classical DSm rule (6.2), the combination denoted by the

symbol ⊕ (i.e. m(.) = [m1 ⊕m2](.)) of these two precise sources of evidence is

A ∈ DΘ m(A) = [m1 ⊕m2](A)

θ1 0.05

θ2 0.06

θ3 0.03

θ1 ∩ θ2 0.52

θ1 ∩ θ3 0.16

θ2 ∩ θ3 0.11

θ1 ∩ θ2 ∩ θ3 0.07

Table 6.2: Fusion with DSm classic rule

Then, assume at time t+ 1 one finds out for some reason that the free DSm model has to be changed

by introducing the constraint θ1 ∩ θ2 = ∅ which involves also θ1 ∩ θ2 ∩ θ3 = ∅. This characterizes the

hybrid-model M we have to work with. Then one uses the general hybrid DSm rule of combination for

scalars (i.e. for precise masses m1(.) and m2(.) to get the new result of the fusion at time t+1. According

to (6.1), one obtains m(θ1 ∩ θ2
M≡ ∅) = 0, m(θ1 ∩ θ2 ∩ θ3

M≡ ∅) = 0 and
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A ∈ DΘ m(A)

θ1 0.05 + [0.1(0.1) + 0.5(0.4)] = 0.26

θ2 0.06 + [0.2(0.1) + 0.3(0.4)] = 0.20

θ3 0.03 + [0.3(0.1) + 0.1(0.4)] = 0.10

θ1 ∩ θ3 0.16

θ2 ∩ θ3 0.11

θ1 ∪ θ2 0 + [0.13] + [0.04] = 0.17

Table 6.3: Fusion with hybrid DSm rule for model M

6.3 Operations on sets

To manipulate imprecise information and for the chapter to be self-contained, we need to introduce

operations on sets as follows (detailed presentations on Interval Analysis and Methods can be found

in [3, 4, 6, 7, 8]). The interval operations defined here about imprecision are similar to the rational inter-

val extension through the interval arithmetics [10], but they are different from Modal Interval Analysis

which doesn’t serve our fusion needs. We are not interested in a dual of an interval [a, b], used in the

Modal Interval Analysis, because we always consider a ≤ b, while its dual, Du([a, b]) = [b, a], doesn’t

occur. Yet, we generalize the interval operations to any set operations. Of course, for the fusion we only

need real sub-unitary sets, but these defined set operations can be used for any kind of sets.

Let S1 and S2 be two (unidimensional) real standard subsets of the unit interval [0, 1], and a number

k ∈ [0, 1], then one defines [11] :

• Addition of sets

S1�S2 = S2�S1 , {x | x = s1+s2, s1 ∈ S1, s2 ∈ S2} with







inf(S1 � S2) = inf(S1) + inf(S2)

sup(S1 � S2) = sup(S1) + sup(S2)

and, as a particular case, we have

{k}� S2 = S2 � {k} = {x | x = k + s2, s2 ∈ S2} with







inf({k}� S2) = k + inf(S2)

sup({k}� S2) = k + sup(S2)

Examples:

[0.1, 0.3] � [0.2, 0.5] = [0.3, 0.8] because 0.1 + 0.2 = 0.3 and 0.3 + 0.5 = 0.8;

(0.1, 0.3] � [0.2, 0.5] = (0.3, 0.8];

[0.1, 0.3] � (0.2, 0.5] = (0.3, 0.8];

[0.1, 0.3) � [0.2, 0.5] = [0.3, 0.8);



128 CHAPTER 6. FUSION OF IMPRECISE BELIEFS

[0.1, 0.3] � [0.2, 0.5) = [0.3, 0.8);

(0.1, 0.3] � (0.2, 0.5) = (0.3, 0.8);

[0.7, 0.8] � [0.5, 0.9] = [1.2, 1.7];

{0.4}� [0.2, 0.5] = [0.2, 0.5] � {0.4} = [0.6, 0.9] because 0.4 + 0.2 = 0.6 and 0.4 + 0.5 = 0.9;

{0.4}� (0.2, 0.5] = (0.6, 0.9];

{0.4}� [0.2, 0.5) = [0.6, 0.9);

{0.4}� (0.2, 0.5) = (0.6, 0.9).

• Subtraction of sets

S1 � S2 , {x | x = s1 − s2, s1 ∈ S1, s2 ∈ S2} with







inf(S1 � S2) = inf(S1)− sup(S2)

sup(S1 � S2) = sup(S1)− inf(S2)

and, as a particular case, we have

{k}� S2 = {x | x = k − s2, s2 ∈ S2} with







inf({k}� S2) = k − sup(S2)

sup({k}� S2) = k − inf(S2)

and similarly for S2 � {k} with







inf(S2 � {k}) = inf(S2)− k

sup(S2 � {k}) = sup(S2)− k

Examples:

[0.3, 0.7] � [0.2, 0.3] = [0.0, 0.5] because 0.3− 0.3 = 0.0 and 0.7− 0.2 = 0.5;

[0.3, 0.7] � {0.1} = [0.2, 0.6];

{0.8}� [0.3, 0.7] = [0.1, 0.5] because 0.8− 0.7 = 0.1 and 0.8− 0.3 = 0.5;

[0.1, 0.8] � [0.5, 0.6] = [−0.5, 0.3];

[0.1, 0.8] � [0.2, 0.9] = [−0.8, 0.6];

[0.2, 0.5] � [0.1, 0.6] = [−0.4, 0.4].

• Multiplication of sets

S1 � S2 , {x | x = s1 · s2, s1 ∈ S1, s2 ∈ S2} with







inf(S1 � S2) = inf(S1) · inf(S2)

sup(S1 � S2) = sup(S1) · sup(S2)

and, as a particular case, we have

{k}� S2 = S2 � {k} = {x | x = k · s2, s2 ∈ S2} with







inf({k}� S2) = k · inf(S2)

sup({k}� S2) = k · sup(S2)
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Examples:

[0.1, 0.6] � [0.8, 0.9] = [0.08, 0.54] because 0.1 · 0.8 = 0.08 and 0.6 · 0.9 = 0.54;

[0.1, 0.6] � {0.3} = {0.3}� [0.1, 0.6] = [0.03, 0.18] because 0.3 · 0.1 = 0.03 and 0.3 · 0.6 = 0.18.

• Division of sets

In our fusion context, the division of sets is not necessary since the DSm rules of combination

(classic or hybrid ones) do not require a normalization procedure and thus a division operation.

Actually, the DSm rules require only addition and multiplication operations. We however give here

the definition of division of sets only for the reader’s interest and curiosity. The division of sets is

defined as follows:

If 0 /∈ S2, then S1�S2 , {x | x = s1/s2, s1 ∈ S1, s2 ∈ S2} with







inf(S1 � S2) = inf(S1)/ sup(S2)

sup(S1 � S2) = sup(S1)/ inf(S2) if 0 6∈ S2

sup(S1 � S2) = +∞ if 0 ∈ S2

If 0 ∈ S2, then S1 � S2 = [inf(S1)/ sup(S2),+∞)

and as some particular cases, we have for k 6= 0,

{k}� S2 = {x | x = k/s2,where s2 ∈ S2 \ {0}} with







inf({k}� S2) = k/ sup(S2)

sup({k}� S2) = k/ inf(S2)

and if 0 ∈ S2 then sup({k}� S2) = +∞

One has also as some particular case for k 6= 0,

S2 � {k} = {x | x = s2/k,where s2 ∈ S2} with







inf(S2 � {k}) = inf(S2)/k

sup(S2 � {k}) = sup(S2)/k

Examples:

[0.4, 0.6] � [0.1, 0.2] = [2, 6] because 0.4/0.2 = 2 and 0.6/0.1 = 6;

[0.4, 0.6] � {0.4} = [1, 1.5] because 0.4/0.4 = 1 and 0.6/0.4 = 1.5;

{0.8}� [0.2, 0.5] = [1.6, 4] because 0.8/0.2 = 4 and 0.8/0.5 = 1.6;

[0, 0.5] � [0.1, 0.2] = [0, 5]: [0, 0.5] � {0.4} = [0, 1.25] because 0/0.4 = 0 and 0.5/0.4 = 1.25;

[0.3, 0.9] � [0, 0.2] = [1.5,+∞) because 0.3/0.2 = 1.5 and since 0 ∈ (S2 = [0, 0.2]), sup([0.3, 0.9] �

[0, 0.2]) = +∞;

[0, 0.9] � [0, 0.2] = [0,+∞):

{0.7}�[0, 0.2] = [3.5,+∞) because 0.7/0.2 = 3.5 and 0 ∈ (S2 = [0, 0.2]), sup({0.7}�[0, 0.2]) = +∞;
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{0}� [0, 0.2] = [0,+∞): [0.3, 0.9] � {0} = +∞:

[0, 0.9] � {0} = +∞:

[0.2, 0.7] � [0, 0.8] = [0.25,+∞).

These operations can be directly extended for any types of sets (not necessarily sub-unitary subsets

as it will be shown in our general examples of section 6), but for simplicity, we will start the presentation

in the following section only for sub-unitary subsets.

Due to the fact that the fusion of imprecise information must also be included in the unit interval [0, 1]

as it happens with the fusion of precise information, if the masses computed are less than 0 one replaces

them by 0, and similarly if they are greater than 1 one replaces them by 1. For example (specifically in

our fusion context): [0.2, 0.4] � [0.5, 0.8] = [0.7, 1.2] will be forced to [0.7, 1].

6.4 Fusion of beliefs defined on single sub-unitary intervals

6.4.1 DSm rules of combination

Let’s now consider some given sources of information which are not able to provide us a specific/precise

mass mij ∈ [0, 1], but only an interval centered1 in mij , i.e. Iij = [mij − εij ,mij + εij ] where 0 ≤ εij ≤ 1

and Iij ⊆ [0, 1] for all 1 ≤ i ≤ k and 1 ≤ j ≤ d. The cases when Iij are half-closed or open are similarly

treated.

Lemma 1: if A,B ⊆ [0, 1] and α ∈ [0, 1] then:







inf(A�B) = inf(A) · inf(B)

sup(A�B) = sup(A) · sup(B)







inf(A⊕B) = inf(A) + inf(B)

sup(A⊕B) = sup(A) + sup(B)







inf(α ·A) = α · inf(A)

sup(α · A) = α · sup(A)







inf(α+A) = α+ inf(A)

sup(α+A) = α+ sup(A)

We can regard a scalar α as a particular interval [α, α], thus all operations of the previous lemma

are reduced to multiplications and additions of sub-unitary intervals. Therefore, the DSm general rule

(6.1), which operates (multiplies and adds) sub-unitary scalars, can be extended to operate sub-unitary

intervals. The formula (6.1) remains the same, but mi(Xi), 1 ≤ i ≤ k, are sub-unitary intervals Iij . The

1This interval centered assumption is not important actually but has been adopted here only for notational convenience.
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mass matrix M is extended to:

inf(M) =











m11 − ε11 m12 − ε12 . . . m1d − ε1d
m21 − ε21 m22 − ε22 . . . m2d − ε2d

. . . . . . . . . . . .

mk1 − εk1 mk2 − εk2 . . . mkd − εkd











sup(M) =











m11 + ε11 m12 + ε12 . . . m1d + ε1d

m21 + ε21 m22 + ε22 . . . m2d + ε2d

. . . . . . . . . . . .

mk1 + εk1 mk2 + εk2 . . . mkd + εkd











Notations: Let’s distinguish between DSm general rule for scalars, noted as usual mM(Θ)(A), or mi(Xi),

etc., and the DSm general rule for intervals noted as mI
M(Θ)(A), or mI

i (Xi), etc. Hence, the DSm general

rule for interval-valued masses is:

inf(mI
M(Θ)(A)) , φ(A)

[

Sinf
1 (A) + Sinf

2 (A) + Sinf
3 (A)

]

(6.5)

with

Sinf
1 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k∏

i=1

inf(mI
i (Xi))

Sinf
2 (A) ,

∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

inf(mI
i (Xi))

Sinf
3 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

k∏

i=1

inf(mI
i (Xi))

and

sup(mI
M(Θ)(A)) , φ(A)

[

Ssup
1 (A) + Ssup

2 (A) + Ssup
3 (A)

]

(6.6)

with

Ssup
1 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k∏

i=1

sup(mI
i (Xi))

Ssup
2 (A) ,

∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

sup(mI
i (Xi))

Ssup
3 (A) ,

∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

k∏

i=1

sup(mI
i (Xi))

Actually formula (6.5) results from applying the hybrid DSm rule for scalars to the matrix inf(M),

while formula (6.6) results from applying the hybrid DSm rule for scalars to the matrix sup(M). The
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bounds of the DSm classic rule for the free DSm model are given for all A ∈ DΘ by Sinf
1 (A) and Ssup

1 (A).

Combining (6.5) and (6.6), one gets directly:

mI
M(Θ)(A) = [inf mI

M(Θ)(A), supmI
M(Θ)(A)] (6.7)

Of course, the closeness of this interval to the left and/or to the right depends on the closeness of the

combined intervals Iij . If all of them are closed to the left, then mI
M(Θ)(A) is also closed to the left. But,

if at least one is open to the left, then mI
M(Θ)(A) is open to the left. Similarly for the closeness to the

right. Because one has ∀i = 1, . . . , k and ∀j = 1, . . . , d :

lim
εij→0

(inf(M)) = lim
εij→0

(sup(M)) = M (6.8)

It results the following theorem.

Theorem 1: ∀A ∈ DΘ, ∀i = 1, . . . , k and ∀j = 1, . . . , d, one has:

lim
εij→0

mI
M(Θ)(A) = [ lim

infij

(A), lim
supij

(A)] with







liminfij
(A) , limεij→0(inf(mI

M(Θ)(A)))

limsupij
(A) , limεij→0(sup(mI

M(Θ)(A)))

(6.9)

In other words, if all centered sub-unitary intervals converge to their corresponding mid points (the

imprecision becomes zero), then the DSm rule for intervals converges towards the DSm rule for scalars.

Normally we must apply the DSm classical or hybrid rules directly to the interval-valued masses, but

this is equivalent to applying the DSm rules to the inferior and superior bounds of each mass. If, after

fusion, the sum of inferior masses is < 1 (which occurs all the time because combining incomplete masses

one gets incomplete results) and the sum of superior masses is ≥ 1 (which occurs all the time because

combining paraconsistent masses one gets paraconsistent results), then there exist points in each resulted

interval-valued mass such that their sum is 1 (according to a continuity theorem - see section 6.5.2).

6.4.2 Example with the DSm classic rule

Let’s take back the previous example (see section 6.2.2), but let’s now suppose the sources of information

give at time t imprecise generalized basic belief assignments, i.e. interval-valued masses centered in the

scalars given in section 6.2.2, of various radii according to table 6.4.

Based on the free DSm model and the classical DSm rule applied to imprecise basic belief assignments

following the method proposed in previous section, one has:

mI(θ1) = [0.05, 0.15] � [0.4, 0.6] = [0.020, 0.090]

mI(θ2) = [0.1, 0.3] � [0.1, 0.5] = [0.010, 0.150]

mI(θ3) = [0.15, 0.45] � [0, 0.2] = [0, 0.090]
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A ∈ DΘ mI
1(A) mI

2(A)

θ1 [0.05, 0.15] [0.4, 0.6]

θ2 [0.1, 0.3] [0.1, 0.5]

θ3 [0.15, 0.45] [0, 0.2]

θ1 ∩ θ2 [0.2, 0.6] [0.05, 0.15]

Table 6.4: Inputs of the fusion with imprecise bba

mI(θ1 ∩ θ3) = [[0.05, 0.15] � [0, 0.2]] � [[0.4, 0.6] � [0.15, 0.45]] = [0, 0.030] � [0.060, 0.270] = [0.060, 0.300]

mI(θ2 ∩ θ3) = [[0.1, 0.3] � [0, 0.2]] � [[0.1, 0.5] � [0.15, 0.45]] = [0, 0.06] � [0.015, 0.225] = [0.015, 0.285]

mI(θ1 ∩ θ2 ∩ θ3) = [[0.15, 0.45] � [0.05, 0.15]] � [[0, 0.2] � [0.2, 0.6]]

= [0.0075, 0.0675] � [0, 0.12]

= [0.0075, 0.1875]

mI(θ1 ∩ θ2) = [[0.2, 0.6] � [0.05, 0.15]] � [[0.05, 0.15] � [0.05, 0.15]] � [[0.4, 0.6] � [0.2, 0.6]]�

[[0.1, 0.3] � [0.05, 0.15]] � [[0.1, 0.5] � [0.2, 0.6]]�

[[0.05, 0.15] � [0.1, 0.5]] � [[0.4, 0.6] � [0.1, 0.3]]

= [0.010, 0.90] � [0.0025, 0.0225] � [0.08, 0.36] � [0.005, 0.045]�

[0.02, 0.30] � [0.005, 0.075] � [0.04, 0.18] = [0.1625, 1.0725]≡ [0.1625, 1]

The last equality comes from the absorption of [0.1625, 1.0725] into [0.1625, 1] according to operations on

sets defined in this fusion context. Thus, the final result of combination mI(.) = [mI
1 ⊕mI

2](.) of these

two imprecise sources of evidence is given in table 6.5.

A ∈ DΘ mI(A) = [mI
1 ⊕mI

2](A)

θ1 [0.020, 0.090]

θ2 [0.010, 0.150]

θ3 [0, 0.090]

θ1 ∩ θ2 [0.1625, 1.0725→ 1]

θ1 ∩ θ3 [0.060, 0.300]

θ2 ∩ θ3 [0.015, 0.285]

θ1 ∩ θ2 ∩ θ3 [0.0075, 0.1875]

Table 6.5: Fusion with DSm classic rule for free DSm model

There exist some points, for example 0.03, 0.10. 0.07, 0.4, 0.1, 0.2, 0.1 from the intervals [0.020, 0.090], . . .,

[0.0075, 0.1875] respectively such that their sum is 1 and therefore the admissibility of the fusion result
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holds. Note that this fusion process is equivalent to using the DSm classic rule for scalars for inferior

limit and incomplete information (see table 6.6), and the same rule for superior limit and paraconsistent

information (see table 6.7).

A ∈ DΘ minf
1 (A) minf

2 (A) minf(A)

θ1 0.05 0.4 0.020

θ2 0.1 0.1 0.010

θ3 0.15 0 0

θ1 ∩ θ2 0.2 0.05 0.1625

θ1 ∩ θ3 0 0 0.060

θ2 ∩ θ3 0 0 0.015

θ1 ∩ θ2 ∩ θ3 0 0 0.0075

Table 6.6: Fusion with DSm classic rule on lower bounds

A ∈ DΘ msup
1 (A) msup

2 (A) msup(A)

θ1 0.15 0.6 0.090

θ2 0.3 0.5 0.150

θ3 0.45 0.2 0.090

θ1 ∩ θ2 0.6 0.15 1.0725→ 1

θ1 ∩ θ3 0 0 0.300

θ2 ∩ θ3 0 0 0.285

θ1 ∩ θ2 ∩ θ3 0 0 0.1875

Table 6.7: Fusion with DSm classic rule on upper bounds

6.4.3 Example with the hybrid DSm rule

Then, assume at time t+1, that one finds out for some reason that the free DSm model has to be changed

by introducing the constraint θ1 ∩ θ2 = ∅ which involves also θ1 ∩ θ2 ∩ θ3 = ∅. One directly applies the

hybrid DSm rule for set to get the new belief masses:

mI(θ1) = [0.020, 0.090] � [[0.05, 0.15] � [0.05, 0.15]] � [[0.4, 0.6] � [0.2, 0.6]]

= [0.020, 0.090] � [0.0025, 0.0225] � [0.08, 0.36] = [0.1025, 0.4725]
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mI(θ2) = [0.010, 0.150] � [[0.1, 0.3] � [0.05, 0.15]] � [[0.1, 0.5] � [0.2, 0.6]]

= [0.010, 0.150] � [0.005, 0.045] � [0.02, 0.30] = [0.035, 0.495]

mI(θ3) = [0, 0.090] � [[0.15, 0.45] � [0.05, 0.15]] � [[0, 0.2] � [0.2, 0.6]]

= [0, 0.090] � [0.0075, 0.0675] � [0, 0.12] = [0.0075, 0.2775]

mI(θ1 ∪ θ2) = [[02, 0.6] � [0.05, 0.15]] � [[0.05, 0.15] � [0.1, 0.5]] � [[0.4, 0.6] � [0.1, 0.3]]

= [0.010, 0.090] � [0.005, 0.075] � [0.04, 0.18] = [0.055, 0.345]

mI(θ1 ∩ θ2) = mI(θ1 ∩ θ2 ∩ θ3) = 0 by definition of empty masses (due to the choice of the hybrid

model M). mI(θ1 ∩ θ3) = [0.060, 0.300] and mI(θ2 ∩ θ3) = [0.015, 0.285] remain the same. Finally, the

result of the fusion of imprecise belief assignments for the chosen hybrid model M, is summarized in

table 6.8.

A ∈ DΘ mI(A) = [minf(A),msup(A)]

θ1 [0.1025, 0.4725]

θ2 [0.035, 0.495]

θ3 [0.0075, 0.2775]

θ1 ∩ θ2
M≡ ∅ [0, 0] = 0

θ1 ∩ θ3 [0, 060, 0.300]

θ2 ∩ θ3 [0.015, 0.285]

θ1 ∩ θ2 ∩ θ3
M≡ ∅ [0, 0] = 0

θ1 ∪ θ2 [0.055, 0.345]

Table 6.8: Fusion with hybrid DSm rule for model M

The admissibility of the fusion result still holds since there exist some points, for example 0.1, 0.3, 0.1,

0, 0.2, 0.1, 0, 0.2 from the intervals [0.1025, 0.4725], . . ., [0.055, 0.345] respectively such that their sum is

1. Actually in each of these examples there are infinitely many such groups of points in each respective

interval whose sum is 1. This can be generalized for any examples.

6.5 Generalization of DSm rules for sets

In this section, we extend the previous results on the fusion of admissible imprecise information defined

only on single sub-unitary intervals to the general case where the imprecision is defined on sets. In
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other words, in the previous section we dealt with admissible imprecise masses having the form mI(A) =

[a, b] ⊆ [0, 1], and now we deals with admissible imprecise masses having the form mI(A) = [a1, b1]∪ . . .∪
[am, bm]∪ (c1, d1)∪ . . .∪ (cn, dn)∪ (e1, f1]∪ . . .∪ (ep, fp]∪ [g1, h1)∪ . . .∪ [gq, hq)∪ {A1, . . . , Ar} where all

the bounds or elements involved into mI(A) belong to [0, 1].

6.5.1 General DSm rules for imprecise beliefs

From our previous results, one can generalize the DSm classic rule from scalars to sets in the following

way: ∀A 6= ∅ ∈ DΘ,

mI(A) =
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (6.10)

where
∑

and
∏

represent the summation, and respectively product, of sets.

Similarly, one can generalize the hybrid DSm rule from scalars to sets in the following way:

mI
M(Θ)(A) , φ(A) �

[

SI1 (A) � SI2 (A) � SI3 (A)
]

(6.11)

φ(A) is the characteristic non emptiness function of the set A and SI1 (A), SI2(A) and SI3 (A) are defined

by

SI1 (A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi) (6.12)

SI2 (A) ,
∑

X1,X2,...,Xk∈∅
[U=A]∨[(U∈∅)∧(A=It)]

∏

i=1,...,k

mI
i (Xi) (6.13)

SI3 (A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

∏

i=1,...,k

mI
i (Xi) (6.14)

In the case when all sets are reduced to points (numbers), the set operations become normal operations

with numbers; the sets operations are generalizations of numerical operations.

6.5.2 Some lemmas and a theorem

Lemma 2: Let the scalars a, b ≥ 0 and the intervals I1, I2 ⊆ [0, 1], with a ∈ I1 and b ∈ I2. Then

obviously (a+ b) ∈ I1 � I2 and (a · b) ∈ I1 � I2.

Because in DSm rules of combining imprecise information, one uses only additions and subtractions of

sets, according to this lemma if one takes at random a point of each mass set and one combines them
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using the DSm rules for scalars, the resulting point will belong to the resulting set from the fusion of

mass sets using the DSm rules for sets.

Lemma 3: Let Θ = {θ1, θ2, . . . , θn} and K ≥ 2 independent sources of information, and d = dim(DΘ).

By combination of incomplete information in DSmT, one gets incomplete information.

Proof: Suppose the masses of the sources of information on DΘ are for all 1 ≤ j ≤ K, represented

by the mass-vector mj = [mj1 ,mj2 , . . . ,mjd ] with 0 ≤ ∑d
r=1mjr < 1. According to the DSm network

architecture, no matter what DSm rule of combination is applied (classic or hybrid), the sum of all

resulted masses has the form:

K∏

j=1

(mj1 +mj2 + . . .+mjd) < (1× 1× . . .× 1
︸ ︷︷ ︸

K times

) = 1 (6.15)

Lemma 4: By combination of paraconsistent information, one gets paraconsistent information.

Proof: Using the same notations and similar reasoning, one has for all 1 ≤ j ≤ K, mj = [mj1 ,mj2 , . . . ,mjd ],

with
∑d

r=1mjr > 1. Then

K∏

j=1

(mj1 +mj2 + . . .+mjd) > (1× 1× . . .× 1
︸ ︷︷ ︸

K times

) = 1

Lemma 5: Combining incomplete (sum of masses < 1) with complete (sum of masses = 1) information,

one gets incomplete information.

Lemma 6: Combining complete information, one gets complete information.

Remark: Combining incomplete with paraconsistent (sum of masses > 1) information can give any

result. For example:

• If the sum of masses of the first source is 0.99 (incomplete) and the sum of masses of the second source

is 1.01 (paraconsistent), then the sum of resulted masses is 0.99× 1.01 = 0.9999 (i.e. incomplete)

• But if the first is 0.9 (incomplete) and the second is 1.2 (paraconsistent), then the resulted sum of

masses is 0.9× 1.2 = 1.08 (i.e. paraconsistent).

We can also have: incomplete information fusionned with paraconsistent information and get complete

information. For example: 0.8× 1.25 = 1.
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Admissibility condition:

An imprecise mass on DΘ is considered admissible if there exist at least a point belonging to [0, 1] in

each mass set such that the sum of these points is equal to 1 (i.e. complete information for at least a

group of selected points).

Remark: A complete scalar information is admissible. Of course, for the incomplete scalar information

and paraconsistent scalar information there can not be an admissibility condition, because by definitions

the masses of these two types of informations do not add up to 1 (i.e. to the complete information).

Theorem of Admissibility:

Let a frame Θ = {θ1, θ2, . . . , θn}, with n ≥ 2, its hyper-power set DΘ with dim(DΘ) = d, and K ≥ 2

sources of information providing imprecise admissible masses on DΘ. Then, the resulted mass, after

fusion of the imprecise masses of these sources of information with the DSm rules of combination, is also

admissible.

Proof: Let sj , 1 ≤ j ≤ K, be an imprecise source of information, and its imprecise admissible mass

mI
j = [mI

j1
,mI

j2
, . . . ,mI

jd
]. We underline that all mI

jr
, for 1 ≤ r ≤ d, are sets (not scalars); if there is a

scalar α, we treat it as a set [α, α]. Because mI
j is admissible, there exist the points (scalars in [0, 1])

ms
j1
∈ mI

j1
, ms

j2
∈ mI

j2
,. . . ,ms

jd
∈ mI

jd
such that

∑d
r=1m

s
j1

= 1. This property occurs for all sources of

information, thus there exist such points ms
jr

for any 1 ≤ j ≤ K and any 1 ≤ r ≤ d. Now, if we fusion,

as a particular case, the masses of only these points, using DSm classic or hybrid rules, and according to

lemmas, based on DSm network architecture, one gets complete information (i.e. sum of masses equals

to 1). See also Lemma 2.

6.5.3 An example with multiple-interval masses

We present here a more general example with multiple-interval masses. For simplicity, this example is a

particular case when the theorem of admissibility is verified by a few points, which happen to be just on

the bounders. More general and complex examples (not reported here due to space limitations), can be

given and verified as well. It is however an extreme example, because we tried to comprise all kinds of

possibilities which may occur in the imprecise or very imprecise fusion. So, let’s consider a fusion problem

over Θ = {θ1, θ2}, two independent sources of information with the following imprecise admissible belief

assignments
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A ∈ DΘ mI
1(A) mI

2(A)

θ1 [0.1, 0.2] ∪ {0.3} [0.4, 0.5]

θ2 (0.4, 0.6) ∪ [0.7, 0.8] [0, 0.4] ∪ {0.5, 0.6}

Table 6.9: Inputs of the fusion with imprecise bba

Using the DSm classic rule for sets, one gets

mI(θ1) = ([0.1, 0.2] ∪ {0.3}) � [0.4, 0.5]

= ([0.1, 0.2] � [0.4, 0.5]) ∪ ({0.3}� [0.4, 0.5])

= [0.04, 0.10]∪ [0.12, 0.15]

mI(θ2) = ((0.4, 0.6) ∪ [0.7, 0.8]) � ([0, 0.4] ∪ {0.5, 0.6})

= ((0.4, 0.6) � [0, 0.4]) ∪ ((0.4, 0.6) � {0.5, 0.6})∪ ([0.7, 0.8] � [0, 0.4]) ∪ ([0.7, 0.8] � {0.5, 0.6})

= (0, 0.24) ∪ (0.20, 0.30)∪ (0.24, 0.36)∪ [0, 0.32]∪ [0.35, 0.40]∪ [0.42, 0.48]

= [0, 0.40] ∪ [0.42, 0.48]

mI(θ1 ∩ θ2) = [([0.1, 0.2] ∪ {0.3}) � ([0, 0.4] ∪ {0.5, 0.6})] � [[0.4, 0.5] � ((0.4, 0.6) ∪ [0.7, 0.8])]

= [([0.1, 0.2] � [0, 0.4]) ∪ ([0.1, 0.2] � {0.5, 0.6})∪ ({0.3}� [0, 0.4]) ∪ ({0.3}� {0.5, 0.6})]

� [([0.4, 0.5] � (0.4, 0.6)) ∪ ([0.4, 0.5] � [0.7, 0.8])]

= [[0, 0.08]∪ [0.05, 0.10]∪ [0.06, 0.12]∪ [0, 0.12] ∪ {0.15, 0.18}] � [(0.16, 0.30)∪ [0.28, 0.40]]

= [[0, 0.12]∪ {0.15, 0.18}] � (0.16, 0.40]

= (0.16, 0.52]∪ (0.31, 0.55]∪ (0.34, 0.58]

= (0.16, 0.58]

Hence finally the fusion admissible result is given by:

A ∈ DΘ mI(A) = [mI
1 ⊕mI

2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]

θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2 (0.16, 0.58]

θ1 ∪ θ2 0

Table 6.10: Fusion result with the DSm classic rule
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If one finds out that θ1 ∩ θ2
M≡ ∅ (this is our hybrid model M one wants to deal with), then one uses the

hybrid DSm rule for sets (6.11): mI
M(θ1 ∩ θ2) = 0 and mI

M(θ1 ∪ θ2) = (0.16, 0.58], the others imprecise

masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]

θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2
M≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

Table 6.11: Fusion result with the hybrid DSm rule for M

Let’s check now the admissibility conditions and theorem. For the source 1, there exist the pre-

cise masses (m1(θ1) = 0.3) ∈ ([0.1, 0.2] ∪ {0.3}) and (m1(θ2) = 0.7) ∈ ((0.4, 0.6) ∪ [0.7, 0.8]) such

that 0.3 + 0.7 = 1. For the source 2, there exist the precise masses (m1(θ1) = 0.4) ∈ ([0.4, 0.5]) and

(m2(θ2) = 0.6) ∈ ([0, 0.4] ∪ {0.5, 0.6}) such that 0.4 + 0.6 = 1. Therefore both sources associated with

mI
1(.) and mI

2(.) are admissible imprecise sources of information.

It can be easily checked that the DSm classic fusion of m1(.) and m2(.) yields the paradoxical basic

belief assignment m(θ1) = [m1 ⊕ m2](θ1) = 0.12, m(θ2) = [m1 ⊕ m2](θ2) = 0.42 and m(θ1 ∩ θ2) =

[m1 ⊕m2](θ1 ∩ θ2) = 0.46. One sees that the admissibility theorem is satisfied since (m(θ1) = 0.12) ∈
(mI(θ1) = [0.04, 0.10]∪ [0.12, 0.15]), (m(θ2) = 0.42) ∈ (mI(θ2) = [0, 0.40]∪ [0.42, 0.48]) and (m(θ1 ∩θ2) =

0.46) ∈ (mI(θ1 ∩ θ2) = (0.16, 0.58]) such that 0.12 + 0.42 + 0.46 = 1. Similarly if one finds out that

θ1 ∩ θ2 = ∅, then one uses the hybrid DSm rule and one gets: m(θ1 ∩ θ2) = 0 and m(θ1 ∪ θ2) = 0.46; the

others remain unchanged. The admissibility theorem still holds.

6.6 Conclusion

In this chapter, we proposed from the DSmT framework, a new general approach to combine, imprecise,

uncertain and possibly paradoxical sources of information to cover a wider class of fusion problems. This

work was motivated by the fact that in most of practical and real fusion problems, the information is

rarely known with infinite precision and the admissible belief assignment masses, for each element of the

hyper-power set of the problem, have to be taken/chosen more reasonably as sub-unitary (or as a set of

sub-unitary) intervals rather than a pure and simple scalar values. This is a generalization of previous

available works proposed in literature (mainly IBS restricted to TBM framework). One showed that it

is possible to fusion directly interval-valued masses using the DSm rules (classic or hybrid ones) and

the operations on sets defined in this work. Several illustrative and didactic examples have been given
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throughout this chapter to show the application of this new approach. The method developed here can

also combine incomplete and paraconsistent imprecise, uncertain and paradoxical sources of information

as well. This approach (although focused here only on the derivation of imprecise basic belief assignments)

can be extended without difficulty to the derivation of imprecise belief and plausibility functions as well

as to imprecise pignistic probabilities according to the generalized pignistic transformation presented in

chapter 7. This work allows the DSmT to cover a wider class of fusion problems.
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