## Elementary Functions

Part 5, Trigonometry
Lecture 5.2a, Double Angle and Power Reduction Formulas

In the previous presentation we developed formulas for $\cos (\alpha+\beta)$ and $\sin (\alpha+\beta)$
These formulas lead naturally to another set of identities involving double angles power reduction and half-angles.

Double-angle \& power-reduction identities

Recall the sum-of-angle identities from an earlier presentation:

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
$$

If we replace $\alpha$ and $\beta$ with the same angle, $\theta$, these identities describe the sine and cosine of $2 \theta$, expressing trig functions of a doubled angle in terms of the original.

$$
\begin{gather*}
\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta  \tag{1}\\
\sin (2 \theta)=2 \sin \theta \cos \theta \tag{2}
\end{gather*}
$$

The equation

$$
\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta
$$

is particularly applicable.
It can be used to reduce the power on cosine and sine.
For example, suppose we add this equation to the Pythagorean Identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

$$
\begin{gathered}
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
1=\cos ^{2} \theta+\sin ^{2} \theta .
\end{gathered}
$$

We get

$$
1+\cos 2 \theta=2 \cos ^{2} \theta
$$

After dividing by 2 , we obtain an equation for $\cos ^{2} \theta$.

$$
\begin{equation*}
\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) \tag{3}
\end{equation*}
$$

In a similar manner, we could subtract the double angle formula from the Pythagorean identity:

$$
\begin{gathered}
1=\cos ^{2} \theta+\sin ^{2} \theta \\
-\left(\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\right)
\end{gathered}
$$

getting $2 \sin ^{2} \theta=1-\cos 2 \theta$.
After dividing both sides by 2 we have a formula for $\sin ^{2} \theta$ :

$$
\begin{equation*}
\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \tag{4}
\end{equation*}
$$

## Double-angle \& power-reduction identities

$$
\begin{aligned}
& \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) \\
& \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)
\end{aligned}
$$

These formulas are sometimes called "power reduction formulas" because they often allow us reduce the power on one of the trig functions, if the power is an even integer.

For example, we can reduce $\cos ^{4} x=\left(\cos ^{2} x\right)^{2}$ by substituting for $\cos ^{2} x$ and then expanding the expression.

## Sum and Difference Formulas

$\cos ^{4} x=\left(\frac{1+\cos 2 x}{2}\right)^{2}=\frac{1}{4}\left(1+2 \cos 2 x+\cos ^{2} 2 x\right)=\frac{1}{4}\left(1+2 \cos 2 x+\left(\frac{1+\cos }{2}\right.\right.$
We may simplify the last expression by using the common denominator 8 and so write:

$$
\left.\cos ^{4} x=\frac{1}{8}(3+4 \cos 2 x+\cos 4 x)\right)
$$

## Half-angle formulas

The power reduction formulas can also be interpreted as half-angle formulas. Consider again the power reduction formulas

$$
\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) \text { and } \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) .
$$

Replace $2 \theta$ by $\alpha$ (and replace $\theta$ by $\frac{1}{2} \alpha$.) Now our equations are

$$
\cos ^{2}\left(\frac{\alpha}{2}\right)=\frac{1}{2}(1+\cos \alpha)
$$

and

$$
\sin ^{2}\left(\frac{\alpha}{2}\right)=\frac{1}{2}(1-\cos \alpha)
$$

Now take square roots of both sides:

$$
\begin{align*}
& \cos \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1}{2}(1+\cos \alpha)}  \tag{5}\\
& \sin \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1}{2}(1-\cos \alpha)} \tag{6}
\end{align*}
$$

## Half-angle formulas

## Some worked problems

$$
\begin{aligned}
& \cos \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1}{2}(1+\cos \alpha)} \\
& \sin \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1}{2}(1-\cos \alpha)}
\end{aligned}
$$

If we want an equation for $\tan \left(\frac{\alpha}{2}\right)$ we divide $\sin \frac{\alpha}{2}$ by $\cos \frac{\alpha}{2}$ to get

$$
\begin{equation*}
\tan \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}} \tag{7}
\end{equation*}
$$

Use half-angle formulas to find the exact value of $\cos \frac{\pi}{12}$.
Solution. We view $\pi / 12$ as half of the angle $\alpha=\pi / 6$. So using the half-angle formula for cosine, with $\alpha=\pi / 6$, we have $\cos \left(\frac{\pi}{12}\right)=\sqrt{\frac{1+\cos (\pi / 6)}{2}}=\sqrt{\frac{1+\sqrt{3} / 2}{2}}=\sqrt{\frac{2+\sqrt{3}}{4}}=\frac{\sqrt{2+\sqrt{3}}}{2}$.

Use half-angle formulas to find the exact value of $\sin \frac{\pi}{12}$.
Solution. Again we view $\pi / 12$ as half of the angle $\alpha=\pi / 6$ and here we use half-angle formula for sine.

$$
\sin \left(\frac{\pi}{12}\right)=\sqrt{\frac{1-\cos (\pi / 6)}{2}}=\sqrt{\frac{1-\sqrt{3} / 2}{2}}=\sqrt{\frac{2-\sqrt{3}}{4}}=\frac{\sqrt{2-\sqrt{3}}}{2} .
$$

Use half-angle formulas to find the exact value of $\cos \frac{\pi}{24}$.
Solution. The angle $\pi / 24$ is half of the angle $\alpha=\pi / 12$. Fortunately we just computed the cosine and sine of $\pi / 12$ so we can use the half-angle formula again:

$$
\begin{aligned}
& \cos \left(\frac{\pi}{24}\right)=\sqrt{\frac{1+\cos (\pi / 12)}{2}}=\sqrt{\frac{1+\frac{\sqrt{2+\sqrt{3}}}{2}}{2}} \\
& \quad=\sqrt{\frac{2+\sqrt{2+\sqrt{3}}}{4}}=\frac{\sqrt{2+\sqrt{2+\sqrt{3}}}}{2}
\end{aligned}
$$

## Some worked problems

Use half-angle formulas to find the exact value of $\sin \frac{\pi}{24}$.

## Solution.

$\sin \left(\frac{\pi}{24}\right)=\sqrt{\frac{1-\cos (\pi / 12)}{2}}=\sqrt{\frac{1-\frac{\sqrt{2+\sqrt{3}}}{2}}{2}}=\frac{\sqrt{2-\sqrt{2+\sqrt{3}}}}{2}$.

Is there a pattern to the formula for sine and cosine if we start at $\pi / 6$ and keep cutting the angle in half?

$$
\begin{gathered}
\sin \left(\frac{\pi}{12}\right)=\frac{\sqrt{2-\sqrt{3}}}{2} \\
\sin \left(\frac{\pi}{24}\right)=\frac{\sqrt{2-\sqrt{2+\sqrt{3}}}}{2}
\end{gathered}
$$

Since the sine function helps give us a chord on the circle, we could then develop a formula for the circumference of a circle and then develop, from that, a formula for $\pi$.

Archimedes did this by (essentially) computing $\sin \left(\frac{\pi}{96}\right)!$

```
Sum and Difference Formulas
```

In the next presentation we look at the Law of Sines.
(End)

