
 Energy Procedia 17 (2012) 1945 – 1952

1876-6102 © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Hainan University.
doi: 10.1016/j.egypro.2012.02.337

2012 International Conference on Future Electrical Power and Energy Systems

A Method to Improve the Interacting between MATLAB and
NI-DAQmx

Yimeng Chen,Xuelian Li
Experiment and Training Cente,HuBei University of Technology,Wuhan, HuBei Province, China

Yimeng.chen@gmail.com

Abstract

This paper propose a method to improve the interacting between MATLAB and NI-DAQmx, we built a new Matlab
toolkit for data acquisition using the NI-DAQmx drivers. With this toolkit Matlab can support the full functionality of
NI-DAQmx and the data acquisition will be more stabile and effective.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer]

Keywords:MATLAB, NI-DAQmx ANSI C API

1.Introduction

 MATLAB and NI-DAQmx are both widely used softwares. MATLAB provides Toolbox to interact
with NI-DAQmx , but a lot of situations should be considered while using it. Here we give a new
alternative method to solve those problems.

1.1.MATLAB

MATLAB is a numerical computing environment used frequently in research and education.It
allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation
of user interfaces, and interfacing with programs written in other languages, including C, C++,
and Fortran.It has powerful ability in data acquisition, data analysis, and application development as a
single environment. It’s Data Acquisition Toolbox supports the instruments developed by National
Instruments using the hardware driver NI-DAQmx or traditional NI-DAQ.

Available online at www.sciencedirect.com

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Hainan University.
Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

1946 Yimeng Chen and Xuelian Li / Energy Procedia 17 (2012) 1945 – 1952

1.2.NI-DAQmx

 NI-DAQmx is one of the best driver softwares goes far beyond a basic data acquisition driver to
deliver increased productivity and performance in data acquisition and control application development.
NI-DAQmx controls every aspect of the DAQ system (including NI signal conditioning devices), from
configuration, to programming in LabVIEW, to low-level operating system and device control. Quickly
gather real-world data with measurement-ready virtual channels and DAQ Assistant. It supports NI
LabVIEW, NI LabVIEW SignalExpress, NI LabWindows/CVI, C/C++, Visual Basic, Visual Basic .NET,
and C#.

1.3.NiMex

NiMex is a Matlab toolkit for data acquisition, using the NI-DAQmx drivers from National
Instruments. The functionality of the drivers is exposed through and wrapped by C code. It provides
relatively direct and straight-forward access to the National Instruments NI-DAQmx ANSI C driver API.

2.NiMex Overview

2.1.What is NiMex?

 As we said before, NiMex provides relatively direct and straight-forward access to the National
Instruments NI-DAQmx ANSI C driver API. It is made accessible to Matlab via MEX functions. The
MEX functions are further wrapped by Matlab classes @nimex and @nimexEngine.
It provides access to the NI-DAQmx via a set of Matlab MEX functions that act as wrappers for the API.
Whenever possible, consistent naming conventions were used.
 In case of confusing, following is a note of naming conventions.

 NiMex refers to whole package, including C-functions and the Matlab classes;
NIMEX refers to the C-code only;
@nimex and @nimexEngine are Matlab classes;
All other forms are assumed to refer to Matlab code.

2.2.The advantages of NiMex

 Performance
 The Matlab daqtoolbox must work with drivers from multiple vendors, which is associated with
considerable overhead (such as emulating hardware behavior in software, to ensure it works the same
across devices).
 NiMex is not subject to these constraints. NiMex therefore shows much improved efficiency and
stability.
 2. Reliability

Event-driven programming also gets around some of the limitations imposed by Matlab's single-
threadedness. However, the passing of events from NI-DAQmx into Matlab is non-deterministic in the
Matlab daqtoolbox.

In contrast, NiMex event callbacks are guaranteed to execute in the order that they are generated.
This is a crucial feature when writing event-driven software, which is a standard model of efficient
programming for GUIs, hardware sensors, and multiple threads.
 3. Support

 Yimeng Chen and Xuelian Li / Energy Procedia 17 (2012) 1945 – 1952 1947

The problem we meet the most is that the adapting of Matlab daqtoolbox seldom keep up with the the
new NI-DAQmx standard. Furthermore, support for the full functionality is not planned.

As an extensible, open-source package, NiMex provides access to the full capabilities of the data
acqusition hardware. It also provides the possibility to add new functions or make changes based on the
requirements.
 4. Functionality

 NiMex supports all of the functions provided by the Matlab daqtoolbox and significantly more.
For example, NiMex supports the use of counter/timers and buffered/clocked digital I/O (as opposed

to static lines that can only be updated once per functional call). These features allow a single board to do
significantly more work than an equivalent board under the control of the Matlab daqtoolbox.
 Some extra concepts and features were added on top of the standard NI-DAQmx model to help
design event-driven (asynchronous) applications. These include new event-driven callbacks, enhanced
state information, the ability to re-use a task, a flexible 'data source' model (allowing both arrays of data
and runtime callbacks which generate data on the fly). Additional features, including Matlab-configurable
C-level data preprocessors, generators, and listeners, could be easily implemented. Because NiMex is
open source, it may be easily expanded or modified to suit a specific goal.

3.Two key parts of NiMex

As mentioned before, NiMex mainly consists of two parts, c-function and Matlab classes named of
NIMEX and @nimex. There are more details of those important two parts.

3.1.NIMEX

 How to build NIMEX
 The class used in NIMEX follows the NI-DAQmx task model. Any given data acquisition subsystem
action is represented by a task. The task is created, its parameters are set (this configures the task for the
desired measurement), the task is started (data is collected or sent), the task is stopped. The nimex task is
re-usable, each subsequent use applies the current parameters, a task may be configured once and used
many times.

Each task consists of a set of task-specific properties (task properties), channel-specific properties
(channel properties), and registered callbacks. In addition, a task contains internal variables in the C code
(not exposed to Matlab).In terms of design patterns, the publisher/subscriber pattern and visitor pattern
are used extensively. Understanding these will help with following the general model of control flow
throughout the code.

The registered callbacks require further comment: The NI-DAQmx library provides access to events
which may cause code to be executed upon their occurence. Specifically, it provides an EveryN event
(which is initiated after every N samples are aqcuired/sent) and a done event (which is initiated when the
task has completed). The @nimex class allows multiple Matlab functions to be tied to each of these
events. To tie a Matlab function to an event, a function_handle must be passed to the appropriate 'bind'
function. If arguments are required for the Matlab code, a cell array may be provided instead. The cell
array's first element must be a function_handle (the function to be executed), all subsequent elements will
be passed into the called function as arguments. The @nimex class does not pass any of its own
arguments when calling event, it is the responsibility of the registering code to specify all arguments.

 The libraries required in NIMEX
 The National Instruments NI-DAQmx ANSI C library and the Matlab C development (MEX) library
are required to build NIMEX. These are included with the National Instruments NI-DAQmx driver
installation and Matlab installation, respectively.

1948 Yimeng Chen and Xuelian Li / Energy Procedia 17 (2012) 1945 – 1952

Low-level data structures are currently handled by GLib (not to be confused with glibc, the core of
the Linux kernel), which is part of the larger GTK+ and GNOME libraries. The utility library, GLib, is
thinly wrapped, mostly using compile time replacements through macros. This allows it to be relatively
easily swapped with another library (requiring changes in only two files). The datastructures which are
used from GLib include hash tables and linked lists. In the future, multithreading may be made to depend
on this library as well.
 The Microsoft Windows Server 2003 Platform SDK is required for use with Windows. This is not
included as part of Microsoft Visual C/C++ (nether the full version nor the Express Edition). It is a rather
large and tedious download, but is a one-time affair when setting up a build environment. The
requirement of the Platform SDK is for the Windows message passing functionality. It is needed to
implement cross-thread callbacks to Matlab (as discussed further below).

3.2.@nimex Class

 @nimex class is relatively simple in Matlab, the majority of the work and data structures exist on the
C side of the implementation. The core of the class is the field called NIMEX_TaskDefinition. This is
really a C pointer that has been packed into a Matlab variable, so the structures in C may be referenced
across calls to different Mex functions.
 The following is a rough inventory of the @nimex class, including the fields, methods and the C
structures. At the end are two pieces of Demo script.
 Fields

TABLE I FIELDS OF @NIMEX

NIMEX_
TaskDefinition

The Matlab packed C pointer to the underlying
structure

valid An internal flag used to indicate if this task is properly
instantiated in C

instantiationTime A timestamp, recording when this task was created
instantiationStack A debugging tool, the call stack leading up to the task

creation
 Method

 nimex.m - Constructor.
task = nimex;

 nimex_addAnalogInput.m - Adds an analog input channel to the task.
nimex_addAnalogInput(task, '/dev1/ai0');

 nimex_addAnalogOutput.m - Adds an analog output channel to the task.
 nimex_addAnalogOutput(task, '/dev1/ao0');

 nimex_addDigitalOutput.m - Adds a digital output channel to the task.
 nimex_addDigitalOutput(task, '/dev1/port0/line0:7');

 nimex_addDigitalInput.m - Adds a digital input channel to the task.
 nimex_addDigitalInput(task, '/dev1/port0/line0:7');

 nimex_bindEveryNCallback.m - Registers a Matlab variable (most commonly a
function_handle or a cell array whose first element is a function_handle) to be passed to `feval`
when the everyN event occurs.
 nimex_bindEveryNCallback
(task, {@samplesAcquiredFcn, task, 1000}, 'bindEveryNCallbackImplementation', 0);

 nimex_bindDoneCallback.m - Registers a Matlab variable (most commonly a function_handle
or a cell array whose first element is a function_handle) to be passed to `feval` when the done
event occurs.

 Yimeng Chen and Xuelian Li / Energy Procedia 17 (2012) 1945 – 1952 1949

 nimex_bindDoneCallback(task, {@acquisitionComplete, task},
'doneCallbackImplementation', 0);

 nimex_delete.m - Clears the task from memory (frees all associated resources immediately.
nimex_delete(task);

 nimex_display.m - Displays the details of the task to the Matlab command-line.
nimex_display(task);

 nimex_getChannelProperty.m - Retrieves the current value for a channel property (or set of
properties).
bufferSize = nimex_getChannelProperty(task, '/dev1/ao1', 'dataBufferSize');

 nimex_getTaskProperty.m - Retrieves the current value for a task property (or set of
properties).
 [sampleRate, triggerSource] = nimex_getTaskProperty(task, 'samplingRate',
'triggerSource');

 nimex_setChannelProperty.m - Sets the current value for a channel property (or set of
properties)..
 nimex_setChannelProperty(task, '/dev1/ao1', 'mnemonicName', 'stimChan1');

 nimex_setTaskProperty.m - Sets the current value for a task property (or set of properties).
 nimex_setTaskProperty(task, 'samplingRate', 10000, 'triggerSource',

'/dev1/PFI0')

 nimex_readAnalogF64.m - Reads analog data in float64 (Matlab 'double') format.
 data = nimex_readAnalogF64(task, 10000);

 nimex_readDigitalU32.m - Reads digital data in uInt32 (Matlab 'uint32') format.
 data = nimex_readDigitalU32(task, 10000);

 nimex_writeAnalogF64.m - Writes analog data in float64 (Matlab 'double') format.
 nimex_writeAnalogF64(task, '/dev1/ao0', data);

 nimex_writeDigitalU32.m - Writes digital data in uInt32 (Matlab 'uint32') format.
 nimex_writeDigitalU32(task, '/dev2/port0/line0:7', data);

 nimex_sendTrigger.m - A convenience method for sending a digital pulse. May be deprecated
in the near future.
 nimex_sendTrigger(task, '/dev1/port0/line0:7');

 nimex_startTask.m - Begins executing the task (however a trigger condition may still need to
be met before any data transfer actually begins).
 nimex_startTask(task);

 nimex_stopTask.m - Stops a task. The task may be restarted at some point in the future.
 nimex_stopTask(task);

1950 Yimeng Chen and Xuelian Li / Energy Procedia 17 (2012) 1945 – 1952

3.3.C Structures

The follwing are some of the important data structures in the libraries.
• NIMEX_channelDefinition

TABLE II DATA STRUCTURE I

DATA STRUCTURE DATA
int32 channelType
int32 terminalConfig
int32 units
float64 minVal
float64 maxVal
void* dataBuffer
uInt64 dataBufferSize
char* mnemonicName
char* physicalChannel

• NIMEX_taskDefinition

TABLE III DATA STRUCTURE II

DATA STRUCTURE DATA
TaskHandle* TaskHandle
NIMEX_ChannelList* Channels
char* ClockSource
int32 clockActiveEdge
char* clockExportTerminal
mxArray* userData
HANDLE mutex
char* triggerSource
int32 timeout
NIMEX_CallbackSet* everyNCallbacks
NIMEX_CallbackSet* doneCallbacks
int32 lineGrouping
float64 samplingRate
int32 sampleMode
uInt64 sampsPerChanToAcquire
int32 triggerEdge
uInt32 pretriggerSamples
int32 started
uInt32 everyNSamples
uInt32 repeatOutput

 Demo Script

Here we provide a piece of demo scripts as an example .It shows the basic function of nimex.

 Yimeng Chen and Xuelian Li / Energy Procedia 17 (2012) 1945 – 1952 1951

function nimexDemo

menuString = sprintf('\nChoose a feature to demonstrate:\n\t[1]
Analog Input Demo\n\t[2] Analog Output Demo\n\t[3] Triggering
Demo\n\t[4] Clock Synchronization Demo\n\t[5] Continuous
Acquisition Demo\n\t[6] Digital Output Demo\n\t[q]
Quit\n\n\tSelection: ');

again = 1;
while again
 choice = lower(input(menuString, 's'));

 try
 switch choice
 case '1'
 analogInputDemo;
 case '2'
 analogOutputDemo;
 case '3'
 triggeringDemo;
 case '4'
 clockSyncDemo;
 case '5'
 continuousDemo;
 case '6'
 digitalOutputDemo;
 case 'q'
 clear mex;
 return;
 otherwise
 fprintf(2, '\nUnrecognized option ''%s''\n\n', choice);
 end
 catch
 fprintf(2, 'An error occurred while executing a specific
demonstration: %s', lasterr);
 clear mex;
 return;
 end

4.Some necessary hints

4.1.Memory Consideration

Because the code underlying the class is in C, memory management needs to be taken into
consideration. Matlab does not provide explicit signals for when it is safe to free memory that has been
allocated in mex functions, other than when mex functions are completely cleared. Because of this, it
becomes necessary to explicitly release @nimex resources when they are no longer needed. The
nimex_delete.m method will free all resources associated with a specific task. Any future attempts to use
a deleted task will result in undefined behavior (and likely a segmentation violation will be issued). It is

1952 Yimeng Chen and Xuelian Li / Energy Procedia 17 (2012) 1945 – 1952

important to delete a task when it is no longer needed, but not before.
 All memory allocated by the nimex API is tracked by the API. Because variables do not naturally
persist across mex files, the pointer to the memory manager is stored inside Matlab (similar to how a
pointer to each nimex task is stored in a field of the class). To make this memory manager globally
accesible to all nimex mex files, it is stored in a global variable. Any tampering with this variable will
result in unspecified behavior (and will likely cause a segmentation violation, corrupt data structures, or
crash Matlab). For reference, the variable is called "NIMEX_GLOBAL_PERSISTENCE_LIST". But, it
should never be accessed outside of the nimex C code (and even then, it should never be accessed outside
of NIMEX_memManagement.c).

Clearing all global variables before deleting all nimex task instances or clearing all mex files will
result in a memory leak.

4.2.Necessary knowledge of NiMex

 Familiarity with the daqtoolbox and/or NI-DAQmx libraries is helpful, but not necessary. Where
possible, parameters in the @nimex class are mapped directly to their NI-DAQmx equivalents. An
understanding of object-oriented programming in general, and Matlab's implementation of object oriented
programming in particular, is required for a full understanding and effective use of the code. A discussion
of these topics can be found in the Matlab documentation itself ('Using object-oriented programming in
MATLAB').

References

[1] http://www.ni.com/
[2] Data Acquisition Toolbox, http://www.mathworks.cn/

