
Chapter 1 - Development Setup of Angular

Objectives
Key objectives of this chapter

 Angular Files and Dependencies
 Node.js
 Node package manager (npm)
 package.json
 Semantic version numbers
 Installing Angular
 Application Dependencies
 Module Loaders

1.1 Angular is Modular
 The process for downloading and adding the framework to your web 

application has changed completely with Angular.
 The previous version of Angular - AngularJS consisted of a single main 

*.js file and a few optional files:
angular.js
angular-route.js (optional)

 Angular on the other hand consists of various modules, each located in 
their own directory:
@angular\common
@angular\core
@angular\forms
@angular\http
@angular\platform-browser
@angular\router
etc.

 For Angular development these modules should be installed locally



1.2 Managing Angular Files and Dependencies
 Not only does Angular consist of many separate files it also relies upon 

various other JavaScript packages including:
◊ polyfill libraries
◊ module loaders
◊ asynchronous programming libraries

 Downloading all of these files separately would be difficult and inefficient.
 Node Package Manager (npm) is used to simplify:
◊ Downloading of Angular and related files
◊ Management of local file versions

 Node Package Manager is a part of a JavaScript development platform 
called Node.js

 Before moving on we will review Node.js and Node Package Manager 
basics 

1.3 What is Node.js?
 Node.js is an application development platform 
 Node applications:
◊ Are written in JavaScript
◊ Are run from a command prompt and not in a browser

 The Node environment:
◊ Is event driven
◊ Is single threaded
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◊ Is non-blocking 
◊ Follows an asynchronous programming paradigm

 Many code libraries (packages) are available for Node development 
 Node Package Manager (NPM) is used to install packages and manage 

dependencies for Node based applications
 More information is available at: https://nodejs.org

1.4 Application of Node.js
 Node.js is used to create all kinds of applications:
◊ Server applications are created using the Node.js based server 

frameworks such as Express
◊ Desktop Applications can be created using Node.js based desktop 

frameworks like Electron and NW.js (node-webkit)
◊ Command line tools created with Node.js include the following:

 Bower package manager
 Grunt and Gulp task runners
 Jasmine testing framework
 Karma test runner

◊ Angular web development makes use of command line tools like these 
as well as the npm package manager itself.

1.5 Installing Node.js and NPM
 Node and NPM are easy to install
 Windows and Mac installer packages can be downloaded from nodejs.org. 
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 NPM is installed along with the Node.js installation
 After installation check that node and npm are working:
◊ Open a command prompt to any directory.
◊ Check Node:

node --version
◊ Check NPM: 

npm  --version

1.6 "Hello World!" Node app
 Below is a "Hello World" application for Node.js.
 It defines a function and a variable and then calls the function.

// app.js file
var message = "Hello World from Node!";
function display(text){
    console.log(text);
}
display(message);

 The application is run from the command prompt:
node app.js

 Its output appears like this:
Hello World from Node!

 Node.js can be used like this to test select pieces of code before inserting 
them into web applications. 
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1.7 Node Libraries
 The following Node.js app uses the colors code library to output text in 

various colors:
// colorapp.js file
var color = require('colors');
var message = "Hello World from Node!";
function displayInRed(text){
    console.log(text.red);
}
displayInRed(message);

 Code libraries are included using the require() function
var color = require('colors');

 Many libraries are available, see: 
https://www.npmjs.com/browse/depended

1.8 Node Package Manager (NPM)
 Code libraries, called packages, are installed with the npm package mgr. 
 NPM uses simple commands like the following to install packages from a 

central repository on the web maintained by node.org:
npm install jquery
npm install -g gulp

 The -g parameter installs the specified package in a central location on 
the development machine. It is typically used to install large shared code 
libraries or node applications that include command line interfaces.

 When the -g parameter is not used packages are installed in a local sub-
directory named node_modules
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 When npm is run without a package name it looks for a file named 
package.json file in the local directory that includes the required 
information.
npm install 

 Using the package.json file multiple libraries can be installed at once

1.9 Package.json
 The package.json file includes names and versions of packages you wish 

to install in its dependencies section:
"dependencies": {
   "colors": "1.1.2",
   "lodash": "4.17.3"
},

 The package.json containing the above dependencies section is used to 
install two packages at once, the colors package and the lodash 
package.

 Notice how the required version number is supplied for each package. 

1.10 Semantic Version Numbering
 Node Package Manager makes use of semantic version numbering. 
 Semantic version numbers let you specify the exact major, minor and 

patch releases for a package
 Take for example the following package dependency:

 "lodash": "4.17.3"
 Here the major release number is 4, the minor release is 17 and the patch 

release number is 3.
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 Release numbers are changed for specific reasons:
◊ Major release number are changed when a release includes "breaking" 

changes.
◊ Minor release numbers are changed when new features are added 

while backward compatibility with earlier versions is maintained
◊ Patch release numbers are changed when a new version includes 

mostly bug fixes while maintaining backward compatibility with earlier 
versions  

1.11 Package Version Numbering Syntax
 When entering a package version number in the package.json file you can 

request a specific version or allow NPM to return the latest major, minor or 
patch release:

What you need How to specify (example)
Exact version 2.1.5
Latest patch release 2.1

2.1.x
 ~2.1.0

Latest minor release 2
2.x
^2.0.0

Latest major release *
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1.12 Updating Packages
 As newer package versions are released previously downloaded versions 

can become obsolete. 
 Use the outdated command to check if any packages have been updated 

since they were installed:
npm outdated

 Packages defined with an exact version number in package.json are not 
included in this check.

 Running the following command will bring all packages up to the latest 
desired version as specified in package.json:
npm update

 Updating to the latest version of a package can in some cases break your 
application. For this reason the update command should be used with 
caution.  

1.13 Uninstalling Packages
 Packages no longer being used can be uninstalled using the following 

commands. Note thought that this does not update package.json:
npm uninstall package_name

 If you are using a package.json file and wish to uninstall a package you 
should:
◊ Edit the package.json and remove the entry for the unused package.
◊ Then running npm prune will remove the package from the 

node_modules directory
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 Alternately you can uninstall a package and update the package.json at 
the same time using this command:
npm uninstall package_name --save

 Globally installed packages can be removed using this command:
npm uninstall package_name --g 

1.14 Installing Angular Packages
 In summary, the steps to install Angular to your development machine are:
◊ install node.js on your development machine using an install package 

from nodejs.org.
◊ Create a directory for your Angular project
◊ Obtain a package.json file suitable for installing Angular from an 

existing project or from the quickstart page on the angular.io site.
◊ Copy the package.json into your project directory.
◊ Open a command prompt and navigate to your project directory
◊ Execute the command npm install 

 This will create a node_modules directory and install Angular and 
additional dependent packages

 The Angular setup page has more details on using the Angular "Quickstart 
seed" project to get started

https://angular.io/docs/ts/latest/guide/setup.html
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1.15 Angular CLI
 Angular also has an optional feature called Angular CLI 
◊ Is a command line interface for creating Angular based apps 
◊ Is based on Node.js and installed with NPM
◊ Provides an alternative way to install Angular and develop apps.
◊ Provides simple commands to create new Angular projects and add 

various building blocks like components and services
◊ Includes a development server
◊ Integrates unit tests and end-to-end testing out of the box

 For more information see:
https://cli.angular.io/

Angular CLI

Although Angular CLI is certainly a useful tool, there are some things to consider when using it:

• It only uses the WebPack mnodule loader and can't be used with SystemJS (the default of the 
Angular Quickstart)

• It is relatively new with the final 1.0.0 release being released in March 2017 after several 
changes in beta and release candidate versions.

• Angular CLI greatly assists with creating new projects and defining components but becomes 
less useful as an application gets larger and requires manual customization anyway.

• Many tasks of Angular CLI require being online although the article below details how you 
might be able to work with it offline.

http://webiks.com/working-offline-with-angular-cli/
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1.16 Angular Development  Overview
 Development with Angular involves:
◊ Installing Angular and dependent files
◊ Creating and editing Angular code
◊ Compiling typescript code files
◊ Serving application files from a web server
◊ Running the app in a browser
◊ Debugging app code

 Moving a developed app to production typically involves:
◊ Consolidating and minifying JavaScript files
◊ Consolidating and minifying CSS files
◊ Moving files to a production web server

1.17 Angular Development Dependencies
 Angular development depends on a variety of packages: 
◊ TypeScript compilation * ( typescript )
◊ TypeScript definitions ( @types )
◊ Testing frameworks/tools * ( jasmine, karma, protractor ) 
◊ Development server ( lite-server, webpack-dev-server )
◊ Module bundler ( webpack )

 * Starred items are discussed in more depth later in the course 
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1.18 TypeScript Definitions
 TypeScript definitions for standard JS libraries are referred to as Typings
 Typings provide extra information not included in standard JS libraries like:
◊ interface and class definitions
◊ function parameter and return types

 Typings are used to:
◊ Provide code completion and documentation in programming editors 
◊ Verify correct usage of functions during TypeScript compilation

 Typings are typically installed by adding devDependencies in 
package.json like this:
"@types/node": "^6.0.45",
"@types/jasmine": "^2.5.35",

1.19 Testing Tools
 Various testing frameworks/tools designed for use with JavaScript web 

applications can also be used when developing Angular Applications
 The following testing tools are all Node.js based applications:
◊ Jasmine: A JavaScript unit testing framework for writing tests.
◊ Karma: A test runner for unit testing.
◊ Protractor:  An end-to-end testing framework that lets you run UI based 

tests in various browsers
 These tools can be installed by adding devDependencies to package.json
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1.20 Development Servers
 Angular applications require files to be served from a web server and will 

not work properly if files are opened directly from the file system.
 Development servers: 
◊ Are typically written in Node.js and run directly on development 

machines
◊ Are installed via a devDependency in package.json
◊ May include auto-update features to reload pages in a browser when 

the underlying files change. 
 Examples include:
◊ lite-server, 
◊ webpack-dev-server

 Dedicated servers can speed up and simplify development.

1.21 Angular Application Dependencies
 Angular applications depend on a variety of packages
◊ Runtime Module loader ( systemjs )
◊ Polyfills ( core-js )
◊ Reactive extensions ( rxjs )
◊ Execution contexts ( zone.js )
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1.22 Module Loaders
 Angular framework and application code exists in multiple files referred to 

as modules.
 Modules are loaded as needed based on import statements like these:

import { NgModule } from '@angular/core';
import { AppComponent } from './app.component';

 Browsers don't understand modules so external packages are required to 
load them

 One of two methods are generally used to manage modules:
◊ Load modules in the browser at run-time from separate files.
or
◊ Combine modules at compile time into a single JavaScript file that is 

loaded all at once by the browser.
 Packages used for module management include:
◊ SystemJS - implements runtime module loading
◊ WebPack - bundles modules at compile time

1.23 SystemJS Module Loader
 System JS is a run-time module loader.
 The systemjs library must be included in the application's index.html file

<script 
src="node_modules/systemjs/dist/system.src.js"> 
</script>
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 Module loading is configured via a JavaScript file:
<script src="systemjs.config.js"></script>

 Angular apps are initialized by calling the systemjs import function: 
System.import('app')

 The angular.io quickstart tutorial application uses this form of module 
management

 More information is available at:
https://github.com/systemjs/systemjs

1.24 WebPack Module Bundler
 WebPack is a module bundler
 It is invoked during development after code files are saved and before they 

are loaded by the web server.
 It reads code and resolves imports by consolidating multiple module files 

into one or more static JavaScript assets.
 It programmatically adds script tags to the application's index.html file in 

order to include the consolidated JavaScript asset files.
 The modified index.html as well as the consolidated asset files can be:
◊ Saved to the file system for posting to a production server
◊ Saved in memory and served via the webpack-dev-server development 

server
 The Angular command line development tool angular-cli uses this form of 

module management 
 More information is available at:
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http://webpack.github.io/docs/
https://angular.io/docs/ts/latest/guide/webpack.html

1.25 Additional Application Dependencies
 Polyfill 
◊ A polyfill is code that implements required features in web browsers 

that don't implement the feature themselves 
◊ Angular makes use of the core-js polyfill library
◊ See: https://www.npmjs.com/package/core-js

 Reactive Extensions
◊ A library that supports asynchronous and event-based coding
◊ Includes Observable objects for handling asynchronous data streams
◊ Used by the Angular Http client service

See: https://github.com/Reactive-Extensions/RxJS
 Execution contexts
◊ Managed via the zone.js library
◊ Used internally by Angular

See https://github.com/angular/zone.js/

1.26 Summary
In this chapter we covered: 

 Angular Files and Dependencies
 Node.js
 Node package manager (npm)
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 package.json
 Semantic version numbers
 Installing Angular
 Application Dependencies
 Module Loaders
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