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Abstract

For locally compact groupsG and H let A(G) denote the Fourier algebra ofG and B(H)

the Fourier–Stieltjes algebra ofH. Any continuous piecewise affine map� : Y ⊂ H → G

(whereY is an element of the open coset ring) induces a completely bounded homomorphism
�� : A(G) → B(H) by setting��u = u ◦ � on Y and ��u = 0 off of Y. We show that ifG
is amenable then any completely bounded homomorphism� : A(G) → B(H) is of this form;
and this theorem fails ifG contains a discrete nonabelian free group. Our result generalises
results of Cohen (Amer. J. Math. 82 (1960) 213–226), Host (Bull. Soc. Math. France (1986)
114) and of the first author (J. Funct. Anal. (2004) 213). We also obtain a description of all
the idempotents in the Fourier–Stieltjes algebras which are contractive or positive definite.
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1. Introduction

For any pair of locally compact abelian groupsG andH, Cohen[10] characterised all
of the bounded homomorphisms from the group algebra L1(G) to the measure algebra
M(H) in terms of piecewise affine maps between their dual groupsĤ and Ĝ. In doing
so he made use of an equally profound discovery of his[9] characterising idempotent
measures on abelian groups, a result which won him the Bôchner Memorial Prize in
1964. These results generalised results of many authors[3,27,28,30,43,44]. Cohen’s
work is also exposed nicely in[45]. As this characterisation is in terms of dual groups,
it is more naturally formulated in terms of the algebras of Fourier and Fourier–Stieltjes
transforms A(Ĝ) and B(Ĥ ). There is a formulation of the Fourier and Fourier–Stieltjes
algebras A(G) and B(H), due to Eymard[16], which can be done for any locally
compact groups, and which generalises the group algebra and the measure algebra for
dual groups. Moreover, these are commutative semi-simple Banach algebras, even for
non-commutative groups. A longstanding question in harmonic analysis has been to
determine to which extent Cohen’s theorem holds in the non-abelian setting. Various
intermediate results, described below, have been given over the years, and our main
objective in this paper is to give a definitive solution to this problem.
The first decisive step in generalising Cohen’s results is due to Host[22]. He first dis-

covered the general form of idempotents in the Fourier–Stieltjes algebras, a significant
result. He then identified the role of tensor products in obtaining the characterisation
of bounded homomorphisms from A(G) to B(H). Unfortunately, by a result of Losert
[34], the Banach algebra A(G) ⊗� A(G) (projective tensor product) is isomorphic to
A(G × G) only if G has an abelian subgroup of finite index. Hence it was only for
such groups that Host established his result on homomorphisms.
In the intervening years the theory of operator spaces and completely bounded maps

was developed by Paulsen, Blecher, Effros and Ruan amongst many others. See[15].
It was recognised in[4,14] that A(G) and B(H) can be regarded as operator spaces.
The first major application of this was given by Ruan in[42] where it was shown that
the operator space structure on A(G) gives rise to a more tractable cohomology theory
than traditional Banach algebra cohomology (such as in[26]). It thus makes sense to
speak aboutcompletely bounded homomorphismsfrom A(G) to B(H). Any results on
such generalise the results of Cohen and Host since it was shown by Forrest and Wood
[18] that any bounded linear map from A(G) to any operator space, is automatically
completely bounded if and only ifG has an abelian subgroup of finite index. The
advantage of having the context of operator spaces is that it gives us the operator
projective tensor product̂⊗ [5,14]. By this, A(G)⊗̂A(G) can be naturally identified
with A(G × G) [13]. Using these techniques, the first author[24,25] took the next
decisive step and characterised all of the completely bounded homomorphisms form
A(G) to B(H), whenG is an amenable discrete group.
In this article we generalise this result to what appears to be the fullest extent

possible. We make note of the fact that for any pair of locally compact groupsG
and H, a continuous piecewise affine map� : Y ⊂ H → G induces a completely
bounded homomorphism from A(G) to B(H) (Proposition3.1). We then show that if
G is amenable then every completely bounded homomorphism from A(G) to B(H) is
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thus induced (Main Result: Theorem3.7). Along the way we make significant use of a
positivebounded approximate diagonalfor A(G)⊗̂A(G), following the construction of
Aristov, Runde and the second author[1, Lemma 3.4]—which simplifies a construction
of Ruan [42]. As a complement to our main theorem we show that for any group
which contains a discrete non-abelian free group the main result fails (Proposition3.8),
lending strong evidence that amenability is an indispensable assumption. This makes
use of Leinert’s free sets[31]. We also indicate how, for most (amenable) groups, our
main result can fail for bounded homomorphisms from A(G) to itself which are not
completely bounded (Remark3.6).
In order to refine our main result, i.e. to characterise completely contractive and

“completely positive” homomorphisms, we obtain a description of contractive and of
positive definite idempotents in Fourier–Stieltjes algebras (Theorem2.1). This result is
well known for abelian groups, but does not appear to be in the literature for general
groups. It is a special case of the significant theorem of Host[22], though it is not
mentioned nor covered by him.

1.1. Preliminaries

If G is any locally compact group let A(G) denote itsFourier algebra and B(G)

denote itsFourier–Stieltjes algebra, as defined in[16]. We recall that B(G) consists of
all matrix coefficients of continuous unitary representations, i.e. functions of the form
s 	→ 〈

�(s)�|�〉 where� : G → U(H) is a homomorphism, continuous when the unitary
group U(H) on the Hilbert spaceH is endowed with the weak operator topology.
We also recall that A(G) is the space of all matrix coefficients of the left regular
representation�G : G → U(L2(G)), given by left translation operators on L2(G), the
Hilbert space of (equivalence classes of ) square-integrable functions. The norms on
A(G) and B(G) are given by the dualities indicated below.
We note that A(G) has bounded dual space A(G)∗�VN(G), where VN(G) is the

von Neumann algebra generated by�G. The Fourier–Stieltjes algebra is the predual
of the enveloping von Neumann algebraW∗(G) which is generated by the universal
representation�G [12]. On the other hand, B(G) is the dual of theenveloping C*-
algebra C∗(G). We note that W∗(G) satisfies the universal property for group von
Neumann algebras: if� : G → U(H) is a continuous representation and VN� is the
von Neumann algebra it generates, then there is∗-homomorphism� : W∗(G) → VN�
such that�(�(s)) = �(s) for each s in G. We note that both A(G) and B(G) are
semi-simple commutative Banach algebras under pointwise operations. Moreover, A(G)

is an ideal in B(G). Furthermore, A(G) has Gel’fand spectrumG, and is regular on
G in the sense that for any compact subsetK of G, and any open setU containingK,
there is an elementu in A(G) such thatu|K = 1 and supp(u) ⊂ U .
Our standard reference for operator spaces and completely bounded maps is[15],

though we will indicate other references below. Any C*-algebraA is an operator
spacein the sense that forn = 1,2, . . . the algebra ofn × n matrices overA, Mn(A)

admits a unique norm which makes it into a C*-algebra. A linear mapT : A → B
between C*-algebras is calledcompletely boundedif it is bounded and its amplifications
T (n) : Mn(A) → Mn(B), given byT (n)[aij ] = [T aij ], give a bounded family of norms
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∥∥ : n = 1,2, . . .

}
. In this case we write‖T ‖cb = sup

{∥∥T (n)
∥∥ : n = 1,2, . . .

}
.

Moreover we sayT is completely contractiveif ‖T ‖cb �1; thatT is acomplete isometry
if eachT (n) is an isometry; and thatT is completely positiveif eachT (n) is a positive
map (see[38]). Examples of completely bounded maps are∗-homomorphisms, which
are also completely positive and contractive, and multiplications by fixed elements in
C*-algebras.
If M andN are von Neumann algebras with predualsM∗ andN∗, we say a map

� : M∗ → N∗ is completely bounded(contractive), if its adjoint �∗ : N → M is
such. However, it is often convenient to consider completely bounded maps on the
spaceM∗ by noting that it admits an operator space structure via the identifications
Mn(M∗)�CB	(M,Mn), n = 1,2, . . ., where CB	(M,Mn) is the space of normal
completely bounded maps formM to the finite-dimensional von Neumann algebra of
n×n complex matrices[4,14]. We note that these spacesM∗, with the above matricial
structures, are completely isometrically isomorphic to subspaces of C*-algebras[41],
which are not generally operator subalgebras. In particular, these structures are used
to create theoperator projective tensor productM∗⊗̂N∗ [5,14]. This tensor product
admits the very useful formula(M∗⊗̂N∗)∗�M⊗N [13], whereM⊗N is the von
Neumann tensor product. We note for any locally compact groupG that multiplication
extends to a completely contractive linear map
 : B(G)⊗̂B(G) → B(G). Indeed

∗ : W∗(G) → W∗(G)⊗W∗(G) is the∗-homomorphism which extends�G×G(s, t) 	→
�G(s) ⊗ �G(t). Hence we say that B(G) is a completely contractive Banach algebra.
In particular, multiplication by a fixed elementv 	→ uv on B(G) is completely bounded
with ‖v 	→ uv‖cb = ‖u‖B(G).

1.2. Piecewise affine maps

In this section we give a quick survey of piecewise affine maps on groups. These
maps are natural generalisations of group homomorphisms and are the natural mor-
phisms on finite collections of cosets. We will require general versions of several
results from[45] concerning abelian groups. Unfortunately modification of the original
proofs is required, and we give these below.
Let G be a group. Acosetof G is any subsetC of G for which there is a subgroup

H of G, and an elements in G such thatC = sH . We note that forH ands as above,
we have thatHs = ss−1Hs, which means that we need not distinguish between left
and right cosets. The following result is[45, 3.7.1] in the case thatG is abelian.

Proposition 1.1. A subset C of G is a coset if and only if for everyr, s and t in C,
rs−1t ∈ C too. Moreover, C−1C is a subgroup for whichC = sC−1C for any s in C.

Proof. Necessity is trivial, so we will prove only sufficiency. We will show thatH =
C−1C is a subgroup andC = sH for any s in C. If s, t ∈ H , then s = s−1

1 s2 and
t = t−11 t2 where si, ti ∈ C for i = 1,2. Then

st = s−1
1 (s2t

−1
1 t2) ∈ C−1C and s−1 = s−1

2 s1 ∈ C−1C
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whenceH = C−1C is a subgroup. Now ifs ∈ C and t ∈ H with t = t−11 t2 as
above, thenst = st−11 t2 ∈ C, so sH ⊂ C. Also, C = ss−1C ⊂ sC−1C = sH . Hence
C = sH . �

Now let H be another group. A map� : C ⊂ H → G is calledaffine if C is a coset
and for r, s, t in C

�(rs−1t) = �(r)�(s)−1�(t).

It is clear from Proposition1.1 above, that the range�(C) of � is also a coset. Hence
if s ∈ C, then

s−1C � t 	→ �(s)−1�(st) ∈ �(s)−1�(C) (1.1)

is a homomorphism between subgroups.
We let �(H) denote thecoset ringof the groupH, which is the smallest ring of

subsets which contains every coset. A map� : Y ⊂ H → G is calledpiecewise affine
if

(i) there are pairwise disjointYi ∈ �(H), for i = 1, . . . , n

such thatY = ·
n⋃

i=1
Yi (disjoint union) (1.2)

and
(ii) eachYi is contained in a cosetLi on which there is an

affine map�i : Li → G such that�i |Yi = �|Yi .
If � : Y ⊂ H → G is a function we define thegraph of � to be the set

�� = {(s, �(s)) : s ∈ Y }. (1.3)

The following lemma is given for abelian groups in[45, 4.3.1]. Our proof is adapted
from the one given there.

Lemma 1.2. Let � : Y ⊂ H → G be a function. Then� enjoys the following properties.

(i) If �� is a subgroup then so too is Y and� is a homomorphism of subgroups.
(ii) If �� is a coset then so too is Y and� is an affine map.
(iii) If �� ∈ �(H × G), then � is a piecewise affine map.

Proof. (ii) Let r, s, t ∈ Y . Then since�� is a coset,

(r, �(r))(s, �(s))−1(t, �(t)) = (rs−1t, �(r)�(s)−1�(t)) ∈ ��

which implies thatY is coset sincers−1t ∈ Y . Since�� is a graph,(rs−1t, �(rs−1t)) ∈
�� too and�(r)�(s)−1�(t) = �(rs−1t).
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(i) If �� is a subgroup, it is a coset containing the identity, whence so too isY. It
follows that �(e) = e and � is a homomorphism.
(iii) Since �� ∈ �(H ×G), there exists a finite collection of subgroups� of H ×G

such that�� ∈ R(�), the smallest ring of subsets generated by cosets of elements of
�. We may assume that� is closed under intersections. We may also assume that if
one element of� is a subgroup of another, then the index of the first subgroup in the
second is infinite.
It is then possible to write

�� = ·
n⋃

i=1
Ei where each Ei = Li \

mi⋃
j=1

Mij

and eachLi andMij are cosets of elements of� with Mij ⊂ Li for eachi, j . Note
that eachEi is itself a graph.
We claim that eachLi is a graph. If not, there are elements(s, t1) and (s, t2) in Li

with t1 �= t2, so (e, t) = (e, t−11 t2) ∈ L−1
i Li . Now if (s, �(s)) is any element ofEi ,

then (s, �(s)t) ∈ LiL
−1
i Li = Li , so (s, �(s)t) ∈ Mij for some j, sinceEi is a graph.

Hence

(s, �(s)) = (s, �(s)t)(e, t)−1 ∈ Mij (e, t)
−1.

We note thatMij (e, t)
−1 may not be inR(�), but it is a coset of a subgroup of infinite

index in L−1
i Li . Thus

Ei ⊂
mi⋃
j=1

Mij (e, t)
−1 whence Li ⊂

mi⋃
j=1

(
Mij ∪ Mij (e, t)

−1) .
Hence the subgroupL−1

i Li can be covered by finitely many cosets of subgroups which
are of infinite index in itself, which is impossible by[36] (also see Proposition2.2 for
an analytic proof of this). ThusLi is a graph and we may write

Li = {(s, �i (s)) : s ∈ Ki = p1(Li)},

wherep1 : H × G → H is the standard projection. Now if we letYi = p1(Ei) and
Nij = p1(Mij ) we see that

Yi = Ki \
mi⋃
j=1

Nij (1.4)

sincep1|Li
has inverses 	→ (s, �i (s)). We also see from (ii) that�i : Ki → G is an

affine map and that�i |Yi = �|Yi . �
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Now let us suppose thatG andH are topological groups and the topology ofG is
locally compact and Hausdorff. IfS is any subset ofH we let S be the closure ofS.
The following result for abelian groups is given in[45, 4.2.4 & 4.5.2]. While our proof
of (i) differs from the one given there, the proof of (ii) is similar and is included for
convenience of the reader. We let�o(H) denote theopen coset ring, the smallest ring
of subsets ofH containing all open cosets.

Lemma 1.3. (i) If � : C ⊂ H → G is affine, and continuous on C, then it admits a
continuous extension to an affine map�̄ : C → G.
(ii) If � : Y ⊂ H → G is piecewise affine and continuous on Y, and Y is open in H,

then � admits a continuous extension�̄ : Y → G. Moreover, Y is open in H, admits a
decompositionY = ·⋃n

i=1 Yi as in (1.2) where eachYi ∈ �o(H).

Proof. (i) Let r ∈ C. Then the homomorphismt 	→ �(r)−1�(rt) from r−1C to
�(r)−1�(C) is continuous onC−1C = r−1C, and hence left uniformly continuous
by [21, 5.40(a)]–i.e. for every (compact) neighborhoodW of eG, the unit inG, there
is a neighbourhoodU of eH in H such that

if s−1t ∈ U then �(rs)−1�(rt) = �(rs)−1�(r)�(r)−1�(rt) ∈ W. (1.5)

If s0 ∈ C, then any net(si)i from C which converges tos0 is left Cauchy: for any
neighbourhoodU of eH , there isiU such thati, j � iU implies thats−1

i sj ∈ U . Hence
the net (r−1si)i is left Cauchy as well, and so ifU is chosen to satisfy (1.5) and
i, j � iU then

�(si)−1�(sj ) = �(rr−1si)−1�(rr−1sj ) ∈ W

so (�(si))i is left Cauchy inG. However, Hausdorff locally compact groups are com-
plete, whence we obtain a unique limit�̄(s0) = lim i �(si). That �̄ : C → G is affine
follows from continuity of the group operations.
(ii) Since we assume that� : Y ⊂ H → C is piecewise affine, we can decompose

Y = ·
n⋃

i=1
Yi where each Yi = Ki \

mi⋃
j=1

Nij

as in (1.4). We may reorder the indices so thatY 1, . . . , Y n′ represents the collection
of closures having non-empty interiors. Fori = 1, . . . , n′ it follows that the cosetKi

must have nonempty interior, and hence is open. We may reorder the second indices so
that for eachi, Ni1, . . . , Nim′

i
is the collection of cosets which have nonempty interiors

in Ki , and hence are both closed and open. Then

Y i = Ki \
m′

i⋃
j=1

Nij
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and hence is open. Thus

Y = ·
n′⋃
i=1

Y i.

Since �|Yi is continuous, the affine map�i : Ki → G such that�i |Yi = �|Yi is
continuous onYi , and, by uniformity of the topology, continuous onKi . By (i) we
may extend�i : Ki → G to a continuous affine map̄�i : Ki → G. We thus let
�̄ : Y → G be determined bȳ�|Y i

= �̄i |Y i
for eachi = 1, . . . , n′. �

We note that ifC is a closed coset, in the hypotheses of (i) above, then it may not
be the case that�(C) is closed inG. Consider, for example, the mapn 	→ ein from the
integersZ to the circle groupT. See Corollary3.11, for a condition which guarantees
that the range of� is closed.
Let G andH be locally compact Hausdorff groups, which are usually referred to as

simply “locally compact”. If� : Y ⊂ H → G, then we say� is a continuous piecewise
affine mapif

(i) � is piecewise affine, and
(ii) Y is both open and closed inH.

2. On idempotents in Fourier–Stieltjes algebras

The major result of Host[22] states that any idempotent in B(G), for any locally
compact groupG, is the indicator function of a set from�o(G), the ring of sets
generated by cosets of open subgroups. While the following proposition borrows from
Host’s methods, it cannot be directly deduced from[22].

Theorem 2.1. Let G be a locally compact group and u be an idempotent inB(G).

(i) ‖u‖ = 1 if and only if u = 1C for some open coset C in G.
(ii) u is positive definite if and only ifu = 1H for some open subgroup H of G.

Proof. Sufficiency for each of (i) and (ii) above is well known. Let us review it,
briefly. If H is an open subgroup ofG let G/H denote the discrete space of left
cosets ofH and �H : G → U ( 2(G/H)

)
the quasi-left regular representation, given

by �H (s)�tH = �stH . Then 1H = 〈
�H (·)�H |�H

〉
, and hence is positive definite with

‖1H‖ = 1H (e) = 1. If C = sH for somes in G then

1C = 〈
�H (·)�H |�sH

〉 = 〈
�H (s)∗�H (·)�H |�H

〉 = s ∗ 1H

and hence‖1C‖ = ‖s ∗ 1H‖ = ‖1H‖ = 1. Thus it remains to prove necessity for each
(i) and (ii).
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(i) By [16] there exist a continuous unitary representation� : G → U(H) and vectors
�, � in H such that

u = 〈
�(·)�|�〉 and

∥∥�∥∥ = ‖�‖ = ‖u‖ = 1.

Since�(s) is a unitary for anys in G,
∥∥�(s)�∥∥ = 1, and hence, by the Cauchy–Schwarz

inequality we have that

u(s) = 〈
�(s)�|�〉 = 1 if and only if �(s)� = �.

Sinceu is idempotent, we thus see that

u(s) = 〈
�(s)�|�〉 = {

1 if �(s)� = �,
0 otherwise.

Let C = supp(u) = {s ∈ G : u(s) = 1}, and then we have that

C = {s ∈ G : �(s)� = �} = {s ∈ G : � = �(s)∗�}.

If r, s, t ∈ C, then we have that

�(rs−1t)� = �(r)�(s)∗�(t)� = �(r)�(s)∗� = �(r)� = �

so rs−1t ∈ C. HenceC is a coset by Proposition1.1. C is open sinceu is continuous.
(ii) First, since ‖u‖ = u(e), and u is idempotent, we have either thatu = 0 or

‖u‖ = 1. The first case is trivial. In the second, we have from (i) thatu = 1C for
some open cosetC in G. Sincee ∈ C, we must have thatC itself is a subgroup. �

We note that ifG is an abelian group, then for any nontrivial idempotentu of B(G)

we have either that‖u‖ = 1 or ‖u‖ � 1
2(1+√

2) by [47]. We do not know if a similar
result holds for nonabelian groups.
The next result is well-known and a proof can be found in[36]. For abelian groups

an interesting analytic proof is given in[45, 4.3.3]. We offer another analytic proof
which is valid for any infinite group.

Proposition 2.2. It is impossible to cover a group G with finitely many cosets of
subgroups of infinite index.

Proof. We will considerG to be a discrete group. Let WAP(G) be the C*-algebra of
weakly almost periodic functionson G (see[8]). Then WAP(G) ⊃ B(G) and WAP(G)

admits a unique translation invariant meanm. Let � denote the ring of subsetsE of
G such that 1E ∈ WAP(G). Then � ⊃ �(G) by [22] (or by Theorem2.1 above).
Let m̃ : � → [0,1] be the finitely additive measure given bỹm(E) = m(1E). Then
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m̃(G) = 1. Thus ifC is a coset of a subgroup of infinite index inG, m̃(C) = 0. Thus
for any finite collectionC1, . . . , Cn of such,m̃(

⋃n
i=1Ci)�

∑n
i=1 m̃(Ci) = 0, whence

C1, . . . , Cn cannot coverG. �

3. The main result

3.1. Affine maps induce completely bounded homomorphisms

Let us begin with the converse of our main result. Note that ifM andN are von
Neumann algebras with respective predualsM∗ andN∗, we say that a map� : M∗ →
N∗ is completely positiveif its adjoint, �∗ : N → M is completely positive.

Proposition 3.1. Let G and H be locally compact groups. If� : Y ⊂ H → G is a
continuous piecewise affine map, then�� : A(G) → B(H) given by

��u(h) =
{
u(�(h)) if h ∈ Y ,
0 otherwise

(3.1)

is a completely bounded homomorphism. Moreover, �� is completely contractive if�
is affine, and completely positive if� is a homomorphism on an open subgroup.

Proof. We will build the proof up in stages, beginning with homomorphisms, then
moving to affine maps, and then to piecewise affine maps.
First, suppose that� is a homomorphism and Y is an open subgroup. Then by

[16] or [2, 2.10], ��|Y : A(G) → B(Y ) is an isometric homomorphism whose adjoint
�∗

�|Y : W∗(Y ) → VN(G) is the ∗-homomorphism such that�∗
�|Y (�Y (y)) = �G◦�(y)

for eachy in Y . SinceY is an open subgroup ofH, B(Y ) injects contractively into
B(H) via the map which sendsv in B(Y ) to the functionṽ, which takes the values
of v onY and 0 otherwise. This fact is well known, and follows from[40, Proposition
1.2], for example. Note that{ṽ : v ∈ B(Y )} = mYB(H) wheremY : B(H) → B(H) is
multiplication by the idempotent 1Y . Hence�� is the composition of maps

A(G)
�|�Y−−−−→ B(Y )

v 	→ṽ−−−−→ mYB(H) ↪→ B(H).

The adjoint of the inclusion mapmYB(H) ↪→ B(H) is m∗
Y . We have thatI = �H (e) =

m∗
Y�H (e) = m∗

Y I and
∥∥m∗

Y

∥∥
cb = ‖mY ‖cb = ‖1Y ‖ = 1. Hence, by[15, 5.1.2], m∗

Y

is completely positive. The adjoint of the mapv 	→ ṽ is the ∗-isomorphism
 :
spanw

∗{�H (y) : y ∈ Y } → W∗(Y ) such that
(�H (y)) = �Y (y) for any y in Y .
Hence it follows that�∗

� = m∗
Y

◦
◦�∗
�|Y is completely positive and contractive.

Second, suppose that� is affine and Y is an open coset. Fix an elementh in Y and
let � : h−1Y → �(h)−1�(Y ) ⊂ G be the homomorphism from (1.1). Then�� is the
composition of maps

A(G)
u	→�(h)−1∗u−−−−−−−→ A(G)

��−−−−→ B(H)
v 	→h∗v−−−−→ B(H),
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where for s ∗ u(t) = u(s−1t) and h ∗ v(h′) = v(h−1h′) for s, t in G and h, h′ in H.
Then for fixed s in G [respectively,h in H ], the translation operatoru 	→ s ∗ u on
A(G) [v 	→ h ∗ v on B(H)] has adjoint which is multiplication by the unitary�G(s)∗
on VN(G) [�H (h)∗ on W∗(H)], which is a complete isometry. Hence it follows that
�� is a complete contraction.
Finally, we suppose that� is a continuous piecewise affine map andY ∈ �o(H).

Then, by Lemma1.3 (ii), we can write

Y = ·
n⋃

i=1
Yi where each Yi = Li \

mi⋃
j=1

Mij

and eachLi andMij is an open coset. Moreover, for eachi there is a continuous affine
map�i : Li → G such that�i |Yi = �|Yi . Let  1(n) be then-dimensional 1-space with
contractive summing basis{�i : i = 1, . . . , n}. Let A : A(G) → B(H)⊗̂ 1(n) be given
for u in A(G) by the weighted amplification

Au =
n∑

i=1
��i u ⊗ �i .

ThenA is completely bounded with‖A‖cb �n. Letting {�i : i = 1, . . . , n} in  ∞(n) be
the dual basis to{�i : i = 1, . . . , n}, we let the weighted diagonal multiplication map
M : B(H)⊗̂ 1(n) → B(H)⊗̂ 1(n) be given by

M =
n∑

j=1
m1Yi

⊗ 〈·, �j 〉 �j so M

n∑
i=1

vi ⊗ �i =
n∑

i=1
1Yi vi ⊗ �i .

HenceM is completely bounded with‖M‖cb � ∑n
i=1

∥∥1Yi∥∥. Let tr be the linear func-
tional on 1(n) implemented by�1+· · ·+�n, so that idB(H)⊗tr : B(H)⊗̂ 1(n) → B(G)

is given by

idB(H) ⊗ tr

(
n∑

i=1
vi ⊗ �i

)
= v1 + · · · + vn

and
∥∥idB(H) ⊗ tr

∥∥
cb � ‖tr‖ = 1. Then we have that�� is the composition of maps

A(G)
A−−−−→ B(H)⊗̂ 1(n)

M−−−−→ B(H)⊗̂ 1(n)
idB(H)⊗tr−−−−−→ B(H)

and is thus completely bounded.�

Corollary 3.2. If � : Y ⊂ H → G is a continuous piecewise affine map then the
map �� : B(G) → B(H) given similarly as�� in (3.1) is a completely bounded
homomorphism. Moreover, �� is completely contractive if� is affine, and�� is com-
pletely positive if� is a homomorphism on an open subgroup. If G is amenable, then
‖��‖cb = ‖��‖cb.
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Proof. That�� has the properties claimed can be seen by making trivial modifications
to the proof of the proposition above: replace�G by �G, and VN(G) by W∗(G).
If G is amenable, there is a norm 1 bounded approximate identity(ui)i for A(G)

by [33]. If v ∈ B(G) with ‖v‖ = 1, then (vui)i is a contractive net which con-
verges tov in the multiplier topology, and hence uniformly on compact subsets of
G. Hence��(vui) → ��v uniformly on compact subsets ofG. Since (��(vui))i is
bounded by‖��‖ it follows that it converges to��v in the weak* topology, and hence
‖��v‖ � ‖��‖. Thus‖��‖ � ‖��‖.
We can obtain that‖��‖cb � ‖��‖cb, similarly. Indeed, for anyn × n matrix [vkl]

over B(G), the amplified multiplication maps[vkl] 	→ [vklui] are contractive. We get
for any k, l that��(vklui) → ��vkl weak*, and hence

[
��(vklui)

] → [��vkl ] weak*,

from which it follows that
∥∥∥�(n)

�

∥∥∥ �
∥∥∥�(n)

�

∥∥∥. Hence‖��‖cb � ‖��‖cb. Since�� =
��|A(G), we obtain the converse inequality,‖��‖cb � ‖��‖cb. �

Remark 3.3. If G = F2, the free group on two generators, then it may not be the case
that ‖��‖cb = ‖��‖cb for a piecewise affine map� : Y ⊂ F2 → F2 which is not itself
affine. To see this leta and b be the generators for F2. For anyn = 1,2, . . . the set
En = {akbk : k = 1, . . . , n} is a free setin the sense of[31]. Let �n : En → F2 be the
inclusion map, which is affine asEn is finite. Then

sup
n

∥∥��n
∥∥
cb �2 while sup

n

∥∥��n
∥∥
cb = ∞.

Indeed, first observe that for anyu in A(F2), ��nu = 1Enu. Then, by[32, Bem. (13)],
1En ∈ B2(G), the algebra of Herz–Schur multipliers, and is of norm no greater than 2.
Then it follows [6] (or [49]) that u 	→ 1Enu is completely bounded on A(G). (We note
that an alternative line of proof can be followed, using[7, Section 2]or [39, Section
2], by which we may see that supn

∥∥��n
∥∥
cb �25. These proofs make use of the space

T1(G) of Littlewood functions.) On the other hand, note that��n1F2 = 1En . If the
sequence{1En : n = 1,2, . . .} were bounded in B(G), then its pointwise limit 1E ,
whereE = {anbn : n = 1,2, . . .}, would be in B(G). However, this would contradict
[39, Lemma 2.7]. �

3.2. Some lemmas

We will need two lemmas to proceed to our main result.
The first one gives a construction of a nicebounded approximate diagonalfor A(G×

G). This construction is a simplified version of the one in the seminal paper[42] (see
also [46, Section 7.4]).

Lemma 3.4. Let G be an amenable locally compact group. Then there exists inA(G×
G) a net (wl)l such that

(i) eachwl is positive definite and of norm1, and
(ii) for each (s, t) ∈ G × G
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lim
l

wl(s, t) =
{
1 if s = t ,
0 otherwise.

Proof. First we will obtain apositive approximate indicatorfor the diagonal subgroup
as in [1]. SinceG is amenable, there is a positive contractive quasi-central approximate
identity (ei)i for L1(G) by [35]. Moreover, by [50], (ei)i can be chosen to have
compact supports tending to the identity inG. We let �i = e

1/2
i for each i and define

for (s, t) in G × G

ui(s, t) = 〈
�G(s)�G(t)�i |�i

〉
,

where�G : G → U(L2(G)) is the right regular representation ofG. Then eachui is
a positive definite function with‖ui‖ = u(e, e) = 1. It follows, using computations
exactly as in[1, Theorom 2.4], that

lim
i

ui(s, t) =
{
1 if s = t ,
0 otherwise.

(We note that ifG is a small invariant neighbourhood group, there is a very simple
construction of a net, having the properties of(ui)i , in [48].)
SinceG is amenable,G × G is amenable and hence there exists a net(vj )j of

A(G×G) comprised of norm 1 positive definite functions which converges uniformly
on compact sets to 1G×G. To see this, by[23, Propositon 6.1](also see[37, 4.21]) there
exists a bounded net of elements(v′

j )j from A(G × G)+ which converges uniformly

on compact sets to 1G×G, and normalise by takingvj = 1
v′
j (e,e)

v′
j . (Note that by[19],

this net is a bounded approximate identity for A(G × G). This gives an alternative
proof to [33].) Then the product net with elements

wl = vjui

is the desired bounded approximate diagonal.�

The next lemma is a straightforward technical result on complete positivity. Though
it is surely well-known, we include a proof for convenience of the reader.

Lemma 3.5. Let M1,M2 and N be von Neumann algebras and let� : (M1)∗ →
(M2)∗ be a completely positive map. Then� ⊗ idN∗ : (M1)∗⊗̂N∗ → (M2)∗⊗̂N∗ is
also completely positive.

Proof. By definition we have that�∗ : M2 → M1 is completely positive. Hence the
normal map�∗ ⊗ idN : M2⊗N → M1⊗N makes sense. Moreover, it is simple to
verify, using elementary tensors inM2⊗N , that�∗ ⊗ idN = (� ⊗ idN∗)

∗, where we
identify Mi⊗N�

(
(Mi )∗⊗̂N∗

)∗ for i = 1,2. Thus we need only to see that�∗⊗ idN
is completely positive.
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First, let b = �∗(I )1/2. By [15, 5.1.6] there is a unital completely positive map

 : M2 → M1 such that�∗ = b
(·)b. Hence

�∗ ⊗ idN = (b ⊗ I )
 ⊗ idN (·)(b ⊗ I ).

Now 
 ⊗ idN is completely positive since
 ⊗ idN (I ⊗ I ) = I ⊗ I while
∥∥
 ⊗ idN

∥∥
cb

�
∥∥
∥∥cb = ∥∥
(I )∥∥ = 1, and we employ[15, 5.1.2]. Thus�∗ ⊗ idN is a composition

of completely positive maps whence it is completely positive.�

Remark 3.6. If G is any locally compact group, the map� : A(G) → A(G) given
by �u(s) = u(s−1) (s in G) is positive—it takes positive definite elements to positive
definite elements—contractive and a homomorphism. However, by[17, Proposition 1.5],
� is completely bounded only ifG has an abelian subgroup of finite index. Thus if
G does not admit an abelian subgroup of finite index, then A(G) admits a bounded
homomorphism which is not completely bounded.

3.3. The main result

Theorem 3.7. Let G and H be locally compact groups with G amenable, and let� :
A(G) → B(H) be a completely bounded homomorphism. Then there is a continuous
piecewise affine map� : Y ⊂ H → G such that for eachh in H

�u(h) =
{
u(�(h)) if h ∈ Y ,
0 otherwise.

Moreover, � is affine if� is completely contractive, and � is a homomorphism defined
on an open subgroup if� is completely positive.

Proof. First, it will be convenient for us to letG∞ = G∪̇{∞} be either the one-point
compactification ofG if G is not compact, or the topological coproduct ifG is compact.
Each elementu of A(G) extends to a continuous function onG∞ by settingu(∞) = 0.
Now, as observed in[25], sinceG is the Gel’fand spectrum of A(G), for eachh in H

there is an�(h) in G∞ such that

�u(h) = u(�(h)). (3.2)

The map� : H → G∞ is continuous. Indeed, suppose not. Then there is anh0 in H, a
neighbourhoodU of �(h0) and a net(hi)i in H such thathi → h0 but �(hi) /∈ U for
any i. If �(h0) ∈ G, find a u in A(G) such that supp(u) ⊂ U and u(�(h0)) = 1. Then

1= u(�(h0)) = �u(h0) = lim
i

�u(hi) = lim
i

u(�(hi)) = 0
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which is absurd. If�(h0) = ∞, thenK = G∞ \ U is compact. Findu in A(G) such
that u|K = 1 and supp(u) is compact, and we reach a similar contradiction as above.
We thus have that

� : H → G∞ is continuous andY = �−1(G) is open inH. (3.3)

Note that

Y = {h ∈ H : there exists au in A(G) such that�u(h) �= 0}. (3.4)

We will now suppose that� is completely bounded, and address the cases that
it is completely contractive or completely positive later. Then the map� ⊗ idA(G) :
A(G)⊗̂A(G) → B(H)⊗̂A(G) is completely bounded with

∥∥� ⊗ idA(G)

∥∥
cb � ‖�‖cb.

We can identify A(G)⊗̂A(G) completely isometrically with A(G × G) via

u ⊗ v 	→ u × v, (3.5)

where u × v(s, t) = u(s)v(t) for (s, t) in G × G. Indeed, the adjoint of this map is
the isomorphism VN(G × G)�VN(G)⊗VN(G), which is spatially implemented. We
can also identify B(H)⊗̂A(G) completely isometrically as a subspace of B(H × G)

via a map like (3.5), whereu × v(h, t) = u(h)v(t) for (h, t) in H × G. Indeed, the
adjoint of such a map would be the canonical homomorphism from W∗(H × G) to
W∗(H)⊗VN(G), which extends�H×G(h, t) 	→ �H (h) ⊗ �G(t). This is a complete
quotient map. Furthermore, the inclusion B(H × G) ↪→ B(Hd × Gd) is a completely
positive isometry. Thus the composition of maps

A(G × G)�A(G)⊗̂A(G)
�⊗idA(G)−−−−−→ B(H)⊗̂A(G) ↪→ B(H × G) ↪→ B(Hd × Gd)

forms a mapJ�, such that‖J�‖ � ‖J�‖cb � ‖�‖cb. On any elementary product of
functionsu × v in A(G × G) and for any(h, t) in H × G we have

J�u × v(h, t) = (�u) × v(h, t) = u(�(h))v(t),

where we recall thatu(∞) = 0. We can extend this to linear combinations of elementary
products and hence, by continuity, to any elementw in A(G × G), so we obtain for
any (h, t) in H × G

J�w(h, t) =
{
w(�(h), t) if h ∈ Y ,
0 otherwise.

(3.6)
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Now, let (wl)l be the net from Lemma3.4, and consider the net(J�wl)l in B(Hd×Gd).
We have for each(h, t) in H × G that

lim
l

J�wl(h, t)=
{
lim
l

wl(�(h), t) if h ∈ Y ,

0 otherwise,

=
{
1 if h ∈ Y and �(h) = t ,
0 otherwise.

Thus (J�wl)l converges pointwise to 1�� , where�� is the graph of�, as in (1.3).
Since(J�wl)l is bounded, we conclude that 1�� ∈ B(Hd ×Gd), which implies by[22]
that�� ∈ �(H ×G). This implies, by Lemma1.2 (iii), that � is piecewise affine. Since
(3.3) holds, we can apply Lemma1.3 to see that� extends to a continuous piecewise
affine map�̄ : Y → G. However, it follows from this thatY is closed. Indeed ifh0 ∈ Y ,
there is an elementu of A(G) such thatu(�̄(h0)) �= 0. Then for any net(hi)i in Y,
converging toh0 we have

�u(h0) = lim
i

�u(hi) = lim
i

u(�(hi)) = u(�̄(h0)) �= 0

and it follows from (3.4) that h0 ∈ Y . Hence �̄ = � and � is itself a continuous
piecewise affine map.
Now suppose that� is completely contractive. It then follows that the net(J�wl)l

is completely contractive, and hence 1�� ∈ B(Hd × Gd) with
∥∥1��

∥∥ �1. By Theorem
2.1 we conclude that�� is a coset, which in turn forces� to be an affine map by
Lemma1.2(ii).
Finally, if � is completely positive, then� ⊗ idA(G) is a completely positive map

by Lemma3.5, and henceJ� is completely positive. Thus the net(J�wl)l is a net of
norm 1 positive definite functions. It follows then that 1�� is positive definite, which,
by Theorem2.1 forces�� to be a group. Hence� is a homomorphism on some open
subgroup by Lemma1.2(i). �

The theorem stated above appears to be the best result possible. We have already
seen in Remark3.6 that there exist bounded homomorphisms of Fourier algebras which
are not completely bounded. Moreover, we can show for a large class of nonamenable
groups, namely those which contain a closed noncommutative free group, that Theorem
3.7 fails. We note that anonamenablegroupG contains a discrete copy of a noncom-
mutative free group ifG is almost connected (see[37, 3.8]), or if G is linear with the
discrete topology (see[51] or, for some special cases, see[11]). We are indebted to
B.E. Forrest for indicating the following example to us.

Proposition 3.8. If G is a nonamenable group which contains a discrete copy of the
free groupF2, then there exists a completely bounded homomorphism� : A(G) →
A(F2) which is not of the form�� as in (3.1) for a piecewise affine map�.
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Proof. The restriction mapu 	→ u|F2 from A(G) to A(F2) is a contractive quotient
map by [20]. Moreover, the adjoint of this restriction map is the∗-homomorphism
from VN(F2) to VN(G) which extends�F2(s) 	→ �G(s), so it is completely positive.
Now let a and b be the generators for F2 and E = {anbn : n = 1,2, . . .}, so E is a
free set. As in Remark3.3, we see that the mapv 	→ 1Ev is a completely bounded
map on A(F2). We let� be the composition of maps

A(G)
u	→u|F2−−−−→ A(F2)

v 	→1Ev−−−−→ A(F2).

Then� = �� where� : E ⊂ F2 → G is the inclusion map. However 1E /∈ B(F2) by
[39, Lemma 2.7]. Hence, by[22], E /∈ �(F2), so � is not piecewise affine.�

3.4. Some consequences

In what follows we will always letG and H be locally compact groups withG
amenable.
The first one is a direct application of Theorem3.7 and Corollary3.2.

Corollary 3.9. Any completely bounded homomorphism� : A(G) → B(H) extends to
a completely bounded homomorphism� : B(G) → B(H) with ‖�‖cb = ‖�‖cb.

The next corollary follows from the fact that a connected group admits no continuous
piecewise affine maps which are not themselves affine. See Lemma1.3.

Corollary 3.10. If H is connected, then any completely bounded homomorphism� :
A(G) → B(H) is of form (3.1) for an affine map�. In particular, � is completely
contractive.

Now we will consider homomorphisms between A(G) and A(H). If Y and X are
locally compact spaces, we say that a map� : Y → X is proper if �−1(K) is compact
in Y for every compact subsetK of X. For abelian groups the result below can be found
in [10].

Corollary 3.11. A map� : A(G) → A(H) is a completely bounded homomorphism if
and only if� = �� as in (3.1) where� is a continuous piecewise affine map which is
proper. In particular, � is a closed map.

Proof. As in the proof of Theorem3.7, let us employ the convention that� : H → G∞.
Since� : A(G) → A(H) ⊂ B(H), the existence of a piecewise affine map� such

that � = �� follows from our main result. Now if there were a compact subsetK of
G such that�−1(K) is not compact, then for anyu ∈ A(G) such thatu|K = 1, we
would have that�u = u◦� would not vanish at infinity, and hence would not be in
A(H). Hence necessity is proven.
To obtain the converse, let Ac(G) denote the subspace of B(G) consisting of functions

of compact support. Then Ac(G) is a dense subspace of A(G). Similarly define Ac(H).
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If � = �� for a continuous piecewise affine map�, then � : A(G) → B(H) is
a completely bounded homomorphism by Proposition3.1. Since for anyu in Ac(G),
supp(u◦�) = �−1(supp(u)), we have that�(Ac(G)) ⊂ Ac(H), and hence�(A(G)) ⊂
A(H).
Now we shall see that� is closed. LetE be a nonempty closed subset ofH, s0 ∈

�(E) andU be a neighbourhood basis ats0 consisting of relatively compact sets. Then
{�−1(U) ∩ E}U∈U is a family of compact subsets ofH having the finite intersection
property, whenceL = ⋂

U∈U �−1(U)∩E �= �. If h0 ∈ L, then�(h0) = s0, since�(h0)
is contained inU for eachU in U . �

We can thus obtain an analogue of Walter’s Theorem[52].

Corollary 3.12. Let � : A(G) → A(H) be an completely contractive isomorphism.
Then there exists an elements0 in G and a topological group isomorphism� : H →
G such that

�u(h) = u(s0�(h))

for eachh in H . Moreover, if � is completely positive thens0 = e.

Proof. Let � : Y ⊂ H → G be the affine map whose existence is guaranteed by
Corollary 3.11. Since� is surjective and A(H) is a point-separating regular algebra
on H, Y = H and � is injective. Since� is injective, �(H) is dense inG. Hence,
as � is closed, we obtain that�(H) = G. Thus � is bijective, and hence open, so it
is a homeomorphism. Lets0 = �(eH ) and � = s−1

0 �(·), so � is a homomorphism as
in (1.1).
If � is completely positive then� is a homomorphism and hence� = �. �

It is known, to us through Z.-J. Ruan, that the result above obtains in the case that
� is a complete isometry, without assuming thatG is amenable. The proof follows the
one given by Walter.
Let us close with a characterisation of the range of a completely bounded homo-

morphism of Fourier algebras, which is due to Kepert[29] in the case thatG andH
are abelian, and due to the first author[25] in the case that eitherG is discrete and
amenable orG is abelian, with generalH. Below, as with all results in this section,
we assume theG is amenable andH is a general locally compact group.

Theorem 3.13. If � : A(G) → A(H) is a completely bounded homomorphism with
adjoint map�∗ : VN(H) → VN(G) then

�(A(G)) =
{
u ∈ A(H) : u(h) = 0 if �∗(�H (h)) = 0, and

u(h) = u(h′) if �∗(�H (h)) = �∗(�H (h′))

}
.

That �(A(G)) is contained in the set of the latter description is clear. Note that, in
fact,�∗(�H (h)) = �G(�(h)) if �∗(�H (h)) �= 0, where� is the proper completely affine
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map promised by Corollary3.11. The converse inclusion is not trivial, and its proof
is in [25, Section 5]. To adapt that proof to be sufficiently general we need only note
Herz’s extension theorem[20]—if F is a closed subgroup ofG then for eachu in
A(F ) there is an element̃u in A(G) such thatũ|F = u and ‖ũ‖ = ‖u‖; and we must
use Corollary3.11 in place of the main theorem of[25].
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