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1. Introduction

For any pair of locally compact abelian grougsandH, Cohen[10] characterised all
of the bounded homomorphisms from the group algebréGl. to the measure algebra
M(H) in terms of piecewise affine maps between their dual grdﬁjmde In doing
so he made use of an equally profound discovery of[Bjscharacterising idempotent
measures on abelian groups, a result which won him the Bdchner Memorial Prize in
1964. These results generalised results of many auffes,28,30,43,44] Cohen’s
work is also exposed nicely if5]. As this characterisation is in terms of dual groups,
it is more naturally formulated in terms of the algebras of Fourier and Fourier—Stieltjes
transforms AG) and B(H). There is a formulation of the Fourier and Fourier-Stieltjes
algebras AG) and B H), due to Eymard[16], which can be done for any locally
compact groups, and which generalises the group algebra and the measure algebra for
dual groups. Moreover, these are commutative semi-simple Banach algebras, even for
non-commutative groups. A longstanding question in harmonic analysis has been to
determine to which extent Cohen’s theorem holds in the non-abelian setting. Various
intermediate results, described below, have been given over the years, and our main
objective in this paper is to give a definitive solution to this problem.

The first decisive step in generalising Cohen’s results is due to [@2ktHe first dis-
covered the general form of idempotents in the Fourier—Stieltjes algebras, a significant
result. He then identified the role of tensor products in obtaining the characterisation
of bounded homomorphisms from(&) to B(H). Unfortunately, by a result of Losert
[34], the Banach algebra &) ®” A(G) (projective tensor product) is isomorphic to
A(G x G) only if G has an abelian subgroup of finite index. Hence it was only for
such groups that Host established his result on homomorphisms.

In the intervening years the theory of operator spaces and completely bounded maps
was developed by Paulsen, Blecher, Effros and Ruan amongst many othefd5Fee
It was recognised inj4,14] that A(G) and B(H) can be regarded as operator spaces.
The first major application of this was given by Ruan[42] where it was shown that
the operator space structure ori@ gives rise to a more tractable cohomology theory
than traditional Banach algebra cohomology (such af@j). It thus makes sense to
speak aboutompletely bounded homomorphisfnem A(G) to B(H). Any results on
such generalise the results of Cohen and Host since it was shown by Forrest and Wood
[18] that any bounded linear map from(&) to any operator space, is automatically
completely bounded if and only i6& has an abelian subgroup of finite index. The
advantage of having the context of operator spaces is that it gives us the operator
projective tensor produc® [5,14]. By this, A(G)®A(G) can be naturally identified
with A(G x G) [13]. Using these techniques, the first authad,25] took the next
decisive step and characterised all of the completely bounded homomorphisms form
A(G) to B(H), whenG is an amenable discrete group.

In this article we generalise this result to what appears to be the fullest extent
possible. We make note of the fact that for any pair of locally compact gr&ups
and H, a continuous piecewise affine map: ¥ ¢ H — G induces a completely
bounded homomorphism from (&) to B(H) (Proposition3.1). We then show that if
G is amenable then every completely bounded homomorphism fro6) Ao B(H) is
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thus induced (Main Result: Theore®7). Along the way we make significant use of a
positive bounded approximate diagonfdr A(G)RA(G), following the construction of
Aristov, Runde and the second authjdr Lemma 3.4}-which simplifies a construction

of Ruan[42]. As a complement to our main theorem we show that for any group
which contains a discrete non-abelian free group the main result fails (Propd&i@on
lending strong evidence that amenability is an indispensable assumption. This makes
use of Leinert’s free setB1]. We also indicate how, for most (amenable) groups, our
main result can fail for bounded homomorphisms frondiGA to itself which are not
completely bounded (Remaik6).

In order to refine our main result, i.e. to characterise completely contractive and
“completely positive” homomorphisms, we obtain a description of contractive and of
positive definite idempotents in Fourier—Stieltjes algebras (The@dm This result is
well known for abelian groups, but does not appear to be in the literature for general
groups. It is a special case of the significant theorem of H22}, though it is not
mentioned nor covered by him.

1.1. Preliminaries

If G is any locally compact group let ®&) denote itsFourier algebraand B G)
denote itsFourier—Stieltjes algebraas defined irf16]. We recall that BG) consists of
all matrix coefficients of continuous unitary representations, i.e. functions of the form
S = <7‘E(s)§|17> wheren : G — U(H) is a homomorphism, continuous when the unitary
group U(H) on the Hilbert spaceH is endowed with the weak operator topology.
We also recall that AG) is the space of all matrix coefficients of the left regular
representationi; : G — U(L2(G)), given by left translation operators orf(G), the
Hilbert space of (equivalence classes of) square-integrable functions. The norms on
A(G) and B(G) are given by the dualities indicated below.

We note that AG) has bounded dual space(@®)*=~VN(G), where VNG) is the
von Neumann algebra generated by. The Fourier-Stieltjes algebra is the predual
of the enveloping von Neumann algeb¥*(G) which is generated by the universal
representatiormg [12]. On the other hand, &) is the dual of theenveloping C*-
algebra C*(G). We note that W(G) satisfies the universal property for group von
Neumann algebras: it : G — U(H) is a continuous representation and Vi the
von Neumann algebra it generates, then there-ti®momorphismil : W*(G) — VN,
such thatll(w(s)) = n(s) for eachs in G. We note that both AG) and B(G) are
semi-simple commutative Banach algebras under pointwise operations. MoreogGer, A
is an ideal in BG). Furthermore, AG) has Gel'fand spectrun®, and isregular on
G in the sense that for any compact subKedf G, and any open sdtl containingK,
there is an element in A(G) such thatu|x = 1 and supfu) C U.

Our standard reference for operator spaces and completely bounded niap$, is
though we will indicate other references below. Any C*-algebtais an operator
spacein the sense that fort = 1, 2, ... the algebra of: x n matrices overd, M, (A)
admits a unique norm which makes it into a C*-algebra. A linear riap.A — B
between C*-algebras is callemmpletely boundei it is bounded and its amplifications
T™ : M, (A) — M, (B), given by T™[a;;] = [Ta;;], give a bounded family of norms
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{|[T™]:n=12..]}. In this case we write|T |, = sup{||T™|:n=12 ...}
Moreover we sayl is completely contractivé || 7|, <1; thatT is acomplete isometry
if each 7™ is an isometry; and thal is completely positivéf each 7™ is a positive
map (se€38]). Examples of completely bounded maps areomomorphisms, which
are also completely positive and contractive, and multiplications by fixed elements in
C*-algebras.

If M and A are von Neumann algebras with preduals, and A, we say a map
® : M, — N, is completely boundedcontractivg, if its adjoint ®* : N' — M is
such. However, it is often convenient to consider completely bounded maps on the
space M, by noting that it admits an operator space structure via the identifications
M, (M) =CB°(M,M,), n = 1,2,..., whereCB°(M,M,) is the space of normal
completely bounded maps forow to the finite-dimensional von Neumann algebra of
n x n complex matrice$4,14]. We note that these spacad,, with the above matricial
structures, are completely isometrically isomorphic to subspaces of C*-algptihs
which are not generally operator subalgebras. In particular, these structures are used
to create theoperator projective tensor producht, &N, [5,14]. This tensor product
admits the very useful formulaM,QN,)* =~ M@N [13], where MRN is the von
Neumann tensor product. We note for any locally compact g@upat multiplication
extends to a completely contractive linear map: B(G)®B(G) — B(G). Indeed
W WH(G) —» WH(G)®W*(G) is the x-homomorphism which extendsgxg (s, t) —
wg(s) ® wg (). Hence we say that @) is a completely contractive Banach algebra
In particular, multiplication by a fixed element— uv on B(G) is completely bounded
with Jlv = uvllch = llullgc)-

1.2. Piecewise affine maps

In this section we give a quick survey of piecewise affine maps on groups. These
maps are natural generalisations of group homomorphisms and are the natural mor-
phisms on finite collections of cosets. We will require general versions of several
results from[45] concerning abelian groups. Unfortunately modification of the original
proofs is required, and we give these below.

Let G be a group. Acosetof G is any subseC of G for which there is a subgroup
H of G, and an elemeng in G such thatC = s H. We note that foH ands as above,
we have thatHs = ss—1Hs, which means that we need not distinguish between left
and right cosets. The following result j45, 3.7.1]in the case thaG is abelian.

Proposition 1.1. A subset C of G is a coset if and only if for evety andr in C,
rs~1t € C too. Moreovey C~1C is a subgroup for whiclC = sC~1C for anys in C.

Proof. Necessity is trivial, so we will prove only sufficiency. We will show thdt=

C~1C is a subgroup and” = sH for any s in C. If 5,1 € H, thens = sIlsz and
t =17 ', wheres;, ; € C for i = 1,2. Then

st = sl_l(sztl_ltz) ec™lc and st= sz_lsl ecic
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whence H = C~1C is a subgroup. Now ifs € C andr € H with 1 = tl_ltz as
above, thensr = 5171, € C, sosH C C. Also, C = ss~1C C sC~1C = sH. Hence
C=sH. O

Now let H be another group. A map: C ¢ H — G is calledaffineif Cis a coset
and forr,s,t in C

a(rs ) = a(r)als) Lar).

It is clear from Propositiorl.1 above, that the range(C) of « is also a coset. Hence
if s € C, then

s7IC 5t > als) Tast) € als) " ta(C) (1.1)

is a homomorphism between subgroups.

We let Q(H) denote thecoset ringof the groupH, which is the smallest ring of
subsets which contains every coset. A mapY C H — G is called piecewise affine
if . . I

(i) there are pairwise disjoint; € Q(H), fori=1,...,n

such that =U Y; (disjoint union) (1.2)
i=1

and .. . . . . .
(ii) eachy; is contained in a cosét; on which there is an

affine mape; : L; — G such thaty |y, = oy, .
If o:Y C H— G is a function we define thgraph of o to be the set
Iy ={(s,a(s)):s €Y} (1.3)

The following lemma is given for abelian groups [#45, 4.3.1] Our proof is adapted
from the one given there.

Lemma 1.2. Leta: Y ¢ H — G be a function. Then enjoys the following properties

(i) If T, is a subgroup then so too is Y andis a homomorphism of subgroups
(i) If I'y is a coset then so too is Y andis an affine map.
(i) If T'y € Q(H x G), theno is a piecewise affine map

Proof. (ii) Let r,s,t € Y. Then sincel , is a coset,
(r, () (s, () 12, (1)) = (rs e, a(r)ou(s) " Lau(r)) € Ty

which implies thaty is coset sinces—1r € Y. Sincel' is a graph,(rs 1, a(rs 1)) €
I, too ando(r)a(s) Lo(r) = a(rs~ ).
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() If Ty, is a subgroup, it is a coset containing the identity, whence so td0 lis
follows thato(e) = e and o is a homomorphism.

(i) Since I'y, € Q(H x G), there exists a finite collection of subgroupsof H x G
such thatl', € R(X), the smallest ring of subsets generated by cosets of elements of
2. We may assume th& is closed under intersections. We may also assume that if
one element ok is a subgroup of another, then the index of the first subgroup in the
second is infinite.

It is then possible to write

n m;
r, =U E; where each E; = L; \ U M;;
i=1 j=1

and eachL; and M;; are cosets of elements &f with M;; C L; for eachi, j. Note
that eachk; is itself a graph.

We claim that each.; is a graph. If not, there are elemerits 1) and (s, 2) in L;
With 11 # 12, SO (e,1) = (e, t; '12) € L7 L;. Now if (s, a(s)) is any element ofE;,
then (s, a(s)t) € L,-Ll.‘lLi = L;, so (s, a(s)t) € M;; for somej, since E; is a graph.
Hence

(s, 0(5)) = (5, ()N (e, )"t € Myj(e, )™,

We note thatM;; (e, 1)~1 may not be iNR(X), but it is a coset of a subgroup of infinite
index in L;*L;. Thus

mj m;
Ei < |J Mijte.n™ whence L; < | (M UM(e.n™).
j=1 j=1

Hence the subgroupi‘lLi can be covered by finitely many cosets of subgroups which

are of infinite index in itself, which is impossible H86] (also see Propositiod.2 for
an analytic proof of this). Thu&,; is a graph and we may write

Li ={(s,0(s)) : s € K; = p1(Lj)},
where p1 : H x G — H is the standard projection. Now if we lét = p1(E;) and
Nij = p1(M;j) we see that
mi
Yi=Ki\|J Ny (1.4)
j=1

since p1|r, has inverses — (s, ;(s)). We also see from (ii) that; : K; — G is an
affine map and that;|y, = aly,. O



486 M. llie, N. Spronk/Journal of Functional Analysis 225 (2005) 480—-499

Now let us suppose tha and H are topological groups and the topology @fis
locally compact and Hausdorff. & is any subset oH we let S be the closure of
The following result for abelian groups is given [#45, 4.2.4 & 4.5.2] While our proof
of (i) differs from the one given there, the proof of (ii) is similar and is included for
convenience of the reader. We Bt (H) denote theopen coset ringthe smallest ring
of subsets oH containing all open cosets.

Lemma 1.3. () If «: C ¢ H — G is affing and continuous on Cthen it admits a
continuous extension to an affine map C — G.

(i) If «: Y € H— G is piecewise affine and continuous onand Y is open in H
then o admits a continuous extension: Y — G. Moreover Y is open in H admits a
decomposition’ = [J/_4 ¥i as in (1.2) where eachy; € Q,(H).

Proof. (i) Let r € C. Then the homomorphism — a(r)~ta(rr) from r~1C to
a(r)~ta(C) is continuous onC~1C = r~1C, and hence left uniformly continuous
by [21, 5.40(a}}.e. for every (compact) neighborho® of eg, the unit in G, there
is a neighbourhood) of ey in H such that

if s7% e U theno(rs) ta(rt) = a(rs) a(r)o(r) ta(rt) € W. (1.5)

If so € C, then any net(s;); from C which converges toyg is left Cauchy: for any
neighbourhoodJ of ey, there isiy such thati, j >iy implies thatslflsj € U. Hence
the net (r—1s;); is left Cauchy as well, and so i is chosen to satisfy1(5) and
i, jziy then

a(si) La(s;) = arr L) "tarris;) e W

so (a(s;)); is left Cauchy inG. However, Hausdorff locally compact groups are com-
plete, whence we obtain a unique linitsg) = lim; a(s;). Thata : C — G is affine
follows from continuity of the group operations.

(ii) Since we assume that: Y ¢ H — C is piecewise affine, we can decompose

n mi
Y :U Y, where each Y; = K; \ U Nij
i—1 =1

as in (1.4). We may reorder the indices so thag, ..., Y, represents the collection

of closures having non-empty interiors. Foe= 1, ..., n’ it follows that the coseiK;

must have nonempty interior, and hence is open. We may reorder the second indices so
that for each, Nj1, ..., Nim! is the collection of cosets which have nonempty interiors

in K;, and hence are both closed and open. Then

m;
Yi=K;\ U Nij
j=1
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and hence is open. Thus

o
v=UJ7.
i=1

Since «ly, is continuous, the affine map; : K; — G such thato;|y, = ofy, is
continuous ony;, and, by uniformity of the topology, continuous dt;. By (i) we
may extends; : K; — G to a continuous affine mag; : K; — G. We thus let
%:Y — G be determined byily =3y, for eachi=1,....n". O

We note that ifC is a closed coset, in the hypotheses of (i) above, then it may not
be the case that(C) is closed inG. Consider, for example, the map— ¢ from the
integersZ to the circle groupl. See Corollary3.11, for a condition which guarantees
that the range of: is closed.

Let G andH be locally compact Hausdorff groups, which are usually referred to as
simply “locally compact”. Ife: Y € H — G, then we say is a continuous piecewise
affine mapif

(i) « is piecewise affine, and
(i) Y is both open and closed iH.

2. On idempotents in Fourier—Stieltjes algebras

The major result of Hosf22] states that any idempotent in(®), for any locally
compact groupG, is the indicator function of a set fror,(G), the ring of sets
generated by cosets of open subgroups. While the following proposition borrows from
Host's methods, it cannot be directly deduced fr{2a].

Theorem 2.1. Let G be a locally compact group and u be an idempotenB (o).

(i) llu]l =1 if and only ifu = 1¢ for some open coset C in.G
(i) u is positive definite if and only if = 1y for some open subgroup H of. G

Proof. Sufficiency for each of (i) and (ii) above is well known. Let us review i,
briefly. If H is an open subgroup o& let G/H denote the discrete space of left
cosets ofH and gy : G — L{(EZ(G/H)) the quasi-left regular representatiorgiven
by 71 ()0in = Sgr. Then Iy = (ny () |dy), and hence is positive definite with
11l = 1x(e) = 1. If C =sH for somes in G then

1c = (ny()0u10sn) = (nu () ng (V0n|0n) = s * 1y

and henceg|lc| = |Is * 1yl = |1l = 1. Thus it remains to prove necessity for each
() and (ii).
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(i) By [16] there exist a continuous unitary representatianG — U (#H) and vectors
&, n in H such that

w=(n()¢n) and [&[ =lnl=lul =1

Sincern(s) is a unitary for any in G, |n(s)¢| = 1, and hence, by the Cauchy—Schwarz
inequality we have that

u(s) = (n(s)éln)=1 if and only if 7(s)¢=n.
Sinceu is idempotent, we thus see that

_ _ |1 if n(s)¢=n,
u(s) = (m(s)¢ln) = [0 otherwise.
Let C = suppu) = {s € G : u(s) = 1}, and then we have that
C={seG:nis)=n={seG:&=mn(s)n.
If r,s,t € C, then we have that

n(rs )¢ = n(r)m(s)* T(1)E = n(r)m(s)* n = n(r)E =1y

sors~ 1t € C. HenceC is a coset by Propositioh.1 C is open sinceau is continuous.

(ii) First, since |lu|| = u(e), and u is idempotent, we have either that= 0 or
llull = 1. The first case is trivial. In the second, we have from (i) that 1o for
some open cosel in G. Sincee € C, we must have tha€ itself is a subgroup. [J

We note that ifG is an abelian group, then for any nontrivial idempotardf B(G)
we have either thatu| =1 or |Ju| > %(1+ V2) by [47]. We do not know if a similar
result holds for nonabelian groups.

The next result is well-known and a proof can be found36]. For abelian groups
an interesting analytic proof is given @5, 4.3.3] We offer another analytic proof
which is valid for any infinite group.

Proposition 2.2. It is impossible to cover a group G with finitely many cosets of
subgroups of infinite index

Proof. We will considerG to be a discrete group. Let WAB) be the C*-algebra of
weakly almost periodic functionsn G (see[8]). Then WARG) > B(G) and WARG)
admits a unique translation invariant mean Let = denote the ring of subse& of
G such that £ € WAP(G). Then 2 > Q(G) by [22] (or by Theorem2.1 above).
Let m : E — [0, 1] be the finitely additive measure given Wy(E) = m(1g). Then
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m(G) = 1. Thus ifC is a coset of a subgroup of infinite index @&, 7 (C) = 0. Thus
for any finite collectionCy, ..., C, of such,m(|Ji_; Ci)< > /4 m(C;) = 0, whence
Cq,...,C, cannot covelG. [

3. The main result

3.1. Affine maps induce completely bounded homomorphisms

Let us begin with the converse of our main result. Note that4fand A/ are von
Neumann algebras with respective predusls and NV, we say that a ma@ : M, —
N is completely positivef its adjoint, ¥* : N'— M is completely positive.

Proposition 3.1. Let G and H be locally compact groups. df: Y ¢ H — G is a
continuous piecewise affine mapen @, : A(G) — B(H) given by

(u(uh)) ifhevy,
Du(h) = {O otherwise (3.1)

is a completely bounded homomorphism. Morepdgr is completely contractive if
is affine and completely positive i is a homomorphism on an open subgroup

Proof. We will build the proof up in stages, beginning with homomorphisms, then
moving to affine maps, and then to piecewise affine maps.

First, suppose that is a homomorphism and Y is an open subgrolipen by
[16] or [2, 2.10] @, : A(G) — B(Y) is an isometric homomorphism whose adjoint

z‘y : W*(Y) — VN(G) is the x-homomorphism such that);ly(wY(y)) = Agoo(y)
for eachy in Y. SinceY is an open subgroup dfi, B(Y) injects contractively into
B(H) via the map which sends in B(Y) to the functionv, which takes the values
of vonY and 0 otherwise. This fact is well known, and follows frgd0, Proposition
1.2], for example. Note thatv : v € B(Y)} = myB(H) wheremy : B(H) — B(H) is
multiplication by the idempotentyl Hence®,, is the composition of maps

A(G) D, B(Y) —> myB(H) < B(H).

The adjoint of the inclusion mamyB(H) < B(H) is my. We have thall = wpy(e) =
mywy(e) = myl and |m} |, = llmyleo = 1yl = 1. Hence, by[15, 5.1.2] m}
is completely positive. The adjoint of the map +— © is the x-isomorphism0 :
spat {wu(y) 1 y € Y} — W*(Y) such thatd(wy(y)) = wy(y) for any y in Y.
Hence it follows that®; = m300-®7, is completely positive and contractive.

Second, suppose thatis affine and Y is an open cosétix an element: in Y and
let B: A=Y — a(h)~ta(Y) C G be the homomorphism froml(l). Then @, is the
composition of maps

ul—)ot(h)_l*u v h¥v

AG) ——— AG) —(Dﬁ——> B(H) —— B(H),
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where fors = u(t) = u(s~1t) and h x v(h') = v(h~1h’) for s,¢ in G and h, i’ in H.
Then for fixeds in G [respectively,h in H], the translation operato# +—> s % u on
A(G) [v— h=xv on B(H)] has adjoint which is multiplication by the unitais (s)*
on VN(G) [wg(h)* on W¥(H)], which is a complete isometry. Hence it follows that
@, is a complete contraction.

Finally, we suppose that is a continuous piecewise affine map akde Q,(H).
Then, by Lemmal.3 (ii), we can write

n mi
Y =U Y; where each Y; =L;\ U M;;
i=1 Jj=1

and eachl; and M;; is an open coset. Moreover, for eacthere is a continuous affine
mapa; : L; — G such thaty |y, = a|y,. Let £X(n) be then-dimensional¢!-space with
contractive summing basi®; :i =1,...,n}. Let A: A(G) — B(H)®¢1(n) be given
for u in A(G) by the weighted amplification

n
Au = Z d)al.u ® ;.
i=1
ThenA is completely bounded withA ||, <n. Letting{y; :i =1,...,n} in £*°(n) be

the dual basis tdo; : i = 1,...,n}, we let the weighted diagonal multiplication map
M : B(H)®!(n) — B(H)®¢1(n) be given by

n n n
M=) my ®.7)0 so MY v®d=>) lyy®d.
j=1 i=1 i=1

HenceM is completely bounded withM|lep < 311 |1y, |. Let tr be the linear func-
tional on¢(n) implemented byy, +- - -+, S0 that ig ) ®tr : B(H)®¢(n) — B(G)
is given by

n
idB(H)®tr<Z vi®5i> =v 4+,

i=1
and |idgm) ®tr|, < lltr| = 1. Then we have thab, is the composition of maps
- . idg ) ®t
AG) —2 s BH®EM) —Y BHSE () %% B(H)

and is thus completely bounded.

Corollary 3.2. If & : Y € H — G is a continuous piecewise affine map then the
map ¥, : B(G) — B(H) given similarly as®, in (3.1) is a completely bounded
homomorphism. Moreovel’,, is completely contractive i is affine and ¥, is com-
pletely positive ifex is a homomorphism on an open subgroup. If G is amenahkn
1Psllco = ||q)o<||cb-
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Proof. That ¥, has the properties claimed can be seen by making trivial modifications
to the proof of the proposition above: replagg by wg, and VN(G) by W*(G).

If G is amenable, there is a norm 1 bounded approximate ideqtjy for A(G)
by [33]. If v € B(G) with |lv|| = 1, then (vu;); is a contractive net which con-
verges tov in the multiplier topology, and hence uniformly on compact subsets of
G. Hence®,(vu;) — ¥,v uniformly on compact subsets @. Since (®,(vu;)); is
bounded by||®,|| it follows that it converges tdV,v in the weak* topology, and hence
[Pavll < 1Dyll. Thus [yl < [[Dgll-

We can obtain thaf| ¥, |lcp < | Dy llch Similarly. Indeed, for any: x n matrix [vg]
over B(G), the amplified multiplication mapguvi;] — [vku;] are contractive. We get
for any k, I that ®,(viu;) — Wy Weak*, and hencc{d)a(vklu,r)] — [Pyvi] weak*,

from which it follows that H i H < H(Df{‘) ) Hence || Pyllcp < | Pyllep. Since @, =
Y.lacG), we obtain the converse inequalityPyllcp < |Pollep. U

Remark 3.3. If G = F», the free group on two generators, then it may not be the case
that || @, |lcp = | P« llcp fOr a piecewise affine map : Y C F» — F»> which is not itself
affine. To see this led and b be the generators foroFFor anyn = 1, 2, ... the set

E, = {a*b* : k = 1,..., n} is afree setin the sense of31]. Let o, : E, — F» be the
inclusion map, which is affine a8, is finite. Then

sup [ @, ||, <2 while sup| ¥y, |, = .
n n

Indeed, first observe that for amyin A(F2), ®,,u = 1g,u. Then, by[32, Bem. (13)]

1g, € B2(G), the algebra of Herz—Schur multipliers, and is of norm no greater than 2.
Then it follows[6] (or [49]) thatu — 1g,u is completely bounded on @&). (We note
that an alternative line of proof can be followed, usifg Section 2]or [39, Section

2], by which we may see that supd,, |, <25. These proofs make use of the space
T1(G) of Littlewood functions.) On the other hand, note thH} 1r, = 1g,. If the
sequence{lg, : n = 1,2,...} were bounded in B5), then its pointwise limit %,
where E = {a"b" : n = 1,2,...}, would be in BG). However, this would contradict
[39, Lemma 2.7] [

3.2. Some lemmas

We will need two lemmas to proceed to our main result.

The first one gives a construction of a niseunded approximate diagonfdr A (G x
G). This construction is a simplified version of the one in the seminal ppfr(see
also [46, Section 7.4}

Lemma 3.4. Let G be an amenable locally compact group. Then there existqdhx
G) a net(w;); such that

(i) eachuwy is positive definite and of norrh, and
(i) for each(s,1) e G x G
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. 1 ifs=r,
I|5n wils, 1) = 0 otherwise

Proof. First we will obtain apositive approximate indicatdfor the diagonal subgroup

as in[1]. SinceG is amenable, there is a positive contractive quasi-central approximate
identity (¢;); for L1(G) by [35]. Moreover, by[50], (e¢;); can be chosen to have
compact supports tending to the identity @ We let&; = el.l/z for eachi and define

for (s,1) iIn G x G

ui(s, 1) = (A ()pc (D& 1E:),

where p; : G — U(L?(G)) is the right regular representation G Then eachu; is
a positive definite function withju;|| = u(e, ¢) = 1. It follows, using computations
exactly as in[1, Theorom 2.4] that

. 1 ifs=r,
“En ui(s. 1) = 0 otherwise

(We note that ifG is a small invariant neighbourhood group, there is a very simple
construction of a net, having the properties(of);, in [48].)

Since G is amenable,G x G is amenable and hence there exists a @g); of
A(G x G) comprised of norm 1 positive definite functions which converges uniformly
on compact sets togl.g. To see this, by23, Propositon 6.1{also seq37, 4.21) there
exists a bounded net of elemer(ts‘,.)j from A(G x G)™ which converges uniformly

on compact sets togk g, and normalise by taking; = L. (Note that by[19],

Vi(ee) J°
this net is a bounded approximate identity fo((Ax G). This gives an alternative
proof to [33].) Then the product net with elements

w; =V
is the desired bounded approximate diagonall

The next lemma is a straightforward technical result on complete positivity. Though
it is surely well-known, we include a proof for convenience of the reader.

Lemma 3.5. Let M3, M2 and N be von Neumann algebras and &t: (Mj), —
(M2). be a completely positive map. Thdn® id;, : (M1),®N; — (M2).®N; is
also completely positive

Proof. By definition we have tha®* : M, — M3 is completely positive. Hence the
normal map®* ® idy : M2@N — M1®N makes sense. Moreover, it is simple to
verify, using elementary tensors i@\, that ®* @ idy = (® ® idx;,)*, where we
identify M; QN =~ ((/\/li)*@]\f*)’k for i = 1, 2. Thus we need only to see thht ®@id

is completely positive.
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First, let b = ®*(7)Y/2. By [15, 5.1.6] there is a unital completely positive map
0: Mo — M1 such thatd* = b0(-)b. Hence

O*Qidy = bR NIRidn()(b & I).

Now 6 ® id - is completely positive sincé @ idy (I ® 1) =1 ® I while || @ idar|,
< 0], = 0] =1, and we employ15, 5.1.2] Thus ®* ® idxr is a composition
of completely positive maps whence it is completely positiviel

Remark 3.6. If G is any locally compact group, the map: A(G) — A(G) given

by w(s) = u(s~1) (s in G) is positive—it takes positive definite elements to positive
definite elements—contractive and a homomorphism. Howevetl hyProposition 1.5]

1 is completely bounded only iG has an abelian subgroup of finite index. Thus if
G does not admit an abelian subgroup of finite index, thgii)Aadmits a bounded
homomorphism which is not completely bounded.

3.3. The main result

Theorem 3.7.Let G and H be locally compact groups with G amenalaled let @ :
A(G) — B(H) be a completely bounded homomorphism. Then there is a continuous
piecewise affine map:Y c H — G such that for eacth in H

_fu(ath)) ifhey,
Du(h) = [ 0 otherwise

Moreover « is affine if ® is completely contractiveand o is a homomorphism defined
on an open subgroup i is completely positive

Proof. First, it will be convenient for us to leG ., = GU{oco} be either the one-point
compactification ofG if G is not compact, or the topological coproductifis compact.
Each elementi of A(G) extends to a continuous function @hy, by settingu(oco) = 0.
Now, as observed if25], sinceG is the Gel'fand spectrum of &), for eachk in H
there is anu(h) in G such that

Du(h) = u(o(h)). (3.2)

The mapa : H — G is continuous. Indeed, suppose not. Then there iggaim H, a
neighbourhoodJ of «(hg) and a net(k;); in H such thath; — ho but a(h;) ¢ U for
anyi. If a(hg) € G, find au in A(G) such that sup) Cc U and u(a(hg)) = 1. Then

1 = u(a(ho)) = Du(ho) = lim Du(h;) = lim u(a(h;i)) =0
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which is absurd. Ifu(hg) = 0o, then K = G \ U is compact. Find: in A(G) such
that u|x = 1 and suppu) is compact, and we reach a similar contradiction as above.
We thus have that

%: H — G is continuous and’ = «~(G) is open inH. (3.3)
Note that
Y ={h € H : there exists as in A(G) such that®u (k) # 0}. (3.4)

We will now suppose thath is completely bounded, and address the cases that
it is completely contractive or completely positive later. Then the rdea® idag) :
A(G)RA(G) — B(H)®A(G) is completely bounded wit] ® ® ida(q) || <Pl e
We can identify AG)®A(G) completely isometrically with AG x G) via

UR V> U XV, (3.5)

whereu x v(s,t) = u(s)v(t) for (s,t) in G x G. Indeed, the adjoint of this map is
the isomorphism VNG x G) =VN(G)®VN(G), which is spatially implemented. We
can also identify BH)®A(G) completely isometrically as a subspace oflBx G)
via a map like 8.5, whereu x v(h,t) = u(h)v(t) for (h,t) in H x G. Indeed, the
adjoint of such a map would be the canonical homomorphism froif{AMx G) to
W*(H)®VN(G), which extendswy g (h,t) — wy(h) ® Ag(t). This is a complete
quotient map. Furthermore, the inclusiofB x G) — B(H; x Gg) is a completely
positive isometry. Thus the composition of maps

(D®idA(G)

A(G x G)=A(G)®A(G) B(H)®A(G) = B(H x G) = B(Hy x Gg)

forms a mapJg, such that||Jpl < [|[Jollep < [|@llgp- On any elementary product of
functionsu x v in A(G x G) and for any(h, t) in H x G we have

Jou x v(h,t) = (Pu) x v(h,t) = u(o(h))v(t),

where we recall that(oco) = 0. We can extend this to linear combinations of elementary
products and hence, by continuity, to any elemenin A(G x G), so we obtain for
any (h,t) in Hx G

w(a(h),r) ifhey,

Jow(h,t) = .
ow(h, 1) 0 otherwise.

(3.6)
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Now, let (w;); be the net from Lemma.4, and consider the né€tpw;); in B(Hy x Gy).
We have for eachh, ) in H x G that

) lim w;(a(h),t) f hev,
Iim Jow;(h,t) =1 1 .
l 0 otherwise,
_ |1 ifheY anda(h) =t,
0 otherwise.

Thus (Jpw;); converges pointwise tor], whereI, is the graph ofo, as in (.3).
Since (Jowy); is bounded, we conclude thaf 1e B(Hy x G4), which implies by[22]
thatI'y, € Q(H x G). This implies, by Lemmad..2 (iii), that « is piecewise affine. Since
(3.3 holds, we can apply Lemm#&.3 to see thatx extends to a continuous piecewise
affine mapx : Y — G. However, it follows from this thaY is closed. Indeed ifig € Y,
there is an elemernt of A(G) such thatu(a(ho)) # 0. Then for any neth;); inY,
converging tokg we have

Du(hg) = lim ®u(h;) = lim u(a(h;)) = u(@ho)) # 0

and it follows from B.4) that hg € Y. Hencea = « and « is itself a continuous
piecewise affine map.

Now suppose tha® is completely contractive. It then follows that the n@ypw;),
is completely contractive, and hence, I B(H; x G4) with |1r, | <1. By Theorem
2.1 we conclude thafl, is a coset, which in turn forces to be an affine map by
Lemma 1.2(ii).

Finally, if ® is completely positive, the® ® ida(c) is a completely positive map
by Lemma3.5, and hence/y is completely positive. Thus the néigpw;); is a net of
norm 1 positive definite functions. It follows then that, lis positive definite, which,
by Theorem2.1 forcesT', to be a group. Hence is a homomorphism on some open
subgroup by Lemmd.2i). O

The theorem stated above appears to be the best result possible. We have already
seen in Remarl8.6 that there exist bounded homomorphisms of Fourier algebras which
are not completely bounded. Moreover, we can show for a large class of nonamenable
groups, namely those which contain a closed noncommutative free group, that Theorem
3.7 fails. We note that anonamenablegroup G contains a discrete copy of a honcom-
mutative free group ifG is almost connected (s¢87, 3.8)), or if G is linear with the
discrete topology (segb1] or, for some special cases, sgd]). We are indebted to
B.E. Forrest for indicating the following example to us.

Proposition 3.8. If G is a nonamenable group which contains a discrete copy of the
free groupF2, then there exists a completely bounded homomorplismA (G) —
A(F2) which is not of the formb, as in (3.1) for a piecewise affine magp.
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Proof. The restriction map — ulg, from A(G) to A(F2) is a contractive quotient
map by [20]. Moreover, the adjoint of this restriction map is thkehomomorphism
from VN(F2) to VN(G) which extendsig,(s) — Ag(s), so it is completely positive.
Now let a and b be the generators foroFand E = {a"b" : n = 1,2,...}, sOE is a

free set As in Remark3.3, we see that the map — 1gv is a completely bounded
map on AF,). We let ® be the composition of maps

v—>1pv

AG) 2 Ay TN AR,

Then ® = ®, whereo : E C Fo — G is the inclusion map. Howeverglg B(F2) by
[39, Lemma 2.7] Hence, by[22], E ¢ Q(F2), so « is not piecewise affine.

3.4. Some consequences

In what follows we will always letG and H be locally compact groups witls
amenable.
The first one is a direct application of Theoréhv and Corollary3.2

Corollary 3.9. Any completely bounded homomorphidm A(G) — B(H) extends to
a completely bounded homomorphigt: B(G) — B(H) with ||¥|lcp = | D]l cp.

The next corollary follows from the fact that a connected group admits no continuous
piecewise affine maps which are not themselves affine. See Lehrina

Corollary 3.10. If H is connectedthen any completely bounded homomorphi®m
A(G) — B(H) is of form (3.1 for an affine mapa. In particular, ® is completely
contractive

Now we will consider homomorphisms betweer@® and A(H). If Y and X are
locally compact spaces, we say that a mapY — X is properif o~1(K) is compact
in'Y for every compact subsét of X. For abelian groups the result below can be found
in [10].

Corollary 3.11. A map® : A(G) — A(H) is a completely bounded homomorphism if
and only if® = ®, as in (3.1) whereo is a continuous piecewise affine map which is
proper. In particular, « is a closed map

Proof. As in the proof of Theoren3.7, let us employ the convention that H — G .
Since® : A(G) - A(H) C B(H), the existence of a piecewise affine magsuch
that ® = @, follows from our main result. Now if there were a compact subi¢eadf
G such thata~1(K) is not compact, then for any € A(G) such thatu|gx = 1, we
would have thatdu = uex would not vanish at infinity, and hence would not be in
A(H). Hence necessity is proven.
To obtain the converse, let.AG) denote the subspace of ®) consisting of functions
of compact support. Then AG) is a dense subspace of @). Similarly define A(H).
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If ® = ®, for a continuous piecewise affine map then ® : A(G) — B(H) is
a completely bounded homomorphism by Propositbh Since for anyu in A.(G),
Suppuea) = oc_l(suplt{u)), we have that®d(A.(G)) C A.(H), and henceD(A(G)) C
A(H).

Now we shall see that is closed. LetE be a nonempty closed subset ldf sg €
o(E) andU/ be a neighbourhood basis @t consisting of relatively compact sets. Then
{0~ Y(U) N E}yey is a family of compact subsets ¢f having the finite intersection
property, whence. = (¢ @ Y(U)NE # . If hg € L, thena(hg) = so, sincea(ho)
is contained inU for eachU in Y. O

We can thus obtain an analogue of Walter's Theof&gi.

Corollary 3.12. Let ® : A(G) — A(H) be an completely contractive isomorphism.
Then there exists an elementin G and a topological group isomorphisif: H —
G such that

DOu(h) = u(sof(h))
for eachh in H. Moreover if ® is completely positive thes = e.

Proof. Let « : Y ¢ H — G be the affine map whose existence is guaranteed by
Corollary 3.11 Since® is surjective and AH) is a point-separating regular algebra
on H, Y = H and « is injective. Since® is injective, «(H) is dense inG. Hence,
asa is closed, we obtain that(H) = G. Thus« is bijective, and hence open, so it
is a homeomorphism. Lefy = a(ey) and ff = so‘loc(-), so f is a homomorphism as
in (1.2.

If @ is completely positive ther is a homomorphism and henge=«. O

It is known, to us through Z.-J. Ruan, that the result above obtains in the case that
® is a complete isometry, without assuming tkiais amenable. The proof follows the
one given by Walter.

Let us close with a characterisation of the range of a completely bounded homo-
morphism of Fourier algebras, which is due to Keg@®f] in the case thaG and H
are abelian, and due to the first autj@b] in the case that eitheG is discrete and
amenable oiG is abelian, with generaH. Below, as with all results in this section,
we assume th& is amenable andH is a general locally compact group.

Theorem 3.13.1f ® : A(G) — A(H) is a completely bounded homomorphism with
adjoint map®* : VN(H) — VN(G) then

_ . u(h) = 0 if ®*(Ly(h)) =0, and

PAG) = {” SAED Ly = u'y i O (g () = O G (') } '

That ®(A(G)) is contained in the set of the latter description is clear. Note that, in
fact, ®*(Agy (h)) = Ag(a(h)) if ®*(Ay(h)) # 0, wherew is the proper completely affine
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map promised by Corollarg.11 The converse inclusion is not trivial, and its proof
is in [25, Section 5] To adapt that proof to be sufficiently general we need only note
Herz's extension theorerfRO]—if F is a closed subgroup of then for eachu in
A(F) there is an element in A(G) such thatii|r = u and |jit|| = ||u||; and we must
use Corollary3.11in place of the main theorem ¢£5].
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