“;j laravel 4 - Cheat Sheet

Composer

composer create-project laravel/laravel <folder>

Install laravel whit all the dependencies in a new <folder>.
If no <folder> provided a laravel folder is created.

composer install <--dev>

Install all of the framework's dependencies. --dev option
instal the require-dev additional dependency.

composer update <--no-dev>

Update all of the framework's dependencies. --no-dev option
update whitout require-dev additional dependency.
Require-dev dependency are installed by default.

composer dump-autoload

Update the autoloader. You should run it after adding a new
class in your project.

Configuration

Config:get(‘file.key',<'default’>);

Accessing configuration value.

('key','value');

Set configuration value at runtime.

Config:has('key');

Determine if the given configuration value exists.

Routing

Route::get(‘'uri/{var?}, Function($var = null));

Catch the GET uri and execute a closure. “?" after the var
stands for optionl values in the uri.

Route::post(‘uri/ffvar}, Function($var));

Catch the POST uri and execute a closure. Optional values
same as the get method.

Route::post(‘uri/{var},array ('https’' function()));

Force the Route to be served over HTTPS

ost('uri/fvar}, Function($var))
e('var’,'[Regex]’);

Rotue whit a regular expression constraints.

Route::filter(‘filter’, Function($route,$request,
Svalue))

Defining a Route Filter. ‘after’ filters receive a $response as
the third argument passed to the filter

ot('uri’, array('before’=>"filter1:var|filter2’),

Attach filters to a route. Optional parameter can be passed.

Route:zwhen('uri/*', ‘filter’);

Apply the routes on a pattern URI.

Route::get('uri’, array('as’=>'name’, function()));

Naming a route. Usefull for referring to routes when
generating redirects or URLs

Route::group(array('before'=>'filter’, function()));

Apply a set of filters to a group of routes. Routes are
declared inside the closure.

Note: “<value>":values in angle bracket are optional values.

Routing

Route::group(array('domain’=>'{var}.myapp.com’),

function());

Handle sub-domains wildcard, and pass the wildcard to the
routes inside the closure.

Route::group(array('prefix'=>'value’),
function());

Prefix the routes in the closure whit the ‘value’ string.

Route::model('var'=>'Model);
ri/{var}’,Function(| Svar));

Bind a model ‘Model’ to the var ‘var’ and inject its instance
into route.

Route::bind('var',function($value, $route){
return Model::where('key’, $value)->first();
b

Resolve the ‘var' parameters whit a custom ‘Model’
data extraction.

Routing Controller

'uri’, ‘Controller@action’);

Route te ‘uri’ to a specific ‘action’ of controller ‘Controller’

Route::currentRouteAction();

Retrieve the name of the controller action being run.

ntroller('uri’, ‘Controller’);

Define a RESTFful Controller to the ‘uri'. Function in controller
must be prefixed with the http verb.

(‘'uri’, ‘Controller’);

Define a RESTFful Controller that should manage a resource.
Its a good practice build the controller with the command:
php artisan controller:make myController

Route::get('uri’, array(‘before’ => ‘filter’,

'uses'=>'Controller@action’));

Filter a controller for ‘uri'. Filters can also specified in the
controller like: Sthis->beforeFilter(filter);

Input

Input:get('key’,<'default’s);

Accessing input value.for all HTTP verb. ‘GET" have priority on
‘POST'.

Determining if an input value is present. Empty string are
considered as no input value is present.

Getting all input for the request.

Getting all input request exept specified key.

Save all the input in the session for the next request. You
may easily chain input flashing onto a redirect in this way:
Redirect:to('uri)->withinput();

Input

Input:flashOnly('key1’,'key2’,'keyN’);

Save only specified input in the session for the next request.

shExcept('key1’,'key2’,'keyN’);

Save all the input in the session except the key specified.

Retrieve the old input flashed in the session. If 'key’ is
specified, the input associated is returned otherwise all the
inputin session.

Files

Return an object that trpovides a variety of method for
interacting whit the file.

Input:file('key’)->move($destPath,<Sfilename>);

Move the uploaded file in a specific folder and eventually
ranaming it.

Input:file('key')->getRealPath();

Retrieving the path to the uploaded file.

Input:file('key’)->getSize();

Retrieving the size of the uploaded file.

Input:file('key')->getMimeType();

Retrieving the MIME Type of the uploaded file.

Determine if ‘key’ file is uploaded.

Request

Request::path();

Get the Request URI.

Request::is('uri/*");

Determine if the request path matches a pattern.

gment(1);

Get the specified uri segment.

egments();

Get all uri segments.

Request::url();

Get the request URL.

Request::header(’Content-Type');

Get the request Header.

Request:server(key");

Get $_SERVER['key’] value.

Request::ajax();

Determine if the Request is using AJAX.

Request::

Determine if the Reqeust is over the HTTPS protocol.

Redirects

Redirect to the specified ‘uri'.

Redirect:route('routeName’,<$params>);

Redirect to a named route. Parameters can be passed.

Project on: https://github.com/Turaylon/laravel4-cheat-sheet

Blade

{{$vary}
{{ Function() }}

{{{ $var 1}

Echoing data.

Redirect::action('Controller@action’,<$params>);

Redirect to a controller action. Parameters can be passed.

Redirect::to('uri’)->with('key’,'value’);

Redirect with flash data. Array can be provided instead a
couple of values.

Response

Response:make(Scontent, $statusCode);

Create a custom responce. The object returned provides a
variety of method for building HTTP responses.

<htm

<body:
@section('sidebar')
Here the default content.

Example of a master layout template.
@section are part whit default code that can be overwritten.
@yeld are part where content should be injected.

Response::make($cont)->withCookie($cookie);

Attach a Cookie Object to the response. Cookie are
generated with : Cookie::make('name’, 'value);

Response::json($data);

Create a JSON response. A callback can be setted for JSONP
response chaining ->setCallback(Scallback); method.

wnload($pathFile,$name,Sheaders);

Create a file download response. $name and $headers are
optional

@extends('layouts.master')

@section('sidebar’)

@parent

<p>This is appended to the master sidebar.
@stop

@section('content')
<p>This is my body conten

@stop

@extends defining a layout that should be extended

@section-@stop are part that overwrite the content
@parent include the parent @section content.

Views

Views::make('viewName', <$data>);

Parse a view ‘'viewName'. Optional $data can be passed to
the view. Data can be passed alternatively chaining the
method: ->with($data);

Views can be stored in sub-folder and then use dots “." for
directory separator Eg. “folder.view".

Views:share('key', ‘value’);

Share the 'key’ data to all the views.

@if ($statement == true)
@elseif ($statement == true)
@else

@endif

@unless ($statement

@endunless

If and unless statements.

Views::make('viewName')
->nest('child’,'child.view’, <$data>);

Passing a Sub-view to a view.

Views::composer('viewName', function($view){
Sview->with($data);
;

Bind a callback to the ‘'viewName' views that pass $data
every time the view is called.

Views - Controller layouts

ect $layout = ‘layout.master’;

Sthis->layout->content = Views::make('view');

Define a layout for the controller views.

The layout object will take the views that should be returned

from actions.
There is no need to ‘return’ data from the action if is
setted in the $this->layout->content.

@for ($i=0; Si < 10; Si++)
The current value is {{ $i }}
@endfor

@foreach (Susers as Suser)
<p>This is user {{ Suser->id }}
@endforeach

@while ($statement == true)
<p>I'm looping forever.
@endwhile

Loops

@include(

Include sub-views

@lang(‘language.line’)
@choice(‘language.line’, Snumber)

Get language lines. @choice pick a singular or plural line
based on $number.

Comment that will not be rendered in HTML

