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This paper examines competition in the standard one-dimensional Downsian
model of two-candidate elections, but where one candidate (A) enjoys an advantage
over the other candidate (D). Voters' preferences are Euclidean, but any voter will
vote for candidate A over candidate D unless D is closer to her ideal point by some
fixed distance $. The location of the median voter's ideal point is uncertain, and its
distribution is commonly known by both candidates. The candidates simulta-
neously choose locations to maximize the probability of victory. Pure strategy equi-
libria often fail to exist in this model, except under special conditions about $ and
the distribution of the median ideal point. We solve for the essentially unique sym-
metric mixed equilibrium with no-gaps, show that candidate A adopts more
moderate policies than candidate D, and obtain some comparative statics results
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about the probability of victory and the expected distance between the two
candidates' policies. We find that both players' equilibrium strategies converge to
the expected median voter as A's advantage shrinks to 0. Journal of Economic
Literature Classification Numbers: C72, D72. � 2001 Elsevier Science (USA)
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1. INTRODUCTION

Often the media tells us about candidate so-and-so's charisma, hand-
shaking skill, great speech delivery, or lack thereof. Yet only rarely do these
features find leading roles in the simple spatial models that political scien-
tists have embraced as the tool of choice to study candidate competition in
mass elections. This paper takes the simplest nontrivial extension of the
standard Downsian model in this direction, and explores the implications
for the equilibrium positioning of candidates. With this seemingly trivial
addition of realism into the model things seem to change very dramatically.
Pure strategy equilibria fail to exist even in a single dimension where voters
have single-peaked preferences. Candidates diverge, and this divergence
occurs in predictable ways. Candidates with charisma end up reinforcing
their advantage by adopting relatively more centrist platforms on average,
while the ugly, clumsy, and inarticulate flounder on the periphery of the
policy space.

The implications of our model are actually more general than simply an
investigation of the effects of charisma, or other ``exogenous'' candidate
characteristics. The results apply for any particular nonpolicy advantage
one candidate has over another, which is valued by all voters. Thus,
endogenous political phenomena such as office-holding experience,
incumbent performance, constituency service, and advertising (campaign
expenditures) can also generate similar effects. Because these advantages or
disadvantages can arise for either endogenous or exogenous reasons, we
lump all of them together and simply view these effects as ``image.'' In addi-
tion to the candidate-specific image dimension, there are also broader
``valence'' issues (Stokes [19, pp. 170�174]), such as economic performance
(Kiewiet [14]) and military success, that are irreversibly linked to a
candidate through his or her party's past and current performance. There
is ample evidence that such issues are very important in elections, and such
factors need to be incorporated into the standard models. To wit:

``It will not do simply to exclude valence issues from the discussion
of party competition. The people's choice too often depends upon
them. At least in American presidential elections of the past
generation it is remarkable how many valence issues have held the
center stage.'' (Stokes [19, p. 171])
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More recently, Popkin et al. [17, p. 793] came to a similar conclusion
about the 1972 U.S. election: ``[The voter] cares less about which
candidate is the closest to his ideal position on issues for which he has
information and preferences, but cares most about which candidate can
deliver the most.'' Since we find here that asymmetries along the image
dimension or divergent voter perceptions of candidate competence on valence
issues can generate significant electoral effects in equilibrium, this may help
explain why empirical studies in political science often find these kinds of
effects play important roles in campaigns, candidate entry decisions (Banks
and Kiewiet [4]), and incumbent longevity (Kiewiet and Zeng [15]).

There are several recent papers that have begun to investigate the
theoretical properties of equilibrium in the presence of asymmetric
candidate image effects. The closest to this article are Ansolabehere and
Snyder [2] and Groseclose [12]. Those papers investigate different varia-
tions of the model we study in this paper, and they look only on pure
strategy equilibria. Ansolabehere and Snyder [2] focus on candidates that
maximize the probability of winning in a world of certainty. They find that,
when a pure strategy equilibrium exists, the advantaged candidate locates
centrally, and there is no restriction on the location of the disadvantaged
candidate (who always loses).

That result changes dramatically with uncertainty or if candidates maxi-
mize expected vote, since pure strategy equilibrium no longer exist.3 The
key point is that if the candidates differ in quality (or along some other
valence dimension) then the ``better'' candidate wants to copy the location
of the worse candidate while the disadvantaged candidate tries to distance
himself from the advantaged candidate. The advantaged candidate wins all
the votes if he exactly copies the location of the disadvantaged candidate.
Thus, the disadvantaged candidate must mix in order not to be predictable.
However, in order for mixing to be optimal for the disadvantaged
candidate, the advantaged candidate also must be mixing. This result is
quite general.

Groseclose [12] observes that candidate policy preferences work in the
opposite direction of these chase-and-evade incentives. If policy preferences
are sufficiently weighted in the candidate objective functions, relative to the
importance of the valence dimension, then pure strategy equilibria may
exist. Since our focus here is only on the role of quality or valence dimen-
sions, we only consider purely office-motivated candidates.

The nonexistence of pure strategy equilibrium, even with arbitrarily
small advantages for one candidate suggests that the standard Downsian
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model may be a knife-edge case. That is, any small amount of asymmetry
between the candidates along the valence dimension could invalidate the
standard results. Groseclose [12] raises exactly such a concern. However,
we obtain a continuity result suggesting that the standard Downsian model
may be a good approximation when these valence dimensions play a
minor role in the election. Specifically, as the advantage to one candidate
shrinks to 0, the equilibrium probability of winning converges to one-half
for each candidate. This continuity result shows that the knife-edge
property is illusory. Despite the sudden loss of pure strategy equilibria,
the distribution of strategies in the mixed equilibrium converges to a
degenerate distribution��i.e., the Downsian pure strategy equilibrium��as
the advantage becomes very small, and the two candidates win with equal
probability.

Several other papers have examined formal models of candidate
equilibria where there are asymmetries between the candidates. Bernhardt
and Ingberman [6], Ingberman [13], and Berger et al. [5] look at
incumbency advantages, and explore equilibria when candidates locate
sequentially. Londregan and Romer [16] also investigate competition
with incumbency effects. Wittman [20] adopts a sequential location
approach, in a model that looks at the role of pressure groups. Sequential
approaches like these avoid the nonexistence problem of simultaneous
location choice, but leave open the question of what is the correct sequen-
tial model, which can be problematic since results typically depend on
order of moves.

None of the above papers investigate the properties of the mixed strategy
equilibria of the simultaneous location game. That is what we do in this
paper. In Section 2 we present the basic model, where the policy space is
a finite grid of points on the [0, 1] interval, voters have Euclidean
preferences, the location of the median voter's ideal point is uncertain, and
candidates choose policies to maximize the probability of winning. In
Section 3 we solve for closed form solutions of mixed strategy equilibrium
when the size of the advantage enjoyed by one candidate is relatively small.
It turns out that the solutions are slightly different, depending on whether
the policy space consists of an even or an odd number of points. The basic
techniques in the two cases are similar, so we only include the analysis of
the even number case in this article. The derivation with odd numbers leads
to similar conclusions and is available from the authors on request. In Section
4, we analyze the properties of the equilibrium found in the previous section
for large n. We compare the expected payoffs of the two candidates, and look
at limiting cases, in which the advantage is arbitrarily small and the policy
space grid approaches a continuum. We find that the advantaged candidate
always has a higher expected payoff in equilibrium, but this equilibrium
advantage shrinks to 0 in the limit. In Section 5 we explore three different
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extensions of the model: nonuniform distributions of the median voter's ideal
point, larger values of the advantage, and existence of a mixed strategy equi-
librium in the case of continuous locations. We conclude in Section 6.

2. THE MODEL

The policy space, ^, is the set of n points on the [0, 1] interval, xi=
i&1
n&1,

i=1, 2, ..., n. There are two candidates, A and D, who are referred to as the
advantaged candidate and the disadvantaged candidate, respectively. Each
candidate's objective is to maximize his probability of winning the election.
Each voter has a utility function, with two components, a policy compo-
nent, and a candidate image component.4 The policy component is charac-
terized by an ideal point in the policy space ^, with utility of alternatives
in the policy space a strictly decreasing function of the Euclidean distance
between the ideal point and the location of the policy, symmetric around
the ideal point. We assume there exists a unique median location, denoted
by xm . Candidates do not know xm , but share a common prior belief about
it. This commonly shared belief is represented by a probability distribution
over ^, and is denoted by a vector of probabilities, (\1 , ..., \n), where
\i�0, i=1, 2, ..., n and \1+ } } } +\n=1. We denote by m the median of
the distribution \. The image component is captured by an additive con-
stant to the utility a voter gets if A wins the election. That is, the utility
that a voter with ideal point xi obtains if A wins the election is
Ui (xA)=$&|xi&xA | and his utility if candidate D wins is U i (xD)=
&|xi&xD |, where candidates' policy positions are denoted by xA and xB ,
and the size of A's advantage is $�0.5

The game takes place in two stages. In the first stage, candidates
simultaneously choose positions in ^. In the second stage, each voter votes
for the candidate whose election would give him the higher utility. In case of
indifference, a voter is assumed to vote for each candidate with probability
equal to 1�2.6

Since the behavior of the voters is unambiguous in this model, we define
an equilibrium of the game only in terms of the location strategies of the
two candidates in the first round. A pure strategy equilibrium is a pair of
candidate locations, (xA , xD) such that both candidates are maximizing the
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probability of winning, given the choices of the other candidate. We denote
by ?A(xA , xD) and ?D(xA , xD) the probability of winning for candidate A
and for candidate D, respectively, as a function of (xA , xD).7 A mixed
strategy equilibrium is a pair of probability distributions over ^, (_A, _D),
such that there is no mixed strategy for A that guarantees higher probabil-
ity of winning than _A, given _D and there is no mixed strategy for D that
guarantees higher probability of winning than _D, given _A.

3. DERIVATION OF MIXED EQUILIBRIUM

For the rest of this section, we consider only small values of $, such that
0�$< 1

n&1. This simplifies the derivation of equilibrium considerably. In
the last section, we consider what happens for larger values of $. When
$=0, neither candidate has an advantage, and we are in the standard
Downsian world. In this case, when the distribution \ has a unique
median, the two candidates both locate at the median m. The two
candidates each win with probability 0.5. Otherwise, there are multiple
equilibria because there is no unique median location. All of these equi-
libria involve the two candidates mixing between the two median locations.
As is evident from this, the even and odd cases will have to be treated
separately for the case of $>0. When 0<$< 1

n&1 , candidate A wins if and
only if the ideal point of the median voter is at least as close to A as to B.
If B is strictly closer to the median voter's ideal point than is A, then B
wins.

First we state a version of a simple result that has also been established
elsewhere.8 There is never an equilibrium in pure strategies.

Proposition 1. If 0<$< 1
n&1 and n>1, then there does not exist a pure

strategy equilibrium.

Proof. Suppose that (xA , xD) were an equilibrium. If xA=xD , then
?D(xA , xD)=0. Since n>1, there exists some x{xD , and ?D(xA , x)� 1

n>
?D(xA , xD), so it must be that xA {xD . But if xA {xD , then
?A(xA , xD)� n&1

n <1=?D(xD , xD), so (xA , xD) is not an equilibrium. K

The intuition is simple. If the disadvantaged candidate's location is perfectly
predictable, the advantaged candidate can copy that strategy and win for sure.
Therefore (at least), the disadvantaged candidate must be mixing. The result
extends easily to larger values of $, and is true unless $ is sufficiently large

136 ARAGONES AND PALFREY

7 This model is formally equivalent to one in which there is a finite number of voters with
Euclidean preferences, whose ideal points are equally spaced along the unit interval, there is
no uncertainty, and candidates maximize expected vote.

8 Versions of this theorem, with proofs, can be found in Groseclose [12] and Berger et al.
[5]. Ansolobehere and Snyder [2] contains some related results.



that A can locate at the median and guarantee a payoff of 1. In general, if
$< 1

2 , then there will be no pure strategy equilibrium. In what follows, we
limit attention to uniform distribution of the medians, and to strategies
that have a particular symmetry property. Specifically, each of the mixed
strategy distributions of the candidates are symmetric around 1

2 . Formally:

Definition 1. A strategy for candidate j is symmetric if _ji=_j, n&i+1 .

Also, at least in this section, we will limit attention to equilibria in which
there are ``no gaps.'' That is, the support of each candidate's mixed strategy
is an interval. Formally:

Definition 2. A strategy for candidate j has no gaps if there exist
integers i, k such that 0�i�k�n and _jt>0 if and only if i�t�k.

We will show below, by construction, the existence of symmetric equi-
libria with no gaps, for this case of small $. We have not been able to rule
out the possibility that there are mixed equilibria that are asymmetric
and�or have gaps.

In the remainder of this section, we assume there are an even number of
locations and \ is uniform, unless specifically stated otherwise. A similar
technique can be used to obtained the symmetric equilibrium if n is odd,
provided n>7. As with the even case, symmetric equilibria with no gaps
are solved by first equating the payoffs of adjacent locations, and then find-
ing one of the endpoints of the support. The symmetry conditions, together
with the adjacent equality constraints lead to a recursive system that is
solvable in closed form. From this characterization, it is then straight-
forward to show that as n becomes large, the equilibrium for the odd case
converges to the equilibrium in the even case. The formal statement of this
proof and the details of the derivation are contained in Appendix A of
Aragones and Palfrey [3], which is available from the authors upon
request.

In this section we derive the essentially unique symmetric equilibrium
strategies with no gaps for a fixed even value of n, greater than or equal to
8. The equilibrium mixed strategies for n=4 and n=6 are described in
Section 3.4 as examples.

3.1. Candidate A's Payoffs for each Strategy

Given any mixed strategy, _D=(_D
1 , ..., _D

n ) for candidate D, we denote
by ?A(xi , _D) the probability of winning for candidate A if A chooses loca-
tion xi , i=1, ..., n, where xi=

i&1
n&1. These expressions are written below9:
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In general the payoffs of candidate A for a given strategy i can be written
as10

n?A(xi , _D)= :
[(i&1)�2]

j=1

(n&i+ j+1) _D
i&2j&1+ :

[(i&1)�2]

j=1

(n&i+ j+1) _D
i&2j

+(n&i+1) _D
i&1+n_D

i +i_D
i+1

+ :
[(n&i)�2]

j=1

(i+ j ) _D
i+2j+ :

[(n&i)�2]

j=1

(i+ j ) _D
i+2j+1 .

For example, for i=3, this reduces to

n?A(x3 , _D)=(n&1) _D
1 +(n&2) _D

2 +n_D
3

+3_D
4 +4_D

5 + } } } +\n
2

+1+ _D
n&1+\n

2
+1+ _D

n .

Symmetric equilibria with no gaps are solved by (1) equating the payoffs
of adjacent locations, and then (2) finding one of the endpoints of the sup-
port. If adjacent locations xi and xi+1 are used with positive probability by
candidate A in equilibrium, then their expected payoffs (probability of
winning) must be equal. For example, if locations 1 and 2 are both in the
support of A's mixed strategy, then it must be that

n?A(x1 , _D)=n?A(x2 , _D) O _D
1 +(1&n) _D

2 & :
n�2

i=2

_D
2i=0.

If we denote by k*A the first location in the support of A's strategy, then
we have a collection of n&2kA*+1 equations of the form

k_D
k + :

[(k&1)�2]

i=1

_D
k&2i=(n&k) _D

k+1+ :
[(n&k&1)�2]

i=1

_D
k+2i+1

for k*A�k�n&k*A

where the partial sums continue up to the point where the subscripts
become either less than 1 or greater than n.11
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If we further assume symmetry, that is, _D
k =_D

n&k+1 we obtain the
following simple system of equations that can be solved to obtain the
mixing probabilities of D:

(k&1) _D
k =(n&k) _D

k+1+ :
n�2

i=k+2

_D
i for k*A�k<

n
2

. (1)

3.2. Candidate D's Payoffs for Each Strategy

We derive the equilibrium conditions for candidate D in a similar
fashion. Given any mixed strategy, _A=(_A

1 , ..., _A
n ) for candidate A, we

denote by ?D(x i , _A) the probability of winning for candidate D if D
chooses location xi , i=1, ..., n, where x i=

i&1
n , so the payoffs of candidate

D for a given strategy i can be written as12

n?D(x i , _A)= :
[i�2]

j=1

(n&i+ j ) _A
i&2j+1+ :

[i�2]

j=1

(n&i+ j ) _A
i&2j

+ :
[(n&i)�2]

j=0

(i+ j ) _A
i+2j+1+ :

[(n&i)�2]

j=0

(i+ j ) _A
i+2j+2 .

Equating candidate D's payoffs on the support of D's strategy, we obtain
a collection of n&2k*D+1 equations of the form

k_A
k+1+ :

[k�2]

i=1

_A
k&2i+1=(n&k) _A

k + :
[(n&k)�2]

i=1

_A
k+2i

for k*D�k�n&k*D

where the partial sums continue up to the point where the subscripts
become either less than 1 or greater than n.

Imposing symmetry, _A
k =_A

n&k+1 we obtain the mixing probabilities of A

(k&1) _A
k+1=(n&k) _A

k + :
n�2

i=k+2

_A
i for k*D�k<

n
2

(2)

3.3. Equilibrium in Symmetric Strategies

From the set of Eq. (1) we obtain the first proposition about the
equilibrium strategy of candidate D, provided D's mixing probabilities are
symmetric around 1

2 , and there are no ``gaps'' in candidate A's strategy.
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Proposition 2. In any equilibrium with symmetric strategies and no
gaps, _D

k �_D
k+1 for 1�k< n

2 and _D
k �_D

k+1 for n
2�k�n&1.

Proof. If k� n+1
2 then n&k�k&1. From expression (1), this

immediately implies that _D
k �_D

k+1 for 1�k< n
2 . K

Proposition 3. In any equilibrium with symmetric strategies and no
gaps, _A

k �_A
k+1 for 1�k< n

2 and _A
k �_A

k+1 for n
2�k�n&1.

Proof. If k� n+1
2 then n&k�k&1. From expression (2), this immediately

implies that _A
k �_A

k+1 for 1�k< n
2 . K

That is, the disadvantaged candidate's mixing distribution is U-shaped,
with the least probability weight in the center. In contrast, candidate A's
mixing distribution places monotonically decreasing weight on strategies
that are further from the center. Intuitively, the disadvantaged candidate
must differentiate his policy from the advantaged candidate. Completing
the picture, the advantaged candidate locating in the center of the policy
space (in a probabilistic sense), effectively ``forces'' the disadvantaged candidate
to tend to adopt more extreme positions (again, in a probabilistic sense).

Proposition 4. In any equilibrium with symmetric strategies and no
gaps, _A

k >0 only if n
4�k� 3n

4 and _D
k >0 only if n

4�k� 3n
4 .

Proof. Consider the set of Eqs. (2)

(k&1) _A
k+1=(n&k) _A

k + :
n�2

i=2

_A
k+i for 1�k<

n
2

.

If k� n
4 then k&1� n

2&k&1: in this case we have that the number of
_A

k 's in the RHS larger than or equal to _A
k+1 (considering that _A

k <_A
k+1

for k< n
2) is larger than the number of _A

k+1 in the LHS, so these equations
cannot be satisfied by any _A>0. Therefore, we must have _D

k =0 for
k� n

4 , and because of symmetry: _D
k =0 for k� 3n

4 . Now consider Eq. (1).
If k� n

4 the LHS is equal to 0 and the RHS is positive, so they cannot hold
either. Therefore, we must have _A

k =0 for k� n
4 , and because of symmetry:

_A
k =0 for k� 3n

4 . K

A final proposition concerns the endpoints of the supports of the mixed
strategies, k*A and k*D . The main point is that these two endpoints must be
very close to each other.

Proposition 5. In any equilibrium with symmetric strategies and no
gaps, _A

k >0 only if _D
k >0, and hence k*D�k*A . Furthermore, k*A�k*D+1, so

k*D�k*A�k*D+1.

Proof. If there are no gaps, clearly the support of A cannot strictly con-
tain the support of D. A strategy for A that assigns positive probability to
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a location less than kD* can be improved on by a strategy for A that moves
all that probability to location kD* , but is the same in all other respects.
This yields strictly higher expected payoffs to A since, by assumption, D is
placing some probability on k*D . Similarly, a strategy for D that assigns
positive probability to a location less than k*A&1 can be improved on by
a strategy for D that moves all that probability to location k*A&1, but is
the same in all other respects. This yields strictly higher expected payoffs to
D since, by assumption, A is placing some probability on k*A . We cannot
rule out D placing positive probability on k*A&1. K

3.3.1. Recursive Derivation of Equilibrium

If we first consider the equations determining the A mixing probabilities
(from the D indifference equations) in order to find the mixed strategy
equilibrium, we have13

(n&k) _A
k + :

n�2

i=2

_A
k+i=(k&1) _A

k+1 for
n
4

<k<
n
2

.

These equations can be solved recursively to give

_A
n�2&1=

n
2

&2

n
2

+1
_A

n�2

_A
n�2&2=

\n
2

&3+ n�2&2
n�2+1

&1

n
2

+2
_A

n�2

_A
n�2&3=

\n
2

&4+ ((n�2&3)(n�2&2)�(n�2+1)&1)
n�2+2

&\n�2&2
n�2+1+&1

n
2

+3
_A

n�2

and so forth.
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Similarly, if we consider the equations determining the D mixing
probabilities (from the A indifference equations), we have

(k&1) _D
k =(n&k) _D

k+1+ :
n�2

i=2

_D
k+i for _n

4&<k<
n
2

.

These are solved recursively in a similar fashion as above, to get

_D
n�2&1=

n
2

+1

n
2

&2
_D

n�2

_D
n�2&2=

\n
2

+2+\n�2+1
n�2&2++1

n
2

&3
_D

n�2

_D
n�2&3=

\n
2

+3+ ((n�2+2)(n�2+1)�(n�2&2)+1)
n�2&3

+\n�2+1
n�2&2++1

n
2

&4
_D

n�2

and so forth.
Since _A and _D are probability distributions, we must have

:
[n�4]<k�n�2

_A
k = 1

2

:
[n�4]<k�n�2

_D
k = 1

2

_A
k �0, k=1, 2, ..., n

_D
k �0, k=1, 2, ..., n.

Therefore, we can solve the two recursive systems explicitly to get

_A
n�2=

1
2(�0� j� j*A

S A
j (n))
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and _A
n�2& j=S A

j (n) _A
n�2 , where

S A
0 =1

S A
1 (n)=

n
2

&2

n
2

+1

S A
j (n)=

\n
2

& j + S A
j&1 (n)& :

j&1

i=0

S A
i (n)

n
2

+ j
.

As j increases S A
j (n) may become negative. Let j* denote the largest j for

which S A
j (n) is positive. It determines the extreme point of the support

of _A, denoted by kA* , which is given by: kA*= n
2& jA*= n

2& jA* where jA*=
max[ j�1 | ( n

2& j ) S A
j&1(n)�1+S A

1 (n)+S A
2 (n)+ } } } +S A

j&1(n)].
A similar solution can be worked out for _D,

_D
n�2=

1
2(�0�i� j*D

S D
i (n))

and _D
n�2& j=S D

j (n) _D
n�2 , where

S D
0 =1

S D
1 (n)=

n
2

+1

n
2

&2

S D
j (n)=

\n
2

+ j + S D
j&1 ((n)+ :

j&2

i=0

S D
i (n)

n
2

& j&1
.

From these recursive equations, we can derive a symmetric equilibrium
with no gaps. There is always exactly one equilibrium in which the two
candidates mix over the same support. Sometimes there is a second equi-
librium, which is the same for A, but D mixes over a slightly wider support
that includes one additional position to the right and one additional posi-
tion to the left. There are no other symmetric equilibria with no gaps.
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Theorem 1. There is a unique symmetric, no-gap equilibrium mixed
strategy for player A, _� A, with support 7�� n=[xn�2& j* , xn�2& j*+1 , ..., xn�2 ,

xn�2+1 , ..., xn�2+ j* , xn�2+ j *+1]. If S A
j*+1(n)<0, then Player D has a unique

symmetric, no-gap equilibrium mixed strategy, _� D, with the same support as _� A.
If S A

j*+1(n)=0, then, in addition to _� D, player D can also have symmetric, no-gap
equilibrium mixed strategies on the support 7�� +

n =[xn�2& j*&1 , xn�2& j* ,
xn�2& j*+1 , ..., xn�2 , xn�2+1 , ..., xn�2+ j* , xn�2+ j*+1 , xn�2+ j*+2]. There are no
other symmetric, no-gap equilibria.

Proof. Consider Eq. (2)

(n&k) _A
k ++ :

n�2

i=2

_A
k+i=(k&1) _A

k+1 for
n
4

<k<
n
2

Note that for all n
4<k< n

2 we can write _A
k as a function of _A

i with
k<i� n

2 , that is,

_A
k =

(k&1) _A
k+1&:n�2

i=2 _A
k+i

(n&k)
.

In particular we will have that _A
n�2&1 is a function of _A

n�2 ; _A
n�2&2 is a

function of _A
n�2&1 and _A

n�2 . Substituting _A
n�2&1 from the previous result we

can also express _A
n�2&2 as a function of _A

n�2 . Following this approach for
all 1� j< n

2 we can write each _A
n�2& j as a linear function of _A

n�2 , that is,
_A

n�2& j=S A
j (n) _A

n�2 with coefficients

S A
j (n)=

\n
2

& j + S A
j&1 (n)& �

j&1

i=0

S A
i (n)

n
2

+ j
,

where S A
0 =1.

Observe that these coefficients are a decreasing function of j. Therefore
they are all less than 1, which implies that S A

j (n) _A
n�2 decreases in j.

Furthermore at some point, S A
i becomes negative. Let j*A denote the last

positive coefficient. This value defines the support of candidate A's strategy
in equilibrium in the following way. Larger values of j> j*A , would imply
_A

n�2& j=S A
j (n) _A

n�2�0. If S A
j (n)<0, then this is strictly negative and is not

a feasible strategy, so we must set _A
n�2& j=0 for all j> j*A . If S A

j*A +1(n)=0,

then _A
n�2& j*A &1 is uniquely defined by _A

n�2& j*A &1=S A
j*A+1(n) _A

n2=0 and for
all j> j*A+1 , we have S A

j (n)<0, again implying _A
n�2& j=0.
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Thus, if S A
j*A

(n)>0 and S A
j*A+1(n)�0, then candidate A's support is the set

of policies:

7�� n=[xn�2& j* , xn�2& j*+1 , ..., xn�2 , xn�2+1 , ..., xn�2+ j* , xn�2+ j* +1].

Moreover, _A
n�2& j is uniquely defined by _A

n�2& j=S A
j (n) _A

n�2 for all j=
0, ..., jA* and _A

n�2& j=0 for all j> j*A . When we substitute _A
n�2& j=

S A
j (n) _A

n�2 for all j such that S A
j (n) is positive in the constraint that the

sum of all mixing probabilities equals one (� jA*
j=0 _A

n�2& j=
1
2), we obtain a

unique value for _A
n�2 :

_A
n�2=

1
2(�0�i� j* S A

i (n))
.

Substituting this into the equations _A
n�2& j=S A

j (n) _A
n�2 for all 1� j� j*

gives the unique symmetric probability distribution that solves the
constraints of candidate D, thus it defines the mixed strategy of candidate
A. Hence player A has a unique symmetric no-gap equilibrium strategy,
which proves the first part in the theorem.

For player D, we consider two cases:

Case 1 (S A
j A*+1(n)<0). In this case, by construction, player A is mixing

so that player D is indifferent between all strategies in the support, 7�� n , and
receives a strictly higher payoff from a strategy in 7�� n than from any
strategy not in 7�� n . Therefore, the support of _D is either 7�� n or a strict sub-
set of 7�� n . Since _D has no gaps, then in the latter case, it must be that
_D

n�2& jA*
=0. If so, player A would be better off setting _A

n�2& jA*
=0, a con-

tradiction. Thus the support of _D is 7�� n .
We can then use Eq. (1) to write _D

k as a function of _D
i with k<i� n

2 ,
that is,

_D
k =

(n&k) _D
k+1+�n�2

i=2 _D
k+i

(k&1)

As before for all 1�k< n
2 we can write each _D

n�2& j as a linear function of
_D

n�2 , that is, _D
n�2& j=S D

j (n) _D
n�2 with coefficients

S D
j (n)=

\n
2

+ j + S D
j&1(n)+ :

j&2

i=0

S D
i (n)

n
2

& j&1
,

where S D
0 =1.
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Observe that these coefficients are an increasing function of j, therefore
they are all larger than 1, which implies that the probability that each
policy is assigned by candidate D 's strategy increases as we move away
from the center. From before we know that location n

2& j A* is the left-most
strategy assigned positive probability in _� D.

Given this, we can construct _� D directly, by substituting _D
n�2& j=

S D
j (n) _D

n�2 for all j� j A* and imposing the constraint that probabilities have
to add up to one (� jA*

j=0 _D
n�2& j=

1
2). This gives a unique value for

_� D
n�2=1�2(� j A*

j=0 S D
i (n)). Substituting this value into the equations

_� D
n�2& j=S D

j (n) _D
n�2 for all 1� j� j*A gives us the unique symmetric prob-

ability distribution that solves the constraints of candidate A, thus it
defines the equilibrium mixed strategy of candidate D.

Case 2 (S A
j*+1(n)=0). In this case, by construction, player A is mixing

so that player D is indifferent not only between all strategies in the support,
7�� n , but also the next location just outside of 7�� n (locations n

2& j*A&1 and
n
2+ j A*+2), which we denote 7�� +

n . Therefore, in this case, the support of _D

can be either 7�� n or 7�� +
n . As in case 1, _� D is the unique solution on the

support of 7�� n .
We can also construct, in a similar way, an equilibrium strategy for D

on the support 7�� +
n . Following a similar argument, one such strategy,

_� D+ is found by setting _� D+
n�2& j=S D

j (n) _� D+
n�2 for all j� jA*+1, _� D+

n�2 =
1�2(� j A*+1

j=0 S D
i (n)). Since S D

j (n)>0, for all j, this gives us a new
symmetric no-gap probability distribution for D, in which candidate A is
indifferent between all locations in 7�� n . Next, observe that, since this is a
constant sum game, the set of Nash equilibria is convex, so there are in fact
a continuum of equilibria consisting of all convex combinations of (_� A, _� D)
and (_� A, _� D+). For all of these equilibria, with the exception of (_� A, _� D+ ),
candidate A is strictly better off choosing a location in 7�� n than either of the
locations n

2& jA*&1 and n
2+ jA*+2. K

This result does not rule out other equilibria which are either asymmetric
or have gaps. We conjecture that there are no equilibria with gaps.

3.4. Examples

Since the derivation above only applies to the case of n>8 we computed
directly, for smaller odd values of n, the symmetric no-gap solutions where
_A and _D have the same support. These are given in Table I below. We
also show a second symmetric equilibrium with no gaps for the case of
n=4, to illustrate that the support of candidate A's mixed strategy can be
strictly contained in the support of candidate D's mixed strategy. In fact,
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TABLE I

Equilibrium for n�8

n _A _D

4 0,0.5,0.5,0 0,0.5,0.5,0
4 0,0.5,0.5,0 0.2,0.3,0.3,0.2
6 0,0.1,0.4,0.4,0.1,0 0,0.4,0.1,0.1,0.4,0
8 0,0,0.14,0.36,0.36,0.14,0,0 0,0,0.36,0.14,0.14,0.36,0,0

for n=4 there exists a continuum of equilibria, with _A=(0, 0.5, 0.5, 0)
and _D=(a, b, b, c), where a�1+b

2 and c� 1+b
2 , some of which are asymmetric.

4. PROPERTIES OF EQUILIBRIUM FOR n � �

4.1. Limiting Properties of Expected Payoffs

A natural question to ask is ``How big an advantage does A enjoy over
B, in equilibrium?'' In any mixed strategy equilibrium, all pure strategies in
the support yield the same expected payoff. Therefore, to answer this ques-
tion, we evaluate the equilibrium probabilities of winning for each of the
two candidates, when they locate at n

2 . Recall that for all n>1, both
candidates mix with positive probability at n

2 . That is, _D
n�2>0 and _A

n�2>0.
Also, since this is a constant sum game, if there are any other equilibria
(including asymmetric equilibria and�or equilibria with gaps), all such
equilibria will yield the same expected payoff.

From Eq. (1), with n locations the equilibrium expected payoff for A if
strategy n

2 is used, denoted 6 A
n is

6 A
n =

1
2

+
_D

n�2

2
+

1
n

:
k*

i=1

(i+1) _D
n�2&i . (3)

Similarly, from Eq. (2), with n locations the equilibrium expected payoffs
for D if strategy n

2 is used is

6 D
n =

1
2

&
_A

n�2

2
+

1
n

:
k*

i=1

i_A
n�2&i . (4)

This immediate delivers the following theorem, which states that the
candidate with an a priori advantage is the more likely candidate to win.
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Theorem 2. 6 A
n > 1

2>6 D
n for all even n=1, 2, ... .

Proof. Since _D
n�2>0 and _D

i �0, this implies that 6A= 1
2+_D

n�2�2+ 1
n

�k*
i=1(i+1) _D

n�2&i>
1
2 . Since 6A+6D=1, this implies that 6D< 1

2 .

We next address the question: What is limn � �[6 A
n ]? This is an interest-

ing question, since if we let n get very large, we approach the standard
Downsian model in which candidates locate on the [0, 1] continuum.
Furthermore, as we take this limit the advantage to A is infinitesimal, since
we are assuming $< 1

n&1 . The following theorem proves that the advantage
disappears in the limit. One can interpret this as an upper hemicontinuity
result of equilibrium payoffs, as we let the magnitude of A's advantage ($)
go to 0.

Theorem 3. limn � �[6 A
n ]= 1

2 .

Proof. In the proof we only consider limits of sequences of even values
of n. A similar proof applies for the odd case. The expression on the RHS
of (3) has three terms. What we prove is that the second and the third
terms each converges to 0 in n, which leaves only the first term, implying
that limn � �[6 D

n ]= 1
2 and hence limn � �[6 A

n ]= 1
2 . To show that the

second term converges to 0 requires proving that limn � �[_A
n�2]=0. Recall

that, by construction, _A
n�2=1�2(�0�i� j*A+1S A

i (n)). Therefore, we need to
show that �0�i� j*A+1 S A

i (n) increases without bound as n gets large. We
do this by proving inductively that limn � � S A

i (n)=1 for all i. First, observe
that S A

0 (n)=1 for all n, and S A
1 (n)= n�2+1

n�2&2 � 1. Under the induction
hypothesis, let i be any integer greater than 1 and suppose that S A

k (n) � 1 for
all k<i. We just need to show that this implies S A

i (n) � 1. From Section 3.3.1

S A
i (n)=

\n
2

&i+ S A
i&1(n)& :

i&1

k=0

S A
k (n)

n
2

+i

The right-hand side converges to S A
i&1(n), which by hypothesis converges

to 1. Hence limn � � S A
i (n)=1. Therefore, we have established that

limn � �[_A
n�2]=0. Finally, we must show that the third term of Eq. (3),

1
n �k*

i=1 i_A
n�2&i , converges to 0. Summing Eq. (3) and (4) gives us

6 A
n +6 D

n =_1
2

+
_D

n�2

2
+

1
n

:
k*

i=1

(i+1) _D
n�2&i&+_1

2
&

_A
n�2

2
+

1
n

:
k*

i=1

i_A
n�2&i&

=1+
_D

n�2& _A
n�2

2
+

1
n

:
k*

i=1

[(i+1) _D
n�2&i+i_A

n�2&i]
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From above, _A
n�2 � 0. The same inductive argument14 can be used to

show _D
n�2 � 0, so the second term, (_D

n�2&_A
n�2) �2 vanishes, leaving:

6 A
n +6 D

n � 1+
1
n

:
k*

i=1

[(i+1) _D
n�2&i+i_A

n�2&i]

However, by definition, 6 A
n +6 D

n =1 for all n. Therefore, 1
n �k*

i=1

[(i+1) _D
n�2&i+i_A

n�2&i] � 0. Since _D
n�2&i and _A

n�2&i are both nonnegative
for all i, this implies that both 1

n �k*
i=1 i_A

n�2&i and �k*
i=1 (i+1) _D

n�2&i

converge to 0.
This establishes that limn � �[6 D

n ]= 1
2 and therefore limn � �[6A

n ]= 1
2 . K

4.2. Limiting Properties of The Mixed Strategy Support

We can show that the proportion of locations that are used with positive
probability in equilibrium goes to zero in n.

Theorem 4. limn � � k*(n)�n= 1
2 .

Proof. To simplify the proof we go directly to the limit where the policy
space is the [0, 1] interval, and the n�2 location corresponds to 1�2 and $
is arbitrarily small.15 By definition, limn � � k*(n)�n� 1

2 . Suppose that
lim infn � � k*(n)�n< 1

2 . Then, in the limiting case we are considering, this
means that there is a subsequence such that the (common) support of the
two candidates' equilibrium strategies along this subsequence converges to
1�2&=. We now show that this cannot be an equilibrium. Consider the
strategy for candidate A that places all weight on 1�2 while candidate D
uses some U-shaped strategy _D

� with support on [1�2&=, 1�2+=]. Then,
by symmetry, the expected payoff to A is

6 A
�=2 |

1�2+=

1�2

1�2+t
2

_D
�(t) dt

=1�4+|
1�2+=

1�2
t_D

�(t) dt

�1�4+1�4+=�4

>1�2,

which contradicts the result in the previous section. K
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This, together with the previous result about expected payoffs, implies
that the solution converges to the standard median voter result.
Candidates' policies converge to the median and each candidate expects to
win half the time.

5. EXTENSIONS

In this section, we look at three extensions of the model. The results of
the previous sections were derived assuming that A's advantage was small.
That is, voters closer to D than to A always vote for D, so the quality
advantage enjoyed by A only came into play when a voter was equidistant
from A and D. The first extension relaxes the assumption that the distribu-
tion of median voter's ideal point is uniform. The second extension we con-
sider retains the assumption of a finite policy space, but considers what
happens if $ is slightly larger, so that some voters will vote for A over D,
even if D is closer. The third extension relaxes the assumption of a finite
policy space, also considering the case of larger $, but where the policy
space is the [0, 1] interval.

5.1. Non-Uniform Distribution of Voters

5.1.1. Voters in Three Positions

Let n=3, so there are three possible locations, a, b, or c, where
a, b, c # R and a<b<c. The probability the median voter is located at
ideal point in a is denoted by :, similarly the probabilities she is located at
ideal points b or c are denoted by ; and # respectively, with :+;+#=1.
Suppose that the utility functions of the voters are as the described in the
previous sections, and assume that |(c&b)&(b&a)|<$<max[(b&a),
(c&b)].16 The payoff matrix for the game is given in Table II below, where
A is the row player and D is the column player. For any mixed strategy by
D, denoted _D, A's expected payoffs for the three possible pure strategies
are

?A(a, _D)=_D
a +:_D

b +(:+;) _D
c

?A(b, _D)=(1&:) _D
a +_D

b +(:+;) _D
c

?A(c, _D)=(1&:) _D
a +(1&:&;) _D

b +_D
c . (15)
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TABLE II

Payoff Matrix for 3_3 Game

a b c

a 1,0 :, 1&: :+;, 1&:&;

b 1&:, : 1, 0 :+;, 1&:&;

c 1&:, : 1&:&;, :+; 1, 0

To solve for a totally mixed strategy equilibrium we equate these
expected payoffs. For example, equating the expected payoffs for A, we get

?A(a, _D)=?A(b, _D) O :_D
a +(:&1) _D

b =0

?A(b, _D)=?A(c, _D) O (:+;) _D
b +(:+;&1) _D

c =0

The equilibrium value of _D can be determined by the following system of
three equations:

:_D
a +(:&1) _D

b =0

(:+;) _D
b +(:+;&1) _D

c =0

_D
a +_D

b +_D
c =1.

The solution is

_D
a =

(1&:)&(1&:)(:+;)
1&(1&:)(:+;)

, _D
b =

:&:(:+;)
1&(1&:)(:+;)

,

_D
c =

:(:+;)
1&(1&:)(:+;)

.

Solving for _A in a similar way gives

_A
a =

(:+;)2&;
1&(1&:)(:+;)

, _A
b =

(1&:)(:+;)&;2

1&(1&:)(:+;)
,

_A
c =

(1&:)2&;
1&(1&:)(:+;)

.

The solution to _A is nonnegative if and only if (1&:)2�; and
(:+;)2�;. If the first of these inequalities is violated, then the equilibrium
involves mixing only over strategies a and b, and if the second of these
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inequalities is violated, then the equilibrium involves mixing only over
strategies b and c. The symmetric case, :=#, is a natural special case to
consider. With symmetry, ;=1&2:, so we are guaranteed that (1&:)2�;
and (:+;)2�;. The solution can be written as:

_A
a =_A

c =
:

2&:
, _A

b =
2&3:
2&:

_D
a =_D

c =
1&:
2&:

, _D
b =

:
2&:

.

This equilibrium solution has several interesting properties. First note
that since :� 1

2 this implies that _A
a �_A

b and _D
a �_D

b . In other words, the
advantaged candidate places more weight in the central location than does
the disadvantaged candidate. Furthermore, the comparative statics are
interesting. As one would expect, �_A

a ��:>0 so that as the electorate
becomes more dispersed the advantaged candidate moves away from the
central location. Less intuitive is the result that �_D

a ��:<0, implying that
the disadvantaged candidate moves toward the center as it becomes less
likely the median is located in the center. At the extreme case, when := 1

2

(i.e., zero probability that the median is in the center), both candidates mix
uniformly over the three locations. In this case, D wins 1�3 of the time. At
the opposite extreme, as : approaches 0, A places all probability at 1�2 and
D places all probability at the extremes. The probability that D wins
converges to 0.

5.1.2. Voters in Four Positions

Consider the previous model with four positions, a<b<c<r, with
median voter probabilities given by :, ;, #, and \, respectively, and
consider the symmetric case in which :=\, ;=#, and :+;= 1

2 . The
reduced form game played by the parties in this case is given in Table III.

TABLE III

Payoff Matrix for 4_4 Game

a b c r

a 1, 0 :, 1&: 1
2 , 1

2
1
2 , 1

2

b 1&:, : 1, 0 1
2 , 1

2 1&:, :

c 1&:, : 1
2 , 1

2 1, 0 1&:, :

r 1
2 , 1

2
1
2 , 1

2 :, 1&: 1, 0
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We obtain the following equilibrium mixing probabilities as a function
of :17:

_A
a =max {2:& 1

2

2:+1
, 0=

_A
b =min { 1&:

2:+1
,

1
2=

_D
a =min { 1&:

2:+1
,

1
2=

_D
b =max {2:& 1

2

2:+1
, 0= .

Thus, the results are similar to the 3-location case. As before, since :� 1
2 ,

we have _A
a �_A

b and _D
a �_D

b and �_A
a ��:>0, �_D

a ��:<0. Note that if
:< 1

4 , we have _A
a =0, _A

b = 1
2 , _D

a = 1
2 , _D

b =0, so the advantaged candidate
places all weight in the two central locations, while the disadvantaged
candidate places all weight at the extremes.

5.2. Larger $: 1<(n&1) $<2

Next we consider the case candidate A wins not only when the median
voter is equidistant or closer to A than to D, but also A wins if D is closer
to the median voter by only 1�(n&1). That is, 1<(n&1) $<2. It turns out
that in this case there are gaps in the mixed strategy distribution, asym-
metries, and nonmonotonicities, which makes it difficult to derive a
solution using the same algorithm as above.

The payoffs of candidate A for a given strategy i can be written as

n?A(xi , _D)= } } } +(n&i+3) _D
i&4+(n&i+3) _D

i&3

+(n&i+2) _D
i&2+n_D

i&1+n_D
i +n_D

i+1

+(i+1) _D
i+2+(i+2) _D

i+3+(i+2) _D
i+4+ } } } .

153MIXED EQUILIBRIUM

17 When :=0.25 there are multiple equilibria, which are described in Section 3.4. When
:<25 there are also multiple equilibria, all of which share the property that D puts all weight
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The payoffs of candidate D for a given strategy i can be written as

n?D(xi , _A )= } } } +(n&i+2) _A
i&4+(n&i+1) _A

i&3

+(n&i+1) _A
i&2+(i ) _A

i+2 +(i ) _A
i+3

+(i+1) _A
i+4+(i+1) _A

i+5+ } } } .

To check if we can use our recursive method of equating payoffs from
adjacent strategies, we used the Gambit [10] game solver software to com-
pute the equilibrium of the game, for a range of low values of n. Table IV
reports one of the extreme points of the set of equilibria, which
demonstrates that there can be gaps in the equilibrium strategy of D. We
do not know whether there can generally be gaps in the equilibrium
strategy of A. There are other peculiarities that are troubling, and suggest
that our methods for the case of small $ will be difficult to apply. There
may exist asymmetric equilibria. By the symmetry of the game, asymmetric
equilibria will occur in pairs, which are mirror images of each other. Since
the game is constant sum, the set of equilibria is convex, so at least one
symmetric equilibrium is guaranteed to exist.

To obtain limiting results that are different from the results for small $,
we would have to consider values of $ that increase as n increases.
Otherwise, for example if we require 1<(n&1) $<2 for all n, $ will be
driven to 0 in the limit, so we will effectively be back in the small $ case.
Thus, we also computed some examples for higher ranges of $ and find that
the gaps proliferate as $ increases. Because of these kinds of problems, we
are unable to obtain a general solution for the large $ case with a large
finite number of locations.

TABLE IV

Equilibrium Solutions for Larger delta

n _A _D

3 0,1,0 1,0,0
4 1�4,1�4,1�2,0 1�2,0,0,1�2
5 0,1�3,1�3,1�3,0 2�3,0,0,1�3,0
6 0,1�3,1�6,1�6,1�3,0 0,1�2,0,0,1�2,0
7 0,1�7,2�7,1�7,2�7,1�7,0 3�7,0,1�7,0,0,3�7,0
8 0,0,2�5,1�15,2�15,2�5,0,0 0,4�15,0,1�5,0,0,8�15,0

10 0,0,0.13,0.18,0.18,0.18,0.18,0.13,0,0 0,0.31,0.13,0,0.05,0.05,0,0.13,0.31,0
12 0,0,0,0.19,0.10,0.20,0.20,0.10,0.19,0,0,0 0,0,0.26,0.15,0,0.07,0.07,0,0.15,0.26,0,0
24 ...,0,0.009,0.08,0.05,0.07,0.17,0.10,0.10,0.17,0.07,... ...0,0.20,0.13,0.01,0.05,0.04,0,0.03,0.03,0,0.04,...

154 ARAGONES AND PALFREY



5.3. Continuous Locations

The approach in most of this paper was to study a model with a finite
number of feasible locations, and a small advantage. The findings above,
for larger $, suggest that a different approach may be required to get
further results. A natural alternative approach is the continuous location
model, where the policy space, ^, consists of all points in the [0, 1] inter-
val. As before, suppose that the median voter is uncertain, and the prior
beliefs of the candidates over the location of the median voter are uniform
on [0, 1], and candidates maximize the probability of winning. The proof
of Theorem 1, that pure strategy equilibria fail to exist unless $=0, still
applies.

While a mixed strategy equilibrium is guaranteed with finite locations, a
mixed strategy equilibrium is not necessarily guaranteed to exist by the
standard theorem for games with continuous payoffs (Glicksberg [11]),
since the payoff function is discontinuous. The problem is related to the
kind of discontinuity that arises in a game studied by Sion and Wolfe [18],
and later by Dasgupta and Maskin [7]. In this game, however, the discon-
tinuities satisfy the technical condition of weak lower semi-continuity, as
well as upper hemi-continuity of the sum of payoffs, and payoff discon-
tinuities are restricted to a special (small) subset of strategy profiles. There-
fore, we can appeal directly to Theorem 5 of Dasgupta and Maskin [7,
p. 14] to establish existence of mixed strategy equilibrium in this game.

Theorem 5. Let ^=[0, 1] and $>0. A Nash equilibrium point exists in
mixed strategies.

Proof. See the Appendix.

The theorem can be proved under much less stringent assumptions.
For example, the proof given in the appendix is easily adapted to allow
for non-uniform distributions with continuous, strictly increasing CDFs.
Preferences do not have to be ``tent'' preferences, and need not even be
Euclidean, provided they are single peaked. One could also allow for
heterogeneity of $ across voters, but at considerable cost of notation.

6. CONCLUSIONS

This paper has taken a first step toward solving a game between two
candidates, in one dimension where one of the candidates has an advantage
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and candidates only care about electoral success18. Because of payoff discon-
tinuities in the continuous location formulation of the problem, we look at
equilibrium in a discrete policy space. We find that the advantaged candidate
will locate more centrally than the disadvantaged candidate, and always has
an equilibrium advantage; i.e., A wins with probability greater than 0.5.

However, if we look at the limiting case where the advantage becomes
arbitrarily small (and the discrete grid on the policy space becomes
arbitrarily fine), we obtain a continuity result: the distribution of the
strategies of both A and D approaches a degenerate distribution with all
mass at the median of the distribution, and each candidate wins with prob-
ability 0.5. Thus, even though pure strategy equilibrium disappears for any
positive value of $, however small, this does not imply that the standard
Downsian model is a knife edge case. It is a good approximation of
equilibrium candidate locations as long as the advantage is small.

Examples suggest that some of these results may generalize to non-
uniform distributions. For the case a coarse grid of strategies, we obtain
some intuitive comparative statics results with symmetric non-uniform dis-
tributions. In particular, we find that as the distribution of the median
voter becomes more certain, the equilibrium advantage of A increases, and
as we know from Ansolabehere and Snyder [2], in the limit A wins with
probability 1, when there is no uncertainty. In the other direction, when the
variance of the distribution of the median voter is maximal, D has a
moderate chance (1�3) of winning.

We also prove existence of equilibrium for the continuous location
problem, for arbitrary values of $. A natural next step, is to solve for the
mixed equilibrium in the continuous location setting.

There are some interesting possibilities for embedding this model of
candidate advantages into more complex and realistic models of cam-
paigns. For example, Wittman [20] has shown how one can include fac-
tors such as endorsements to signal quality to the voter. One can also look
at the effects of campaign spending and advertising campaigns to affect
voter beliefs about candidate quality. This would add a stage at the begin-
ning of the game we studied here, in which candidates can choose spending
levels, and the advantage of candidate A will then depend on the spending
levels of the two candidates. This would, in effect, endogenize $, which we
assumed here to be exogenous. Such an extension would result in a com-
bination of the spending game approach of Erikson and Palfrey [9] with
the asymmetric competition approach presented here.
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in a world where the locations of voters are common knowledge, or as a model where
candidates maximize the probability of winning with uncertainty about the location of the
median voter.



7. APPENDIX

Proof of Theorem 2: Existence of Equilibrium with Continuous Locations

First, we observe that if $� 1
2 then there are many pure strategy equi-

libria, where A locates sufficiently close to 1
2 , D locates anywhere, and A

wins with probability 1. When $< 1
2 it is straightforward to show that no

pure strategy equilibrium exists, since, for every location A chooses, there
exists a response by D than gives D a strictly positive payoff, but for any
location D might choose, A can match D, which leaves D with a 0 payoff.
Hence there is no minimax point in pure strategies if $< 1

2 .
The main theorem of Dasgupta and Maskin [7, p. 14] states:
Let [(S i , Ui); i=1, ..., N] be a game. Let S i �R1(i=1, ..., N ) be a closed

interval and let Ui : S � R1(i=1, ..., N ) be continuous except on a subset
S**(i ) of S*(i ), where S*(i ) is defined by

S*(i )=[(s1 , ..., sN) # S : _j{i, _d, 1�d�2(i ) such that sj= f d
ij (si)],

where 2(i ) is a positive integer and for each integer d, with 1�d�2(i ),
and f d

ij : R1 � R1 is a one-to-one, continuous function. Suppose �N
i=1 Ui (s)

is upper semi-continuous and Ui (si , s&i) is bounded and weakly lower
semi-continuous in si . Then the game [(S i , Ui); i=1, ..., N] possesses a
mixed-strategy equilibrium.

To prove Theorem 5 for the case of $< 1
2 we show that the conditions

of the Dasgupta�Maskin theorem are satisfied. When we apply this
theorem to our case we have:

1. Si=^=[0, 1] for i=A, D, is a closed interval.

2. ?A(xA , xB) and ?B(xA , xB) are continuous except on a set of
measure zero. We may take 2(A)=2(D)=2, f 1

A, D(xA)=xA&$, and
f 2

A, D(xA)=xA+$. In our case S*(A)=S*(D), the union of two 45% lines.

3. ?A(xA , xD)+?D(xD , xA)=1, which is a constant function so
�N

i=1Ui (s) is upper semi-continuous.

4. 0�?i (xA , xD)�1 and therefore Ui (si , s&i) is bounded for each
player.

5. The proof that ?i (xA , xD) is weakly lower semi-continuous in xi

for i=A, D requires several steps, which are given below. The definition of
weak lower semi-continuity is:

Definition 3. Ui (si , s&i) is weakly lower semi-continuous in si if
\s� i # S i**(i ), _* # [0, 1] such that \s&i # S &i**(s� i),

* lim infsi �
&s� i

Ui (si , s&i)+(1&*) lim infsi �
+s� i

Ui (si , s&i)�Ui (s� i , s&i).
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First consider ?A(xA , xD), and let xD be fixed. We treat five separate
cases:

Case 1A xD # ($, 1&$). In this case there are two discontinuities, one
at xA=xD&$ and the other at xA=xD+$. For any xA strictly between
these two discontinuity points, ?A(xA , xD)=1. At the first discon-
tinuity point, ?A(xD&$, xD)=

1+xD

2 , lim infxA � &xD&$ ?A(xA , xD)=xD ,
and lim infxA � +xD&$ ?A(xA , xD)=1. Thus we can take any *� 1

2 and
satisfy the required inequality

*xD+(1&*) } 1�
1+xD

2

Similarly, at the second discontinuity point, ?A(xD + $, xD ) =
2 & xD

2 ,
lim infxA � &xD+$ ?A(xA , xD)=1, and lim infxA � +xD+$ ?A(xA , xD)=(1&xD).
Thus we can take any *� 1

2 and satisfy the required inequality

* } 1+(1&*)(1&xD)�
2&xD

2

Case 2A xD # (0, $). In this case there is one discontinuity, at xA=
xD+$. For any xA<xD+$, ?A(xA , xD)=1. At the discontinuity point,

?A(xD+$, xD)= 2&xD

2 , lim infxA � &xD+$ ?A(xA , xD)=1, and lim infxA � +xD+$

?A(xA , xD)=(1&xD). Thus we can take any *� 1
2 and satisfy the required

inequality

* } 1+(1&*)(1&xD)�
2&xD

2

Case 3A xD # (1&$, 1). In this case there is one discontinuity, at
xA=xD&$. For any xA>xD&$, ?A(xA , xD)=1. At the discontinuity

point, ?A(xD & $, xD) =
1 + xD

2 , lim infxA � &xD & $?A(xA , xD) = xD , and
lim infxA � +xD & $ ?A(xA , xD) = 1. Thus we can take any *� 1

2 and satisfy
the required inequality

*xD+(1&*) } 1�
1+xD

2

Case 4A xD=1&$. In this case there are two discontinuities, with one
at xA=xD&$ and the other at the right boundary, xA=1. The first dis-
continuity can be dealt with as in Case 3. For the second discontinuity, the
definition of weak lower semi-continuity requires that lim infsi �

&s� i
Ui (si , s&i)�Ui (s� i , s&i). This is satisfied since lim infxA � &1 ?A(xA , 1&$)=
1 and ?A(1, 1&$)= 1+$

2 �1.
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Case 5A xD=$. In this case there are two discontinuities, with one at
xA=xD+$ and the other at the left boundary, xA=0. The first discon-
tinuity can be dealt with as in Case 2. For the second discontinuity, the
definition of weak lower semi-continuity requires that lim infsi �

+s� i
Ui (si , s&i)�Ui (s� i , s&i). This is satisfied since lim infxA � +0 ?A(xA , $)=1
and ?A(0, $)= 1+$

2 �1.
Now consider ?D(xD , xA), and let xA be fixed. Again, we treat five

separate cases:

Case 1D xA # ($, 1&$). In this case there are two discontinuities, one
at xD=xA&$ and the other at xD=xA+$. For any xD strictly between
these two discontinuity points, ?D(xA , xD)=0. At the first discontinuity

point, ?D(xA , xA&$)=
xA&$

2 , lim infxD � &xA&$ ?D(xA , xD)=xA&$, and
lim infxD � +xA&$ ?D(xA , xD)=0. Thus we can take any *� 1

2 and satisfy the
required inequality:

*(xA&$)+(1&*) } 0�
xA&$

2
.

Similarly, at the second discontinuity point, ?D(xA , xA+$)=
1&(xA+$)

2 ,
lim infxD � &xA+$ ?D(xA , xD)=0, and lim infxD � +xA+$ ?D(xA , xD)=1&
(xA+$). Thus we can take any *� 1

2 and satisfy the required inequality:

* } 0+(1&*)(1&(xA+$))�
1&(xA+$)

2
.

Case 2D xA # (0, $). In this case there is one discontinuity, at xD=xA+$.

For any xD<xA+$, ?D(xA , xD)=0. At the discontinuity point,
?D(xA , xA+$)=

1&(xA+$)
2 , lim infxD � &xA+$ ?D(xA , xD)=0, and

lim infxD � +xA+$ ?D(xA , xD)=1&(xA+$). Thus we can take any *� 1
2 and

satisfy the required inequality

* } 0+(1&*)(1&(xA+$))�
1&(xA+$)

2
.

Case 3D xA # (1&$, 1). In this case there is one discontinuity, at
xD=xA&$. For any xD>xA&$, ?D(xA , xD)=0. At the discontinuity

point, ?D(xA , xA+$)=
xA&$

2 , lim infxD � &xA+$ ?D(xA , xD)=xA&$, and
lim infxD � +xA+$ ?D(xA , xD)=0. Thus we can take any *� 1

2 and satisfy the
required inequality

*(xA&$)+(1&*) } 0�
xA&$

2
.
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Case 4D xA=1&$. In this case there are two discontinuities, with
one at xD=xA&$ and the other at the right boundary, xD=1. The first
discontinuity can be dealt with as in Case 3. For the second discontinuity,
the definition of weak lower semi-continuity requires that lim infsi � &s� i
Ui (si , s&i)�Ui (s� i , s&i). This is satisfied since lim infxD � &1 ?D(1&$, xD)
=0 and ?A(1&$, 1)=0�0.

Case 5D xA=$. In this case there are two discontinuities, with one at
xD=xA+$ and the other at the left boundary, xD=0. The first discontinuity
can be dealt with as in Case 2. For the second discontinuity, the definition of
weak lower semi-continuity requires that lim infsi �

+s� i
Ui (si , s&i)�Ui (s� i , s&i).

This is satisfied since lim infxA � +0 ?D($, xD)=0 and ?A($, 0)=0�0.

Thus, ?i (xA , xD) is weakly lower semi-continuous in xi for i=A, D. There-
fore, our game possesses a mixed-strategy equilibrium. K
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