
Streaming (media) in NodeJs
Like the title suggests I tried to write a simple http server that is able to stream1 content to the browser.
Main reason for this is that chrome is annoyingly bitchy when it comes to playing sounds using HTML5.
You can load and play a sound once no problem, but the problem is the “once”. As you can read
here2 HTML5 and audio is already a complicated thing but in my opinion chrome goes one step further
and is dependand on a webserver that is able to stream the audio files.

At first I tried it using this google group discussion here3 but failed miserably (at least under chrome).
I tried to get my head around all those crazy http header flags4 but I did not get it right..

Then I finally got the right clue from a blog post5 describing streaming using the node express
framework. But since I have written the rest of the webserver (a simple one that is) without express
and because I am notoriously curious I did not want to throw everything out of the window and start
over using express.

So last but not least I got it working and here is some code to grind:

var app = require('http').createServer(function(request, response){
 //...yada yada yada...
 // get file name
 //...yada yada yada...
 fs.readFile(filename, "binary", function(err, file) {

 var header = {};
 // add content type to header

 //TODO: any more clean solution ?
 if(typeof request.headers.range !== 'undefined')
 {
 // browser wants chunged transmission

 var range = request.headers.range;
 var parts = range.replace(/bytes=/, "").split("-");
 var partialstart = parts[0];
 var partialend = parts[1];

 var total = file.length;

 var start = parseInt(partialstart, 10);
 var end = partialend ? parseInt(partialend, 10) : total-1;

 header["Content-Range"] = "bytes " + start + "-" + end + "/" +
(total);
 header["Accept-Ranges"] = "bytes";
 header["Content-Length"]= (end-start)+1;
 header['Transfer-Encoding'] = 'chunked';
 header["Connection"] = "close";

 response.writeHead(206, header);
 // yeah I dont know why i have to append the '0'
 // but chrome wont work unless i do
 response.write(file.slice(start, end)+'0', "binary");
 }
 else
 {

 // reply to normal un-chunked request
 response.writeHead(200, header);
 response.write(file, "binary");
 }

 response.end();
 });

});
app.listen(80);

Important to note are just a couple of things that took so long to find out:

1. set ‘Transfer-Encoding’ to ‘chunked’
2. set ‘Connection’ to ‘close’
3. send one more trailing byte … I have no idea why 😀

That’s it. I hope this will save other people some time 😉

1. http://en.wikipedia.org/wiki/Chunked_transfer_encoding [↩]
2. http://www.wappworks.com/2012/06/15/the-html5-audio-troubleshooting-guide/ [↩]
3. https://groups.google.com/forum/?fromgroups#!topic/nodejs/gzng3IJcBX8 [↩]
4. http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html [↩]
5. http://delog.wordpress.com/2011/04/25/stream-webm-file-to-chrome-using-node-js/ [↩]

	

