Introductory Lecture

- **READING** (week 1):
 - Rough Guide pp 3-20; 193-226
 - Global Warming Chapter 4
 - COMET material (see Blackboard)
- (graphical display of quantitative information)
- Weather and Climate
- Determinants of Climate
- Observed Average Climate
What is Weather?
What is Climate?

Weather is what you get, climate is what you expect.
(E. N. Lorenz)

Weather = Expected Weather + Unexpected Weather
↓ Climate

Questions

- What is “expected” weather? Why do we expect one type of weather in one place and a different type of weather in another?
 - E.g. why does it get cold at night? What determines how cold?
 - E.g. why is Guam warmer on average compared to Fairbanks?
 - Why is the annual cycle of temperature in Guam so small compared to the annual cycle of temperature in Fairbanks?

- What is “unexpected” weather?
 - Why can’t we predict the weather forever (like the tides or the movement of planets)?
 - How accurate is the weather forecast?
 - What about the Farmer’s Almanac?
 - Is the average departure from normal predictable?
 - What is Global Warming?
The Climate of a Planet Depends On …

1. Energy from the Sun (S) (depends on Sun itself and distance from Sun)
2. Planetary Albedo (α)
3. Speed of Planet's Rotation (Ω)
4. Mass of the Planet (M)
5. Radius of the Planet (a)
6. Atmospheric Composition (H₂O, CO₂, O₃, clouds)
7. Ocean-Land, Topography (h*)

Notes: 1, 3, 4, 5, 7 are effectively “givens” that cannot be influenced by weather, climate or life (including humans, so far)

Observed Average Climate ("Normal") ("climatological mean")

GOLD Soil Wetness (fraction) & HADISST SST (°C)

Total in November 1997

Climatological Precipitation

CMAP Precipitation for 1979-2007 (mm/day)
Introductory Lecture

- Weather and Climate
- Determinants of Climate
- Observed Average Climate

Weather, Climate and Society

- Organizing schema
- How do weather/climate affect humans and ecosystems?
 - Ice ages
 - Origin of agriculture
 - Distribution of (natural) vegetation
 - Temperature and income
 - Extremes → disruptions
- How do ecosystems affect weather/climate?
 - Albedo
 - Storage of water
 - Storage of carbon
- How do humans affect weather/climate and ecosystems?
 - Deforestation
 - Dams and irrigation
 - Energy consumption and emission
 - Pollution
 - Carrying capacity and collapse

Organizing Schema
What is an Ecosystem?

- A system of living organisms, consisting of all plants, animals and micro-organisms (biotic factors) in an area interacting with each other and their physical environment.
- The boundaries of what could be called an ecosystem are somewhat arbitrary, depending on the focus of study, ranging from the very small scale to the entire planet Earth.
- Examples:
 - Coral reef
 - River catchment
 - Rainforest
 - Estuary
 - Desert
 - Yellowstone National Park

Example: Hypercycle

- Each member of an ecosystem may depend on the presence or actions of another element, so that the members thrive in each others’ presence
- For example, fish eat water fleas. Birds eat fish. Birds provide guano, which assists the blooms of algae on which water fleas flourish.

Ways that Weather & Climate Affect Humans, Ecosystems

Features of climate:
- Annual mean and annual cycle of
 - Temperature (e.g. warm vs. cold climate; frost/freeze dates)
 - Rainfall (abundant/regular vs. sparse/irregular)
 - Sunlight
 - Wind (magnitude, intermittency)
- Frequency, severity, duration of storms
- Frequency, severity, duration of floods, droughts

Affect:
- Body size and shape (thermoregulation by increasing/decreasing body surface-to-mass ration in hot/cold climate)
- Culture (viz. Indigenous populations in Arctic, deserts etc.)
- Location, robustness of agriculture
- Plant, animal and human health
- Human economic systems: energy use, transportation, etc. (next class)
Quaternary Era (last ~2 million years)

1 Ma

- Mechanism: Orbital Parameters

120 ka

- Mechanism: Orbital Parameters

18 ka

LAST TWO MILLENNIA OR SO...

LAST CENTURY OR SO...

Degree Celsius above or below 30-year average global temperature
Origin of Agriculture (~8 ka)

- **Hypothesis 1**: Agriculture was impossible during the last glacial (ice age; ended ~12 thousand years ago - 12 ka)
 - Climate very dry, highly variable over large areas
 - Low atmospheric CO₂ (might inhibit photosynthesis)
 - Very large climatic swings on decadal to centennial time scales with frequent extremes
- **Hypothesis 2**: Agriculture is compulsory in the Holocene (since last glacial)
 - Relatively warm, wet climate
 - Prehistoric population rapidly increases to carrying capacity set by environment and prevailing subsistence system
 - Local communities that develop more intense subsistence strategy have competitive advantage
 - Agriculture out-competes hunting/gathering and evolves rapidly under competitive pressure

Richerson et al., *American Antiquity*, 2001

Agriculture

- Revolutionized interaction between humans and the rest of the biosphere
- For example: many major population centers have grown in the great river systems
 - Asia: Indus, Ganges, Brahmaputra, Ayeyarwaddy (Irrawaddy), Mekong, Yangtze, Yellow, Salween
 - Middle East: Tigris, Euphrates
 - Europe: Rhine, Danube, Seine, Loire, Po
 - North America: St. Lawrence, Mississippi/Missouri/Ohio
 - South America: Amazon, Parana/La Plata, Orinoco
 - Africa: Nile, Congo, Niger

Richerson et al., *American Antiquity*, 2001

Ways that Weather & Climate Affect Humans, Ecosystems

Features of climate
- Annual mean and annual cycle of:
 - Temperature (e.g., frost/freeze dates)
 - Rainfall
 - Sunshine
 - Wind
- Frequency, severity, duration of storms
- Frequency, severity, duration of floods, droughts

Affect
- Body size and shape (thermoregulation by increasing/decreasing body surface-to-mass ratios in hot/cold climates)
- Culture (e.g., indigenous populations in Arctic, deserts etc.)
- Plant, animal species ranges
- Human economic systems (energy use, transportation, etc.)
- Human health
Temperature and Economy

- Dell et al. (MIT; 2009 article in *American Economic Review Papers and Proceedings*) showed that a negative relationship between income and temperature exists across countries, when looking within countries, and even when looking within states within countries.
- Each additional 1°C is associated with a statistically significant reduction of 8.5% per-capita GDP.
- Temperature, precipitation, elevation, slope, and distance to the sea together explain 61% of the variation in municipal income.
- A poor country’s growth in a given year is 1.1% lower when its temperature is 1°C higher that year.
- The persistent effect of temperature shocks suggests that temperature affects the growth rate, not simply the level of income, at least over 10- to 15-year time horizons.

Ways that Ecosystems Affect Weather & Climate

- Albedo of land surface
- Retention of freshwater
- Cycling of components (carbon, nitrogen, OH, etc.) of radiatively-active species (H_2O, CO_2, N_2O, etc.)
- Absorption and latent re-emission of energy (radiation, heat)

River Basins & Fresh Water Reserves

Global Carbon Cycle
Ways that Humans Affect Climate, Ecosystems

- Forest fires - in many places, the majority of forest fires have been anthropogenic since the time of significant settlement
- Deforestation - clearing natural landscapes for settlement or transportation
- Dams, irrigation - changes in habitat, geography, water flow and water availability (e.g. for irrigation)
- Energy consumption
- Roads, settlements (e.g., habitat fragmentation)
- Over-fishing, over-hunting
- Pollution - toxicity level, behavior change (e.g. peppered moths in the UK), dead zones (next class)
- Atmospheric composition leading to climate change and ocean acidification (next class)

Deforestation

Grassland
- Albedo = 20%
- Roughness = 0.12 m
- Bowen ratio = 81%
 (evaporation = 45% of R_{env})

Rain Forest
- Albedo = 12%
- Roughness = 2.65 m
- Bowen ratio = 43%
 (evaporation = 30% of R_{env})

Christopher Columbus and the European Settlement of Hispaniola

- Forest fires - in many places, the majority of forest fires have been anthropogenic since the time of significant settlement
- Deforestation - clearing natural landscapes for settlement or transportation
- Dams, irrigation - changes in habitat, geography, water flow and water availability (e.g. for irrigation)
- Energy consumption
- Roads, settlements (e.g., habitat fragmentation)
- Over-fishing, over-hunting
- Pollution - toxicity level, behavior change (e.g. peppered moths in the UK), dead zones (next class)
- Atmospheric composition leading to climate change and ocean acidification (next class)
Ways that Humans Affect Climate, Ecosystems

- Forest fires - in many places, the majority of forest fires have been anthropogenic since the time of significant settlement
- Deforestation - clearing natural landscapes for settlement or transportation
- Dams, irrigation - changes in habitat, geography, water flow and water availability (e.g. for irrigation)
- Energy consumption
- Roads, settlements (e.g., habitat fragmentation)
- Over-fishing, over-hunting
- Pollution - toxicity level, behavior change (e.g. peppered moths in the UK), dead zones (next class)
- Atmospheric composition leading to climate change and ocean acidification (next class)

Aral Sea - Recovering?

AsTAKI, Kazakhstan, August 1, 2018 (EN) - Water is returning to the North Aral Sea in Central Asia that had shrunk to a quarter of its former size during the last half of the 20th century. Fish, sea birds and reptiles have begun to repopulate the Aral Sea and surrounding areas.

This week the government of Kazakhstan announced that its US$360 million rescue program for the Northern Aral Sea is working.

Launched in 2001 by Kazakhstani President Nursultan Nazarbayev and supported by the World Bank, the program has increased the North Aral Sea’s surface by about 30 percent since the last assessment was conducted in 2003, according to a statement Wednesday by the Kazakh Foreign Ministry.

The North Aral Sea's surface increased from 2,200 square kilometers (850 square miles) in 2003, the ministry said, to 3,300 square kilometers (1,270 square miles) in 2008.

And the sea’s depth increased from 10 meters (33 feet) in 2003 to 42 meters (138 feet) in 2008.

Ways that Humans Affect Climate, Ecosystems

- Forest fires - in many places, the majority of forest fires have been anthropogenic since the time of significant settlement
- Deforestation - clearing natural landscapes for settlement or transportation
- Dams, irrigation - changes in habitat, geography, water flow and water availability (e.g. for irrigation)
- Energy consumption
- Roads, settlements (e.g., habitat fragmentation)
- Over-fishing, over-hunting
- Pollution - toxicity level, behavior change (e.g. peppered moths in the UK), dead zones (next class)
- Atmospheric composition leading to climate change and ocean acidification (next class)
The Earth from Space at Night - Electric Power Consumption

Energy Use Rate Density

<table>
<thead>
<tr>
<th>Category</th>
<th>Energy Use Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunter-gatherer (ca. 10K BC)</td>
<td>1 W/kg</td>
</tr>
<tr>
<td>Agriculturalist (ca. 3K BC)</td>
<td>10 W/kg</td>
</tr>
<tr>
<td>Industrialist (ca. 1800 AD)</td>
<td>50 W/kg</td>
</tr>
<tr>
<td>Average citizen (ca. 2000)</td>
<td>250 W/kg</td>
</tr>
</tbody>
</table>

Other facts:
- World population: ~6 billion (2005) - ~9 billion (ca. 2050)
- Heat is an inevitable by-product of energy extraction from non-renewable sources (wood, coal, oil, gas, etc.), which is increasing at 2%/year.
- Efficiency:
 - Electricity production: 37%
 - Automobile engines: 25%
 - Incandescent lights: 5%

Total solar energy available: 120,000 TW
Global civilization energy production: (2005) 18 TW (2100) 100 TW

Growth rate increased by 3.2X between 1700-1930 and 1930-2004
Doubling time: 134 years 42 years

Ways that Humans Affect Climate, Ecosystems

- Forest fires - in many places, the majority of forest fires have been anthropogenic since the time of significant settlement
- Deforestation - clearing natural landscapes for settlement or transportation
- Dams, irrigation - changes in habitat, geography, water flow and water availability (e.g., for irrigation)
- Energy consumption
- Roads, settlements (e.g., habitat fragmentation)
- Over-fishing, over-hunting
- Pollution - toxicity level, behavior change (e.g., peppered moths in the UK), dead zones (next class)
- Atmospheric composition leading to climate change and ocean acidification (next class)

Predator-Prey Relationship
Carrying Capacity

- The sustainable population of an organism, given the food, habitat, water and other necessities available within an environment is known as the environment's carrying capacity for that organism.
- For the human population, more complex variables such as sanitation and medical care are sometimes considered as part of the necessary infrastructure.
- Carrying capacity is the number of individuals an environment can support without significant negative impacts to the given organism and its environment. A factor that keeps population size at an equilibrium is known as a regulating factor.
- A common model of population growth:
 - the rate of reproduction is proportional to the existing population, all else being equal.
 - the rate of reproduction is proportional to the amount of available resources, all else being equal. This models the competition for available resources, which tends to limit the population growth.
- Humans can overcome natural predator-prey limits to growth through technological efficiency; however, technology cannot necessarily overcome limits imposed by carrying capacity.

How Should We Characterize these Relationships?

- **Cause and Effect** - changes may occur on either side of the arrow … which is the cause and which is the effect? More specifically, what is the proximate cause and the ultimate cause of any given phenomenon?
 - Example: Does deforestation change the climate or does climate change alter the trees (or both, see “feedback” below)?
- **Magnitude** - to what degree does one system affect another?
 - Example: How large a change in climate is required to change the flora or fauna in a given location?
- **Time Scale** - do changes in one system respond on the same time scale as changes in another?
 - Example: How long does a heat wave persist in order to result in human fatalities?
- **Feedback** - does a change in one system, that results in a change in another, in turn cause the first system to respond?
 - Positive feedback: the cycle of changes tends to amplify the responses
 - Negative feedback: the responses in one system tend to reverse the changes in the forcing system
 - Example: Deforestation may reduce the precipitation in a given region making it unlikely that the forest will grow back

Factors Contributing to Societal Collapse in the Past

1. Deforestation and habitat destruction
2. Soil problems (erosion, salinization, and soil fertility losses)
3. Water management problems
4. Overhunting
5. Overfishing
6. Effects of introduced species on native species
7. Human population growth
8. Increased per-capita impact of people

Diamond, Collapse, 2005

The Collapse of Easter Island Human Habitation (~900-1700 AD)

- Statues built for unknown purpose
- Raw materials quarried and carved at far end of island
- Roads built to transport rocks - log rolling method and rope tows
- Huge population needed to carve, transport and erect statues
- Inhabitants used indigenous trees for road and rope materials
- Result - total deforestation and extinction of flora
Weather, Climate and Society

- Organizing schema
- How do weather/climate affect humans and ecosystems?
 - Ice ages
 - Origin of agriculture
 - Distribution of (natural) vegetation
 - Temperature and income
 - Extremes → disruptions
- How do ecosystems affect weather/climate?
 - Albedo
 - Storage of water
 - Storage of carbon
- How do humans affect weather/climate and ecosystems?
 - Deforestation
 - Dams and irrigation
 - Energy consumption and emission
 - Pollution
 - Carrying capacity and collapse