Binary classification performances measure cheat sheet Damien François – v1.1 - 2009 (damien.francois@uclouvain.be)

Confusion matrix for two possible outcomes p (positive) and n (negative)				True positive rate: proportion of actual positives which are predicted positive TP / (TP + FN)	Youden's index: arithmetic mean between sensitivity and specificity sensitivity - (1 - specificity)	(Cumlative) Lift chart plot of the true positive rate as a function of the proportion of the population being predicted positive, controlled by some
Actual				-	Matthews correlation correlation	classifier parameter (e.g. a threshold)
p n Total			Total	True negative rate : proportion of actual negative which are predicted	between the actual and predicted (TP . TN – FP . FN) /	100% + optimal classifier
p' Predicted n'	true positive	false postive	Р	<pre>negative negative TN / (TN + FP) Positive likelihood: likelihood that a</pre>	((TP+FP) (TP+FN) (TP + FP) (TN+FN)) ^{1/2} comprised between -1 and 1 Discriminant power normalised likelihood index	
	false negative	true negative	N			
total P' N' Classification accuracy (TP + TN) / (TP + TN + FP + FN)			1)	predicted positive is an actual positive sensitivity / (1 - specificity)	sqrt(3) / J . (log (sensitivity / (1 – specificity)) + log (specificity / (1 - sensitivity)))	0% proportion of the population being predicted positive 100%
Error rate (FP + FN) / (TP + TN + FP + FN)				Negative likelihood: likelihood that a predicted negative is an actual negative	<pre><1 = poor, >3 = good, fair otherwise Graphical tools</pre>	Relationships
Paired criteria Precision : (or Positive predictive value)			value)	(1 - sensitivity) / specificity	ROC curve receiver operating characteristic curve : 2-D curve	sensitivity = recall = true positive rate specificity = true negative rate BCR = $\frac{1}{2}$. (sensitivity + specificity)
proportion of predicted positives which are actual positive TP / (TP + FP)				BCR : Balanced Classification Rate ¹ / ₂ (TP / (TP + FN) + TN / (TN + FP))	parametrized by one parameter of the classification algorithm, e.g. some threshold in the « true postivie rate /	BCR = 2 . Youden's index - 1 F-measure = F_1 measure Accuracy = 1 - error rate
Recall : proportion of actual positives which are predicted positive			tives	BER : Balanced Error Rate, or HTER : Half Total Error Rate: 1 - BCR	false positive rate » space AUC The area under the ROC is between 0 and 1	References
TP / (TP + FN)				F-measure harmonic mean between precision and recall		Sokolova, M. and Lapalme, G. 2009. A systematic analysis of performance measures for classification tasks. Inf.
Sensitivity: proportion of actual positives which are predicted positive TP / (TP + FN)			itive	2 (precision . recall) / (precision + recall) Fr-measure weighted harmonic mean between precision and recall (1+₱) ² TP / ((1+₱) ² TP + ₱ ² FN + FP) The harmonic mean between specificity and sensitivity is also often used and sometimes referred to as F-measure.	100% optimal classifier true positive rate 0% false positive rate 100%	Process. Manage. 45, 4 (Jul. 2009), 427-437. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7
Specificity : proportion of actual negative which are predicted negative TN / (TN + FP)			ative			(2006) 1–30

Regression performances measure cheat sheet Damien François – v0.9 - 2009 (damien.francois@uclouvain.be)

Let $D = \{(x_i, y_i)\}$ be a set of	Absolute error	Robust error measures	Resampling methods
input/output pairs and f a	MAD Mean Absolute Deviation	Median Squared error	LOO – Leave-one-out: build the model
function such that for $i=1n$,	-	$median(\epsilon_i^2)$	on $n-1$ data elements and test on
	$\left rac{1}{n}\sum \epsilon_i ight $	$measam(\epsilon_i)$	the remaining one. Iterate n times to
$y_i = f(x_i) + \epsilon_i$	MAPE Mean Absolute Percentage Error	α -trimmed MSE	collect all ϵ_i and compute mean error.
	$\left \frac{1}{n}\sum_{i}\frac{ \epsilon_{i} }{y_{i}}\right $		
Squared error		$\frac{1}{\#I}\sum_{i\in I}\epsilon_i^2$	X-Val – Cross validation. Randomly
	Predicted error	where I is the set of residuals ϵ_i	split the data in two parts, use the
SSE Sum of Squared Errors, or	DDECC Due dista d DEsidual Curra of	where α percents of the largest	first one to build the model and the
RSS Residual Sum of Squares	PRESS Predicted REsidual Sums of Squares	values are discarded.	second one to test it. Iterate to get a distribution of the test error of the
$\sum_i \epsilon_i^2$	$\frac{1}{n} \ diag(XX^T)(XX^T - I)Y \ _2^2$	M-estimators	model.
		$\frac{1}{n}\sum_{i}\rho(\epsilon_{i})$	
MSE Mean Squared Error	where X is a matrix built by stacking the x_i in rows. Y is the vector of y_i	10 0	K-Fold – Cut the data into K parts.
$\frac{1}{n}\sum_{i}\epsilon_{i}^{2}$	$\begin{bmatrix} u_i & u_i \\ u_i & u_i \end{bmatrix}$	where $\ $ rho is a non-negative function with a minimum in 0, like the	Build the model on the K-1 first parts
	GCV Generalised Cross Validation	parabola, the Hubber function, or the	and test on the Kth one. Iterate from
RMSE Root Mean Squared Error	$\frac{1}{n} \ (I - X(X^T X + nI)^{-1} X^T) Y \ ^2$	bisquare function.	1 to K to get a distribution of the test
$\sqrt{\frac{1}{n}\sum_{i}\epsilon_{i}^{2}}$	$\frac{\frac{n}{\left(\frac{1}{n}Trace(I-X(X^{T}X+nI)^{-1}X^{T})^{2}\right)}}{\left(\frac{1}{n}Trace(I-X(X^{T}X+nI)^{-1}X^{T})^{2}\right)}$		error of the model.
$\bigvee n \succeq i = i$	where X is a matrix built by stacking		Bootstrap – Draw a random subsample
NMSE Normalised Mean Squared Error	the x_i in rows. Y is the vector of y_i	Graphical tool	of the data with replacement. Compute
		Plot of predicted value against actual	the error on the whole dataset minus
$\left \frac{SSE}{var(\{y_i\})} \right $	Information criteria	value. A perfect model places all dots	the training error of the model and
where var is the empirical variance in		on the diagonal.	Iterate to get a distribution of such
the sample.	AIC Akaike Information Criterion		values. The mean of the distribution is the optimism. The bootstrap error
	$n\log MSE + 2k$		estimate is the training error on the
R-squared	where k is the number of parameters in the model		whole dataset plus the optimism.
$1 - \frac{SSE}{var(u_i)}$		Predicted	
	BIC Bayesian Information Criterion	value	
where var is the empirical variance in	$n\log MSE + k \cdot \log n$		
the sample	where k is the number of parameters		
	in the model	Actual value	