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ABSTRACT

A general echo model is derived for the synthetic aperture radar (SAR) imaging with high resolution based
on the scalar form of Maxwell’s equations. After the consideration of the general echo model in frequency
domain, a compressive sensing (CS) matrix is constructed from random partial Fourier matrices for processing
the range CS SAR imaging. Simulations validate the orthogonality of the proposed CS matrix and the CS
SAR imaging based on the general echo model.
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1. INTRODUCTION

Synthetic aperture radar (SAR) has been in development for more than 60 years. Many operations, including
strip-map, spotlight, scan, and multiple platform borne SAR systems have become more and more popular
in recent years. SAR systems have been used in many fields, such as soil moisture, forestry, wetland, and
agriculture. Due to the higher resolution of SAR image required, the accuracies of the echo models and
imaging algorithms need improvement. Because the echo model is a kind of output, it forms a theoretical
basis for all SAR imaging algorithms. From an engineering point of view, the traditional echo model is
the time-delayed signal of the transmitted signal. There are lots of approximations for echo model. Let us
recall the echo signal model. The SAR echo is one of electromagnetic wave forms, and Maxwell’s equations
are the basic and accurate tool for electromagnetic wave measurement. Mathematically, the SAR imaging
procedure is an inverse problem of the electromagnetic wave. Many mathematical and practical researchers
are interested in these types of inverse problems.1–5

In recent studies of SAR and inverse synthetic aperture radar (ISAR), the data size trends larger and
larger as the need for high resolution images becomes greater and greater. It costs too much and many
times the data cannot be downloaded in real time from some space-borne platforms, such as satellites. How
to disperse the data size efficiently and decrease the data ratio is a real problem for engineers. The good
news is that compressive sensing (CS) theory addresses at least some of these problems.6 Random sampling
theory, the CS sampling, and construction proposed by Donoho et al in 20067–9 and Baraniuk in 200710 may
also help in this endeavor. Many publications in the literature cast the CS into radar imaging,11–15 where
they analyzed the sparse characteristics of SAR signals in different domains. Those are the fundamentals of
reconstructing the scenes from the equivalent down-sampling data set. Another application of the CS-SAR
imaging is to construct the CS matrix and its optimization.16 However, most of the past research works are
focused on the classical echo model for SAR17 and ISAR image.18

In this paper, our goal is to analyze a general echo model and construct a new CS matrix for the SAR
imaging. We use the partial differential Maxwell’s equations to derive the electronic field, and then obtain
the general echo model in frequency domain and time domain. Based on this general model, considering the
sparse characteristic of the scene, we will construct the corresponding orthogonal CS matrix for the SAR
imaging.

Our paper is organized as follows. Section 2 derives the general SAR echo model based on Maxwell’s
equations. In section 3, a new CS matrix is constructed for the CS imaging based on the above general
echo model in frequency domain. In Section 4, simulations are given to validate the orthogonality of the CS
matrix and the imaging performance. Some comparisons of two CS methods and the evaluation method with
indices are also provided. Section 5 concludes the paper.

Compressive Sensing IV, edited by Fauzia Ahmad, Proc. of SPIE Vol. 9484
948402 · © 2015 SPIE · CCC code: 0277-786X/15/$18

doi: 10.1117/12.2177845

Proc. of SPIE Vol. 9484  948402-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



2. GENERAL SAR ECHO MODEL

From the scalar form of Maxwell’s equations, the incident and scattering fields are analyzed first, and then
the general SAR echo model19 is derived according to the antenna theory.

2.1 Maxwell’s equations and field expressions

In this paper, the simplified scalar form of Maxwell’s equations is used directly instead of the vector form of
Maxwell’s equations.20 That is (

∇2 − c−2 (x) ∂2t
)
εtot (t,x) = −j (t,x) (1)

where x is the three-dimensional position vector, c (x) is the local propagation speed of electromagnetic waves
and c (x) = c0 in free space (usually, c0 is the speed of light), εtot (t,x) and j (t,x) is the total scalar field and
the current density on the antenna, respectively. c (x) satisfies c−2 (x) = c−20 −V (x), where V (x) stands for
the target reflectivity function, which will be reconstructed from radar echoes. εtot (t,x) = εin (t,x)+εsc (t,x),
where εin (t,x) and εsc (t,x) is the incident scalar field and the scattered scalar field, respectively. And
εin (t,x) satisfies (

∇2 − c−20 ∂2t
)
εin (t,x) = −j (t,x) . (2)

Then the expressions of scattered field and the incident field are as follows.

εsc (t,x) =

∫ ∫
g (t− τ,x− z)V (z) ∂2τε

tot (τ,x) dτdz (3)

εin (t,x) = −
∫ ∫

g (t− τ,x− z) j (τ,x) dτdz (4)

where g (t,x) = δ(t−|x|/c0)
4π|x| , called Green’s function,21 is the fundamental solution of the partial differential

equation
(
∇2 − c−20 ∂2t

)
g (t,x) = −δ (t) δ (x) .

Considering the single scattering approximation in equation (3), the scattered field is reduced to

εsc (t,x) ≈
∫ ∫

g (t− τ,x− z)V (z) ∂2τε
in (τ,x) dτdz (5)

For simplicity, the following analysis is complemented in frequency domain ω instead of time domain t.

EscB (ω,x) = −
∫
G (ω,x)V (z)ω2Ein (ω,x) dz (6)

Ein (ω,x) =

∫
G (ω,x− y) J (ω,y) dy (7)

where Esc (ω,x) and Ein (ω,x) is the Fourier transform of εin (t,x) and εin (t,x), respectively, G (ω,x) =
e−ik|x|

4π|x| is the frequency expression of Green’s function g (t,x), k = ω
c is the wave number in range direction,

J (ω,x) is the current source in frequency domain. Then, the scattered field with a theoretical point antenna
is

EscB (ω,x) = −
∫ ∫

G (ω,x− z)G (ω,x− y)V (z)ω2J (ω,y) dydz (8)

2.2 Mathematical Signal Model

2.2.1 Radiation pattern for a SAR antenna

Generally, the transmitting and receiving antenna is composed with many cells. For the sake of simplicity,
a planar radar antenna over an aperture [−a, a] × [−b, b] is analyzed and the current density I is constant,
then the radiation scalar F (k,x) can be expressed by

F (k,x) =

∫ a

−a

∫ b

−b
eikx̂·(s1ê1+s2ê2)Ids1ds2

= I (2a sinc (kax̂·̂e2)) (2b sinc (kbx̂·̂e1)) (9)
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where sinc(x) = sin(x)
x , ê = (ê1, ê2) is corresponding to the antenna direction.

Let p(t) the transmitted signal, then the current density on antenna j (t,x) is proportional to p(t) and
independent of position. So, J (ω,x) is proportional to the spectrum of transmitted signal P (ω). Then

F (k,x) = P (ω) (2a sinc (kax̂·̂e2)) (2b sinc (kbx̂·̂e1))

= P (ω)Ga (k, x̂, ê) (10)

where Ga (k, x̂, ê) is just an amplitude function independent of the transmitted signal, with a function of
wavenumber k, which varies for a wideband signal even within a short pulse time duration. In fact, this
corresponds to the frequency characteristics of antenna, especially under wide bandwidth.

2.2.2 Mathematic model of received echo

Suppose that the center of antenna is located at x0, the incident field Ein (ω,x) and scattered field EscB (ω,x)
are

Ein (ω,x) =

∫
y∈antenna

e−ik|x−y|

4π|x− y|
P (ω) dy ≈ e

−ik|x−x0|

4π|x− x0|
F
(
k, ̂x− x0

)
, (11)

EscB (ω,x) ≈ −
∫
z∈target

e−ik|x−z|

4π|x− z|
V (z)ω2 e

−ik|z−x0|

4π|z− x0|
F
(
k, ̂x− x0

)
dz. (12)

When a monostatic SAR receives echoes, the stop-go approximation is applied and therefore the received
echo is expressed by

Srec (ω) =

∫
y∈antenna

EscB (ω,y) W (ω,y) dy (13)

where W (ω,y) is the weight function of the antenna cell at the position y. Substitute (12) into (13), we have

Drec (ω; x0) ≈ −
∫
z∈target

[∫
y∈antenna

e−ik|y−z|

4π|y − z|
W (ω,y) dy

]
V (z)ω2e−ik|z−x0|

4π|z− x0|
F
(
k, ̂z− x0

)
dz. (14)

Considering the far filed condition, |y − z| ≈ |z − x0| −
( ̂z− x0

)
· (y − x0) and |y − z|−1 ≈ |z − x0|−1 are

adopted to produce the following form

Drec (ω; x0) ≈ −
∫
z∈target

[∫
y∈antenna

eik(
̂z−x0)·(y−x0)W (ω,y) dy

]
V (z)ω2e−i2k|z−x0|

4π|z− x0|2
F
(
k, ̂z− x0

)
dz. (15)

Putting the unit weight function W (ω,y) = 1 yields

Drec(ω; x0) ≈ −
∫
z∈target

V (z)ω2P (ω)
e−i2k|z−x0|

(4π|z− x0|)2
G2
a

(
k, ̂z− x0, ê

)
dz. (16)

Until now, we get the general echo model in frequency domain. According to the properties of Fourier
transform, the general echo model in time domain can be expressed by

drec (t; x0) ≈
∫
z∈target

V (z)
p̈ (t− 2|z− x0|/c)

(4π|z− x0|)2
⊗ ga

(
t, ̂z− x0, ê

)
dz (17)

where p̈ (t) is the second derivative of p (t), ga
(
t, ̂z− x0, ê

)
is the inverse Fourier transform of G2

a

(
k, ̂z− x0, ê

)
,

and ⊗ is convolution on t. If we neglect the antenna’s variety with frequency ω or wavenumber k, that’s
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Ga (k, x̂, ê) ≈ Ga (k0, x̂, ê), where k0 = ω0

c is the wavenumber corresponding to the carrier-frequency, the
above expression can be simplified by

drec (t; x0) ≈
∫
z∈target

V (z)
p̈ (t− 2|z− x0|/c)

(4π|z− x0|)2
G2
a

(
k0, ̂z− x0, ê

)
dz (18)

Even some approximation about antenna radiation has been made, we can also find the difference between
the above model and the transitional echo model, which is as simple as the summing the delayed signal of
the transmitted signal. That is, the general echo is not the direct delay of the transmitted signal but the
second order differential function of the transmitted signal. Because Doppler phase is much more important
in SAR imaging, and the amplitude modulation is not serious for traditional SAR systems. In,19 the relation
and difference between the general echo model and the classical model were minutely analyzed. However, for
some high resolution applications, the differences may not be ignored. In this paper, to avoid error as much
as possible, we try to find a CS matrix for the general echo model in frequency domain directly.

3. COMPRESSIVE SENSING IMAGING FOR SAR

3.1 Basics of compressive sensing

Because of the potential advantages for SAR imaging, there has been a wealth of research work directed
towards CS since 2006. The spirit of CS is the sparse presentation under some basis. Suppose Ψ ∈ CN×N

(in fact, the matrix was defined on RN×N originally, and could be expanded to the complex matrix) is the
orthogonal basis matrix and s ∈ RN is the coefficients vector, the signal x ∈ RN can be expressed by

x = Ψs (19)

where the transform coefficient s can be calculated by s = Ψ−1x mathematically. If there are only K(� N)
non-zero values (or small absolution) in s, the signal x is sparse in the corresponding domain, and can be
reconstructed by a few random samples with very high probability. Suppose the linear observing process is
Φ ∈ RM×N , where M < N , the observation data y ∈ RM is

y = Φx = ΦΨs = Θs (20)

where the observing matrix Θ = ΦΨ ∈ CM×N . Based on CS theory, the reconstruction of the sparse
coefficient s can be resolved by the following optimization problem.

ŝ = arg min ‖ s ‖0 s.t. y = Θs (21)

Because l0 normalization optimization problem is difficult to resolve, l0 normalization is replaced by l1
normalization for the actual solution. Then the signal x to be estimated by x̂ = Ψŝ.

3.2 Compressive Sensing Matrix for SAR Imaging

To apply CS to SAR imaging, we should consider two conditions: the sparsity of signal and the CS matrix.
For the first condition, according to the theory of electromagnetic scattering, some target can be thought as
combination of several strong scatters; even for some continuous distributed scenes, the sparse coefficients
can be found in the frequency domain or wavelet domain, etc. So most literatures have discussed the CS
processing for SAR echoes. For the other condition, the previous literatures22,23 presented one kind of sensing
matrices as follows.

Ψ =


chirp

(
Nτ
2

)
chirp

(
Nτ
2 − 1

)
chirp

(
Nτ
2 − 2

)
. . . 0

chirp
(
Nτ
2 + 1

)
chirp

(
Nτ
2

)
chirp

(
Nτ
2 − 1

)
. . . 0

chirp
(
Nτ
2 + 2

)
chirp

(
Nτ
2 + 1

)
chirp

(
Nτ
2

)
. . . 0

...
...

...
. . .

...
0 0 0 . . . chirp

(
Nτ
2

)

 (22)
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where chirp (i) = rect( 2i−Nτ
2Nτ

)exp{jπb
(
i−0.5∗Nτ

Fs

)2} is the transmitted linear frequency modulation (LFM)
chirp signal, b is the frequency modulation ratio of the chirp signal, fs is the sampling frequency, τ and
Nτ = τfs is the pulse width and points numbers of the chirp signal, respectively.

This CS matrix is based on the idea that the echo signal is the delay of the transmitted signal, and its
orthogonality also was validated. However, according to section 2 of this paper, we have found the general
echo model is the expansion of the simple delay model of the transmitted signal, and it is more accurate for
some high resolution applications. Our goal is to find a CS matrix corresponding to the general echo model
directly.

In the beginning, the received signal after discrete processing from the frequency domain expression (16)
can be expressed as

Drec(m,n; x0) = −
Np∑
n=1

σnω
2
mP (ωm)

e−i4ωmRn/c

(4πRn)2
G2
a(
ωm
c
, ̂zn − x0, ê) (23)

where the subscript m represents the frequency number for fast time of echo, n represents the target index,
Np the number of the discrete targets, Rn is the range between the n-th target point located at zn and the
center of the antenna located at x0, ωm = 2πfs(m/N − 1/2) is the discrete frequency, m = 0, 1, . . . , N − 1,
and N is the number of Fourier transform. Suppose the scatter coefficients vector Σ = [σ1, σ2, . . . , σNp ]T ,
the (m,n)-th element of the CS matrix Ψ can be constructed as

Ψmn = ω2
mP (ωm)

e−i4ωmRn/c

(4πRn)2
G2
a(
ωm
c
, ̂zn − x0, ê) (24)

With these definitions, it is not hard to validate Drec(x0) = ΨΣ. Because we use the general echo model in
frequency domain, the CS matrix Ψ is also the function of the general transmitted signal in frequency domain
P (ωm). For instance, if the transmitted signal is a chirp signal, according to the principle of stationary phase,

we can get P (ωm) = Ae−i(
ω2
n

4πb+
π
4 ), where A is a complex constant, and then the CS matrix Ψ becomes

Ψmn =
Aω2

me
−iπ4

(4πRn)2
e−i(

4ωmRn
c +

ω2
n

4πb )G2
a(
ωm
c
, ̂zn − x0, ê) (25)

To validate the orthogonality of the CS matrix for different rows, the following correlation will be calcu-
lated

Cor(Ψm1n,Ψm2n) =

N∑
n=1

Ψm1nΨ∗m2nm1,m2 ∈ [1, N ] (26)

It is not hard to find that |Cor(Ψm1n,Ψm1n)| � |Cor(Ψm1n,Ψm2n)|, (m1 6= m2) because of the cophasal
stacking effect. And after normalization for each row, the correlation matrix is approximately an identical
matrix. The orthogonality will be validated in the next section. On the other hand, besides Gaussian and
Bernoulli matrices, another very important class of structured random matrices is the random partial Fourier
matrix, which is also the object of study in the very first paper on CS.9 In fact, a random partial Fourier
matrix relates the time domain signal and the sparse spectrum items, also it is the first time to construct
an orthonormal basis in CN×N rather than RN×N . It has been proved that the Fourier matrix satisfied the
restricted isometry property (RIP) and can be applied to CS reconstruction. The proposed matrix defined
by (24) or (25) can be thought as one form of the Fourier matrix, and can be applied for CS imaging for the
general SAR echo model. Randomly select M rows from Ψ will generate a random partial Fourier Matrix Θ,
the range signal reconstruction from the SAR echoes can be accomplished in range frequency domain instead
of the traditional match filtering.

In this paper, the orthogonal match pursuit (OMP) algorithm24 is unitized for the reconstruction of the
sparse signal, which corresponds to the discrete scattering coefficients in SAR imaging. The orthogonality of
the CS matrix makes sure the maximum probability of reconstruction quickly.

Proc. of SPIE Vol. 9484  948402-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



4. SIMULATIONS

In this section, the properties of the CS matrix Ψ are analyzed first, then the CS imaging for a point scene is
simulated with both the previous time-domain CS matrix like (22) and the proposed matrix corresponding
to the general echo model defined by (24). The comparison of the range reconstruction results after CS and
the final imaging results are given.

4.1 Simulation parameters

The main parameters for the below simulations are listed in Table I. To compare with the time-domain CS
method, the most common chirp signal is chosen as the transmitted signal. In order to display the affections of
wide bandwidth, the frequency of chirp signal ranges from 800MHz to 1200MHz, and the ratio of bandwidth
and carrier frequency is up to 40%.

Table 1: Main simulation parameters
parameter value
height of antenna 5000 m
velocity of antenna 200 m/s
look angle 45 deg
frequency of carrier 1 GHz
bandwidth of chirp signal 400 MHz
sampling frequency 500 MHz
pulse width of chirp signal 1 us
pulse repetition frequency 500 Hz
number of range cells 1024
number of down-sampled range cells 256
synthetic aperture time 5 s

4.2 Results and discussion

4.2.1 Compressive sensing matrix properties

Since there is some complex magnitude term in (25), the accurate proof of the orthogonality based on (26)
is difficult.

The diagonal elements of the correlation matrix trend to 1, and others are very small. This correlation
matrix is approximate to the identical matrix, so the CS matrix Ψ can be thought as orthogonal matrix.

4.2.2 Imaging results and evaluation

Before analyzing the simulation results, we discuss the evaluation method first. Fourier interpolation is often
applied into the evaluation of the traditional range compressed result or SAR image. However, in the previous
CS reconstruction, it is acceptable that the range reconstruction result has no sidelobe,17,25,26 and Fourier
interpolation is not suitable to evaluate the result. This Phenomenon might be explained that when K is 1
or a very small number, after reconstruction of compressive sensing, there is at most only 1 non-zero value in
each range profile, like a delta function, and any interpolation does not fit during evaluation. According to
our simulation during range CS reconstruction, we still set different sparse coefficients K for a single target,
and a bigger K will expose the more sidelobes. Fig. 1 illustrates the increasing process of non-zero points
corresponding to different K without interpolation.

The bigger K is, the more obvious the sidelobes are. Also Fourier interpolation can be carried out for
this construction with some sidelobes. Meanwhile, we set K = 11 when we apply the previous CS matrix to
the same echoes.

Moreover, we evaluate the imaging results with Fourier interpolation, shown in Fig. 2. The resolutions
and peak side-lobe ratios (PSLR) of both slant range and azimuth profiles are listed in Table 2.

According to Fig. 2, the symmetry along with range direction of the result based on our proposed matrix
is better than those based on the previous matrix. That is also the main reason of the slant range PSLR
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Figure 1: Non-zero points of reconstruction result corresponding to different K without inter-
polation. The six figures correspond to K = 1, 3, 5, 7, 11, 15.

difference in Table 2. Also the evaluation indices of our proposed method are much closer to the theoretical
indices. Usually the higher the range resolution is, the better the image effect is. However, the more the
indices approach the theoretical values, the better the reconstruction algorithm is. In this respect, the CS
imaging based on our proposed matrix is much better.

5. CONCLUSIONS

In this paper, a general echo model is derived from Maxwell’s equations. The general echo expressions in both
frequency domain and time domain are given after generating the scatter filed. The general echo model is the
expansion of the classical echo model. Based on the general echo model in frequency domain, a new CS matrix
like a random partial Fourier matrix is constructed to apply for the CS imaging. Simulation results validate
the orthogonality of the proposed CS matrix and the indices of the CS imaging by our model approach the
theoretical values better. Also a bigger sparse number K will expose the sidelobes of the reconstruction, and
Fourier interpolation can be applied into evaluating the imaging results.
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